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Abstract

In this paper a review is presented covering the models of neutron

slowing down calculations in both thermal and fast reactors. To

understand the physical nature of the processes which form the

reactor spectrum, slowing down 1S investigated in an infinite

medium. The performance of space dependent calculations in

homogeneous as weIl as in heterogeneous media is outlined.

Zusammenfassung

In diesem Bericht wird ein Überblick über die Modelle zur Berech­

nung der Abbremsung von Neutronen sowohl in thermischen als auch

in schnellen Reaktoren gegeben. Zum besseren Verständnis der

physikalischen Prozesse, die ein Reaktorspektrum erzeugen, wird

auch die Abbremsung in einem unendlich ausgedehnten Medium unter­

sucht. Die Berechnung ortsabhängiger Neutronenspektren in homogenen

und heterogenen Medien wird kurz beschrieben.
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1. Introduction

In a fission event two or three neutrons are born with a mean energy of

about 2 MeV. In order to obtain a self sustaining chain reaction, it

is necessary that the absorption of one neutron in a fissile nucleus pro­

duces more than one (fission) neutron. This condition can be expressed

by

_( are
~ E) is the meen number of neutrons per fission, crf(E) end cra(E) the micro-

scopic fission end absorption cross sections respectively. In a reactor

medium the neutron excess n-1 is needed to account for inevitable neutron

losses by absorption in coolant end structural materials as weIl as for

neutron leakage out of the react.cr syst.em; The form of the energy depend-

,ehce of the fission end absorption cross sections of fissile materials in

the energy zange between 0 and 10 MeV has a very important consequence , In

fig. 1 the neutron gain per absorption for '(1233, U235 end Pu239 is shown.

From the point of view of neutron economy those energy ranges are of con­

siderable interest for the reactor designer, where the n-vakue is definitely

larger than one , This is the case for neutrons with slow (thermal) end

fast (larger than 50 keV) energies. Thus two reactor concepts are attractive:

the thermal reactor in which the fission is induced by thermal neutrons, and

the fast reactor in which the fission is mainly induced by neutrons of ener­

gies about 100 keV. There can be developed another interesting feature from
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fig. 1. For energies above 10 keV n(Pu239 ) is larger thantwo. Thus another
• • 1.. d . 239 U238 . b t d b U238neutron as avallaule an can , an a Pu - -m~xture, e cap ure y

which leads by ß decay to Pu239:

238 (n,y)
U + n -7

If there is more plutonium produced than consumed, such a reactor ~s named

a breeder reactor.

Another characteristic can be seen also directly from fig. 1. If for some

reason in a large Pu fueled fast reactor the spectrum hardens, this is

followed by an enhanced neutron multiplication.

These general remarks make it obvious that in a thermal reactor with the

appropriate neutron moderator content , the discussion of formation of the

energy distribution of neutrons, that means the neutron spectrum. is in­

fluenced by the three main effects:

a) the slowing down of neutrons with energies of about 10 MeV to

energies of some eV.

b ) the thermalization of neutrons below some eV which includes the

possible energy gain of a neutron in a collision with a moderator

atcm,

c ) the effect of heterogeneity in a reactor lattice on the neutron

spect rum;

In afast, power re,actor the neutron spectrum is strongly dependert on

a) fission and absorption cross sections of heavy isotopes in the

resonance region.

) . 1 t· .. 1 238b the lne as 1C scatter~ng ma~n y of U •

c) the elastic down scattering by structural and coolantmaterials.

The importance of the investigation of neutron spectra in reactors can easily

be demonstrated. First of all the calculation of the neutron spectrum, as

accurately as possible. is one of the necessities in thermal and fast reac­

tor design work in order to fix properly the physical design parameters
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80S for instance enrichment, burri-up , and reactivity coefficients. Especial­

ly in fast reactors the neutron spectrum strongly influences the Doppler

and coolant density coefficients 80S well as the breeding gain.

In this paper a review is presented covering the models of slowing down

calculations in both thermal and fast z-eact.ors , To understand the physical

nature of the processes which form the reactor spectrum,

slowing dOrm is investigated in an infinite medium. The performance of apace

dependent calculations in homogeneous 80S well 80S in heterogeneous media ~s

out Li.ned ,

2. Neutron Slo1-ring Down Proces,ses and 2.alculational Models

In this chapter we describe the main features of the neutron slowing down

processes in reactor media and their mathematical representation.

2. 1 In~,.1ast,ic Scattering

If 80 neutron collides with a nucleus, the ratio a. !a
t

is 80 measure for thel.n
probability that this neutron will be scattered inelastically (a. and a

tl.n
are the inelastic and total microsOopic cross sections respectively). The

inelastic scattering is a threshold reaction, and the threshold energy decrea­

ses from some MeV for light materials to about 50 keV or even less for heavy

nuclei (for Pu239 the threshold is about 8 keV, for u238 45 keV). The mini-

. mum energy of the neutron necessary for inelastic scattering is equal to the

energy &mount required to reach the first excited state of the target nucleus.

