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Abstract

Thecoretical analysis is presented on fluid flow and heat transfer
for axial turbulent flow in asymmetrical triangular rod-clusters
caused by thermal bowing or fabrication inaccuracies. The method

is applicable to calculate distribution of local shearing stress,
coolant velocity, coolant temperature and local surface temperature.
It can be used to the stability of bowed fuel rods and to decide
the proper spacing of the supports. Numerical results are obtained
for steam cooled fuels by eddy diffusivity and arc depth of bowing
as parameters, Theoretical considerations are also applicable to

sodium coolant.
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I, Introduction

Every fuel rod is suffered from bowing to some extent because

of tolerances in manufacturing and asymmetrical distribution of
temperéture around the rods that developes during operation, Ini-
tial bowing will cause a change of the hydraulic and thermal condi-

____ tions around the rods which result in a change of the temperature

distribution, increasing the initial rod bowing until balanced
conditions will be reached,

Since the effet of thermal bowing has direct and strong influences
on the hot channel conditions Zf1_7 and core design it must be
thoroughly analysed in detail. In the present work such‘deviated
fuel rod-bundles, which we call "asymmetrical rod clusters", are

investigated.

There seems to be no work so far that treated asymmetrical rod-~clusters
but A.C,Rapier and T.M.Jones 1_2;7. However, they considered neither
asymmetrical triangular rod arrangement nor actual supporting con-
ditions in an accurate manner. It is a well known fact that the

effect of rod-cluster geometry becomes very large when p/d values

are in the range of 1,3 and smaller. In this region, simplified

models of geometry can not be used, instead of actual ones, For
example, the eccentric annular model gives tdofhigh heat transfer
coefficients, So far, this problem has not been investigated}and no

paper has been presented.

There are several papers published on a symmetrical geometry. The
first theoretical treatment is the work done by R.G.Deissler and
M.F.,Taylor [T3_7. Major disadvantages of their work come from the
fact that no considerations were made to shearing stress and flow
mixing. O.D.Dwyer [—4.5.6;7 developed an ingeneous method to improve
these disadvantages. In his method, flow:mixing in the peripheral
directions is already included, although no considerafion is given
to the shearing stress. Dwyer's model is indeed a direct expression

of intuitive observation to the physical phenomena, but his method



seems to be too time consuming and not to be applicable to the

asymmetrical geometry.

A.C.,Rapier and J,D.,Redman 1_7,347 investigated analytically the
flow distribution in symmetrical rod clusters using correlations
for the eddy diffusivity of moment which were based on their own
experihents. However, they discussed only the flow velocity distri-

bution, not the temperature digtribution. R. Wijsing, I.Gargantini

and W, Eifler‘[§;7used in their analysis the same type of segment

as A,C, Rapier and J.D.Redman in the force balance equation, but

they adopted Blasius's correlation and Elder's correlation for the
shearing stress and eddy diffusivitiy of momentum respectively,[ﬁ10_7.
They pointed out that in proceeding the analysis in the way to sub-
divide a channel into many segments as they adopted, there/must be

a contradiction between mathematical and physical requirements,There=-
fore, they introduced a model of subchannel elements which satisfies

both, mathematical and physical reguirements,

In this paper, a new method to calculate the coolant velocity dis-
tribution in the triangular rod cluster is presented in Section IIT
and IV, In the symmetrical cluster-geometry, one has only to consider
one element of subchannels., But in case of the asymmetrical rod-
arrangement, the mathematical treatment is much more complicated
because of‘the complex interrelations between all channel - elements,
as shown in this paper. In Section V, the ftemperature distribution
in the coolant and the cladding on the rod circumferences is calcu-
lated under the assumption that the eddy diffusivity of heat is
equal to the eddy diffusivity momentum, In Section VI, fuel rod
bowing is discussed by using the results obtained in the preceding
sections. Unless each supporting point is fixed rigidly, the effect
caused by the adjoining parts of the span in question can not be
neglected, The supporting method adopted in this paper is the four

points method, that admits displacement only in the axial direction.



IT,.Geometry and Assumptions

The fuel assembly to which the analysis is applied consists of
triangular rod-clusters. However, one rod deviates from its normal
position by the angle ® =30 degree and the distance;fEach fuel
rod has neither fins nor promoters. The geometrical and other para-

meters are listed in Table 1.

The sub-channels are divided into twelve elements around the rod.
These elements are again devided into a number of segments. Each
segment is bounded by the rod wall, two radial velocity-gradient-

lines and the maximum-velocity-line.

