

KERNFORSCHUNGSZENTRUM

KARLSRUHE

April 1969

KFK 1044 EUR 4310 d

Institut für Neutronenphysik und Reaktortechnik

FAUN - Z

Berechnung schwerer Reaktorunfälle nach der modifizierten

Bethe-Tait-Methode in r, z-Geometrie

K. Thurnay

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

April 1969

KFK 1044 EUR 4310d

Institut für Neutronenphysik und Reaktortechnik

FAUN - Z

Berechnung schwerer Reaktorunfälle nach der modifizierten Bethe-Tait-Methode in r,z-Geometrie *)

von

K. Thurnay

*) Diese Arbeit wurde im Rahmen der Assoziation zwischen der Europäischen Atomgemeinschaft und der Gesellschaft für Kernforschung mbH., Karlsruhe, auf dem Gebiet der schnellen Reaktoren durchgeführt.

Alexander i son inter the generation and interferences

:

100

⁴⁹ An an anti-set of the first state of the first offer the first offers when the first state of the first offer the end of the first state of the first offer the end of the first of the first of the first of the end of the end of the end of the first of the end of

Inhaltsverzeichnis

Inhaltsverzeichnis		n an
		Seite
1. Aufbau des Programms	 Alexandre de la construcción de la con	2
2. Symbolverzeichnis	ren para payan bas	2
3. Das Programm EXQ	i instruction de la composition de la c	
4. Das Unterprogramm PHI	- and the first of the same second of	13
5. Das Unterprogramm RAND	n en grennen i den en generalen en e	15
6. Das Unterprogramm ENVER	n presidente de la construction de la 2000 de la construcción de la construcción de la construcción de la cons Nota de la construcción de la const	16
7. Das Unterprogramm FVØNX	an an tha an an an an Arab Calaberra an an an Tha an	18
8. Die Unterprogramme RØUTD, RØUTE		18
9. Das Hilfsprogramm TREF		19
10. Das Hilfsprogramm EVØNQ		19
Anhang A: Eingabebeschreibung	- 	24
Anhang B: Programmlisten	n da di Na ing kanalaga	28
Anhang C: Rechnungsbeispiel	an the and the second	50

Literatur

. Na serie de la strategie de la serie d /17 K. Thurnay, F.G. Kluge, Theoretische Behandlung von denkbaren schweren Unfällen bei schnellen Brutreaktoren im Rahmen des Bethe-Tait-Modells (wird veröffentlicht).

		an a
	$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac$	$\sum_{i=1}^{n} \psi_{i}(x_{i}) = \psi_{i}(x_{i}) + \psi_{i}(x_$
		ra tata seta a sa sa sa
		an an an ann an an an an an an an
		te deserve to the set of the set
1999 - 1999 -		$a_1 a_2^{(1)} = \frac{1}{2} a_2^{(2)} = \frac{1}{2} \left[\frac{1}{2$
		$\label{eq:product} p_{ij} = \frac{1}{2} \left(\frac{1}{2} \frac{\partial p_{ij}}{\partial p_{ij}} - \frac{1}{2} \frac{\partial p_{ij}}{\partial p_{ij}} + \frac{1}{2} \frac{\partial p_{ij}}{\partial p_{ij}} + \frac{1}{2} \frac{\partial p_{ij}}{\partial p_{ij}} \right) = \frac{1}{2} \left(\frac{1}{2} \frac{\partial p_{ij}}{\partial p_{ij}} + \frac{1}{2} \frac{\partial p_{ij}}{\partial p_{ij}} + \frac{1}{2} \frac{\partial p_{ij}}{\partial p_{ij}} + \frac{1}{2} \frac{\partial p_{ij}}{\partial p_{ij}} \right)$
• . •		
		encale à record com bui
		an an tha an
n de la composition de La composition de la c		enne seu de la composition de la compos Regione de la composition de la composit
		e Alexandria de la completa de la co Beneral de la completa
		a stranda a antista a stranda da 1995. Antista sera Maria antista a

1. Aufbau des Programms

FAUN-Z ist in FORTRAN-II für die IBM-7074 verfaßt. Das Programm dient zur Berechnung von schweren Exkursionen bei einem zylindrischen Zweizonencore nach der modifizierten Bethe-Tait-Methode / 1_7.

Das Programm besteht aus dem Exkursionsprogramm EXQ, aus zwei Hilfsprogrammen zur Berechnung der mittleren Brennstofftemperatur, TREF bzw. der Energieausbeute, EVØNQ sowie aus folgenden Unterprogrammen:

Name	Benötigt bei:		
PHI	EXQ, TREF, EVØNQ		
RAND	EXQ, TREF, EVØNQ		
ENVER	EXQ, TREF, EVØNQ		
fvønx	EXQ		
RØUTD	EXQ		
RØUTE	EXQ		

Zusätzlich werden aus der Programmbibliothek eine Routine für Berechnung von bestimmten Integralen (FØRHAL, s. Programmbeschreibung Nr. 29) und eine andere für die Integration von Differentialgleichungssystemen 1. Ordnung (RUNGE, s. Programmbeschreibung Nr. 95) benutzt.

2. Symbolverzeichnis

Symbol	im Programm	Bedeutung
t	Q(1), PK(1)	Exkursionszeit
t _{r:}		Exkursionsdauer
Δt	H1	Integrationsschrittweite
Δt _{max}	H•1AX	Größter Integrationsschritt
S	PK(3)	Neutronenfluß bzw. dessen
Smax	FMAX }	Maximum im Corezentrum
Q	Q(2), PK(2)	Energiedichte im Corezentrum
Ô	ର୍(3)	Leistungsdichte im Corezentrum
С	Q(4)	Leistungsdichte der Vorläufer im Corezentrum
β _i , λ _i		Anteil bzw, Zerfalls konstante der i-ten Vorläufergruppe
β	BET, BETF	Gesamtanteil der verzögerten Neutronen
λ	ELA	Effektive Zerfallskonstante der Vorläufergrupp e n

Mittlere Neutronenlebensdauer Mittlere Neutronengeschwindigkeit Diffusionskonstante Makroskopische Spaltquerschnitte in 1. bzw. 2. Corezone Freigesetzte Energie pro Spaltung Dopplerexponent Dopplerkonstante Corehöhe Radius der 1. Corezone Coreradius Corevolumen Mittlere Coredichte Mittlere Brennstoffdichte im Core Gesamtmasse des Brennstoffs Wärmekapazität des Brennstoffs Schmelzwärme des Brennstoffs Schmelz- bzw. Siedepunkt des Brennstoffs Mittlere Brennstofftemperatur Brennstofftemperatur im Corezentrum Polynomkoeffizienten der Dampfdruckdarstellung für niedrige bzw. für hohe Brennstofftemperaturen Reziproke Periode bzw. deren Maximum Beitrag der Störreaktivität zu a Beitrag der Dopplerrückwirkung zu a Beitrag der axialen, radial nach außen gerichteten bzw. radial nach innen gerichteten Bewegungen zu a Flußverteilung in der axialen Richtung Flußverteilung in der radialen Richtung

Verteilung der E, in der radialen Richtung

Brennstoffdruck im Corezentrum

a
$$A(3,1)$$

A $A(1,1)$
b PR
B PRM
A $Z(L,J)$
 $B_{A,k}^{(v)}$ $AZ(L,J)$
 $B_{R,k}^{(v)}$ $AA(L,J)$
W WO
a_1,...,a_n $U(N,1)$
b_1,...,b_n $U(N,2)$
E(\overline{r},t)
A CAR
E BL
E BL
E E_{L}
E E_{L}
E E_{CAR}
E ECA
E ECA
E ECA
E ECA
E $ETOT$
d_1,...,d_k $G(K)$

Minima bzw. Maxima der Funktion $\psi(z)$ im Core Minima bzw. Maxima der Funktion $g(r)\phi(r)$ im Core Polynomkoeffizienten der Darstellungen von \ddot{a}_{A} , \ddot{a}_{R} , bzw. \ddot{a}_{RA} in der Phase $Q^{(k)} < Q(t) < Q^{(k+1)}$ Formfaktor der Energieverteilung Polynomkoeffizienten der Ubzw. der ¢-Darstellung Energiedichte des Brennstoffs Kinetische- bzw. Carnolsche Energie von 1 g Brennstoff Energiedichte des flüssigen Brennstoffs am Siedepunkt Zerstörungsenergie der Exkursion Zerstörungsenergie der Exkursion, falls der Brennstoff sich wie ein ideales Gas verhält. Exzess- bzw. Totale Energie der Exkursion Polynomkoeffizienten der A_{KTM}(E)-Darstellung

3. Das Programm EXQ

Dieses Programm verfolgt die zeitliche Entwicklung der Größen Energiedichte, Neutronenfluß, Brennstofftemperatur und Brennstoffdruck im Corezentrum, sowie die der reziproken Periode bis zum Ende der Exkursion. Anschließend berechnet es die totale und die Exzessenergie der Exkursion.