Having formed a compound nucleus, the neutron will be emitted with 80 lower

energy, and the residual nucleus is left in an excited state whichdecays

subsequently by y em'i.as i on, Thus inelastic scattering is very important

in e reactor by reducing the energy of fast neutrons above 100 keV. The

d · .. h .. h h ld u238 .degra atl.on of f~ssl.on neutrons below t e fl.ssl.on t res 0 of ~s res-

ponsible for the fact, that no self sustaining chain reaction can be formed

in a block of natural uranium, although the mean n-value above 1.5 MeV is

larger than 2 for u238 • This is so, because neutrons with energies about

2 MeV are scattered to about 60% elastically with 80 negligible energy loss,

about 30% suffer an inelastic collision, and only about 7% induce fission

and the rest is being captured.
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The inelastic scattering process is charact.e r-i aed by the scattering eross

section 0. (Ef~E.~) (Ef is the neutron energy be fore and E the energy after
J.n

the collision • .ll is the eosine of the seattering angle). For heavy and

medium nuclei the angular distribution of the inelastically seattered neutrons

is normally assumed to be isotropie. We may therefore decompose the cross

section in an amplitude f'act or , gi.ven by o~ot(Ef). and an energy transfer
J.n

probability P. (Ef~E). thus
J.n

with

00

) P. (Ef_)E)dE = 1
1n

o

For an inelastic scattering process on a single level with excitation energy

EK. the transfer probability is simply a o-function (o~ (E f) is the excitation
J.n

cross section for level k).

The energy of the neutron after an inelastic collision is given by the differ­

ence of the incident energy and the excitation of the level considered:

Ef_E = E
k

Then i t follows that

P. (Ef~E) = I ---~-
1n k

O(Ef_~_E)

The inelastic seattering probability into a group interval ßE 1S therefore

given by

• o(E'-E _Eff)dE'f
k



P. (E' -+6E) =
J.n

I C1~ (E')
k an

o
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t
E" = E'-~

for
E~E"~ E+6E

otherwise

At high neutron energies (for u238 E>2 MeV) many levels contribute t 0 the

inelastic cross section. Experimentally they are not resolved. Thus a model

based on single level excitation is meaningless. In this energy region it is

assumed that the levels are distributed statistically. According to this

picture the compound nucleus behaves like asolid or liquid and the exci­

tation energy can be characterized by a temperature • The inelastic scatter­

ing can then be described as an evaporation process of the compound nucLeus

and the probability that the energy of the emitted particle reaches the unit

energy interval at E is proportional to

(k is Boltzman's constant). e(E') = kT represents the temperature of ~he re­

sidual nucleus. This is based on the assumption that in an inelastic collision

the neutron loses most of i ts kinetic energy 1·rhich then heats up the residual

nucleus. According to Weißkopf the nuclear temperature is then determined

by the level density W(E) of the residual nucleus.

1 d
G(E') = dE lnW(E)/E=E'

This formula is analogous to the thermodynamic relation between entropy and

temperature. implying that lnW(E) can be considered as the entropy of the

residual nucleus in M energy interval near E.

There are some formulas according to which the nuclear temperature can be

fitted to experiment. It CM be shown L-1_7 that a suitable choice of the

free parameters represent the experimental nuclear temperature equally weIl.

Often the Weißkopf formula is taken:
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where A is the mass numbez- of the nucleus and y a parameter, evaluated in

/-1 7 to 0.16, valid for A>27.- - -
The normalized transfer probability a s given by

-E/0(E')
e

The integration is performed to infinity because in the cases, where the

evaporation model is used, E'»0 holds.

Consequently

o~ (E'-+E) = o . (E')' E e-E/e(Ef)
~n ~n 02(E')

The simple Maxwellian form of the evaporated neutron spectrum usually under-.

estimates the high energy contribution, but in reactor calculations this is

not serious anyhow because of low neutron flux intensities in these regions.

2.2 Elastic down scattering, -

Elastic scatteringis one of the simplest nuclear reactions. In the energy

range down tosome eV the cOllisions between a neutron and the atoms of light

materials, by which the neutron energy is mainly degraded, can be treated

according to the laws of classical physics. Let us first recall the kinetics

of the process of an elastic collision.