To avoid the contradiction between mathematical and physical re-
quirements, as R.Nijsign pointed out, in the present work a new
method is developed. It seems to be rather difficult to apply
Nijsing's method to the present model of asymmetrical geometry,
because of the following two reasons, Firstly, higher order terms
must be included to simulate satisfactorily the shape of the elements,
Nijsing selected four terms in his calculation,but the discrepancy
could not be neglected. In the "Law of Wall" that gives the distri-
bution of generalized flow velocity, the distance between the wall
and the point under consideration is the important parameter., If

the law is applied, the shape of the element should not be modified
to a considerable extent, because the flow distribution would change
even though the flow rate and the element area remain constant (see
Fig.2). Secondly, it is very complicated and difficult to define
properly the maximum velocity line which satisfies all boundary

conditions between the elements used in this method.

In the present paper, therefore, a new and simpler method is deve-
loped (Fig.3). Bach original, straight maximum velocity -line is
replaced by two modified curves, a straight line SR and a circular
arc RN . The radius of the circular arc RN is determind by a simple
calculation if only the length C is specified. According tothis
method, the discrepancy beiween mathematical and physical require-

ments can be eliminated. Furthermore, this method does not affect
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the flow distribution essentially and can be applied to asymmetrical
as well as to symmetrical geometries., The area of the element becomes
slightly smaller by the amount of area NQR (see Fig.3). The diffe-
rence, however, becomes smaller as the radius of the arc becomes
shorter, and for the numerical calculation the difference could be
made négligibly small. Adopting this ﬁodel, the problem turns to be
eninitial value problem of non-linear differential equation. Since

there is no general way to get exact analytical solution the

method was applied assuming an initial value for each segment. The
equation shows sitrong instability, so the selection of initial value

must be as accurate as possible,

Following assumptions are made in performing the analysis:
1. For fully developed turbulent flow, the axial temperature gradient

dT/dx is independent of the angular coordinate Y.

2, Density g, specific heat capacity Cp, dynamic viscosity My, are
constant in a segment., These parameters are functions of the average

temperature in the segmernt.

3., The pressure is constant in the cross-sectional area of the sub-

channel.

4, For steam as coolant, the eddy diffusiﬁity of heath{can be
chosen equal to the eddy diffusivity of momentum é.M' For sodium as
coolant the relation £H[ﬁa;7= O.E;ém[[TSteam_7 (see Section VI), which

is based on experiments 1_21;7, is assumed to be approximately valid.

5. The heat flux is constant for large eddy diffusivity values, but

a modified cosine distribution is taken for small eddy diffusivities.

6. No exchange of heat and momentum across the maximum velocity lines

a=b-c-d-e-f (Fig,1)
T. The coolant flow is steady.

8., The resultant circumferential flow velocity U, and resultant radial

L g

flow velocity u, are zero.
9. The coolant is incompressible.

10.The power density is uniform in the cross-sectional area of the fuel,



IIT. Flow Velocity and Distribution

According to the experiments with tubes and parallel plates, it is
well know that the relation between generalized velocity and gene-
ralized distance in the turbulent flow can be expressed by the

following correlation,

U'= H+84ny* (3-1)

where
U= ujur (3-2)
Yt yu’s/u (3-3)

u#

i

VTu/$ (3-4)

In the present analysis, we assume that the profile of the gene-
ralized velocity can be expressed by only this equation and do not
consider about laminar sublayer and transition zone. Karman / 11_/
gave the value 5.5 and 2.5 respectively to the constants A and B.
We assume that the correlation (3-1) holds in each segments of our
model, The average generalized velocity in a segment at a given

angular coordinate is given by

A
7p +

Y
S ut (Lay)dy dy

T (Eer) de oy

‘3’"‘_ _‘f’_ = 7o
= H*

- Feu*) | 5 ;') (3-5)
u =f7'5*5ﬁ"/ﬂ /*?[4”';

In the new model, one element composes of two smaller elements,

i,e., element A and element B. Then there are also two types of
segments, i.e., the one which belongs to element A and the other

which belongs to element B (see Fig.3).

The segments which belong to element A have the following hydraulic

parameters:



Length of segment:
A A
y = ;{p 4(t‘f~a') (3-6)

Cross-sectional area:
A
" 47

a’J‘ */fa/yﬂ/f- = %’[ﬁ/?fl‘)}'r‘a/y (3-7)

Ts
Equivalent hydraulic diameter:
A '
a4 y1a
J‘g "f—"' =T Y [ A+ )\ (5'8)
¢ 1y dr [ a J
The segments which belong to element B have the following

parameters:

Length of segment:

F= (hg -¢R) ey | (3-9)
2 4
+/(2£ZH -{-‘2)2”41.,,_(250”%’) +2 (‘z‘;%}‘/’d)? —‘;.i

where C is given arbitrarily, but recommended to be as small as possible,
H and R are fixed, if the deviated lengthf , deviated angle ® and