Zu diesem Zweck wird das Differentialgleichungssystem

$$\dot{Q}(t) = \dot{Q}(t)$$

$$\ddot{Q}(t) = \alpha(t)\dot{Q}(t) + \lambda C(t)$$

$$\dot{C}(t) = \frac{\beta}{g}\dot{Q}(t) - \lambda C(t)$$

(1)

mit den Anfangsbedingungen

$$Q(o) = C_{V}T(o)$$

$$Q(o) = S(o) \cdot \frac{c_{f} \Sigma_{f}^{(1)}}{\rho_{B}}$$

$$C(o) = \frac{\beta}{\ell \lambda} \dot{Q}(o)$$

$$\alpha(o) = -\frac{\beta}{\ell}$$
(2)

numerisch integriert solange, bis in einem Zeitpunkt t_E beide Bedingungen

$$\alpha(t_{E}) < -2.5 \alpha_{max}$$

$$\alpha(t_{E}) < \frac{500}{M_{B} \cdot W} \frac{hJ}{ms}$$

$$(3)$$

erfüllt sind, λ erhält man gemäß

$$\lambda = \sum_{i} \frac{\beta_{i}}{\beta} \lambda_{i} \qquad (4)$$

Die reziproke Periode asetzt sich aus dem Störungsbeitrag

$$\alpha_{s}(t) = \alpha(0) + \sum_{j=0}^{3} \alpha_{sj} t^{j}$$
(5)

und aus den Rückwirkungsbeiträgen zusammen:

$$\alpha(t) = \begin{cases} \alpha_{s}(t) + \alpha_{D}(t) & \text{für } Q(t) \leq E_{BL} \\ \alpha_{s}(t) + \alpha_{D}(t) + C_{A} \cdot \alpha_{A}(t) + C_{R} \cdot \alpha_{R}(t) + C_{RA} \cdot \alpha_{RA}(t) & \text{sonst} \end{cases}$$
(6)

$$\mathbf{E}_{BL} = \mathbf{C}_{v} \cdot \mathbf{T}_{B} + \mathbf{E}_{F}$$
(7)

C_A, C_R und C_{RA} sind frei wählbare Gewichtsfaktoren. Die Dopplerrückwirkung und die Expansionsrückwirkungen werden aus dem jeweiligen Stand der Energiedichte im Core

$$E(\mathbf{r},t) = Q(t) \cdot F(\mathbf{r})$$
(8)

bestimmt. Die Leistungsverteilung F(r) ist in axiale und in radiale Verteilungen faktorisiert:

$$\mathbf{F}(\mathbf{r}) = \psi(\mathbf{z}) \cdot \mathbf{g}(\mathbf{r}) \phi(\mathbf{r}) \tag{9}$$

Bei Zweizonen-Cores unterschiedet sich die radiale Leistungsverteilung gø um eine Sprungfunktion

$$g(\mathbf{r}) \equiv 1 + (\xi - 1)\Theta(\mathbf{r} - R_z), \qquad \xi = \frac{\Sigma_{f}^{(2)}}{\Sigma_{z}^{(1)}}$$
(10)

von der radialen Flußverteilung.

Die Flußverteilungen werden mit symmetrischen auf

1. normierten Polynomen dargestellt:

$$\psi(z) \equiv \sum_{\nu=1}^{n} a_{\nu} z^{2(\nu-1)} \qquad \psi(o)=1$$

$$\phi(r) \equiv \sum_{\nu=1}^{n} b_{\nu} r^{2(\nu-1)} \qquad \phi(o)=1$$
(11)

Die Funktionen

$$\hat{\psi}(z) \equiv \frac{1}{z} \int_{0}^{z} dx \psi(x) \quad bzw. \quad \hat{\phi}(r) \equiv \frac{1}{r^{2}} \int_{0}^{r} dxx \phi(x) \quad (12)$$

sind dann ebenfalls symmetrische Polynome, Der Formfaktor der Energieverteilung wird mit Hilfe dieser Funktion berechnet.

$$W = 2\hat{\psi}(\frac{H_{c}}{2}) \left\{ \xi \hat{\phi}(R_{c}) - (\xi - 1) \left(\frac{R_{z}}{R_{c}}\right)^{2} \hat{\phi}(R_{z}) \right\}$$
(13)

Den Beitrag der Dopplerrückwirkung erhält man aus der jeweiligen mittleren Brennstofftemperatur:

$$\alpha_{D}(t) \equiv \frac{\gamma}{x\ell[T_{ref}(o)]^{x}} \left\{ \begin{bmatrix} T_{ref}(t) \\ T_{ref}(o) \end{bmatrix}^{-x} -1 \right\}$$
(14)

x>o wird dabei immer vorausgesetzt.

 $T_{ref}^{(t)} \text{ erhält man gemäß}$ $c_{v} \cdot T_{ref}^{(t)} = \begin{cases} Q(t) \cdot W & \text{für } Q(t) \leq Q_{A} \\ Q(t) \cdot W - E_{F} & Q(t) \geq Q_{E} \end{cases}$ (15) $Q(t) [W - W_{FI} + W_{FF}] - E_{FF} \cdot q_{FF} + E_{FI} \cdot q_{FI} \text{ sonst}$

Dabei sind

mit

$$E_{FI} = c_v T_M \qquad E_{FF} = E_{FI} + E_F \qquad (16)$$

$$O_A = \frac{E_{FI}}{A \cdot B} \qquad O_E = \frac{E_{FF}}{a \cdot b} \qquad (17)$$

$$q_{J}(t) \equiv \frac{1}{V_{c}} \int_{U_{J}(t)} dV \quad W_{J}(t) \equiv \frac{1}{V_{c}} \int_{U_{J}(t)} dVF(\bar{r})$$
(18)

$$U_{J}(t) \equiv \{ \overline{r} \in V_{c} ; F(\overline{r}) \geq \frac{E_{J}}{Q(t)} \}$$
(19)

In EXQ wird T_{ref} nur in den Gebieten $Q(t) \leq Q_A$ und $Q(t) \geq Q_E$ direkt berechnet. Im übrigen Bereich wird eine Polynomdarstellung

$$T_{ref}(t) \equiv \sum_{\rho=1}^{r} U_{\rho} Q(t)^{\rho-1}, \qquad Q_{A} Q(t) < Q_{E}$$
(20)

benutzt. Diese gewinnt man, indem man für jedes Core vor Beginn der Exkursionsrechnungen $T_{ref}(0)$ mit Hilfe von TREF berechnet und eine geeignete Polynomnäherung ansetzt.

Die Rückwirkungsbeiträge der Materialbewegungen α_A , α_R und α_{RA} erhält man aus dem Gleichungssystem

$$\dot{\alpha}_{J}(t) = \dot{\alpha}_{J}(t) \qquad \alpha_{J}(o) = 0$$

$$\ddot{\alpha}_{J}(t) = \sum_{\nu=1}^{N} B_{J}^{(\nu)}(t)Q^{\nu}(t) \qquad \dot{\alpha}_{J}(o) = 0$$

$$J = A, R, RA \quad (21)$$

Zur Berechnung der $B_{T}^{(v)}(t)$ ist die Exkursion mit den Energiedichteschranken

$$Q^{(o)} = Q(o) < Q^{(1)} = E_{BL} < Q^{(2)} < \dots < Q^{(n)}$$
 (22)

in n+1 Rechnungsphasen

$$\left\{\begin{array}{l}
\left(k-1\right) < Q(t) \leq Q(k) \\
Q^{(n)} < Q(t)
\end{array}\right\}$$
(23)

gegliedert; $B_J^{(v)}(t)$ ist in dieser Darstellung eine Treppenfunktion:

$$B_{J}^{(v)}(t) \equiv \begin{cases} 0 & \text{für } k=1 \\ B_{J,k-1}^{(v)} & \text{für } k=2,\dots,n+1 \end{cases}$$
(24)

Als Dampfdruckdarstellung wird in der 2. bis m-ten Phase $\sum_{r=0}^{N} p_r^{(1)} T^r$ benutzt, in allen folgenden Phasen $\sum_{r=0}^{N} p_r^{(2)} T^r$. Für die Gültigkeitsbereiche

dieser Darstellungen gilt:

$$T_A^{(1)} < T_A^{(2)} < T_B < T_E^{(1)} < T_E^{(2)}$$
 (25)

Die Phasengrenzen Q^(k) erhält man aus den Gleichungen

$$o_{n}^{(n)} = \frac{c_{v}T_{A}^{(2)} + E_{F}}{ab}$$
 (26)

wobei für m und n die Bedingungen

$$\left. \begin{array}{c} Q^{(m)} \leq c_{v} T_{E}^{(1)} + E_{F} < Q^{(m+1)} \\ \\ \frac{Q^{(n)}}{\sigma_{1}^{m-1} \cdot \sigma_{2}^{n-m-1}} \leq Q^{(1)} \end{array} \right\}
 \tag{27}$$

zu erfüllen sind. Die Größen σ_i erhält man aus

$$\sigma_{i} = \frac{c_{v}(T_{B} + \Delta T) + E_{F}}{c_{v}T_{A}^{(i)} + E_{F}} \cdot \Sigma \qquad i=1,2$$

$$\Sigma = Max \left(\frac{a}{A}, \frac{b}{B}\right) \qquad (28)$$

Bei der Wahl von ΔT ist darauf zu achten, daß ΔT möglichst klein bleibt und dennoch $\sigma_2>1$ wird. Die Achsenabschnitte

$$0 < z^{(k-1)} \leq H_c/2 0 < r_1^{(k-1)} \leq R_z ; R_z < r_2^{(k-1)} \leq R_c \end{cases} k=2,...,n+1$$
(29)

die in den einzelnen Phasen das zur Rückwirkung beitragende Teilcore bestimmen, erhält man aus folgenden Formeln:

a) Falls
$$\Sigma = \frac{b}{B}$$
 ist, sind
 $r_1^{(k)} = R_z$ und $r_2^{(k)} = R_c$ für alle k (30)
und $z^{(k)}$ ist die Lösung der Gleichung
 $\psi(z) = \begin{cases} a \cdot \sigma_1^{m-k-1} \cdot \sigma_2^{n-m} & 1 \le k \le m-1 \\ a \cdot \sigma_2^{n-k} & m \le k \le n \end{cases}$ (31)
b) Falls $\Sigma = \frac{a}{A}$ ist, dann setzt man

b) Falls
$$\Sigma = \frac{H}{A}$$
 ist, dann setzt man
 $z^{(k)} = \frac{H}{2}$ für alle k (30')

und die $r_1^{(k)}$, $r_2^{(k)}$ sind dann die jenigen Lösungen der Gleichung $\begin{pmatrix} b \cdot \sigma_1^{m-k-1} \cdot \sigma_2^{n-m} & 1 < k < m-1 \end{pmatrix}$

$$g(\mathbf{r}) \cdot \phi(\mathbf{r}) = \begin{cases} \mathbf{b} \cdot \sigma_1 & \sigma_2 & \frac{1 \leq k \leq m}{2} \\ \mathbf{b} \cdot \sigma_2 & \mathbf{f} \mathbf{u} \mathbf{r} \\ \mathbf{b} \cdot \sigma_2 & \frac{m \leq k \leq n}{2} \end{cases}$$
(31')