The relationship between incident and final neutron energy in the laboratory

system for a collision process with a nucleus of mass number A is given by

A
2+H2Acos0E = E' .;.;o..__...,;;~....._

(A+1)2

E' is the neutron energy before the collision proeess. E the energy after the

collision, 0 is the scattering angle in the CMS-system, A the mass number. With

= l !::.!.)20. \.A+1

it follows

E'E ="2 {(Ha) + (1-0.) coaö l
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Furtheron the eosine of the scattering angle in the laboratory system, ~L'

can be expressed as

The maximum energy loss is obtained for 0 = nr

E. = o:E'm:Ln

Thus the energy interval. which can be re ached by a neutron of' energy E'

in an elastic collision is

In a central collision with a hydrOgen atom the neutron. therefore. can lose

all of i ts enez-gy , if the atom is asaumed to be at rest , The probability

that a neutron of energy E' will be scattered down to energy E is given by

P(E'~E) =

4no (0)
s

E' ( 1-crJo
s

o

for aE'<E<E'

otherwise

o (0) and a are the differential and the total cross sect i ons , respectively.s s
Very important in the calculation of neutron slowing down by moderator atoms

in thermal reactors is the esse of isotopic scattering in the centre of

mass syst.em,

Then

a
o (0) =~

s Ltn

o

and therefore

for o:E'<E<E'

otherwise
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Thus the energy distribution f
1(E)

of neutrons with energy E after an elastic

scattering process is a constant, independent of E:

f 1 (E)dE

The energy distribution at E of those neutrons which have suffered two

cOllisions, is given by

E' f 1(E" )dE" 1 E'f 2(E) = f (1-a)E' , = ln-
E ( 1_a)2E, E

E/a f (E") 1 1 Ef
2

(E) I 1 dE' ,= ( 1-a )E" = n-
aE' ( 1_a)2E, a2E'

f (E) = 0
2

for aE' <E<E'--
2for a E'<E<aE'

otherwise

To find the distribution of neutrons, which have collided n times, i t is con­

venient to introduce the lethareY variable

E'
u = In - andE

,. = 2In !!:.l
b A-1 '

a = e-g

(g is the maxi.mum lethargy gain).

v« obtain r2 7- -
-ue for O,::.u.::.ng

othe rwi se

The k-summation has to be carried out to that value k that each term (u-kg»O.

For n»1

f (u)
n

arid I~ -.1.1 «1 one obtains _r2_7ng 2

'V e-u n-1~ -6n(l:... _ .1.)2= g - e ng 2
(1_a)n· nn ..

This asymptotic expression deviates from the exact formula for A=4 and n=10

only by 4%. for n =20 already the exact results are r-epr-eaent.ed , It can

easily be shown that
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f f (u )du. = 1, and therefore
no

f (u) ~s the probability that the neutron reaehes the lethargy u in n eolli­
n

s i ons , The maxiraum of this nearly symmetrie probability distribution Ls

'V 2u 'Vn 'V-'V
g

where J Ls the Loghar-i thmic energy deerement:

J= a 1
1 + T:ä lna = '2 + •••

In the absence of absorption the summation f( u Idu = ~ f (u ) ·du is also equal
n=1 n

to the total number of neutrons, whieh arrive at u in du and ",ill suffer

their next eollision in this interyal L-2_7. so f(u) must be identieal with

the eollision density. It follows

When the seatterine ~s anisotropie ~n the eentre of mass system, the transfer

probability P(E'o+E) is no longer a const ant , In a forward seattering proeess

P(E'o+E) Ls larger near E=E' than near E=aE', sinee neutrons lose comparatively

little energy in small angle scattering.

In order to treat this problem more generally, we try to find an expression

in the laboratory system for the elastic seattering transfer fUnetion

aL(E'o+E,Q'o+Q). This is the cross section for ehanging the energy E' and

the direction Q' of a neutron into an unit energy interval at E and an unit
~

solid angle around n. In an isotropie medium the angular dependenee 1S de-
.... -~

tennined by lJ
L

= $1' "$1. The final energy E is uniquely determined by the de-

flectionlJL(E) and thus E is a spurious variable in the expression for the

transfer :function. Therefore it is allowed to write L-eompare also 3 7
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The Dirac-o-function o(~L(E)-~L) expresses

1 JE' 1 I! E"
if ~L +"2 (A+1) Yi" - '2 (A-1) Y E

. L
the fact that cr (E'~E'~L)dE=O

It is a usual technique to expand the scattering cross section into Legendr-e

Polynomials

00

I
t=o

2H1-2

The kernel Kt(E',E) is

+1 L d~L
= f d~L·cr (E"~L)·o(~L(E)-llL)· "dir". PQ,(llL)

-1
L dllL(E)

= cr (E',~fE»· dE • PQ,(~L(E»

The differential cross section cr(E',~) is usually evaluated from experiment

in the CMS-system in terms of Legendre Polynomials. Since

we expand

Therefore we have

I
t'=o

dll (E)
~ .B~ ,(E')

with

2
( 1-cdE'

For isotropie scatteriEß in the CMS-system it is
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Then

)

as has been defined earlier.

The first anisotropie moment yields:

The treatment of anisotropie seattering in reaetor physics lS important

especially in the presence of hydrogen. For small fast reactors with a

high neutron leakage the anisotropy in the CMS-system of all materials is

essential.