C are specified,

Cross-sectional area:

A
Yo+

A = frd;(a/y = f(&/”‘/);‘a'f (3-10)
7o

Equivalent hydraulic diameter:

as 4 y (3-11)
L'Lr.,v/n,o =4y(44_}) | '

~



IV, Force Balance Eqguation

The Navier-Stoke's equation for incompressible fluid

9‘“ (fV)r--s,qwle%A; (4-1)

is expressed in the cylindrical coordinates r, P, x as follows

a”r 9"r u iy 4 duy - :gf
7t U o ar {77y i 7x r
92;{, A 924{1 al”ﬁ // 9({,_ 2 D“‘f_ ”i‘)
= -% %—' (/,z r2 9’1’2 + P x? r 27 72 2‘/ =
9“;’ +u, ?L{!! 4 “r 9“ 4 L{x ;HL " Uy ul
Pt Jr bt (f ;x 7>
490  m[Puy 4 A Plup Qluy , A Juy , 2 Jur__u¢)
=-g-f-‘-\ + T 1 4 72 2 2 r Ir rz l’l.f +2
7 27 et Ix
g“x u ; ;”X
u X+ U -—aL + Uy 22
3Lt 4 :7——f ? x
224 4 dlux 4 lyy A4 Duy \ ~
= - L—y—;— ( x re) j‘fx,_ -+ é)xz + F 5;r' ) (4 2)
Continuity
di;l/ £ =0 . (4-3)
or
Jur 4 Juy  Pux U g (1-2)
dt T ﬂtf 72x ~

with the assumptions, u

O,uP = 0, )ux/ 2t = 0 one obtains from
gs. (4-2) and (4-4) '

~

A9 ([, du), 42 (ull) 2P i
s_rﬁ(f/”ar)*srﬂsv(’“ ) =45 42)



where u is substituted for u_. Herenﬁlpqy Qr is a shearing stress
which acts on the circumferential plane, and é? é&i is.a shearing
stress which acts on the radial plane. In a turbulent flow, shearing
stress is composed of the shearing stress induced by molecular
viscosity and the shearing stress occurring from the exchange of
momentum, i.,e., Reynolds stress. J.Boussinesqg 1527 first suggested

that the Reynolds stress could be expressed as follows

- du

Thus the shearing stress on circumferential and radial planes,

respectively, can be written in the following form

< 82
7 (4-6)
"'(/”I/‘ff["if>;£
and ;7
— u
L(fE/b( rﬁ,f

Du
= (s $ €y )57, (4-7)

Then from eqs.(4-5) it follows

2(+74) L2y 2P (4-8)
?r 27 7 x

Integrating from the wall surface to the maximum-velocity-line it
follows

y+;1’ f'*;y fp#-)': 4
T, ‘ _dP | rdr
J —%’;—rja’r * r/# dr T dx
*s ’
D st AP
(7‘04)/;)"—1- -7 Ty *5{/) f tht/r = % E(U/v‘f’)?
T

=7, "}A’
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On the maximum-velocity-line, there is no shearing stress, L:/ =0
therefore it holds r’wfy

1“&7

Tozw ="* d? [/4-)7 Y+& / (4-9)

To solve this equation, we must introduce further changes., From

the equation (4-7) one obtains

= da g+ teny (08 Pu*
g (/”d"'!iﬁzf) T’(f = " ‘f

In a fully developed turbulent flow, the effect of the dynamic

viscosity is negligibly small compared with the effect of the
eddy viscosity, SE,,P. The constant B(=2.5) might also be neglected
compared with ut 230)., With this the following equation results.

& ém du*
g = ————7‘ Ld H+ ﬂqf (4-10)

C

The selection of the correlation or value fOI‘f”? is one of the most
important considerations. In the present analysis, Rapier's correlation
Zfé_7ﬁultiplied by a constant factor F was selected, because this
correlation is convenient for analysis.

E;.,‘{ = F —“;T? (4-11)
Table 2 shows the experimental results and semi-empirical correlation
which were obtained by previous researchers, normalized to Rapier's
results. According to Table 2, Rapier's correlation gives the minimum
value compared with the other investigations. The coefficient F was
taken to 1 for the calculation of the shearing stress distribution,
and P=1, 3.47, 13.4 and 57 for the calcu}ation of the temperature

distribution.