die die entsprechenden Bedingungen (s. Gl. 29) erfüllen. Falls es in $(0,R_z]$ oder in $(R_z,R_c]$ solche Lösungen nicht gibt, setzt man

$$r_{1}^{(k)} = R_{z} \quad bzw. \quad r_{2}^{(k)} = R_{c} .$$

$$Mit$$

$$p_{v}(k) = \begin{pmatrix} p_{v}^{(1)} & k=1,...,m-1 \\ p_{v}^{(2)} & k=m,...,m \\ p_{v}^{(2)} & k=m,...,m \end{pmatrix}$$

$$(32)$$

$$v=0,1,...,N$$

ł

und mit

$$\begin{aligned}
\mathbf{c}_{\mathrm{EZ}} &= + \frac{2VD}{p\mathbf{I}_{\Sigma}} \quad ; \quad \mathbf{I}_{\Sigma} = \prod_{0}^{H} \frac{c/2}{d\mathbf{z}} e^{2} \cdot \int_{0}^{h} d\mathbf{r} \mathbf{r} e^{2} \quad (36)
\end{aligned}$$
ergibt sich

$$\begin{aligned}
\mathbf{x}_{J_{4}K}^{(v)} &= \mathbf{c}_{\mathrm{EZ}} \cdot \hat{\mathbf{y}}_{V}^{(v)} |\mathbf{x}_{J_{4}K}^{(v)} \qquad \overset{v=1,\ldots,H}{\mathbf{z}_{=1},\ldots,H} \quad (37)
\end{aligned}$$
Für den Erennstoffdruck in Corezentrum erhält man folgende Oleichung:

$$\begin{aligned}
\mathbf{y}(t) &= \begin{pmatrix} 0 & \text{für } 0(t) \leq 0^{(1)} & (38) \\ \\
\mathbf{y}(t) &= \begin{pmatrix} 0 \\ \prod_{k=0}^{H} \mathbf{y}_{V}(k) \mathbf{T}(t)^{V} & \text{für } 0^{(2)} \cdot \mathbf{Q}(t) \leq \mathbf{Q}^{(k+1)} & (38) \\ \\
\text{wobei } \mathbf{T}(t) \text{ aus der Oleichung} & \\
\mathbf{y}(t) &= \begin{pmatrix} 0(t)/c_{V} & \mathbf{Q}(t) \leq \mathbf{E}_{\mathrm{PT}} & (39) \\ \\
\mathbf{y}(t) &= \begin{pmatrix} 0(t)/c_{V} & \mathbf{Q}(t) \leq \mathbf{E}_{\mathrm{PT}} & (39) \\ \\
\mathbf{y}(t) &= \begin{pmatrix} 0(t)/c_{V} & \mathbf{Q}(t) \leq \mathbf{E}_{\mathrm{PT}} & (39) \\ \\
\mathbf{y}(t) &= \sum_{k=0}^{T} \mathbf{Q}(t) & \mathbf{Q}(t) \\ \\
\text{berechnet wird. Den Neutronenfluß in Corezentrum erhält man aus} \\
\mathbf{s}(t) &= \hat{\mathbf{Q}}(t) & \frac{\mathbf{Q}_{\mathrm{B}}}{\mathbf{Q}_{\mathrm{T}}\mathbf{T}_{\mathrm{T}}^{(1)}} & (ho) \\
\text{Für die totale- und die Exzessenergie werden die Formeln} \\
\mathbf{F}_{\mathrm{TOT}} &= \begin{bmatrix} 0(t_{\mathrm{E}}) \cdot \mathbf{v}_{\mathrm{EL}}(t_{\mathrm{E}}) - \mathbf{E}_{\mathrm{BL}} \cdot \mathbf{c}_{\mathrm{BL}}(t_{\mathrm{E}}) \end{bmatrix} \cdot \mathbf{I}_{\mathrm{B}} & (k2) \\
\text{benutzt.} \\
\end{aligned}$$

Programmablauf: Das Programm beginnt mit der Eingabe der Reaktordaten und den thermodynamischen Daten des Brennstoffs. Die Koeffizienten der Flußverteilungen ϕ, ψ werden durch PHI eingelesen. Dieses Unterprogramm berechnet anschließend die Polynomdarstellungen der Funktionen $\psi', \psi'', \hat{\psi}, \phi', \phi''$ und $\hat{\phi}$ sowie die Normierungsgröße I_c.

Nachdem die Dampfdruckkoeffizienten $p_{v}^{(i)}$ eingelesen sind und die \tilde{p} berechnet wurden, erfolgt, mit $Q^{(n)}$ beginnend, die Bestimmung der $Q^{(k)}$, $z^{(k)}$, $r_{1}^{(k)}$ und $r_{2}^{(k)}$, wobei zur Lösung der Gleichungen (31) bzw. (31') das Unterprogramm RAND herangezogen wird.

Als nächstes werden die Integrale $A_{z,k}^{(v)}$, $G_{z,k}^{(v)}$, berechnet mit Hilfe von FØRHAL. und FVØNX, aus diesen erhält man dann die Polynomkoeffizienten $B_{A,k}^{(v)}$, $B_{R,k}^{(v)}$ und $B_{RA,k}^{(v)}$ für die einzelnen Rechenphasen.

Der eigentliche Ablauf der Exkursionsrechnung beginnt mit dem Einlesen der Exkursionsparameter (At, S(o), Y, α_{sj} , T(o), β), sowie der Koeffizienten der T_{ref}-Darstellung. (Man kann gleichzeitig Parameter für mehrere Exkursionen einlesen, die entsprechenden Rechnungen erfolgen dann hintereinander.) Die Differentialgleichungssysteme (1) und (21) werden mit RUNGE integriert, wobei hier zusätzlich die Routinen RØUT D (in der 1. Phase) und RØUTE (in allen anderen Phasen) benutzt werden.

Nach jedem Integrationsschritt erfolgt eine Schrittweiten ontrolle, Falls bei einem At-Schritt eine der Größen

 $\xi_1 \cdot \frac{Q(t+\Delta t)-Q(t)}{Q(t)}$, $\xi_2 \cdot \frac{\dot{Q}(t+\Delta t)-\dot{Q}(t)}{\dot{Q}(t)}$

die obere Schranke 1.0 erreicht, wird Δt halbiert und die Integration wiederholt. Andererseits, erreichen beide Größen 0.5 nicht, dann rechnet man, vom nächsten Schritt an mit der Schrittweite $\Delta t^* = 1.5 \cdot \Delta t$ (ξ_1 und ξ_2 sind frei wählbar).

Anschließend wird geprüft, ob die laufende Rechnungsphase beendet ist oder nicht. Wenn ja, denn erfolgt eine Modifizierung der Koeffizienten $B_{J,k}^{(v)}$, eventuell auch der $p_{ijk}(k)$. Als neue Schrittweite wird hier die vom Exkursionsbeginn eingesetzt. Falls keine neue Phase beginnt, wird - von der 2. Phase an - anschließend nach dem Ende der Exkursion abgefragt. Falls sie noch nicht zu Ende ist, beginnt - nach eventueller Ausgabe von Zwischenergebnissen - der nächste Integrationsschritt.

Nachdem die Exkursion beendet ist, werden noch E und mit Hilfe von ENVER E_{exc} berechnet.

Ausgabe der Ergebnisse: Während der Exkursion werden die Größen t, Q, S, α , α_A , α_R , α_{D} , T und p gedruckt, und zwar vor Beginn jeder Rechnungsphase und am Ende der Exkursion. Falls erwünscht, kann man diese Größen auch nach jedem Integrationsschritt drucken lassen. Am Ende der Exkursion werden außerdem noch ausgegeben: α_{max} , S_{max} , Δt_{max} , E_{TOT} , E_{exc} ; die Exkursionsparameter; die Reaktordaten, die thermodynamischen Größen und W; die Polynomkoeffizienten der Fluß-, Dampfdruck- und T_{ref}-Darstellungen.

Die Ein- und Ausgabe erfolgt in den Einheiten g, cm, s, deg K^O, kJ und atm, für die Störreaktivität gelten die Einheiten \$, \$/s,... Intern wird 1 ms als Zeiteinheit benutzt.

Rechenzeit: Die Rechenzeit des Programms EXQ liegt - bei Reaktivitätsrampen von 30-120 %/s - bei 15-25 sec pro Exkursion, falls auch die Ausgabe von sämtlichen Zwischenergebnissen verzichtet wird. Für die Rechenzeiten der eigentlichen Exkursionsläufe (d.h. ohne die Vorrechnungen und ohne ENVER) ergeben sich bei Na-2 folgende Werte(gemittelt über einen Dopplerkonstantenbereich 0 $\leq \gamma \leq 6 \cdot 10^{-3}$):

Rampe (\$/s)		30	60	120
Exkursionszeit	(s)	19	16	13

4. Das Unterprogramm PHI

Dieses Programm dient zum Einlesen und zur Ausgabe der Polynomkoeffizienten von ψ und ϕ sowie der Berechnung der Funktionen ψ , ψ ', ψ ', $\hat{\psi}$, $\hat{\psi}^2$, ϕ , ϕ ', ϕ '', $\hat{\phi}$ und $\hat{\phi}^2$.

Anhand der Darstellungen (3.11) und (3.12) erhält man folgende Formeln für $\psi', \psi'', \hat{\psi}$ und $\hat{\phi}$:

$$\psi^{*}(z) \equiv z \cdot \sum_{\nu=2}^{n} (2\nu-2)a_{\nu} \cdot z^{2(\nu-2)}$$
(1)
$$\psi^{**}(z) \equiv \sum_{\nu=2}^{n} (2\nu-3)(2\nu-2)a_{\nu} z^{2(\nu-2)}$$
(2)

$$\hat{\psi}(z) \equiv \sum_{\nu=1}^{n} \frac{a_{\nu}}{2\nu-1} \cdot z^{2(\nu-1)}$$

$$\hat{\phi}(z) \equiv \sum_{\nu=1}^{n} \frac{b_{\nu}}{2\nu} z^{2(\nu-1)}$$
(3)
(4)

Für $\phi'(r)$ und $\phi''(r)$ gelten (1) bzw. (2) entsprechende Formeln.

