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Abstract

In this paper a review is presented covering the models of neutron
slowing down calculations in both thermal and fast reactors. To
understand the physical nature of the processes which form the
reactor spectrum, slowing down is investigated in an infinite
medium. The performance of space dependent calculations in

homogeneous as well as in heterogeneous media is outlined.

Zusammenfassung

In diesem Bericht wird ein Uberblick iliber die Modelle zur Berech-
nung der Abbremsung von Neutronen sowohl in thermischen als auch

in schnellen Reaktoren gegeben. Zum besseren Versténdnis der
physikalischen Prozesse, die ein Reaktorspektrum erzeugen, wird
auch die Abbremsung in einem unendlich ausgedehnten Medium unter=-
sucht, Die Berechnung ortsabhéngiger Neutronenspektren in homogenen

und heterogenen Medien wird kurz beschrieben,
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1« Introduction

In a fission event two or three neutrons are born with a mean energy of
about 2 MeV, In order to obtain a self sustaining chain reaction, it
is necessary that the absorption of one neutron in a fissile nucleus pro=-

duces more than one (fission) neutron. This condition can be expressed
by

_ of(E)
n(E) = v (E) GET ]
a

v(E) is the mean number of neutrons per fission, of(E) and oa(E)aiﬁe micro=
scopic fission and absorption cross sections respectively. In a reactor
medium the neutron excess n-1 is needed to account for inevitable neutron
losses by ebsorption in coolant and structural materials as well as for
neutron leakage out of the reactor system. The form of the energy depend=-
.ehce of the fission and absorption cross sections of fissile materials in
the energy range between O and 10 MeV has a very important consequence. In

233, 23’ and Pu239 is shown.

figs 1 the neutron gain per absorption for U
From the point of view of neutron economy those energy ranges are of con-
siderable interest for the reactor designer, where the n-value is definitely
larger than one. This is the case for neutrons with slow (thermal) and

fast (larger than 50 keV) energies. Thus two reactor concepts are asttractive:
the thermal reactor in which the fission is induced by thermal neutrons, and
the fast reactor in which the fission is mainly induced by neutrons of ener-

gies about 100 keV, There can be developed snother interestingfesture from



fig, 1. TFor energies above 10 keV n(Pu239) is larger than two. Thus another

239-U238-mixture, be captured by U238

neutron is available and can, in a Pu
vhich leads by 8 decay to pye39,

(n,Y) B B
u238 4 o __:? 4239 _— Np239 a xS
23.5! 2.354

If there is more plutonium produced than consumed, such a reactor is named

a breeder reactor.

Another characteristic can be seen also directly from fig. 1. If for some
reason in a large Pu fueled fast reactor the spectrum hardens, this is

followed by an enhanced neutron multiplication.

These general remarks make it obvious that in a thermsl reactor with the

appropriate neutron moderator content, the discussion of formation of the
energy distribution of neutrons, that means the neutron spectrum, is in-

fluenced by the three main effects:
a) the slowing down of neutrons with energies of about 10 MeV to
energies of some eV,

b) the thermalization of neutrons below some eV which includes the
possible energy gein of a neutron in a collision with a moderator

atom,

c) the effect of heterogeneity in a reactor lattice on the neutron

spectrum,

In a fast power reactor the neutron spectrum is strongly dependerf on

a) fission and absorption cross sections of heavy isotopes in the
resonance region,

b) the inelastic scattering mainly of U238,

. ¢) the elastic down scattering by structural and coolant materials.,

The importance of the investigation of neutron spectra in reactors can easily
be demonstrated, First of all the calculation of the neutron spectrum; as
accurately as possible, is one of the necessities in thermal and fast reac-

tor design work in order to fix properly the physical design parameters



2,

as for instance enrichment, burn-up, and reactivity coefficients. Especial=-
ly in fast reactors the neutron spectrum strongly influences the Doppler

and coolant density coefficients as well as the breeding gain.

In this paper a review 1s presented covering the models of slowing down
calculations in both thermal and fast reactors. To understand the physical
nature of the processes which form the reactor spectrum,

slowing down is investigated in an infinite medium. The performance of space
dependent caleculations in homogeneous as well as in heterogeneous media is

outlined.

Neutron Slowing Down Processes and Calculational Models

In this chapter we describe the main features of the neutron slowing down

processes in reactor media and their mathematical representation.

2.1 TInelastiec Scattering

If a neutron collides with a nucleus, the ratio oin/ct is a measure for the
probability that this neutron will be scattered inelastically (cin and o,
are the inelastic and total microscopic cross sections respectively). The
inelastic scattering is a threshold reaction, and the threshold energy decrea-
ses from some MeV for light materials to about 50 keV or even less for heavy

nuclei (for Pu?3? the threshold is about 8 keV, for U238 45 keV). The mini=-

“mum energy of the neutron necessary for inelastic scattering is equal to the

energy amount required to reach the first excited state of the target nucleus.
Having formed a ecompound nucleus, the rneutron will be emitted with a lower
energy, and the residual nucleus is left in an excited state which-decays
subsequently by vy emission., Thus inelastic scattering is very important

in a reactor by reducing the energy of fast neutrons above 100 keV, The

degradation of fission neutrons below the fission threshold of U238

is res=
ponsible for the fact, that no self sustaining chain reaction can be formed
in & block of natural uranium, although the mean n-value sbove 1.5 MeV is
larger than 2 for U238. This is so, because neutrons with energies about
2 MeV are scattered to about 60% elastically with a negligible energy loss,
about 30% suffer an inelastic collision, and only about 7% induce fission

and the rest is being captured.