Sandborn.[713_7showed that the eddy diffusivity is almost independent
from the distance of the various points in the channel to the wall
except at the vicinity of the wall. Therefore, we assume that the

eddy diffusivity is independent from the radial distance r, Hence,

it follows
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10.].A
[ vdr o B3 gata ut
Yo r S Ay f 7y

Substituting this expression to eq.(4-9), and introducing the rela-

tion Tw= §U*z, one obtains

2
o dPds  E2 (T uu;)“)
If t
we pu ¢ ) 6_ pr &/F
1 dx dy
¢z - s_s{b /F
y 2
‘Ps d+y
then the following differential equation results
u* 4 , % 4 295 4 % 4 Qat\Pu* 4 4w 2
b4 L t=7 - - L /-
TE M""( b ) (¢39¢ §$2p a*og |7 u*("/J
(4-12)
This differential equation can be solved by numerical method.
Boundary condition
Du*
_— e at Y=0,6 T 4-13
70 / ( )
u*/ = u’ b= (4-14)
f'sl r=V 7=”/"/J
7 =J .?. = J-l
u® i 2 u*
> 2¢ (4-15)
;:_ A /= iV
jeT F=T-4
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V. Heat Balance Eguation

The heat balance equation applied for the differential fluid

element showed in Fig.4 is expressed as follows in cylindrical

coordinates,
2 ( .&;7— h) _2_( 2T )
=5 {(Arsgn by, )55 7§~ 75 {(AF50% Eup) m,s
+ilursgar) =0 )

Integrating from T, to T, * § it follows

~ (X +¢56 fyr‘)'r’-’ﬁ?iz:

redy+§ F=7p
i,lv; ’oi-)’
-2 [esgae, VT % +7—f u$q g Trdr o

However, in this equation the first term is equal to O,and the

second term is equal to - 4%

If we further assume that).,g, cp’fﬂr ’ fﬁf’ T and u are mean

values in a channel-segment, the following relation results,

7;}477; {Mf?é« 7 (A +}) ?}“%jf—r {(l'ff}?fy,,)%fn (71+ -;?;)%

We consider a short distance along the axial direction and (5-2)
assume that u, f’ cp and 3 are independent of the axial coordi-
nate x,
7
/’(+")Au a7 (5-3)
q(‘/’)"";—d Y4 g}*gx

‘%;af {( *8§% Cup ) b (14 )7972
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If the coolant is steam, the effect of the thermal conductivity A
is negligible compared with the thermal diffusivityfyp. For fully
developed turbulent flow, the following heat balance holds

PT(¢x) Qe T A (5-4)
7% T U, S .58 '

where subscript-Omeansthe average value in a subechannel, Por sitean

as coolant, we can assume that same correlation holds for both, the
thermal eddy diffusivity and the momentum eddy diffusivity according
to eq.(4-11)

a*y

Eu. =
hy Fz/o

(5-5)
For the sodium as coolant, we can make use of the result which has
been obtained by K.G.Eickhoff et alLZ§i7. They determined experimen-
tally the ratio of the eddy diffusivity of mass in air,‘éM(air),

to the eddy diffusivity of heat in sodium, £H(Na), and got the result
of £H/ EM = 0.6 + 0.1 in the range of Reynolds numbers of 2 X 6x104.
Thus, in the case of sodium we use the relation
u y

AD

(5-6)

but now it is not allowed to neglect the effect of the thermal con-

Eyy =06 F

ductivity in eq.(5-3).

In this paper we investigate steam as coolant, Then eq.(5-3) becomes

4] =0 L St~ 22 o Spcput b (e L) ARIER

Uetpo fo De a0y O

Here we must consider the heat flux distribution on the rod circum-
ference. In the case of symmetrical geometry and at relatively large
value of p/d, or large thermal diffusivity, it may be allowed to assume
that the heat flux is constant, But when the mixing effect is small

or the effect of eccentricity becomes large, this assumption raises
some contradiction, i.e., though the heat generation density and heat
flux are uniform, the temperature difference between the hot and cold

side of the rod becomes very large. Because it is a very complicated
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problem at the actual asymmetrical geometry to obtain the heat flux
distribution by an exact, analytical method, we assume a modified
cosine distribution., This distribution is based on the cosine function

and added by higher harmonics

{//—f‘[znyf-z’fﬂﬂzs"%)g (5-8)
(1 + 5/2)

7(‘)’) =‘7m(

where E is a parameter defining the shape of the heat flux distribution.
(0 €E £1).

With the assumption of uniform power density, some amount of heat
should flow inside the rod from the hot 1o the cold side due to the

temperature difference, i.e,

f
AQ =2 [*(9a~90p))7dp

4

) 4 }

{‘fb-E(/Wvﬂ* U 24 -,.1%)

='4L%av ?2 - Yy, E
(7+5)

(5-9)
where ?£ is the angular coordinate at q(fﬂ = q ¢
As a first approximation we estimate the temperature difference,‘ATf,
which is necessary to induce the flow ofHAQ inside the rod by using

a simplified model instead of treating the actual geometry (see Fig.5).