Für die Funktionen

$$\hat{\psi}^{2}(z) \equiv \frac{1}{z} \int_{0}^{z} dx \psi^{2}(x) \qquad \hat{\phi}^{2}(r) \equiv \frac{1}{r^{2}} \int_{0}^{r} dx x \phi^{2}(x) \qquad (5)$$

erhält man folgende Polynomdarstellungen:

$$\hat{\psi}^{2}(z) \equiv \sum_{\nu=1}^{2n-1} \frac{A_{\nu}}{2\nu-1} z^{2(\nu-1)} \qquad \hat{\phi}^{2}(r) \equiv \sum_{\nu=1}^{2n-1} \frac{B_{\nu}}{2\nu} r^{2(\nu-1)}$$
(6)

mit

$$A_{v} \equiv \sum_{\substack{i=j \\ 1 \leq i, j \leq n}}^{i+j-1=v} B_{v} \equiv \sum_{\substack{i=j \\ 1 \leq i, j \leq n}}^{i+j-1=v} b_{i}b_{j}$$
(7)

Die Normierungsgröße I_z (Gl. 3.36) erhält man damit als

$$I_{z} = \frac{H_{c}}{2} R_{c}^{2} \hat{\psi}^{2}(\frac{H_{c}}{2}) \hat{\phi}^{2}(R_{c})$$
(8)

Das Programm wird durch die Indizes KP und KF gesteuert. Für KP=1 erfolgt, falls KF=1 ist, das Einlesen und das Umrechnen der Koeffizienten sowie die Berechnung des I_z ; falls KF>1 ist, werden die Koeffizienten a_v , b_v gedruckt. Die Berechnung der Funktionswerte erfolgt noch folgendem Schema:

KP KF	2	3	u 4 - Calabaran Salah Dependentan
1	ψsΨ	φ, φ *, φ * *	a Stores and a
2	ψ, ψ, ψ,		
3	ψ,ψ'	φ,φ.	

Der Aufruf erfolgt in der Form PHI(X,Y,Y1,Y2); hier ist X der Ort, wo der Funktionswert Y gesucht wird, Y1, Y2 sind die Werte der 1. und 2. Ableitungen an dieser Stelle.

5. Das Unterprogramm RAND

Dieses Programm dient zur numerischen Lösung der Gleichung

$$x = f^{-1}(y)_{2} \quad x_{A} < x \leq x_{E}$$
 (1)

bei einer bekannten Funktion f(x). RAND rechnet mit dem Newtonschen Iterationsverfahren

$$x_{i} \sim x_{i-1} - \frac{f(x_{i-1}) - y}{f'(x_{i-1})} \qquad i=1,2,...$$
(2)

nach dem x vorgegeben wurde. Es wird dabei vorausgesetzt, daß es mindestens ein x gibt mit

$$f(x) > y$$
 für $x \in (x_A, x_E]$ (3)

Eine weitere Voraussetzung ist, daß

$$f'(x) < o$$
 für alle $x \in (x_A, x_E)$ (4)

- (sonst sucht das Programm ein Intervall $(x_A, \tilde{x}_E), \tilde{x}_E < x_E$, in dem diese Forderung erfüllt ist, und die Gl. (1) wird dann in diesem Intervall gelöst). Die Integration wird beendet, falls einer der folgenden Fälle eintritt:

a)
$$|f(x_j)-y| \le 10^{-5}$$

b) $f(x)>y$ für alle $x \in (x_A, x_E]$
c) $i=10$ (5)

Das Programm wird mit RAND (X,XA,XE,FX,CF) aufgerufen. X enthält vor dem Aufruf den ersten Näherungswert x_o, nach dem Aufruf den letzten Näherungswert x_i. Im Falle b) wird hier x_i=x_F gesetzt.

XA, XE enthalten die Bereichsgrenzen X_A bzw. X_E (bzw. \hat{X}_E , falls f'(x) \geq o ist in (\hat{X}_E , X_E)). FX ist der vorgegebene Sollwert y. Im Falle a) steht an der Stelle CF, sofern x_i<x_E ist, der letzte Wert von f(x)/f'(x).

Im Falle c) werden als Fehlernachricht die Größen

$$KP$$
, l , i, y, x_{i+1} , $f(x_i)$, $f'(x_i)$

gedruckt. KP ist hier eine Steuerzahl (s. PHI), l ist, falls RAND von EXQ aus aufgerufen wurde, der Index des Polynomkoeffizienten p_v , v, falls RAND von ENVER aus benutzt wurde, gibt l=1 oder 2 an, in welcher Corezone der Aufruf erfolgte. Die Bestimmung der Werte f(x), f'(x) erfolgt mit PHI.

6. Das Unterprogramm ENVER

Dieses Programm dient zur Berechnung der Integrale

$$q_{J} \equiv \frac{1}{V_{c}} \int_{U_{J}} dV \quad ; \qquad U_{J} = \frac{1}{V_{c}} \int_{U_{J}} dV F(\bar{r}) \quad (1)$$

mit

$$U_{J} = \{ \overline{r} \in V_{c} ; F(\overline{r}) \geq \frac{E_{J}}{O} \}$$
(2)

U, besteht bei Zweizonencores aus 2 Teilgebieten:

$$U_{J}^{(1)} = \{ 0 \le z \le z_{1} ; 0 \le r \le r_{1}(z) \}$$

$$U_{J}^{(2)} = \{ 0 \le z \le z_{2} ; R_{z} \le r \le r_{2}(z) \}$$
(3)

Die Grenzen dieser Gebiete z_i bzw. r_i(z) erhält man aus folgenden Gleichungen:

$$\psi(z_i) = \chi_i ; \quad \phi(r_i(z)) = \frac{\mu_i}{\psi(z)} \quad i=1,2 \quad (4)$$

mit

$$n_1 = \frac{E_J}{Q}; \qquad n_2 = \frac{E_J}{\xi \cdot Q}$$
 (5)

$$x_1 = \frac{n_1}{\phi(o)}; \qquad x_2 = \frac{n_2}{\phi(R_z)}$$
 (6)

Mit

$$FW_{i}(z) \equiv \psi(z) \cdot r_{i}^{2}(z) \hat{\phi}(r_{i}[z]) \qquad i=1,2 \qquad (7)$$

$$FV_{i}(z) = r_{i}^{2}(z)$$
 i=1,2 (8)

sind die gesuchten Integrale

$$q_{J} = \frac{2}{H_{c}R_{c}^{2}} \begin{bmatrix} \int_{0}^{z_{1}} dz \ FV_{1}(z) + \int_{0}^{z_{2}} dz \ FV_{2}(z) - R_{z}^{2} \end{bmatrix}$$
(9)

$$W_{J} = \frac{\mu}{H_{c}R_{c}^{2}} \left\{ \int_{0}^{z_{1}} dz \ FW_{1}(z) + \xi \left[\int_{0}^{z_{2}} dz \ FW_{2}(z) - z_{2}\hat{\psi}(z_{2})R_{z}^{2}\hat{\phi}(R_{z}) \right] \right\} (10)$$

Das Programm wird mit ENVER (Q,EX,WX,VX,ZIN) aufgerufen. Hier sind Q die Energiedichte im Corezentrum, EX die vorgegebene Energieschranke E_{J} , WX,VX enthalten nach dem Aufruf die Integrale W_{J} und q_{J} . ZIN ist eine gerade Zahl

$$|ZIN| = 2m$$

die angibt, in wieviele Teile die Bereiche (0,z_i) während der Integration zu teilen sind.

<u>Programmablauf:</u> Nachdem geprüft wurde, daß ein $z_1 > 0$ entsprechend Gl. (4) existiert, wird dieses mit RAND bestimmt; als erster Näherungswert wird

$$z_{10} = Min \left(\frac{H_c}{2}, \sqrt{\frac{\psi(o) - \chi_1}{-a_2}}\right)$$
 (12)

(11)

vorgegeben. Anschließend werden für die Punkte

$$z_k = k \cdot \Delta z, k = 0, 1, \dots, 2m-1; \Delta z = \frac{z_1}{2m}$$
 (13)

mit z_0 beginnend die Funktionswerte $FW_1(z_k)$ bzw. $FV_1(z_k)$ berechnet. $r_1(z_k)$ werden dabei ebenfalls mit RAND bestimmt. Für k = 0 wird als erste Näherung

$$r_{10} = Min \left(\frac{R}{2}, \sqrt{\frac{\phi(0) - \frac{1}{\psi(0)}}{-b_2}} \right)$$
 (14)

gesetzt. Für $k \ge 1$ wird entweder

$$r_{10}(z_k) = R_z$$
 (15)

vorgegeben, falls $r_1(z_{k-1}) = R_z$ war, oder sonst

$$r_{10}(z_{k}) = r_{1}(z_{k-1}) - \Delta z \frac{\psi'}{\psi'}|_{z_{k}} \cdot \frac{\phi}{\phi'}|_{r_{1}}(z_{k-1})$$
(15')

(s. Gl. (4)).

 $\psi, \psi', \hat{\phi}$ und $\hat{\psi}$ werden mit PHI bestimmt; ϕ/ϕ' erhält man aus RAND.

Die Summationen erfolgen nach der Simpsonschen Regel:

$$\int_{0}^{z^{1}} dz \ FW_{1}(z) \ & \frac{\Delta z}{3} \ \{FW_{1}(z_{0}) + 4 \sum_{l=0}^{m-1} FW_{1}(z_{2l+1}) + 2 \sum_{l=1}^{m-1} FW_{1}(z_{2l})\}$$
(16)

und entsprechend für $\int dz FV_{1}$.

Die Berechnung der Integrale $\int_{0}^{z^{2}} dz FW_{2}$, $\int_{0}^{z^{2}} dz FV_{2}$ erfolgt anschließend nach demselben Verfahren.

Falls es erwünscht ist, druckt ENVER = nachdem W_J und q_J berechnet wurden = die Größen

 $z_1, r_1(0), z_2$ und $r_2(0)$ aus.