2.~ ,S,cattering l'ro,c!.sses of· neutrons below some eV

The energy range below 1 eV is most important for an accurate prediction

of the neutron properties of thermal reactors. Although the scattering of

slow neutrons is not a direct subject of thispaper. '\-Te treat the problem

of neutron thermalization in a more qualitative way in order to understand

the formation of neutron spectra in thermal reactors.

When the neutrons have been slowed down below 1 eV due to elastic collisions

with the moderator atoms. then the neutron energy beeomes comparable with

the energy of thermal motion cf the moderator atoms. and. although the

average energy cf thermal motion is 0.025 eV. due to the Maxwellian

distribution of velocities there is a certain fraction of atoms with

energies in the range of 1 eV. These will effect the neutrons in such a

way that now a neutron may gain energy in a collision process as weIl

as lose energy: up-scattering therefore has to be considered in the

theory of neutron scattering.

If there is no absorption and Leakage , the neutrons finally will reach

thermal equilibrium with the moderator nuclei and assume a Maxwellian

distribution:
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( ) '\, E -E/kT
Nas E -v kT e

(T is the moderator temperature, k Boltzmann's const ant }, This distribution

will be as sumed irrespective of the type of mode rator ,

Tvro main problems arise in the theory of thermalization of neutrons:

a) the moderator temperature,

b) the state of chemical binding.

Here we will not discuss in detail the mathematical description of the appro­

ximation for the scattering kerneIs of various moderators, but rather give

a qualitative representation to understand the physical nature of the pro­

cesses involved.

Wiek L-4~7, van Hove /-5 7 and. Zemach and Glauber L-6_7 first gave the general

quantum mechanieal formulation of the seattering of slow neutrons with gases

and moleeules. This is done in first Born approximation, using the Fermi

pseudo potential as a contac~ potential to describe the interaction of the

neutron with the scattering par-tner ,

The simplest mode L used in thermalization theory is assuming that the moder­

ator atoms behave like an ideal gas L-7_7. The effect of chemieal binding

then is treated by introdueing the effective mass concept of Sachs and

Teller (for D in D
20

Ae f f ~ 3.6).
The scattering ke rneLs K

l
(E'E) can be calculated straight forward. The most

important kernel K is given by
o

where

b
2 =,!. (-IÄ'+ 1::)2

; c ' =.!:.
'+ IA' kT'

F
1

:: +("~- a-v?' ) :;: (>(bR

2 1 _r---;-C 1 2
a =~ (Y A --)

'+ Ir

lower sign :

upper sigIi :

F2 :: e-( e:-E: ' )L-tj(bV;t' - aIE' ) :!: , (1YIf.T' + a--R)_7

2 x _t2
f (x) =- f e dt;

'Vi 0

e;' <c up-scattering

e:'>e: down-scattering
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The total scattering cross section is then

To take into account the effects of chemical binding more properly, one has

to look for the possible translation, vibration and rotational states of

the moleeules I-see also ref. 15 7:
... -

a) Water

The frequency distribution ofV1.e H at om in H
20

was approximated by

Nelkin L-S_7 by four o-functions. The translation of the molecule

in water is taken as the movement of a free gase ous atom of weight

A=1S, according to a o-function for w=o. The hindered rotation is

described by an oscillator with tw=0.06 eV. From the vibration

states at 0.2 eV and 0.474 and 0.488 the latter are combined to

one o-function with a double weight.

The model mostly used nowadalfs is that of H~ood L-9_7 with a continuous

frequency distribution in the z-ange of hindered rotation and trans-

LatLon ,

b) Zir?~niumhydride

Because of the large mass difference of the H and Zr at oms the H-atoms

vibrate nearly aso independent oscillators (Einstein-model). The

optical vibrations of H- and Zr-atoms are centred around 0.14 eV

(acustic vibrations are below 0.02 eV). Best model now is that of

Slaggie L-10_7, who determined the frequency distribution from lattice

dYnamics, assuming central forces between the neighbours.

c) Graphite

The C atoms of graphite cristallize ln layers. It is assumed that the

vibrations of the atoms vertical to the layer are not coupled to the

vibrations within the layer, where the chemical binding is very strong.

According to Young, Koppel and Parks L-11_7 the theoretical frequency

distribution is therefore split up into two parts, parallel and vertical

to the cristal layer.
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3. Slowing down in ipfinite media

To study the fundamental procedure of neut r-on slowing down in a medium we

first want to avoid the difficulties arising from neutron leakage. Therefore,

we investigate the slowing down in an infinite homogerious medium with an

homogeneous source.

This treatment of an infinite medium is not so academi.c , 80S it might appear

at first sight. The characteristics of many real systems are determined

to a large extend by the properties of the corresponCling infinite media.