Ar, - d
Lty b+ Sy du) ae

(5-10)

This temperature difference, zs'rf, must be equal to the temperature
difference of the wall surfaceéﬂﬁw which is obtained from the coolant

temperature distribution according to eq.(5-12),
ATy = OT,, (5-11)

We can find out the optimum values by graphical method taking E as
parameter . First, for several assumed values of E, we calculate

the temperature distribution of coolant and clad surface from the



1
-
N
[}

equations (5-12) (5-18), and then obtain the temperature difference
between the hot side and the cold side of the rod surface,z&Tw. On
the other side, we draw the curve which showsthe necessary tempera-
ture difference,Aﬂ&w to induce the flow of AQ inside the rod it-

self taking E as parameter. The crossing point of these two curves

give the optimum values of E,

If we put in eq.(5-T)

- v e
4 Moé‘oYo Df

Vy, = G /rF

42
—L,.—
A+

{//-E/(m:f+{z’cmlzf~§’-)?/(/’+ %)

K

.Q
s

the following differential equation results

xr 4 ~+_ W & 7 du¥* A D T
= gte e \_(4.08 4 Jep A 2u” A Y ) D (5-12)
Z’(fz 4;1\}%(%" U"j (T2¢f+[,o Q‘f,*u& gif'f.l.}’g Dy 9‘f
This is the equation to be solved.
Boundary conditions
7 0 et @ =0, T
77 ? =0 (5-13)
77/ = 7'/
-= /|:;:V .
;:47" sy AECART v (5-14)
_?_7_/ .7 (A
By e fl7=w (5-15)
? 4 =71

Moreover, to arrive at the solution of eq.(5-12) we need the
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conservation of energy
ST eyl (T-7,)dE =0 (5-16)
&5

The local heat transfer coefficient is assumed to be defined by the

following correlation according to 1722_7

- -1
0/4( 0,82 57 0,32 (5 7)

-ou2  o¥
- 0.0197 A% m e e ¢

After the elimination of u one obtains

o4 s 2 P |\ O%¥1 g¢ oy G223 oA AP
h=0'019771(fa/x)/./t/0/° /s g )

(5-18)
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Vi. Thermal bowing

In the preceding Sections, the circumferential distribution
of clad temperature in a closely packed fuel rod cluster has been
analysed as function of actual cooling and heat transfer conditions

in the reactor-core, If the temperature distribution on the rod

circumference is not symmetrical, then the temperature difference
between the hot and the cold side,zLTW, will induce thermal bowing

of the fuel rod.

In this Section the relation between the temperature difference
and the deflection of the rods from the standpoint of the strength
of the material will be obtained, i.e., the temperature difference,
ZSTn, which is necessary to induce a specified deflection under a
given supporting distancel will be analysed. If d,Tn is larger than
A'Tw for the same value of deflection, then the bowing phenomenon

is stable,

The foliowing assumptions are involved in the analysis:

—— - — - W o " ——— . —_ - . o P —— W D A b G > - " - - —

1. Power density keeps uniform after bowing occurred.

2. The temperature difference between the hot and the cold side of
the fuel rod is constant all over the distance between two

supports.

The differential equation of the bended rod which receives the

temperature difference is expressed by

AE a4 (6-1)

=

a4 x? g*+-?—b

where etis the radius of curvature which is induced by thermal
expansion when the fuel rod is exposed to the temperature difference

ATW = (Two—Twi), in the free support condition,

A x A Tw

S—— -

2 d

(6-2)
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and ¢, is the radius of curvature induced by loads acting on the
supporting points. The absolute values of these loads are decided
from the condition that the resultant deflection at the supporting

points must be zero.

Generally, the temperature distribution around the wall can be

expressed by the Fourier series,
PR o0
hy (1) = Ty +,,Z,(p”m'/“f + By At hq)

The mean value, TW, producesuniform axial and circumferential

expansion of the clad. Since essentially only the first harmonic of TW

causes local curvature of the rod, and since the temperature distri-
bution becomes symmetrical to the diameter at @ = 300, one obtains

7,

/—W[l‘f)": w +%(Two—7"w,-)_&nl’llf

The circumferential temperature distribution of the clad surface,
TW(F), depends on the deviation length of the rodjf, and it should
be therefore also a function of axial coordinate x., However, it is
assumed as a first approximation that §t is constant between two
supports and its value is taken at the most deviated position. This

simplifies the problem and leads to a safety-sided evaluation.