The inelastie scattering process is characterized by the scattering cross

section o. (E'»E,u) (E' is the neutron energy before and E the energy after

1n(
the collision, u is the cosine of the scattering angle). For heavy and
medium nuclei the angular distribution of the inelastically scattered neutrons
is normally assumed to be isotropic. We may therefore decompose the cross
section in an amplitude factor, given by cggt(E'), and an energy transfer
probability Pin(E'+E), thus

t

1T otrney o a1
cin(E »E) = o (E") Pin(E »E)

with

Pt =
] P, (E'E)QE = 1
o
For an inelastic scattering process on s single level with excitation energy
Ek, the transfer probability is simply a S=-function (c?n(E') is the excitation

cross section for level k),

By

C.
in

P?n(E'+E) = §(E'-EEaE) o

tot

] ]

(E') /0., "(E")

The energy of the neutron after an inelastic collision is given by the differ-

ence of the incident energy and the excitation of the level considered:
L. S
E'-E_=E

Then it follows that

k

cin(E')

Pin(E'+E) = E o?°t(E') G(E'-Ek—E)
in

The inelastic scattering probasbility into a group interval AE is therefore
given by
k ¢
By L Oin(E")
¥ a
P, (E'>aE) = g

. I_F Jtt LR
tot(E') S(E B ~E YaE
%in



k
(2 0. (E') 1Y = 1

X in E = E -Ek
-EEE_-- for

or, (E') E<E''< E+AE

4
Pin(E +AE) =4

kp otherwise

238 E>2 MeV) many levels contribute to the

At high neutron energies (for U
inelastic cross section. FExperimentally they are not resolved. Thus a model
based on single level excitation is meaningless. In this energy region it is
assumed that the levels are distributed statistieally. According to this
picture the compound nucleus behaves like a solid or liquid and the exci=
tation energy can be characterized by a tempersture., The inelastic scatter-
ing can then be described as an evaporation process of the compound nucleus
and the probability that the energy of the emitted particle reaches the unit

energy interval at E is proportional to

~E/KT _ e-E/e(E')

34 (E'>E) v E e Ee
n

(k is Boltzman's constant). O(E') = kT represents the temperature of the re-
sidual nucleus. This is based on the assumption that in an inelastic collision
the neutron loses most of its kinetic energy whichthenheats up the residual
nucleus. According to WeiRkopf the nuclear temperature is then determined

by the level density W(E) of the residual nucleus.

= &

1
&) E' = ar lnw(E)/

E=RE'
This formula is analogous to the thermodynamic relation between entropy and
temperature, implying that 1nW(E) can be considered as the entropy of the

residual nucleus in an energy interval near E.

There are some formulas according to which the nuclear temperature can be
fitted to experiment. It can be shown /~1 7 that a suitable choice of the
free parameters represent the experimental nuclear temperature equally well.

Often the Weifkopf formula is taken:

o(E') = VE'/yA



where A is the mass number of the nucleus and y a parameter, evaluated in
/717 to 0.16, valid for A>2T7.

The normalized transfer probability is given by

E emE/G(E')

\
P. (E'E) =
in 62(E,)

The integration is performed to infinity because in the cases, where the

evaporation model is used, E'>>0 holds.

Consequently
v - 7t
Ogn(E'+E) =0, (2" - ngg___ o—E/0(E")
o~ (E")

The simple Maxwellian form of the evaporated neutron spectrum usually under-
estimates the high energy contribution, but in reactor calculations this is

not serious anyhow because of low neutron flux intensities in these regions.

2,2 Elastic down scattering

Elastic scatteringis one of the simplest nuclear reactions. In the energy
range down to some eV the collisions between a neutron and the atoms of light
materials, by which the neutron energy is mainly degraded, can be treated
sccording to the laws of classical physics. Let us first recall the kinetics
of the process of an elastic collision.

The relationship between ineident and final neutron energy in the laboratory

system for a collision process with a nucleus of mass number A is given by

A2+1+2Acose

E =E'
(A+1)2

E' is the neutron energy before the collision process, E the energy after the

collision, O is the scattering engle in the CMS-system, A the mass number. With

= (é:l 2
o A+1

it follows

E

fl

%L {(1+a) + (1=a) cos6}



Furtheron the cosine of the scattering angle in the laboratory system, M

can be expressed as

uy =;—{(A+1)]/-§:- m—ﬂ}l—éf}

The maximum energy loss is obtained for 0 = w¢

= e
Emin oF
Thus the energy interval, which can be reached by a neutron of energy E'

in an elastic collision is
A = E'(1=a)

In a central collision with a hydrogen atom the neutron, therefore, can lose
all of its energy, if the atom is assumed to be at rest., The probability

that a neutron of energy E' will be scattered down to energy E is given by

hnos(e)

1 TR !
EFTT:ETE; for oE'<E<E

P(E'»E) =

0 otherwise

os(@) and o_ are the differential and the total cross sectionms, respectively.
Very important in the caleculation of neutron slowing down by nmoderator atoms
in thermal reactors is the case of isotopic scattering in the centre of

mass system.