For instance the large natural uranium graphite reactors have to be rather

large to go critical, neutron leakage is rather small. This becomes true more

and more also for light water reactors and in near future for fast reactors,

because economy and power requirement tend to very large sys't ems (1000 Mi'le

and even mcz-e) ,

The balance equation, which deterMines the neutron spectrum. is g~ven by

Lt(E) +(E) = J{p (E'-+E) L (E') + P. (E'-+E)·L (E')} 1.(E' )dE' + S(E)e e an ~n. 'f

p ,P. are the elastic and inelastic transition probabilities, respeetively,e ~n

S(E) m~ be the production term due to fission:

00

S(E) ::: 8
f(E)

=- X(E) J v(E') Lf(E') ~ (E' )dE'
o

with x(E) the fission spectrum, v(E) the neutron ga~n per fission, S(E)

may include an ex ternal souzce ,

3.1 Slowing down in nonabsorbing media and in special mixtures

The first statement is that the relatively simple equation in its general

form eannot be solved ailalytically. Only for the simple case of moderation

in hydrogen without absorption an exact solution is possible and yields

the weIl known 1/E dependence for theneutron flux:

With

L. = 0, S(E) ::: S·o(E-E ); L =0. L = constant
~n 0 a e

Pe (E'-+E) = 1/E'; E
Q

= souree energy. S = source strength
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we obtain

F(E)
Eo

= ~ ~ (E) = J
s E

~ ~(Ef)
S

E'

for E<E
o

F(E) is the collision density.

The solution is

F(E) = ~ + S' (E-Eo ) ' thus

~ (E) = E~
s

As a more realistie ease we consider a homogeneous rnixture of hydrogen (H)

vTith a heavy absorber (A). whi ch does not mode rat.e neut rons , Then it follows

for a monoenergetie souree

S=-eE

The solution

F(E)

Here

is
Eo

J
E

at energy E
o

Eo r.H(Ef)

= J sE ~(E')dE'
E

+ SeE )o

For ~ =0 we have the previously obtained result.
a

In this ease the collision density F(E) with decreasing energy does not

raise as steep as in the ease of no abs crpt.ion , because neutrons vanish

per absorption.
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For the elastic slowing down of neutrons by nuelei with A>1 we have already

discussed the form of the speetrum after n eollisions. Again in the ease

of no absorption we obtain asymptotieally (E<Eo' more preeisely: E<a3E
o):

,j.. S
r(E) =rIs 1.-E

The results are true also for a non-monoenergetie sour-ce , e.g. the fission

spectrum X(E). if we are interested in neutron energies below the fission

speetrum.

Thus in a thermal reactor the fission speetrum of neutrons will be affected

mainly by elastic down scattering with the moderator atoms and approaches

the form 1/E, at least in finite energy intervals of suitable length. if

weak absorption is assumed ,

3.2 SlovTi,nP-i. ,down ip mediawith resonanee absorption

For simplieity we restriet our diseussion on the resolved resonanee region

and as sume that the resonanee vTidth 1.S small eompared to the level d.i s't ance ,

Then one resonance can be deseribed by the single level Breit-Wigner formula.

For nuclei at rest (zero ternperature T=o) we have for a eapture resonance:

o(J
c

x

= pe ak value of the resonanee

= (E-Eo)
r/2

E = resonance enez-gy ; r = total width of the re sonance ,
o

The total cross section is given by

0

(Jt(E)
(Jt (0 G)1/2 .22L+= -+ (Jt O'p O'p
1+x2 1+x2

Here is

0 0 + 0 O'p = potential seetionO"t = 0' 0' si crossc

r r rar I=o I = spin of resonance nueleus
G • n ::: 2J+1= ß1 Ti gr spin eompound nucleus.1/2"2I+T for 1+0 J = of
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If ,fe asaume that the resonance width is small compazed to the degz-adat i on

interval of neutrons in an elastic collision, then almost 811 neutrons, which

collide with the nucleus at resonance energies have had there last collision

above the resonance of interest. Since the absorption outside of a resonance

is normally very small, we therefore are allowed to identify the col.Li s i on

density for a unit energy interval of the resonance with the collision

density outside the resonance.

The numbez- of neutrons, which are absorbed in a resonance per unit time,

is given by (the collision density is taken proportional to 1!E):

A =
E (E) E(E) E CE)

f FRe s (E) • Ea(E) dE:t f Fas (E)' Ea(E) dE = J jEa t E)Res < t Res t Res t

dE
E

+00 r (E) dE
'" I a
-v -ro 1~I~t"'(~E"') E

s
~ {j Ej(1is the mean logarithmic energy loss in a mixture , T= .lIIo
J-

E
- -

asymptotic collision density outside the re sonence ) , s

F a s theas

This procedure is weIl known as Narrow-Resonance (NR) AJ2I?roximation and J.6

widely used in reactor phys i.ca , e special.Iy for fast reactors, where the

collision densi ty naturally is not assumed to vary as 1/E. As a conse quence

theresonance absorption has to be evaluated numerically, while for the simple

case given above, the absorption in aseries of single resonances can be

deterrnined analytically. We will come back to the procedure used in fast

reactors, in section 4.1.