Rechenzeit: Bei |ZIN| = 250 beträgt die Rechenzeit dieser Routine & 2 sec pro Integrationsgebiet, d.h. 4 sec falls über den beiden $U_J^{(i)}$ -s integriert werden muß. Mit |ZIN| nimmt die Rechenzeit linear zu.

7. Das Unterprogramm FVØNX

Dieses Programm ist der Integrationsroutine FØRMAL direkt zugeordnet und wird von dieærmit FVØNX(x) aufgerufen. Es berechnet den Wert des Integranden im vorgegebenen Berèichspunkt x.

Folgendes Schema zeigt den Zusammenhang zwischen Steuerzahlkombinationen und Integralen zu denen FVØNX die Integranden rechnet:

KP KF	2	3
-1	A(v) Z _z k	$G_{\mathbf{z},\mathbf{k}}^{(v)}$
2	(۷) R1,k	G <mark>(ν)</mark> G _{R1,k}
3	A(v) R2,k	G ^(ν) R2 , k

8. Die Unterprogramme RØUTD und RØUTE

Diese Unterprogramme werden von der Routine RUNGE benutzt; sie berechnen die in RUNGE benötigten Werte der Ableitungen Q, Q, C (RØUTD) bzw. Q, Q, C, $\dot{\alpha}_A$, $\dot{\alpha}_R$, $\dot{\alpha}_{RA}$, $\ddot{\alpha}_R$, $\ddot{\alpha}_R$, α_R , α

9. Das Hilfsprogramm TREF

Dieses Programm ist unabhängig von EXQ; es dient zur Berechnung der Funktion Tref(Q) in einem vorgegebenen Energiedichtebereich (Q₁,Q₂) für ein Zweizonen-Zylindercore.

<u>Programmablauf</u>: Zunächst bestimmt TREF mit PHI W und die Energiedichteschranken $Q_{A:} Q_{E}$ (s. Gl. 3.17) sowie zwei weitere Schranken $Q_{E_{I}} = \frac{E_{FF}}{A \cdot B}$ $Q_{AF} = \frac{E_{FI}}{ab}$ (1)

Anschließend werden die Reaktordaten, W, und die thermodynamischen Daten sowie die Energieschranken Q_A , Q_{EI} , Q_{AF} , Q_E und E_{FI} , E_{FF} ausgedruckt. Die Temperaturberechnung erfolgt gemäß (s. auch 3.15)

Q•W	2	für	$Q \leq Q_A$	
$Q(W-W_{F}) + E_{F} \cdot q_{F}$			QA <q<qei< td=""><td></td></q<qei<>	
$c_v Tref(Q) = Q(W - W_F) + W_FF) + E_F$	q _F I-E _{FF} q _{FF}		୦ _E , <ପ୍<ପ୍ _{AF}	(2)
$Q \cdot W_{FF} + E_{FI} - E_{FF} \cdot C$	q _{FF}		ଦ _{AF} <u><</u> ର<୦ _E	
Q•W - E _F			Q _E <0	an a

wobei die W_J-s bzw. q_J-s wieder durch ENVER berechnet werden. Für jeden Q-Wert werden folgende Größen ausgedruckt:

Q, W_F, W_{FF}, q_{FF}, q_{FF}, Tref.

Die Rechenzeit des TREF ist praktisch identisch mit der Rechenzeit die von ENVER benötigt wird.

and the second second

10. Das Hilfprogramm EVØNQ

Dieses Programm berechnet die nach der Exkursion freiwerdende zerstörerische Energie in Abhängigkeit von der zentralen Energiedichte am Exkursionsende und zwar

- a) mit dem realen Brennstoff als Arbeitsmedium, E_{KTN}(Q)
- b) mit einem Brennstoff, der sich oberhalb von T_B wie ein ideales Gas verhält, E_{CAR}(Q).

Dazu bestimmt EVØNQ folgende Integralausdrücke

$$E_{KIN}(Q) \equiv \int dV \rho_B A_{KIN}(E)$$

$$E \ge E_{BL}$$
(1)

$$E_{CAR}(Q) \equiv \int dV \rho_B A_{CAR}(E)$$
(2)
$$E \ge E_{BL}$$

für Werte aus einem Bereich $Q_{0} < Q_{1}$. $A_{KIN}(E)$ ist die kinetische Energie, die man aus 1 g Brennstoff der thermischen Energie E mit adiabatischer Ausdehnung bis E_{BL} gewinnen kann; $A_{CAR}(E)$ ist die kinetische Energie, die man unter den gleichen Bedingungen erzielen könnte, falls der Brennstoff ein ideales Gas wäre, d.h.

$$A_{CAR}(E) \equiv (E - E_{BL}) \left(1 + \frac{E_F}{E - E_F}\right)$$
(3)

Für A_{KTN}(E) wird eine Polynomnäherung in der Form

$$A_{KIN}(E) \equiv \sum_{\sigma=1}^{S} d_{\sigma} \cdot (E - E_{BL})^{\sigma}$$
(4)

benutzt.

Die Bestimmung der Integrale (1) und (2) erfolgt numerisch; der relevante Energiebereich des Cores wird in Bereiche gleicher Energiebreite

$$\Delta E = \frac{1}{N} \left(E_{\text{max}} - E_{\text{BL}} \right)$$

$$E_{\text{max}} = Q \cdot AB$$
(5)

zerlegt, zu jedem Teilbereich wird der entsprechende Brennstoffanteil

$$M_{B} \cdot \Delta q_{i} = M_{B} / q(x_{i}) - q(x_{i+1}) / 7$$
(6)

$$q(x_{i}) = \frac{1}{V} \int dV$$

$$c F(\bar{r}) \ge x_{i}$$

$$i = 1, \dots, N \qquad (7)$$

$$x_{i} = \frac{E_{BL} + (i-1)\Delta E}{Q}$$

berechnet und in jedem Teilbereich wird AKTN(E) mit

$$A_{KIN}(E) \approx \frac{1}{3} \{A_{KIN}(E_{min}) + A_{KIN}(\frac{E_{min} + E_{max}}{2}) + A_{KIN}(E_{max})\}$$

$$E_{min} \leq E \leq E_{max}$$
(8)

approximiert.

Man erhält so folgende Ausdrücke:

$$E_{\text{KIN}}(E) \approx \frac{M_{\text{B}}}{3} \sum_{i=1}^{N} \Delta q_{i} \sum_{\sigma=1}^{\Sigma} d_{\sigma} / (i - \frac{1}{2}) \Delta E / \sigma_{+}$$

$$\sum_{i=1}^{N} \Delta q_{i} + \Delta q_{i+1} \sum_{\sigma=1}^{S} d_{\sigma} / (i - \frac{1}{2}) \Delta E / \sigma_{+}$$
(9)

$$E_{CAR}(Q) \approx \frac{M_B}{3} \{\sum_{i=1}^{N} \Delta q_i (i - \frac{1}{2}) \Delta E / 1 + \frac{E_F}{(i - \frac{1}{2}) \Delta E + E_{BL} - E_F} - 7 + \sum_{i=1}^{N} (\Delta q_i + \Delta q_{i+1}) i \Delta E / 1 + \frac{E_F}{i \Delta E + E_{BL} - E_F} - 7 \}$$
(10)

Um die Rechenzeit zu verkürzen, werden nicht alle q(x_i)-s, sondern nur jeder m-te-Wert

$$q(\bar{x}_{j}) = q(\frac{E_{BL}+(j-1)m\Delta E}{Q}) , j = 1, \dots, J$$

$$m \cdot J = N$$
(11)

berechnet; die Volumenanteile Aq_i, i=1,...,N, gewinnt man aus diesen durch Interpolation:

$$\Delta q_{jm+i} = \sum_{l=1}^{3} \Delta q_{j+l}^{x} / S_{l}^{(1)} + (i-1)S_{l}^{(2)} + (i-1)^{2}S_{l}^{(3)} / J_{j}^{(1)}$$

$$j = 0, 1, \dots, J-3; \qquad i = 1, \dots, m$$
(12)

$$\Delta q_{(J-2)m+i} = \sum_{\ell=1}^{3} \Delta q_{J-2+\ell}^{x} \underline{/} S_{\ell}^{(1)}(i-1) S_{\ell}^{(2)}(i-1)^{2} S_{\ell}^{(3)} \underline{7}$$
(13)

i = 1,...,2m

Δq^x j+l

Dabei sind

 $\Delta q_{J}^{X} = q(\bar{x}_{J})$

 $\sum_{i=1}^{\Sigma} \Delta q_{jm+i}$

k • m

 $\Delta q_{j}^{x} = q(\bar{x}_{j}) - q(\bar{x}_{j+1})$

für
$$j = 1, ..., J-1$$
 (14)

 $\Delta q_{J+1}^{\mathbf{X}} = 0$ Aus den Begingungen

$$k = 1, 2, 3$$
 (15)

$$k = \sum_{\ell=1}^{k} \Delta q_{j+\ell}^{k} = 1, 2, 3$$

erhält man die Koeffizienten $S_{o}^{(k)}$:

$$s_{\ell}^{(3)} = \frac{1}{2m^{3}} \{\delta_{3,\ell}^{x} - 3\delta_{2,\ell}^{x} + 3\delta_{1,\ell}^{x}\}$$

$$s_{\ell}^{(2)} = \frac{-1}{2m^{3}} \{(2m-1)\delta_{3,\ell}^{x} - (8m-3)\delta_{2,\ell}^{x} + (10m-3)\delta_{1,\ell}^{x}\}$$

$$s_{\ell}^{(1)} = \frac{1}{2m^{3}} \{\frac{2m^{2}-3m+1}{3}\delta_{3,\ell}^{x} - (3m^{2}-4m+1)\delta_{2,\ell}^{x} + (6m^{2}-5m+1)\delta_{1,\ell}^{x}\}$$
(16)

$$mit \delta_{k,l}^{\mathbf{X}} = \{ \begin{smallmatrix} 0 & k < l \\ i & k > l \\ i & k > l \\ \end{cases}$$