Then
9
cs(@) =5 and therefore
! for aRE'<E<E!
» ZT—ajE'
P(E'>E) =

0 otherwise



Thus the energy distribution f1(E) of neutrons with energy E after an elastic

scattering process is a constant, independent of E:

dE

f1 (E)GE = m,

The energy distribution at E of those neutrons which have suffered two

collisions, is given by

E! f1(E")dE" . -
In e for oE'<E<E'

]

fg(E)

S LTI =
& {(1=a)E (1_a)2E, E
Ef“ £,(E"") 1 E 2
£, (E) = ToTeT ' == In = for o E'<E<oE"
2 abE? T=a)B (1-&)2E' ueE'
f2(E) =0 otherwise

To find the distribution of neutrons, which have collided n times, it is con=-

venient to introduce the lethargy variable

- ! - A+1 L =g
u = 1n 5 and g = 2ln T o =e
(g is the maximum lethargy gain).,
We obtain /72 7
-u k :
S = ) (-1)k (ﬁ)(upkg)n-1 for O<u<ng
(n=1)1{1=a)" k=o £
£ (w)=
0 otherwise (

The k-surmation has to be carried out to that value E that each term (u=kg)>0.

For n>>1 and %g --%l <<1 one obtains /727
-l u 142
£ () g__-e_a_____; }n-1 }61'7? e—6n(;1‘é - “2")
& (1=a)

This asymptotic expression deviates from the exact formula for A=k and n=10
only by 4%, for n =20 already the exact results are represented, It can

easily be shown that



[ £ (u)dw =1, and therefore
o

fn(u) is the probsbility that the neutron reaches the lethargy u in n colli=

sions. The maximum of this nearly symmetric probability distribution is

n

1

g

Y
n "o

k u/}

where ¥ is the logharithmic energy decrement:

5

< _ o 1 12
}‘1+1-aln°"25'12g Toaee

In the zbsence of absorption the summetion f(u)du = ) fn(u)‘du is also equal
n=i
to the total number of neutrons, which arrive at u in du and will suffer

their next collision in this interyal /72 7, so f(u) must be identical with

the collision density. It follows
flu) = 1/}

When the scattering is anisotropic in the centre of mass system, the transfer
probability P(E'-E) is no longer a constant, In a forward scattering process
P(E'»E) is larger near E=E' than near E=qE', since neutrons lose comparatively
little energy in small angle scattering.

In order to treat this problem more generally, we try to find an expression
in the laboratory system for the elastic scattering transfer function
cL(E'+E,§'+§). This is the cross section for changing the energy E' and

the direction @' of a neutron into an unit energy interval at E and an unit
solid angle arcund'g. In an isctropic medium the angular dependence is de=
termined by My, = 3’05. The final energy E is uniquely determined by the de=
flectionluL(E) and thus E is a spurious variable in the expression for the
transfer function. Therefore it is allowed to write Z-compare also 3_7

ad
UL(E'»E,DL) = GL(E',UL).'S (u L(E)“u L)' ‘a‘%
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The Dirac=-S=-function 6(uL(E)-uL) expresses the fact that cL(E'*E,uL)dE=O
. L e (B - L e B
if up o (A+1) -E-.--2-(A-1)VE

It is a usual technique to expand the scattering cross section into Legendre

Polynomials
L T 2241
o (E'SEyu ) = ] 5= K, (ELE)P, (u)

2=0
The kernel K, (E',E) is

+1 L duL
. ' . - ® e ®
_{ duL ° (E 'uL) G(UL(E) uL) dE PR(uL)

{1

KR(E',E)

du. (E)

o (B ufE)) —Ze— + P (4 (B))

1]

The differential cross section o(E',n) is usually evaluated from experiment

in the CMS-system in terms of Legendre Polynomials. Since
(B u dau = o%(B,u )y
YPLL e’ e

we expand

22+1
2

Ij &~ 8

o%(E',u ) = Bo(E') P (u)

2=0

Therefore we have

o d]J (E)
' - 22 +1 Y. c .n° 1
K, (E',E) Q'EO 5— * Py (u (E))*P (u (E)) =g B/, (E")
with
duc 2

& - Ti=o)E'

For isotropic scattiering in the CMS-system it is

C N ),
By(E') = o (E')*8,,,
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Then

c (E")
s

K (E',E) = TioayEr = cS(E')-P(E'~>E)

1

P(E'"E) = TET )

as has been defined earlier.