Bending curve caused by temperature difference

The deviations induced by the temperature difference only are given

by the following equations (Fig.6b).
g fre—Lx - AL
} e (£ i)’
x , -
N N T e ol

Bending curve caused by loads

(6-3)

The deflections induced by the loads Wa’ Wb’ WC and Wd (Wa = Wb =
WC = Wd ) acting on the supporting points (Fig.6c) are
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A~ B f"=;_%1[74-[x3~3[ﬂ/+§)2x +2[/5{+ ;_{)3}

3
1 () a0k S aer £)-3(£)x | - A{—] (6-5)

**

Ba M ,) _ WP /- ,,%x 364‘/_%&%,\( Lg(//@&¢ _f 3;

3
-_;_{(xyszﬁ-s(%)'(x%l) +2(%) ? ”a}é‘ ]

Wa is fixed by the condition that the resultant deviation at

supporting point A equals to zero.

pL?
- LSt ,
A {(z/swﬂ (3664) _ A} 2}
1y 8 EJ

The resultant deviation at x is, then, given by adding these two

f'= f*‘f'f**

components (Fig.6a),

(6-6)

(6-7)

(6-8)

If we put/S: 1, the deviation length at x = B¢+ 1/2 i.e.,the maximum

deviation is given as follows

VII. Discussion of Numerical Results

The analytical procedure outlined in the preceding Sections has
been applied to a numerical example, The fundamental parameters are
given in Table 1.

¢ ,/gdand cp are assumed constant in the cross-sectional area of

coolant channel.,

(6-9)
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Fig,7 shows the distribution of the local friciion velocity on

the circumference of the deviated fuel rod at various deviations;:

Pig, 8 shows the distribution of mean flow velocity in a segment
around the deviated fuel rod., In the symmetrical case (p/d = 1.16),
the ratio of the maximum velocity to the minimum velocity is about 1.2,

but if thermal bowing occurs this ratio increases remarkably and reaches

as large as 5 in the case off:: 1 mm,

Fig, 9~16 show the temperature distribution of coolant and clad
surface, T and TW respectively, versus angular coordinate f>, using
the deviationlf as parameter. As we can see in the figures, the
effect of eddy diffusivity is very large. For example in the case

of a relatively large deviation, f= 0.6 mm, In this case, the maxi-
mum temperature difference ATW is only 15°¢ for P = 57, but it reaches
already 34000 for F = 1, Because there is up to now no reasonable
knowledge about the diffusivity with respect to the problems of this
work, we treated the eddy diffusivity as parameter and calculated

the curves for F = 1, 3.47, 13.4 and 57. F = 1 corresponds to Rapier's
correlation Zfé_7and gives the minimum value among the collected
data, F = 3,47 corresponds to Kattchee's correlation Zf19_7 and

Moyer [f20_7also used this correlation to carry out his analysis

F = 13,4 is the mean value of the collected data, and ¥ = 57 is the

maximum value of the data.

The temperature differencetﬁTW grows very sharply with the growth

of the deviation length‘f. Considering the case of F = 13,4 for
example, AT is only 7°C for f’ = 0.2 mm, 17.4°C for f—: 0.4 mm,

but increasing rapidly with the increase of s l.e., becomes 39.400
forjf = 0.6 mm, 81°C for f’: 0.8 mm and reaches up to 1840Cvfor_f = 1 mm,
All curves show that the temperatures of the coolant and of the rod
wall become high level only in the first channel-element (p::Of D76)
and decrease sharply in the second element, Comparing all cases, one
recognizes that there excist great differences in the temperature level
in the first channel according to each f’and F values, but not so
remarkable differences are present in the other channel-elements,

From these results, we can recognize that the thermal bowing has a

strong effect on the hot channel situation,



- 20 -

In the first channel element ()’: 07'-77/6), the coolant temperature
keeps almost uniform level, but the clad temperature shows a peak

near the p = 76, i.e., hot spot.

From the figures 10, 12, 14 and 16, we can draw the curves which
show the relation between temperature difference of fuel clad OTW
and the deviated length {throhgh the parameter F (Fig.17). The

dotted lines show the temperature difference of fuel clad ATn’
necessary to induce the specified deviation for the given support;ng
distance €. For a certain deviation length f , if ATW) TW, this asymme-
trical layout is stable., But ifATn(ATW,*i.e., in the area of right
side of crossing point, the asymmetrical layout is unstable, and the
deviafion may increase more agnd more until touch with the neigh-

bouring fuel rods.

Fig. 18 shows the relation between the deviation length f and
supporting distance ¢ . The upper side of each curve is unstable
area, and the lower side is stable area. Following are examples

how to see this figure.

1 =10 ¢m 1 = 15 1= 20
Fo=1 f €0.36 on stable f£0.02  stavle| always unstable
> unstable 7 unstable | always unstable

F = 3.47|f £0.84 stable fzo.5 stable f<>o.22 stable
>

> unstable unstable unstable
F = 13,4 f <1 stable f<0.96 stable 0,73 stable
> unstable > unstable > unstable
F = 57 always stable always stable always stable
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As shown in the examples, the analysis developed in this work
provides the proper supporting distance @Z for prospecting values

of deviation g .