Die Größen $q(x_i)$ hängen nicht von E_i und Q sondern nur von deren Verhältnis, $x_i = E_i/Q$ ab.^M Man kann also weiter Rechenzeit sparen, wenn man die $q(x_i)$ -s und die Δq_i -s nur einmal berechnet (und zwar für Q = Q_i) und dann alle anderen Q-Werte und die entsprechende Einteilung des jeweiligen Energiebereichs so wählt, daß in den Ausdrücken (9) und (10) nur bereits berechnete Δq_i -s auftreten. Dies kann man mit

$$Q_{j} = \frac{Q_{1}}{1+(j-1)\Delta Q}, \quad \Delta E_{j} = \frac{\Delta E_{1}}{1+(j-1)\Delta Q} \quad j = 1, \dots, j$$

$$\Delta E_{1} = \frac{1}{N} (Q_{1}AB-E_{BL}), \quad \Delta Q = \frac{\Delta E_{1}}{mE_{BL}}$$
(17)

erreichen. Man erhält so die Formeln

$$\mathbb{E}_{KIN}(Q_{j}) \approx \frac{M_{B}}{3} \left\{ \sum_{i=1}^{m(J-j+1)} \Delta q_{m(j-1)+i} \sum_{\sigma=1}^{S} d_{\sigma} \int_{\sigma}^{-(i-\frac{1}{2})\Delta E_{j}} \int_{\sigma}^{\sigma} + \cdots \right\}$$

$$(9')$$

$$\mathbb{E}_{CAR}(Q_{j}) \approx \frac{M_{B}}{3} \left\{ \sum_{i=1}^{m(J-j+1)} \Delta q_{m(j-1)+i} (i-\frac{1}{2})\Delta E_{j} \int_{\sigma}^{-1+} \frac{E_{F}}{(i-\frac{1}{2})\Delta E_{j} + E_{BL} - E_{F}} \int_{\sigma}^{-1+\cdots} \right\}$$

$$(10')$$

$$\mathbb{E}_{CAR}(Q_{j}) \approx \frac{M_{B}}{3} \left\{ \sum_{i=1}^{m(J-j+1)} \Delta q_{m(j-1)+i} (i-\frac{1}{2})\Delta E_{j} \int_{\sigma}^{-1+} \frac{E_{F}}{(i-\frac{1}{2})\Delta E_{j} + E_{BL} - E_{F}} \int_{\sigma}^{-1+\cdots} \right\}$$

$$(10')$$

Programmablauf: Zuerst werden die Interpolationskoeffizienten

$$S_{l}^{(1)} + (i=1)S_{l}^{(2)} + (i=1)S_{l}^{(3)}, i=1_{0}...,2m; l = 1_{0}2_{0}3$$

berechnet. Dann wird für jedes Q_j mit ENVER $q(\bar{x}_j)$ berechnet, was die gleichzeitige Bestimmung von $\mathbb{E}_{exc}(Q_j)$ nach (3.42) ermöglicht. Anschließend erfolgt die Berechnung von Δq_j^x und die Interpolation der Ausdrücke Δq_i , $i = jm+1_{y_0, \dots, y_j}(j+1)m$. Nachdem alle Δq_i -s zur Verfügung stehen, erfolgt die Bestimmung der \mathbb{E}_{KIN} und \mathbb{E}_{CAR} für alle Q -s.

[™] Siehe auch Gl. (3.18,3.19) bzw. ENVER

Ausgabe: Vor Beginn der Rechnung werden die charakteristischen Reaktordaten und die benutzten Näherungspolynomkoeffizienten, d_1 , d_2 ,... d_s ausgedruckt. Während der Rechnung werden bei jedem Q-Wert die Werte von E_{CAR} , $E_{exc.}$, E_{KIN} sowie \bar{x}_j und $q(\bar{x}_j)$ ausgegeben. Zwischen diesen Zeilen werden für E_{CAR} , $E_{exc.}$ und E_{KIN} Interpolationsausdrücke von der Form

$$\frac{f(Q_j)-f(Q_{j+1})}{Q_j - Q_{j+1}}$$

gedruckt.

Rechenzeit: Die Rechenzeit des EVØNQ wird ebenfalls im wesentlichen durch den Zeitbedarf von ENVER bestimmt. Bei dem Na-2 Reaktor ergab sich eine Rechenzeit von 8 s pro Energiedichtepunkt bei |ZIN| = 400.

ANHANG A. EINGABEBESCHREIBUNG

A. Rechenprogramm EXQ

1. Karte: INF, IND, SGF, SGE, GIN, GPS, ZIN, EXZ, EXR, EXA

INF

Fortsetzungsindex; für INF>O wird ein neuer Reaktor gerechnet, es folgt also die

Eingabekarte 2.,

INF<0 werden nur neue Expansionskoeffizienten bestimmt, es folgt also die Karte 7.,

INF=0 wird die Rechnung beendet, es kommen keine weiteren Eingabekarten hinzu.

IND: Druckindex; für

IND>0 werden alle Zwischenwerte der Exkursion ausgedruckt, IND<0 werden nur die Anfangswerte und die Werte am Ende jeder Rechnungsphase ausgedruckt.

- SGF,SGE: Größen für die Steuerung der Exkursionsschrittweite; SGF bestimmt die in eine Integrationsschritt maximal zulässige relative Änderung des Flusses, SGE ist die entsprechende Größe für die Energiedichte. Empfohlene Werte sind SGF = 5., SGE = 10.,
- GIN: Steuerungsgröße, die die relative Genauigkeit bei der Berechnung der Raumintegrale festlegt. Um zuverlässige Ergebnisse auch bei hohem Druckpolynomgrad zu erhalten, muß

 $1.10^{-6} \ge \text{GIN} > 1.10^{-7}$ sein. (s. auch FORHAL)

- GPS: Steuerungsgröße; die die Schärfe der Trennung der einzelnen Rechnungsphasen voneinander bestimmt. Empfohlener Wert: GPS < 1.001
- ZIN: Steuerungsgröße, die die relative Genauigkeit der Energieverteilungsrechnungen in ENVER bestimmt. |ZIN| gibt an die Anzahl der verwendeten Abschnitte bei der numerischen Integration in der Z-Richtung, und muß eine gerade Zahl sein. Empfohlener Wert: |ZIN| = 250.-500. Falls ZIN>0 ist, werden die zu der vorgegebenen Energieschranke gehörenden Achsenabschnitte in beiden Zonen des Cores, ZMAXI, RMAXI, ZMAXII, RMAXII ausgedruckt.

	EXZ, EXR, EXA:	Gewichtsfaktoren der axialen und radialen Expansionsrück-
		wirkung sowie des autokatalytischen Effektes.
	2. Karte:	D, SF1, SF2, EV, ELO, BET, ELA, RC, RZ, HC, RHØ, RHØB, DEX, CS, QM, CV, TM, TB
	D,SF1,SF2:	Diffusionskonstante / cm 7 und makroskopische Spaltquer- schnitte / 1/cm 7 in den Zonen 1. und 2.
	EV, ELO:	Mittlere Neutronengeschwindigkeit / cm/s 7 und Lebensdauer / s 7.
	BET, ELA:	Anteil der verzögerten Neutronen und effektiven Zerfalls- konstante / 1/s 7 der Vorläufergruppen.
	RC,RZ,HC:	Coreradius, Radius der ersten Zone, Corehöhe / cm 7.
	RHØ,RHØB:	Dichte des Corematerials und des Brennstoffes / g/cm ³ 7
in de la constante de la consta Constante de la constante de la c	DEX:	Dopplerexponent, DEX muß >1 sein.
	CS:	Pro Spaltung freigesetzte Energie / kJ 7.
	QM,CV:	Fusionswärme / kJ/g 7 und Wärmekapazität / kJ/(g.deg K ^O) 7 des Brennstoffes.
	TM, TB:	Schmelz- und Siedepunkt des Brennstoffes / deg Kº 7.
	3. Karte:	
		Anzahl der einzulesenden Flusspolynomkoeffizienten. Es muß 2 \leq NF \leq 6 sein.
	4. Karte:	$U(1,1), \dots, U(N,1), \dots, U(NF,1)$
	U(N,1):	Gerade Koeffizienten des axialen Flusspolynoms $aZ_{2(N-1)}$.
	5. Karte:	U(1,2),, U(N,2),, U(NF,2)
	U(N,2);	Gerade Koeffizienten des radialen Flusspolynoms a R _{2(N-1)} •

E.

6. Karte:	LP, AT(1), ET(1), PTO(1), PT(1,1),, PT(LP,1), AT(2), ET(2), PTO(2), PT(1,2),, PT(LP,2), TV
LP:	Grad der Dampfdrucknäherungspolynomen. Es muß LP<10 sein.
AT(J),ET(J):	Anfang- und Endtemperaturen / deg K ⁰ 7 des Gültigkeits- bereiches des J-ten Polynoms.
and the second second second	Es müssen AT(1) <at(2) et(1)<et(2)="" sein.<="" td="" und=""></at(2)>
PTO(J),PT(N,J):	Koeffizienten $P_{o}^{(j)}$ <u>fatm</u> 7 bzw. $P_{N}^{(j)}$ des J-ten Dampfdruck- polynoms.
TV:	Maximal zulässige Überschreitung des Brennstoffsiedepunktes
	[deg K ⁰ 7 in Coreteilen, die zur Expansionsrückwirkung nicht beitragen.
7. Karte:	IF, FO(1),, FO(IF), ID, TDT(1),, TDT(ID), IA, AKO(1), , AK3(1), HE(1),, AKO(IA),, AK3(IA), HE(IA), BETF, TO_
IF, ID, IA:	Anzahl der Anfangsflüsse, Dopplerkonstanten und Reaktivi-
	tätseingaben.
	Es müssen IF<10, ID<30 und IA<10 sein.
FO, TDT:	Anfangsflüsse / n/(cm ² s) 7 und Dopplerkonstanten der Ex- kursionen.
АКО,,АКЗ:	Koeffizienten der Reaktivitätseingabe / \$ 7, / \$/s_7,
HE:	Vorgeschlagene Schrittweite der Exkursion / ms 7
BETF:	Der in der Exkursion berücksichtigte Anteil der verzöger- ten Neutronen.
TO: provide an installation stars	Anfangstemperatur / deg K° 7 im Corezentrum.
8. Karte:	$QMA, QME, NU, U(1), \dots, U(NU)$
NU:	Anzahl der Koeffizienten des Dopplertemperaturpolynoms. Es muß NU<10 sein,
U(N):	Koeffizienten des Dopplertemperaturpolynoms / deg K°7, / deg K°/(kJ/g) 7,

OMA, QME: Anfang und Endwert / kJ/g 7 des Gültigkeitsbereiches des Dopplerpolynoms.