The first anisotropic moment yields:
g (E') ] 'I
] - 8 -E—-_ - -E-—
K1(E E) m, s {(A+1)V T (A=1)V = }

The treatment of anisotropic scattering in reactor physics is importent
especially in the presence of hydrogen. For small fast reactors with a
high neutron leskage the anisotropy in the CMS-system of all materials is

essential,

2.3 Scattering processes of neutrons below scme eV

The energy range below 1 eV is most important for an accurate prediction
of the neutron properties of thermal reactors. Although the scattering of
slow neutrons is not a direct subject of this paper, we treat the problem
of neutron thermalizaetion in a more qualitative way in order to understand

the formation of neutron spectra in thermal reactors.

When the neutrons have been slowed down below 1 eV due to elastic collisions
with the moderator atoms, then the neutron energy becomes comparable with
the energy of thermal motion of the moderator atoms, and, although the
average energy of thermal motion is 0.025 eV, due to the Maxwellian
distribution of velocities there is a certain fraction of atoms with
energies in the range of 1 eV, These will effect the neutrons in such a
way that now a neutron may gain energy in a collision process as well

as lose energy: up=Scattering therefore has to be considered in the

theory of neutron scattering.

If there is no ebsorption and leakage, the neutrons finally will reach
thermal equilibrium with the moderator nuclei and assume & Maxwellian

distribution:
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. v E =E/XT
T [ Vi,
N (E) = €

(T is the moderstor terperature, k Boltzmann's constant). This distribution

will be =assumed irrespective of the type of moderator,

Two main problems arise in the theory of thermalization of neutrons:

a) the moderator temperature,

b) the state of chemical binding.

Here we will not discuss in detail the mathematical description of the appro-
ximation for the scattering kernmels of various moderators, but rather give
a qualitative representation to understand the physical nature of the pro=-

cesses involved.

Wick L—h_7, van Hove 1-5_7 and Zemach and Glauber [-6_7 first gave the general
quantur mechanical formulation of the scatfering of slow neutrons with gases
and molecules, This is done in first Born approximation, using the Fermi
pseudo potential as a contack potential to describe the interaction of the
neutron with the scattering partner.

The simplest model used in thermalization theory is assuming that the moder-
gtor atoms behave like an ideal gas 1-7_7. The effect of chémical\binding
then is treated by introducing the &ffective mass concept of Sachs and

Teller (for D in D0 A .. N 3.6),

The scattering kernels Kl(E'E) can be calculated straight forward. The most

important kernel Ko is given by

b2
N - Se——
Ko(e,e) = 507 (F1+F2)

where

2 1 1 .2 E? 2 1 ¢ 1 .2
b~ = (-'/-A‘.q. e A = g~ = v AV )
TR KT ¥ i

F, = $(0VE = o/ ) + $(o/e + ave")

ry = eSS YT L ) (T R T

2
et dt; upper sigd ¢ e'<e up-scattering

¢(x) =

O M

2.
vx

lower sign ¢ e'>c down-scattering
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The total scattering cross section is then

=cA

0g(6) = [ K (et = (10 mpd(fenh) + 2=

To take into account the effects of chemical binding more properly, one has
to loock for the possible translation, vibration and rotational states of

the molecules /“see also ref, 15 7:

a) Water

The frequency distribution ofthe H atom in H_ O was approximated by

Nelkin 1-8_7 by four dé=-functions. The transiation of the molecule

in water is taken as the movement of a free gaseous atom of weight

A=18, according to a d-function for w=o. The hindered rotation is
described by an oscillator with Bw=0.06 eV, From the vibration

states at 0,2 eV and 0,474 and 0.488 the latter are combined to

one d=function with a double weight.

The model mostly used nowadays is that of Haywood 1_9_7 with a continuous
frequency distribution in the range of hindered rotation and transe—

lation,

b) Zirconiumhydride

Because of the large mass difference of the H and Zr atoms the H-atoms
vibrate nearly as. independent oscillators (Einstein-model). The
optical vibrations of H- and Zr-atoms are ceﬁtred around 0,14 eV
(acustic vibrations are below 0.02 eV), Best model now is that of
Slaggie 1-10_7, who determined the frequency distribution from lattice

dynanics, assuming central forces between the neighbours.

¢) Graphite

The C atoms of graphite cristallize in layers. It is assumed that the
vibrations of the atoms vertical to the layer are not coupled to the
vibrations within the layer, where the chemical binding is very strong.
According to Young, Koppel and Parks 1_11_7 the theoretical frequency
distribution is therefore split up into two parts, parallel and vertical

to the cristal layer.
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Slowing down in infinite medis

To study the fundamental procedure of neutron slowing down in s medium we
first want to avoid the difficulties arising from neutron leskage. Therefore,
we investigate the slowing down in an infinite homogeﬁ%us medium with an
homogenecus source.

This treatment of an infinite medium is not so academic, as it might appear

at first sight. The characteristics of many real systems dre determined

to a large extend by the properties of the corresponding infinite media.

For instence the large natural uranium graphite reactors have to be rather
large to go critical, neutron leakage 1s rather small. This becomes true more
and more also for light water reactors and in near future for fast reactors,
because economy and pover requirement tend to very large systems (1OQO Mwe

and even more).