In a mixture of a heavy resonance absorber (e.g. U238) with a moderator

(e.g. hydrogen) one mayassume as in section 3.1 that the heavy nucleus

does not change the neutron energy in an elastic co.ll.i s i.on , Then the colli­

sion density wi thin the resonance to be used in the calculation of' resonance

absorption is given by

• 1
EF(E)

A

== .--;1 ~....:.._

IM(It(E)-E~(E) )

E (E)= / __a _

_ce I M{ I a (E)+E~{E»

dE
E

and consequently

(M stands for moderator).
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This procedure is known as l'mnf-Approximation (narrow res onance infinite

mass) and is often applied in thermal reactor physics for the determination

of the absorption in the low energy, broad resonances.

Both methods differ only "Ti th respect to the treatment of neutron scattering

on heavy isotopes.

As a conclusion fram this section we keep in mind that in athermal reactor

the global 1/E dependence of the neutron spectrum shows a fine structure

in the resonance ree;ion. This rine structure in NR-approximation is pro­

portional to 1/L
t

(E) at each resonance for thermal reactors as weIl as for

fast reactors. The collision density is a slowly varying function with

energy in this region.

3.3 Scattering resonances

In fast reactors the elastic slowing down of neutrons is predominantly due

to collisions with nuclei of the coolant (Na, gas, steam), the structure

(Fe, Ni, er) and in oxide fueled reactors with oxygen. The resonances of

these materials are broad resonances and cannot be treated in NR or 1n

NRIH approximation sufficiently accurat.e , Because an analytical solution

of the slowing d.own equation is not possible, this equation has to be solved

numeri cally , using as many energy points as are necessary to cover the

broad scattering resonances in question. This was first done by H. Hummel

and. A. Rago ;-12 7, representing the scattering cross sections by about.. - .
700 small ener~J intervals (groups) fram 9 keV up to 4 MeV in their code

EDfOE (elastic moderation). Based on this principle now in many fast

reactor laboratories the calculation of resonance scattering is treated

in many groups in order to account for the variation of the collision den­

sity within the resonance. A typical Ell10E spectrum is shown in fig. 9.
A semi-analytical approach was given by M. Segev L-13_7, assuming that the

resonance structure of each isotope is superposed to a constant background,

which approximates the effect of the other isotopes in the mixture , In the

range of structural resonances the mixture is described. by two quantities:

the background cross section and the effective lethargy gain. Every pair

of these quantities thus yields another fine structure of the neutron

spectrum. This procedure can be used in an effective way to prepare average
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cross sections in broader energy intervals.

Another way to deal with the scattering resonances lS given ln section 4.1.

3.4 Thermal spectra

The main procedures of calculating the infinite. medium thermal neutron

spectrum will briefly be outlined. Using the dimensionless variable

E = E/kT, we have to solvefor isotropie scattering the equation:,

00

~t(E)j(E) - I Ko (E',E) ~(E')dE' = 0
o

This sourcefree homogeneous integral equation has to be solved with the in­

homogeneous boundary condition

for E~

The solution of the thermalization equation as usually obtained numerically.

For a free gas the kernel K (E'.E) is ~lven in 2.3. If the mass of the
o' -

scatterer A»1, the basic equation can be transformed into a differential

equat i.on (heavy gas modeL}, In order to take into account approximately

various types of scattering models, Cadilhac L-14_7 arrived at

M(E) = Ee-E; Lo = scattering cross section of the free atom.

G(E) and H(E) have been determined by Cadilhac for the mosf important mo­

derators. Fer H(E) = 0 and G(E) = 1 the differential equatien for a free

gas evolves.

The approximate solutions give satisfactory results for higher energies

E ~ 5 if no additional resonance absorber (for instance Plutonium) has

to be included. For energies E < 1 the gas approximations for a moderator

yield higher neutron flux densitites than the more sophisticated models

as well as experimental data (see for instance ref. L-15_7).
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4. C,a.lculat i on of sIlace dependent neut ron spectra

The calculation cf neutron spectra in areal reactor design is based on a

balance equation. which in general depends for the stationary case on the

space variable :;. the energy variable E. and the direction of neutron
-+

flight n. In a homogeneous medium this neutron transport equation a s

+ -k
1

• teE) J Jv(E') I:f'CE') 1J!(r.E' .n' )dE'dQ'
eff n ~

for finite energy groups.

not to require the neutron balance for each

solved with the appropriate boundary con­

of the homogeneous e quat ion • The procedure

The transfer cross section I:(E'-+E.Q,-+n) includes e Lasti c , inelastic and

(n.2n) processes.