VIII., Conclusions

The analysis presented in this work predicts the distribution of
the coolant flow velocity, the temperature distribution of the
coolant and the cladding and proper supporting distances in the
important cases of asymmetrical triangular fuel-rod-clusters. With
respect to an early practical approach, several assumptions and
approximations were unavoidable, but these simplifications are

reasonably well safety-sided.

The results show that if thermal rod bowing occurs, the velocity
and temperature distribution in the rod cluster will change consi-
derably, This is an important phenomenon with regard to the thermal-
hydraulic core design and to reactor safety. Therefore, the design
of a compact fuel assembly, with a small p/d value and a high power
density, must be analysed thoroughly not only with regard to the
nominal symmetrical geometry but even more to the always presented

asymmetrical geometry of the hot channel as described in this work.

There are some problems which have arisen during the course of the

work and which need further investigation.

1. Eddy diffusivity:

To arrive at the real flow and temperature distribution in the
rod cluster, the eddy diffusivities of momentum and heat claim the
primary concern in the analysis. It is, therefore, most important
to select proper data of these factors which are applicable to the

actual conditions. However, there are rather large differences
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between the data which are so far proposed, and there are no
uncontested functional formulations for the eddy diffusivity

which could be used in any analysis. Therefore, for practical
purposes, i.e., for a concrete design, it is urgently required to
carry out experimental works taking into acoount the actual condi-

tions,

2, Thermal conditions:

In fast reactors,it is allowed to assume a uniform power density
in the fuel rod in a cross-sectional area. But for a heat flux
distribution on the circumference of the rod, some further conside-
ration must be carried out. In the previous works, the following

assumptions were adopted:

a. Uniform heat fluxj; Dwyer

Nijsing
b. Proportional to mass flow in a segments

Deissler and Taylor

¢, Cosine distribution; Rapier

These assumptions are approximately valid for rod-clusters with
relatively large p/d values both in symmetrical geometry and eccen-
tric annulus geometry which is a simplified model for the asymmetrical
triangular geometry . However, in the asymmetrical rod cluster geometry
with small p/d value, the main concern is directed to the conditions

as described in Section I and Section II, and it is desirable to
calculate the heat flux distribution in a more accurate manner +than

in this paper.

In the present work, the numerical results were obtained only for
steam cooling, but the analysis is even applicable to sodium cooling

after introducing some minor modifications as explained in Section III,
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Nomenclature

Constant in eq.(3-1), normally taken to be 5.5
Constant in eq.(3-1), normally taken to be 2.5

Length defined in Pig.3

an

Re

Constant in eq.(5-12)

Specific heat of fluid at constant pressure, Keal/(Xp°C)
Outer diameter of clad, m

Diameter of fuel, m

Equivalent hydraulic diameter of subchannel, m
1+ Young'!s modulus

2, Parameter of heat flux distribution
Friction factor

Coefficient of eddy diffusivity

Gravity acceleration, m/s2

Local heat transfer coefficient, Kcal/(mzsoC)
Axial distance between two supports, m

Second moment of area of fuel cross-section
Pitch of fuel rod, m

Pitch of fuel rod for symmetrical geometry, m
Static pressure, at

Prandtl number = (Cpﬁlg)/l

Heat flux of fuel rod, Kcal/(s m2)

Average heat flux of fuel rod, Kcal/(s m2)
Radius defined in Fig.3

Reynolds number in symmetrical subchannel = (Deuo s)éu
Radial distance in cylindrical coordinate, m

Radius of fuel rod = /2, m
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Cross-sectional area of subchannel in symmetrical geometry,m2
Cross-sectional area of segment, m2

Coolant temperature, °c

Clad temperature, °c

Clad temperature, °x

TemperatHTE*&ifferegcefof*cia&—barface—%e%weeﬁ-%he~hﬁ%~si&e—ff—~—v——*
and the cold side, C

Temperature difference of clad surface bgtween the hot side
and the cold side defined by eq.(5-10), C

Temperature difference of clad surface getween the hot side
and the cold side defined by eq.(6-9), °C

1. Clad thickness, m

2, Time, s

Local flow velocity, m/s

average flow velocity in a segment, m/s

Generalized flow velocity = u/u*

average generalized flow velocity = ﬁ/u*

Friction velocity = |/ Ly /¢ » u/s

Mean value of u* around the circumference of the wall, m/s
Average flow velocity in the symmetrical geometry, m/s
Specific volume of coolant, mB/Kp