The balance equation, which determines the neutron svectrum, is given by

1 (E) ¢(E) = [{P_(E'-E) £ (E') + P, (EE)ez. (E")} ¢ (E')aE' + S(E)

o

Pe’ Pin are the elastic and inelastic transition probabilities, respectively,

S(E) may be the production term due to fission:

§
=]

S(E) = s.(E) = x(E) ({ v(E') I(E') $(E")ar"

with y(E) the fission spectrum, v(E) the neutron gain per fission, B(E)

may include an external source,

3.1 Slowing down in nonabsorbing media and in special mixtures

The first statement is that the relatively simple equation in its general
form cannot be solved ghalytically. Only for the simple case of moderation
in hydrogen without absorption an exact solution is possible and yields

the well known 1/E dependence for the neutron flux:

With

L., = 0 S(E) = S“G(E-Eo); za=0, £.= constant

Y’

e(E'-»E) = 1/E'; E_ = source energy, S = source strength
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we obtain

'Eo Xsé(E')
F(E) = 2_ ¢(E) =é AE'+S+8(E-E )

1 T

F(E) is the collision density.

The solution is

S 45 (B-F_), thus

F(E) =

[}

¢(h) Ezs for E<Eo

As a more realistic case we consider a homogeneous mixture of hydrogen (H)
with a heavy sbsorber (A), which does not moderdte neutrons. Then it follows
for a monoenergetic source at energy EO

- A Eo ZS(E')
" 4, = ' ' )
(2 (E) + za(E))¢(B) _jE —— ¢ (E")aE" + s(E_)

The solution is

E ,
s JO z, (B ) amr
_ - =
F(E) e p L(E)E
Here
H A - H . A
! = = - =
Za(E ) Lo+ I, and I S+ F(E) rzt(E) f#(E)

For Za=o we have the previously obtained result.,

For Za/zt const., we obtain

(}i_ a/Zt

[a}
F(E) =‘§’ =
(o]

In this case the collision density F(E) with decreasing energy does not

raise as steep as in the case of no absorption, because neutrons vanish

per gbsorption.
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For the elastic slowing down of neutrons by nuclei with A>1 we have already
discussed the form of the spectrum after n collisions., Again in the case

of no absorption we obtain asymptotically (E<Eo' more precisely: E<a3Eo):

$(®) =3,-§—S-.-;§

The results are true also for a non-monoenergetic gource, e.g. the fission
spectrum y(E), if we are interested in neutron energies below the fission
spectrum.

Thus in a thermal reactor the fission spectrum of neutrons will be affected
mainly by elastic down scattering with the moderator atoms and approaches
the form 1/E, at least in finite energy intervals of suitable length, if

weak absorption is assumed.

3.2 Slowing down in media with resonance sbsorption

For simplicity we restrict our discussion on the resolved resonance region
and assume that the resonance width is small compared to the level distance.
Then one resonance can be described by the single level Breit-Wigner formula.

For nuclei at rest (zero temperature T=o) we have for a capture resonance:

0
o¢ . o
2 ° c

_ (B=-Eg)
x = —F7§Q—

Eo = resonance energy; I = total width of the resonance.

Q
il

GC(E) = peak value of the resonance

1+x

The total cross section is given by

o]
o
Ot(E) = ~—£~§ + (o: OPG)1/2 . —255 + o,
1+x 1+x )
Here is :
o _ © o, - . .
Op = 04 + o op poﬁentlal cross section
Fn 1 for I=o = gpin of resonance nucleus
C=er 73 8 = )12 2L sor T#o J = spin of compound nucleus.

2I+1
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If we assume that the resonance width is small compared to the degradation
interval of neutrons in an elastic collision, then almost all neutrons, which
collide with the nucleus at resonance energies have had there last collision
sbove the resonance of interest. Since the absorption outside of a resonance
is normally very small, we therefore are allowed to identify the collision
density for a unit energy interval of the resonance with the collision
density outside the resonance.

The number of neutrons, which are absorbed in a resonance per unit time,

is given by (the collision density is taken proportional to 1/E):

; - g (B) | - £, (E) | DI @) S
A= F E) » dE ~ F E)e dE = = - ———
Res ©° L, (E) Res °O° Ly (E) Resiiy(E) E
v =

-wTZtE E Q}.zs
- . = L8
(T is the mean logarithmic energy loss in a mixture,'?==5%?—-— N Fas is the
asymptotic collision density outside the resonance). s

This procedure is well known as Narrow-Resonance (NR) Approximation and is

widely used in reactor physics, especially for fast reactors, where the
collision density naturally is not assumed to vary as 1/E. As a consequence
the resonance absorption has to be evaluated numerically, while for the simple
case given sbove, the gbsorption in g series of single resonances can be
determined analytically. We will come back to the procedure used in fast

reactors, in section 4.1,

In a mixture of a heavy resonance absorber (e.g. U238) with a moderator
(esgs hydrogen) one may assume as in section 3.1 that the heavy nucleus
does not change the neutron energy in an elastic collisions Then the colli=-
sion density within the resonance to be used in the calculation of resonance
absorption is given by
1 1

n 5 and consequently
}M(Zt(E)-ZS(E))
-~ I_(E)

= T (E (E)+E(E))

F(E) =

A =

(M stands for moderator).
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This procedure is known as NRIM=-Approximation (narrow resonance infinite

mass) and is often applied in thermal reactor physics for the determination

of the ebsorption in the low energy, broad resonances.