Nach der Karte 8. muß immer eine Karte 1. folgen!

B. Rechenprogramm TREF

_ C;._

1. Karte:	QA, CE, DQ, ZIN
QA,QE:	Anfang und Ende des Energiedichtebereiches, in dem die
	Dopplertemperatur berechnet werden soll $/kJ/g_7$
DQ:	Schrittweite in diesem Bereich / kJ/g_7
ZIN:	s. 1. Karte von EXQ
2. Karte:	SF1, SF2, RC, RZ, HC, OM, CV, TM
	Beschreibung der Größen wie bei der 2. Karte von EXQ
35.Karten:	Sie stimmen mit den Karten 3 5. des Programms EXQ überein.
Rechenprogramm	ÉVØNQ.
1. Karte:	<u>Q(1), ZIN, IE, MD</u>
ର୍(1):	Obere Grenze des Energiedichtebereiches, in dem E _{KIN} ;
	E _{CAR} und E _{EXC} berechnet werden sollen, / kJ/g 7.
ZIN:	S. 1, Karte von EXO
IE:	Anzahl der Ordinaten im Energiedichtebereich.
	Es muß IE<250 sein.
MD:	Anzahl der Interpolationen zwischen zwei benachbarten
	Ordinaten. Für MD muß MD<20 gelten.
2. Karte:	SF1, SF2, RC, RZ, HC, RHØB, QM, CV, TB, NK, G(1),, G(NK)
SF1-TB:	s, 2. Karte von EXQ
NK:	Anzahl der Koeffizienten der Polynomdarstellung der
	kinetischen Energie. Es muß NK<10sein
G(1),,G(NK):	Polynomkoeffizienten der Darstellung der kinetischen
	Energie, $/ 1_7, / \frac{8}{kJ}, / \frac{8}{kJ}, / \frac{8}{kJ^2},$
35.Karte:	Wie die 3 5. Karten des EXQ.

JCB	3107690	900-004	PHCNT	1	IN	NR .	THURNAY
\$SRC							
1	L C 2 C	FAU	<u>N – Z</u>		ZWEITE	EXKURSI ZYLINDE	ON NACH BETHE-TAIT RGEOMETRIE
	B C	-	× a		EVVUDET	CHICKER 1	4 h 1 m
5	+ C 5 C	E 	X Q 		EXKURSI	LUNZVERL	AUH
Ĩ	6 C						and the second
ĩ	7	DIMENSI	ON A(4,2)	,FA(3),	N(3),AT((2),ET(2),PT0(2),PT(10,2),PS(10,2),
5	3	1 QMN(10),G(10),X	H(10),X	Z(10),XC	;(10),E(11), FELD(625), WW(3,10),
	γ γ	2 WA(3)1	J_{1}	SK(2);S	A12);A21). AK2110	10,11), 11.4K3/1	AR(10,11),AA(10,11),HO(10), 0).HE(10).U(10).UR(10).O(10)
11	, L	4.PK(10)	•P(10)•QY	(10).07	$(10) \cdot DQ($	(9) ₃ B(3,	10)
12	2 C						
13	3	COMMON	KP,KF,L,H	2,RZ,RC	,RRC,A,H	IRR, RYRZ	,S,EO,CD,DX,NU,UR,AD,RAO,
14		1 RAI,RA	2,RA3,ALF	,ALA,BV	,DQ3,QMA	A, QME, QM	W, N, LP, B
16	ية 10 1	NABB =	C .				
17	7	DIM = 1	.01325				
18	3	99 READ 1,	INF, IND, S	GF,SGE,	GIN, GPS,	ZIN, EXZ	, EXR, EXA
19		IF(INF)	270,999,1	0 0	VODÁLICT	NTCOAT	TON
21					EINGABE	E DER RE	AKTORDATEN
22	2	100 READ 1,	D,SF1,SF2	,EV,ELO	,BET,ELA	,RC,RZ,	HC,RHO,RHOB,DEX,CS,
23	3	1 QM,CV,	ТМ, ТВ				
24	t C		1 = 2				
22		V = EV + λιο = F	1.65-3				
27	7	ALA = E	LA*1.E-3				
28	3 an 1 a	GZ = AL	0/BET				
29)	AF = RH	OB/(SF1*C	S)*1.E+	3		
<u>י</u> נ גר)	UX = UE	X-1. /SE1				
32	<u> </u>	H2 = HC	*•5				
33	3	EMA = C	V*TM				
34	•	EME = E	MA+QM				
35		EB = UV	*18+QM /CV				
37	, c	VC - 14,	/ 0 4		EINGABE	E DER FL	USSPOLYNOMEN
38	}	KP = 1					
39)	KF = 1		、			
40 41	,	CALL PR	*DIM*D*V	/(RHO*C	NA)		
42		HRR = H	C*RRC				
43	3	VRH = 3	.1415927E	- 3*HRR*	RHOB		
44	+ -	KP = 4					
45			t(H2,YH2)				
47		KF = 3					
48	\$	CALL PH	I(RZ,YRZ)				
49)	RYRZ = 1	RZ*RZ*YRZ				
20	,	CALL PF	ITRU, YRU)				et 11
	the set of					28	

```
51
               WO = 2.*YH2*(S*YRC-(S-1.)*RYRZ/RRC)
 52
               TGT = VRH*WO
 53
               Q3E = .5/T0T
 54
               A(1,1) = PSI(0), A(2,1) = /AZ(2)/, A(3,1) = PSI(H2), A(4,1) = PHI(RZ),
        С
               A(1,2) =PHI(0), A(2,2)=/AR(2)/, A(3,2)=S*PHI(RC), A(4,2)=S*PHI(RZ)
        С
 55
                KP = 2
 56
 57
               CALL PFI(H2, A(3, 1), Y1)
 58
                KP = 3
               CALL PHI(RZ,A(4,1),DP)
 59
 60
               A(4,2) = S*A(4,1)
               CALL PHI(RC,
 61
                               Y, Y1)
 62
               A(3,2) = S*Y
 63
               PRM = MAX1F(A(1,2),A(4,2))
               PR = MIN1F(A(3,2),A(4,1))
 64
 65
               PRMIN = A(3,1)*PR
 66
               QMW = CM/WQ
               FA(1) = 0.
 67
        С
                                          UMRECHNUNG DER DRUCKPOLYNOMKOEFFIZIENTEN
 68
 69
               READ 1,LP, (AT(I), ET(I), PTC(I), (PT(L), I), L=1, LP), I=1,2), TV
 70
        С
 71
               PS(1,1) = PT(1,1)*VC
               PS(1,2) = PT(1,2)*VC
 72
 73
               CVN = VC
               G(1) = 1.
 74
 75
               QMN(1) = -QM
 76
         С
 77
               DO 155 L=2,LP
78
               CVN = CVN*VC
               QMN(L) = -QM * QMN(L-1)
 79
               G(L) = G(L-1)+1.
 80
 81
               PS(L,1) = PT(L,1)*CVN
           155 PS(L,2) = PT(L,2)*CVN
 82
        - C
 83
 84
                LE = LP-1
 85
               DO 157 L=1,LE
               FLM = 1.
 86
 87
                ME = LP-L
 88
         C
               DO 157 M=1,ME
 89
 90
                LM = L+M
 91
               FLM = FLM*(G(L)+G(M))/G(M)
 92
               PS(L,1) = PS(L,1) + FLM + QMN(M) + PS(LM,1)
           157 PS(L,2) = PS(L,2)+FLM*QMN(M)*PS(LM,2)
 93
                                          ENERGIESCHRANKEN DER RECHNUNGSPHASEN
 94
        С
 95
           200 \text{ GA} = \text{CV*AT}(2) + \text{QM}
               GE = CV * ET(1) + QM
 96
               FC = E8+CV*TV
 97
 98
               E(1) = GA/PRMIN
 99
               XH(1) = H2
100
               XZ(1) = RZ
101
               XC(1) = RC
102
               IF(A(3,1)-PR)204,204,202
103
                KE = 1
           202
               FC = FC*A(3,1)/A(1,1)
104
105
               FX = PR
```

106			GO TO 206	
107		204	KE = 0	
108			KP = 2	
109			$FC = FG \neq PR / PRM$	
110			FX = A(3,1)	
111		206	AF = 2	
112			JP = 0	
113			$XI = FC/G\Delta$	
114	C			
115	v	210	FX = FX + XI	
116			IE(KE) 212, 212, 214	
117	r			
118	U	212	XH(JF) = XH(JF-1)	
110		<u></u> .	$\begin{array}{c} (A) = P A D (Y H (1 E), 0, H 2, E Y, C E) \end{array}$	
120				
121	r			
121	Č.	214	Y(1) = Y(1) = 1	
122		214		
125		· · · ·	$\Delta L \{J \in J \rightarrow \Delta L \{J \in \exists J\}$	
124		214	$\frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} \right) \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) \left(\frac{1}{1} - \frac{1}{$	
122		210	LALL KANDIALIJEJJUHJKLJEAJUEJ TETEV-KOZ DINDOG DOG DOG	
120		210	LF(FATA())2)12221229 CALL DAND/VC/JE) D7 DC EV CE)	
127		220	LALL RANDIALIJEJJRZJRUJEAJUEJ	
120		222		
127		230	$E(JE) = E(JE^{-1})/A1$	
130		222	17111317-01723172317234	
131		232	JP = JE	
102			$\mathbf{AI} = \mathbf{F}(\mathbf{A} \in \mathbf{A} + \mathbf$	
133			$E(JE^{+}I) = E(JE^{-}I)/\lambda I$	
134		221	60 10 202 Tracing roloop 202 202	
135		231	17111JU/-ED/20012001202	
100		200	A(1/2) = A(1/2) + 1 + 0 - 2	
1.27		-226	60 10 200 15415-101040-002	
120		204	171JE 19724972907290	
109		200	PRINE IL	
140	~		CALL DUMP	
141	C.	220	15 - 15+1	
142		240	JE - JETI CO TO 210	
145	~		60 10 210	
144	ι	250		
140		250	E(JET1) = E(JE)/A1 $E(JET1) = E(JE)/A1$	
140		202	1F1C(JCT1)=CD/2D0j2D0j2D4	
147	~	220	$JEI = JE^{-}JP^{+}I$	
148	L	2/0	USNUMERIERUNG	
147		200	JEH = JE/2	
150			$\frac{1}{10} = \frac{1}{10} = \frac{1}{10} = \frac{1}{10}$	
151			NU ~ JETUUTI TELVENDAD DAD DAA	
152		212	1FINE/2029204	
155		202	MU = VU(VI)	
154				
100				
120		311		
12/		204	MU = MU(10)	
120			WL = A4(JJ)	
127			$\frac{1}{100} = \frac{1}{100}$	
100			AL(JJ) = AL(NJ)	