The transport equation has to be

d · t · 1 . h· J.:J. lons. ~ lS t e elgenva ue
eff

which is used quite commonly/is

unit energy interval but rather

4.1 The mUlti,group procedure

Integration over a finite energy interval ~E. yields
1

1+_.
keff

S JI:,j-+i (~'-+n) "wj C:;t~' )dQ'
j

S (VI:f)jf" $j(:;.n')dQ'
J

I:
l =_ .....--------t

It is:

J -+ -+
A w(E.r.n)dEoE.

j
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Thus the reaction rates are preserved.

One difficulty arises by the fact that all the group constants nov are

dependent on space and angle. We assume. only for the purpose of eon­

structing the group constants, that

Then those space and angular dependences of the group cross sections t whi ch

stem from l/J(~,titE). drop out. ~ (E) is used then as a weighting runcti.on ,

The separational ansatz is justiried in the eentral parts of larger reaetors,

where most of the contribution to the neutron multiplication arises. The

separational ansatz is one simple possibility to make the group cross sections

only energy-dependent. If we have across the core a strongly varying neutron

flux density, then only for the purpose of constructing group constants we

integrate the transport equat i.on over finite energy interval, finite space

regions of not necessarily different composition and ove r the solid angle.

Then we obtain for each zone (6V) a set of group cross sections:

S dV
6V

f dE
6E.

J.

f dE f dV
6E. 6V

J.

S L
t

(E) '~(E)dE
6E.

J.

f ~ (E)dE
6E.

l

J.
l,t = -=---------------

Here

lS the average scalar flux density in zone 6V.

If one expands the transfer cross section into Legendre polynomials according

to 2.2, the same procedure holds for the expansion coefficients.
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Because the group constants already include the solution of the problem,

namely ~ or~, the whole procedure in principle is iterative.

In the resonance region ~(E) ~ 1/It(E) is a strongly varying function with

energy, which also depends on the cornposition and temperaturs of the medium"

The collision density then lS a slowly varying function in an energy group

which is not too b road , Therefore the following definition of effective

resonance range:

f
tlE.

1

=

if the groups are sufficiently small.

~(E)dE

f l.a(E)
tlE

i
I

t
(E") dE

f oE
llEi It{E)

cross_sections is more practicle in the
J~(E) L (E)dE f Ia(E);(.) ,

llE . a llE . I
t

( E ) " E dE
1 _.;;l;..-=~-:- ....

J F(~) dE
E It E)II .

1

group

Having defined the group constants, the remaining group equation is solved

numerically by further discretisation in space and angle. This multigroup

scheme is applied to thermal as weIl as to fast reactors.

A useful approximation for fast reactors is to expandthe angular dependent

flux density and the transfer cross sections into Legendre Polynomials P
N,

truncating the series after the term P1, yielding two equations for the scalar

neutron flux dens i t y ~ arid the net neutron current density J. If we further

assume that Fick's law

holds (the diffusion coefficient D has to be evaluated by one of the P1­
e quat i.ons }, then we obtain the ve Ll, known multigroup diffusion equation

for one zone of the reactor and N groups:

1
+-ke f f

Starting from the energy dependent P1-equations, the diffusion coefficient,

which is defined as 1/3 of the reciprocal transport cross section has to

be properly weighted to give the corresponding group constant , For a more
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complete discussion of this point see ref. L-'6_7.
As mentioned earlier in section 3.3, the calculation of the group constants

for elastic moderation requires spec.ial. attention. The design calculations

for fast reactors are usually done in a multigroup scheme with about 30 groups.

Because the degradation interval is often much smaller than the group width,

the inner group spectrum is very important for an accurate caleulation of

neutron dovn scattering. This is espeeially true if seattering resonanees

are located near the lower group boundary , There are two main problems to

be dealt with: at first the proper self-shielding of a struetural resonance

itself and secondly the effect of a struetural resonanee on the elastie

moderation by another light ormedium weight isotope via background eontri­

bution in tt(E). The last effect can easily be taken into aecount by using

the detailed microscopic cross seetion information of all materials in the

mixture to calculate from about '000 energy points the maeroseopic effective

group const.ant, for elastic moderation in 1TR approximation L-n_7. This REMO

procedure (removal) has a remarkable influence on the neutron speetrum near

the large resonances of oxygen, iron and sodium.