Both methods differ only with respect to the treatment of neutron scattering

on heavy isotopes.

As a conclusion from this section we keep in mind that in a thermal reactor
the global 1/E dependence of the neutron spectrum shows a fine structure

in the resonance region. MThis fine structure in NR=-gpproximation is pro=-
portibnal to 1/Zt(E) at each resonance for thermal reactors as well as for
fast reactors. The collision density is a slowly varying function with

energy in this region,

33 Scattering resonances

In fast reactors the elastic slowing down of neutrons is predominantly due
to collisions with nuclei of the coolant (Na, gas, steam), the structure
(Fe, Ni, Cr) and in oxide fueled reactors with oxygen. The resonances of
these materials are broad resonances and cannot be treated in NR or in
NRIM approximation sufficiently accurate., Because an analytical solution ‘
of the slowing down equation is not possible, this equation has to be solved
numerically, using as many energy points as are necessary to cover the
broad scattering resonances in question, This was first done by H. Fummel
and A. Rago 1_12_7, representing the scattering cross sections by about

700 small energy intervals (groups) from 9 keV up to 4 MeV in their code
EIMOE (elastic moderation). Based on this principle now in many fast
reactor laboratories the calculation of resonance scattering is treated

in many groups in order to account for the variation of the collision den-
sity within the resonance. A typical EIMOE spectrum is shown in fig. 9.

A semi-analytical approach was given by M. Segev 1-13_7, assuming that thé
resonance structure of each isotope is superposed to a constant background,
which approximates the effect of the other isotopes in the mixture. In the
range of structural resonances the mixture is described by two quantities:
the background cross section and the effective lethargy gain. Every pair
of these quantities thus yields another fine structure of the neutron

spectrum, This procedure can be used in an effective way to prepare average
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ecross sections in broader energy intervals.

Another way to deal with the scettering resonances is given in section k.1,

3.4 Thermal spectra

The main procedures of calculating the infinite medium thermal neutron
spectrum will briefly be outlined. Using the dimensionless variable

. e = E/KT, we have to solve for isotropic scattering the equation :-
r ()(e) - £ K (e',e) §(e)ae’ = 0

This sourcefree homogeneous integral equation has to be solved with the in=

homogeneous boundary condition
¢(s) ~o1/e for g-w

The solution of the thermalization equation is usually obtained numerically.

For a free gas the kernel Ko(e',e) is given in 2.3. If the mass of the
scatterer A>>1, the basic equation can be transformed into a differential
equation (heavy gas model). In order to take into account approximately

various types of scattering models, Cadilhac / 1L 7 arrived at

B>
-g.a- . égo- eMle) %E' /T1+H(e) Zs(e)_7 %—E-g- = za(e) ¢ ()

e . :
M(e) = ge 3 Zo = scattering cross section of the free atom.

G(e) and H(e) have been determined by Cadilhac for the most important mo=
derators. For H(g) = 0 and G(e) = 1 the differential equation for a free

gas evolves,

The approximate solutions give satisfactory results for higher energies

€ ~ 5 if no additional resonance absorber (for instance Plutonium) has

to be included. TFor energies € < 1 the gas approximations for a moderator
vield higher neutron flux densitites than the more sophisticated models

as well as experimental data (see for instance ref. /"15_7).
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Caleculation of space dependent neutron spectra

The calculation of neutron spectra in a real reactor design is based on a
balance equation, which in general depends for the stationary case on the
space variable ;, the energy variable E, and the direction of neutron

—> ke - - .
flight @. In a homogeneous medium this neutron transport equation is

Fvu(F,E,8) + I, (E) W(F,E,8) = | an' [ aB' I(E'-E,8'-R) y(T,E',8')

et

1 x(E

+ o . §fu(sr) .(E") v(r,E',0')ar'an’

TT

The transfer cross section I(E'-E,Q'»8) includes elastic, inelastic and
(n,2n) processes.
The transport equation has to be solved with the appropriate boundary con-

is the eigenvalue of the homogeneous equation. The procedure

ditions. T
. eff . . .
which 1s used quite commonly,is not to require the neutron balance for each

unit energy interval but rather for finite energy groups.

4,1 The multigroup procedure

Integration over a finite energy interval AE, yields

avyt (,8) + zi. W(2,8) = s 237t @By I (7,80 anr

J
1 . A e 2302 2y 1
* 5 o X 8 (Vi )[ wi(r,et)aq
eff J
It 1s:
J 7 (B)eu(E,7,H)aE
1, > -> > 1 AEi
P (r,0) = | w(E,r,Q)dElg I, =
AB; [ v(z,7,0)dE
AE.
1
Aé aE gE.dE' L(E'E,Q'-0) w(E',?.ﬁ')

owE e
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Thus the reaction rates are preserved,
One difficulty arises by the fact that all the group constants now are
dependent on space and angle, We assume, only for the purpose of con=

structing the group constants, that
> > > >
O(E,7,8) = §(E)F(7,0)

Then those space and angular dependences of the group cross sections, which
stem from w(;,a,E), drop out. é(Eﬂ is used then as a weighting function.