Axial coordinate, m

Perpendicular distance from rod wall, m

Generalized distance from rod wall

Radial distance from wall to maximum-velocity~line, m
Generalized radial distance from wall to maximum-velocity-line
Load acting at supporting point, Kp/m2

Coefficient of linear thermal expansion of clad
Coefficient of supporting distance

Specific weight of coolant, Kp/m3
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Equivalent hydraulic diameter of segment, n
Eddy diffusivity of momentum, mz/s

Eddy diffusivity of heat, mz/s

Angular coordinate of deviations, Degree

Angle defined in Fig.3, rad

Thermal conductivity of coolant, Keal/(m s°C)
Thermal conductivity of clad, Kecal/(m s°C)
Thermal conductivity of fuel, Kecal/(m s°C)
Coefficient of shear stress, (Kp.s)/m2
Dynamic viscosity,(Kp s)/m2

Kinematic viscosity, m2/s

Length of deviation, m _

1. Coolant density, Kg/mB, (Kp s2)/m4

2. Radius of curvature of fuel rod, m
Radius of curvature induced by loads, m
Radius of curvature induced by temperature difference, m
Fluid shear stress on circumferential plane, Kp/m2
Fluid shear stress on radial plane, Kp/m2

I-r at rod wall, Kp/m2

T, in symmetrical geometry, Kp/m2

Angular coordinate of a segment, rad
Function defined in eq.(4-12)

Function defiﬁed in eq.(4-12)

Function defined in eq.(4-12)

Function defined in eq.(5-12)

Function defined in eq.(5-12)

Function defined in eq.(5-12)

Function defined in eq.(5-12)
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Subscripts

Number of segment

Number of channel-element

Average value in a symmetrical geometry

Radial direction

Circumferential direction
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1

Table

Parameter

Symbol

Values selected for

numerical calculation

Coolant Reynolds number Re 2,64 x 105
‘temperature (average) T 500 [Cc 7
static pressure P 180 L at_/
friction factor £ 0.02
material steam
Clad, outer diameter d T thm_7
thickness t 0.37 Zfﬁm;7
thermal conductivity e 0.19 [TW/cm-c_7
coefficient of linear & 1,15 x 1077
thermal expansion
material Inconel 6,25
Fuel diameter du 6.26 [ mm_/
heat flux (average) av 354 ZTkW/mZS_
power Q@ 0.464 Lww/ ]
thermal conductivity Xu 0.024 L] 00T
material UOZ(SO%)-P02(2O%)
Pitch length (symmetrical) P 8,15 [ mom /

Geometry

triangle layout
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Table 2
4 .
Reference Equation Fluid £x 10 m.2 Normalized
—_— value = F
<)
Collins [147 experiment Air 114 57
Bishop [15. 7 L Water 64.4 32,2
Nelson [16.7 " " 29.4 14.7
Waters 117 " " 10.4 5.2
Bell L8 7 " " 6.8 3.4
" n " 4,52 2.26
: Re 1/..f..
Kattchee Zf19_7 Zo V2 v Steam 6,95 3.47
%
Elder /107 0.0115 Re 9 " 3,36 1.68
. uty
Rapier /[ 87 ; 7/10 " 2 1
Average 26.8 13.4

[—note_7 The last two values in the fourth column are calculated applying
the present data to the equations of Elder and Rapier. Other
values are calculated from the ratio of observed value to the
predicted value using Kgttchee's equation., A list of the ratio
is given in Moyer's report [f2Q;7.
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Subchannel

Fig.1 Cross-section of asymmetrical

triangular rod clusters



modified boundary

Fig.2 Nijsing’s modified channel-element



Pitch-line

Max. velocity-line

Fuel rod

Segment

Element (A)

Element (B)

Q

~C (=N Q)

Max. velocity -
line

\_Pitch-line

Fig.3 Definition of channel-element and segment

used in the present analysis



/ max. velocity-line

dx

FPig.4 Coolant volume element in a

cylindrical coordinate system



du

Fig.5 Simplified model on the right side to estimate the heat flow

the fuel and the cladding of the rod (on the left side)

in

as a first approximation
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Fig.6 Bending curve of a fuel rod supported at four points
a. The resultant bending curve

b. Bending curve of the fuel rod supported at two points

and exposed to a constant temperature difference ,ATh

between the two supports B and C

c. Bending curve of the fuel rod loaded with restoring forces



Fig.7 Friction velocity E;e- vs angle
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— AT Max.existing wall temperature difference around the deviated
fuel rod

___ATn : Critical temperature difference necessary to induce the

specified deviating length for the given supporting length
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Fig.1l7 Max.existing and critical temperature differences ATW, ATn
at the rod circumference as a function of deviation f

at various supporting lengths 1 and F-values
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Fig.18 Stability limits as function of deviation §

and supporting distance 1 at various F-values