Both effeets of t.he struetural resönances ean be handled wi th ELMOE type cal­

eulations as mentioned in 3.3. But these ealculations up to now suffer from

the fact, that only space independent spectra can be obt ai.ned ,

4.2, Slowinej down. in hete.rogeneous reaetors

tfultigroup methods based on the integro-differential transport or diffusion

equation are well established. For heterogeneous lattiee ealculations in

thermal reactors as well as in zero power fast eritieal assemblies powerful

eollision probability methods have been established, whieh are based on the

integral form of the transport equat i on , For the caleulation of heterogeneous

thermal reaetor speetra the muJxigroup code THEill10S, developed by H.C. Honeek

L-'8_7, is widely used. The code ZERA by D. Wintzer /-'9 7 uses a similar

technique and is espeeially developed to take into aeeotmt the spatial de­

pendent resonance self-shielding effects in fast eritieal assemblies so that

flux and reaetion rate fine structure measurements aeross a cell properly can

be interpreted.
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The calculation of neutron spectra an thermal lattices as sometimes per­

formed in such a way that the fuel rods or fuel plates are mathematically

treated as o-functions to which e f'f'ect i ve source strengths and effective

cross sections are attributed (heterogeneous method /-20 7). W. Häfele

has used this met.hod to calculate the s l.ovi.ng down spectrum in a finite

thermal reactor lattice /-21 7. H. Kunze has used also this procedure

to determine the space dependent thermal spectrum /-22 7 within the frame

of the heavy gas model.

5. Results of spectrum calfulations and spectral sensitivity of some nuclear

reactor ,Parameters

In this section we discuss briefly some reactor spectra in thermal and

fast z-eact oz-s ,

5.1 Thermal reactors..
In fig. 2 the flux distribution in a D20 reactor of plane geometry for diffe­

rent lethargies are shovn , They have been calculated by W. Häfele L-21_7
with the heterogeneous met.hod , The lines represent the fuel plates. For

u ~ 5.5 (E ~ 10 keV) nearly a eosine distribution r-esu.Lts , whi Le for u ::t 2

(E ~ 250 keV) the originally o-peaked fluxes in the fuel p.l.at.es have already

been broadened. For u =19 (E ~ 1/40 eV) the neutrons are thermalized and

the flux densities have their maxima in the moderator.

In fig. 3 the spectra in a 2 media D
20

cell (uranium metal rod radius

p=1.6 em. cell radius 9.5cm) the results of H. Kunze L-22_7 are compared

with a consistent P1 thermalization calculation of H. Küsters L-23_7
for a free gas approximation with an effective mass ,

Fig. 4 shows the neutron spectrum in graphite /-24 7. Here we have an

excellent agreement of the eristal model with experiment. while the gas

model results in a much too soft spectrum.
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5.2 Fast Reactors
••

Fast power reactors can be treated in nuclear calculations as homogeneous

mixtures of the different mat.ez-i al.s , because the mean free p aths of the

neutrons are larger than the pin diameter and the pitcht F'i.g, 5 shows

the core arrangement of the 300 ~f\{e sodium cooled prototype Na2 /-25 7.
Each subassembly contains 169 pins which are 6 mm in diameter. In fig. 6

smoothed neutron flux spectra of fast reactors with different fuel and

coolant are compared L-26 _7. The maximum of the neutron distribution is

centered around 200 keV. th~ spectrum of the steam cooled reactor has more

"low" ener'gy neutrons then the spectra of the sodium cooled r-eactors , These

spectra have been calculated with 26 groups in diffusion approximation.

The ene r-gy distribution of the reaction rates in a steam coo Led fast rcactor

is shown in fig. 7 L-27_7. Here it can be seen that about 50% of the pro­

duction and absorption rates stem from the re sonance r'egi on , In fig. 8 ex­

perimental and theoretical results for the local variation of reaction

rates within a fuel plate of the fast critical assembly SNEAK in Karlsruhe

are compared L-2R_7. Thc assembly 3A2 is a simulation of a steam cooled

fast reactor. 3A3 has twice hydrogen content of 3A2. The calculations were

performed with the code ZEEA L-19_7. Pig. 9 compares two typical ED~OE

spectra.calculated with 700 groups, with experiment L-29_7.

The knowledge of the spectral sensitivity of nuclear parameters such as

Doppler-coefficient and coolant density coefficients are extremely important

for a judgement on the accuracy of corresponding calculations. Fig. 10

represents t.he ene r'gy distribution of the Doppler coefficient in a 1000 M1>le

steam cooled fast reactor (D1) /-30 7. The contributions are centered

around 1 keV,from which follmls that the slowing down of neutrons from

higher energies, has to be treated very carefully. The spectral distribution

of the reduced steam density coefficient 1S shown in fig. 11 L-30_7. Here

positive and negative contributions tend to compensate e ach other and t hus

this coefficient, which is important for the stability of the design. 1S

extremely sensitive to calculational methods and input dat a ,

The situation is less severe for the spectral distribution of the coolant

loss coefficient which is centered for Na-cooled reactors around 100 keV.
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In the last fig. 12 the spectral distribution ofthe influence of fission

products on reactivity is shown L-31_7. The lldifference line" contains

the influence of fission products on the void reactivity change and has

again positive and negative contributions.

These examp.Les show clearly that a proper calculation of fast reactors

requires a large effort in calculating the neutron slowing down processes

from 10 MeV to some hundred eV.
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