The separational ansatz is justified in the centrsl parts of larger reactors,
where most of the contribution to the neutron multiplication arises, The
separational ansatz is one simple possibility to meke the group cross sections
only energy-dependent. If we have across the core a strongly varying neutron
flux density, then only for the purpose of constructing group constants we
integrate the transport equation over finite energy interval, finite space
regions of not necessarily different composition and over the solid angle.

Then we obtain for each zone (AV) a set of group cross sections:

[an [av [ 3 (B)-0(E,7,0) a9

) AR. AV hn
1 1

{ e [av [y&,7,0)do
AEi AV hn

[ 5,(5)$(m)ap

AE,
1

[ ¢ (m)ax

AE

$(E) = = [ av [ y(E,7,8)d0
NG

is the average scalar flux density in zone AV,

If one expands the transfer eross section into Legendre polynomials according

to 2.2, the same procedure holds for the expansion coefficients,



Because the group constants already include the solution of the problem,

namely ¥ cu'¢, the whole procedure in principle is iterative,

In the resonance region é(E) N 1/Zt(E) is a strongly varying function with
energy, which also depends on the composition and temperaturs of the medium.
The collision density then is a slowly varying function in an energy group
which is not too broad. Therefore the following definition of effective

group cross_sections is more practicle in the resonance range:

(E) » (E)dE Ta(B) =,
. Aé.¢ a Asz. zaZES F(E)aE
sl 2 o1 ;
a & (£)ax HEL ap
17 L5
| v (E)

a am
AEi ZtZES .

f if the groups are sufficiently small.
ér
AEi thEs

Having defined the group constants, the remaining group equation is solved
nurerically by further discretisation in space and angle. This multigroup

scheme is applied to thermal as well as to fast reactors.

A useful approximation for fast reactors is to expand the angular dependent
flux density and the transfer cross sections into Legendre Polynomials PN’

truncating the series after the term P, , vielding two equations for the scalar

1!
neutron flux density'¢ anid the net neutron current density J. If we further

assume that Fick's law
- >
J(ryE) = =D(E) v ¢(r,E)

holds (the diffusion coefficient D has to be evaluated by one of the P1~

equations), then we obtain the well known multigroup diffusion equation
for one zone of the reactor and N groups:

237 49 (E) + 4 s ()@

< ¢ r x; 8 (i, ¢ r

1 Eerr 1321

[ (2l o)

oA H(E) + s $ME) =

J

Starting from the energy dependent P1—equations, the diffusion coefficient,
which is defined as 1/3 of the reciprocal transport cross section has to

be properly weighted to give the corresponding group constant. For a more
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complete discussion of this point see ref, / 16 7.

As mentioned earlier in section 3.3, the calculation of the group constants
for elastic moderation requires special attention. The design calculations
for fast reactors are usually done in g multigroup scheme with about 30 groups.
Because the degradation interval is often much smaller than the group width,
the inner group spectrum is very important for an accurate calculation of
neutron down scattéring. This is especially true if scattering resonances
are located near the lower group boundary. There are two maih problems to

be dealt with: at first the proper self-shielding of a structural resocnance
itself and secondly the effect of a structural resonance on the elastic
moderation by enother light or medium weight isotope via background contri=
bution in Zt(E)' The last effect can easily be taken into account by using
the detailed microscopic cross section information of all materials in the
mixture to calculate from about 1000 energy points the macroscopic effective
group constant for elastic moderation in NR approximation é-i7_7. This REMO
procedure (removal) has a remarkable influence on the neutron spectrum near
the large resomances of oxygen, iron and sodium.

Both effects of the structural regonances can be handled with ELMOE type cale
culations as mentioned in 3.3. But these calculations up to now suffer from

the fact, that only space independent spectra can be obtained,

L,2 Slowing down in heterogeneous reactors

Multigroup methods based on the integro-differential transport or diffusion
equation are well established. For heterogeneous lattice calculations in
thermal reactors as well as in zero power fast critical assemblies powerful
collision probability methods have been established, which are based on the
integrel form of the transport equation. For the calculation of heterogeneous
thermal reactor spectra the multigroup code THERMOS, developed by H.C. Honeck
/7187, is widely used. The code ZERA by D. Wintzer / 19_7 uses a similar
technique and is especially developed to take into account the spatial de=
pendent resonance self-shielding effects in fast critical assemblies so that
flux and reaction rate fine structure measurements across a cell properly can

be interpreted.
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The calculation of neutron spectra in thermal lattices is sometimes per-
formed in such a way that the fuel rods or fuel plates are mathematically
tregted as S=functions to which effective source strengths and effective
cross sections are attributed (heterogeneous method 1-20_7). W, Hifele
has used this method to calculate the slowing down spectrum in a finite
thermal reactor lattice 1_21_7. He Kunze has used also this procedure

to determine the space dependent thermal spectrum /22 7 within the frame

of the heavy gas model.

Results of spectrum calculations and spectral sensitivity of some nuclear

reactor parameters

In this section we discuss briefly some reactor spectra in thermal and

fast reactors.

5«1 Thermal reactors

In fig. 2 the flux distribution in a D20 reactor of plane geometry for diffe=
rent lethargies are shown. They have been calculated by W, Hafele 1-21_7
with the heterogeneous method. The lines represent the fuel plates. For

u ¥ 5.5 (EX 10 keV) nearly a cosine distribution results, while for u N2

(E ~ 250 keV) the originally S-peaked fluxes in the fuel plates have already
been broadened, For u = 19 (E ~ 1/40 eV) the neutrons are thermalized and
the flux densities have their maxima in the moderator.

In fig. 3 the spectra in a 2 media D,,0 cell (urasnium metal rod radius

p=1,6 cm, cell radius 9.5cm) the results of H. Kunze 4-22_7 are compared

with a consistent P, thermalization calculation of H. Kisters 1-23_7

1
for a free gas approximation with an effective mass.

Figs. 4 shows the neutron spectrum in graphite Z-Zh_7. Here we have an
excellent agreement of the cristal model with experiment, while the gas

model results in a much too soft spectrum.
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5.2 Fast Reactors

Fast power reactors can be trested in nuclear calculations as homogeneous
mixtures of the different materials, because the mean free paths of the
neutrons are larger than the pin diameter and the pitch. Fig. 5 shows

the core arrangement of the 300 MWe sodium cooled prototype Na2 1-25_7.

Each subassembly contains 169 pins which are 6 mm in diameter. In fig. 6
smocthed neutron flux spectra of fast reactors with différent fuel and
coolant are compared / 26 7, The maximum of the neutron distribution is
centered around 200 keV, the spectrum of the steam cooled reactor has more
"low" energy neutrons then the spectra of the sodium cooled reactors. These
spectrs have been calculated with 26 groups in diffusion'approximation.

The energy distribution of the reaction rates in a steam cooled fast reactor
is shown in fig. T 1-27_7. lere it can be seen that sbout 50% of the pro-
duction and absorption rates stem from the resonance region, In fig, 8 ex-
perimental and theoretical results for the local variation of reaction

rates within a fuel plate of the fast critical assembly SNEAK in Karlsruhe
are compared 1-28_7. The assenmbly 3A2 is a simulation of a steam cooled
fast reactor, 3A3 has twice hydrogen content of 3A2. The calculations were
performed with the code ZEBA 1-19_7. Fige O compares two typical ELMOE
spectra,caleculated with TOO groups, with experiment 1_29_7.

5.3 Opectral sensitivity of some nuclear parameters

The knowledge of the spectral sensitivity of nuclear parameters such as
Doppler-coefficient and coolant density coefficients are extremely important
for a judgement on the accuracy of corresponding calculations. Fig. 10
represents the energyv distribution of the Doppler coefficient in a 1000 MWe
steam cooled fast reactor (D1) 1-30_7. The contributions are centered
around 1 keV,from which follows that the slowing down of neutrons from
higher energies, las to be treated very carefully. The spectral distribution
of the reduced steam density coefficient is shown in fig. 11 1-30_7. Here
positive and negsative contributions tend to compensate each other and thus
this coefficient, which is important for the stability of the design, is
extremely sensitive to calculational methods and input data.

The situation 1s lesssevere for the spectral distribution of the coolant

loss coefficient which is centered for Na-cooled reactors around 100 keV.
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In the last fig. 12 the spectral distribution of the influence of fission
products on reactivity is shown / 31 /. The "aifference line" contains
the influence of fission products on the vold reactivity change and has

again positive and negative contributions.

These examples show clearly that a proper calculation of fast reactors
requires a large effort in calculating the neutron slowing down processes

from 10 MeV to some hundred ev,
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Figure Captions

Fig. 1 The energy distribution of n(E) for various fissile nuclei

Fig. 2 The formation of neutron spectra in a plane D20 reactor
(heterogeneous method /721 7)

Fig. 3 Comparison of heterogeneous thermal neutron spectra obtained

by H. Kunze /722 7 and F. Kiisters /23 /. The Cell: uranium
metal rod (p=1.6 cm), D_0 moderator {cell radius R=9.5 cm)

Fige b Neutron spectrum in graphite Z-zh_7

Figs 5 Core arrangement of 300 MWe prototype Na-2 1-25_7

Fig. 6 Neutron spectra in fast reactors 1—26_7

Fig. 7 Fnergy distribution of the production and absorption rates in

a steam-cooled fast reactor /727_7

Fige & Comparison of experimental and calculated local variation of
reaction rates within a fuel zone of SNEAK /728 7

Figs O Flux fine structure in the centre of ZPR3-48 and assembly 42 /729 7

Figs 10 Energy distribution of the Doppler coefficient in a steam-
cooled fast breeder / 30_7

Fig. 11 Energy distribution of the reduced steam density coefficient
for a steam-cooled fast reactor /730 7

Fig. 12 Energy distribution of the fission product influence on reactivity
/731
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