161			XC(NJ) = WC
162			XZ(NJ) = WZ
163		266	W = F(AS)
164		200	$F(1S) = F(N_1)$
145		261	$E(N) \rightarrow U$
100	~	201	
166	L		RUECKWIRKUNGSFAKIOREN
167	2	270	CXZ = GE*EXZ
168			N(1) = 1
169			IF(EXA)272,280,272
170		272	$CXA = CE \times EXA$
171			N(3) = 1
172			$FA(2) = P7 \pm A(4 - 1) \pm DP$
172			[A+2A] = [A+2A] [A+2A]
176			
174			RFE = 3
175			GU TU 282
176		280	N(3) = ()
177			KFE = 1
178		282	IF(EXR)286,284,286
179		284	N(2) = 0
180			60 10 300
100		204	
101		200	
182			N(2) = 1
183			KFE = 3
184	C		
185		300	SL = 1.
186			DO 301 L=1,LP
187			SL = SL + S
188	C		INTEGRALE DER EXPANSIONSRUECKWIRKUNG
188	C		INTEGRALE DER EXPANSIONSRUECKWIRKUNG
188 189	C		INTEGRALE DER EXPANSIONSRUECKWIRKUNG
188 189 190	С		INTEGRALE DER EXPANSIONSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2
188 189 190 191	C		INTEGRALE DER EXPANSIONSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI ,FELD)
188 189 190 191 192	C		INTEGRALE DER EXPANSIONSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3
188 189 190 191 192 - 193	С		INTEGRALE DER EXPANSIONSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 GALL ECRHAL(0.,XZ(1),GIN,NN,RZJ,FELD)
188 189 190 191 192 - <u>193</u> 194	C		INTEGRALE DER EXPANSIONSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 GALL ECRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RCJ,FELD)
188 189 190 191 192 - 193 194 195	C		INTEGRALE DER EXPANSIONSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 GALL ECRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ
188 189 190 191 192 - 193 194 195 196	C		INTEGRALE DER EXPANSIENSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 CALL FCRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI
188 189 190 191 192 - 193 194 195 196 197	C		INTEGRALE DER EXPANSIENSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 CALL ECRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RZJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IE(EA(KE))310.320.310
188 189 190 191 192 - <u>193</u> 194 195 196 197	C		INTEGRALE DER EXPANSIENSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 GALL FERHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FERHAL(RZ,XZ(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KE) = FA(KE)*A(4.1)
188 189 190 191 192 - 193 194 195 196 197 198	C	310	INTEGRALE DER EXPANSIENSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 GALL ECRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XZ(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) MA(KF, 1) = FA(KF)*A(4,1)
188 189 190 191 192 - 193 194 195 196 197 198 199	C	310	INTEGRALE DER EXPANSIENSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 GALL ECRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(FA(KF))200 200 200
188 189 190 191 192 - 193 194 195 196 197 198 199 200	C	310 320	INTEGRALE DER EXPANSIENSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 GALL ECRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201	С	310 320	INTEGRALE DER EXPANSIENSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 CALL ECRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202	C C	310 320 330	INTEGRALE DER EXPANSIENSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 CALL ECRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340 KP = 2
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202 203	C C	310 320 330	INTEGRALE DER EXPANSIONSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 CALL ECRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340 KP = 2 DO 333 JS=2,JE
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202 203 204	C C	310 320 330	<pre>INTEGRALE DER EXPANSICNSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI ,FELD) KP = 3 CALL FCRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340 KP = 2 DO 333 JS=2,JE CALL FCRHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD)</pre>
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202 203 204 205	c c	310 320 330	INTEGRALE DER EXPANSIONSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(D.,XH(1),GIN,NN,HI,FELD) KP = 3 CALL FORHAL(D.,XZ(1),GIN,NN,RZJ,FELD) CALL FORHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340 KP = 2 DO 333 JS=2,JE CALL FORHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD) HI = H[+ZI
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202 203 204 205 206	c c	310 320 330	INTEGRALE DER EXPANSIONSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 GALL FORHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FORHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340 KP = 2 DO 333 JS=2,JE CALL FORHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD) HI = HI+ZI IF(FA(KF))334,333,334
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207	c c	310 320 330	INTEGRALE DER EXPANSIONSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 GALL FORHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FORHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340 KP = 2 DO 333 JS=2,JE CALL FORHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD) HI = HI+ZI IF(FA(KF))334,333,334 WA(KF,IS) = FA(KF)*HI
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208	C C	310 320 330 334	INTEGRALE DER EXPANSICNSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI ,FELD) KP = 3 CALL FORHAL(0.,XC(1),GIN,NN,RZJ,FELD) CALL FORHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340 KP = 2 DO 333 JS=2,JE CALL FORHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD) HI = HI+ZI IF(FA(KF))334,333,334 WA(KF,JS) = FA(KF)*HI WW(KF,JS) = FA(KF)*HI
188 189 190 191 192 - <u>193</u> 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208	c c	310 320 330 334 333	INTEGRALE DER EXPANSICNSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI ,FELD) KP = 3 GALL FCRHAL(0.,XC(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,I) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,I) = FA(KF)*HI IF(KE)330,330,340 KP = 2 DO 333 JS=2,JE CALL FCRHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD) HI = HI+ZI IF(FA(KF))334,333,334 WA(KF,JS) = FA(KF)*HI WW(KF,JS) = RI*HI CO TO 202
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 207	c	310 320 330 334 333	INTEGRALE DER EXPANSICNSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 GALL FORHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FORHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340 KP = 2 DO 333 JS=2,JE CALL FORHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD) HI = HI+ZI IF(FA(KF))334,333,334 WA(KF,JS) = FA(KF)*HI WW(KF,JS) = RI*HI GO TO 303
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210	c c c	310 320 330 334 333	INTEGRALE DER EXPANSICNSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 CALL FORHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FORHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340 KP = 2 DO 333 JS=2,JE CALL FORHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD) HI = HI+ZI IF(FA(KF))334,333,334 WA(KF,JS) = FA(KF)*HI WW(KF,JS) = RI*HI GO TO 303
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211	c c	 310 320 330 334 333 340	INTEGRALE DER EXPANSICNSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 GALL FORHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FORHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340 KP = 2 DO 333 JS=2,JE CALL FORHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD) HI = HI+ZI IF(FA(KF))334,333,334 WA(KF,JS) = FA(KF)*HI WW(KF,JS) = RI*HI GO TO 303 DO 343 JS=2,JE
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212	c c	310 320 330 334 333 340	INTEGRALE DER EXPANSICNSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 CALL FORHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FORHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE)330,330,340 KP = 2 DO 333 JS=2,JE CALL FORHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD) HI = HI*ZI IF(FA(KF))334,333,334 WA(KF,JS) = FA(KF)*HI WW(KF,JS) = RI*HI GO TO 303 DO 343 JS=2,JE JW = JS-1
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213	c c	310 320 330 334 333 340	INTEGRALE DER EXPANSICNSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI ,FELD) KP = 3 CALL FCRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))30,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(FA(KF))330,330,340 KP = 2 DO 333 JS=2,JE CALL FORHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD) HI = HI+ZI IF(FA(KF))334,333,334 WA(KF,JS) = FA(KF)*HI WW(KF,JS) = RI*HI GO TO 303 DO 343 JS=2,JE JW = JS-1 IF(XZ(JS)-XZ(JW))346,346,344
188 189 190 191 192 - 193 194 195 196 197 198 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214	c c	310 320 330 334 333 340 344	INTEGRALE DER EXPANSICNSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI ,FELD) KP = 3 CALL FCRHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FCRHAL(RZ,XC(1),GIN,NN,RCJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(KE) 330,330,340 KP = 2 DO 333 JS=2,JE CALL FCRHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD) HI = HI+ZI IF(FA(KF))334,333,334 WA(KF,JS) = FA(KF)*HI WW(KF,JS) = RI*HI GO TO 303 DO 343 JS=2,JE JW = JS-1 IF(XZ(JS)-XZ(JW))346,346,344 CALL FCRHAL(XZ(JW),XZ(JS),GIN,NN,ZJ,FELD)
188 189 190 191 192 - 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215	c c	310 320 330 334 333 340 344	INTEGRALE DER EXPANSICNSRUECKWIRKUNG DO 303 KF=1,KFE KP = 2 CALL FORHAL(0.,XH(1),GIN,NN,HI,FELD) KP = 3 CALL FORHAL(0.,XZ(1),GIN,NN,RZJ,FELD) CALL FORHAL(RZ,XC(1),GIN,NN,RZJ,FELD) RI = RZJ+SL*RCJ WW(KF,1) = RI*HI IF(FA(KF))310,320,310 FA(KF) = FA(KF)*A(4,1) WA(KF,1) = FA(KF)*HI IF(FKE)330,330,340 KP = 2 DO 333 JS=2,JE CALL FORHAL(XH(JS-1),XH(JS),GIN,NN,ZI,FELD) HI = HI+ZI IF(FA(KF))34,333,334 WA(KF,JS) = FA(KF)*HI WW(KF,JS) = RI*HI GO TO 303 DO 343 JS=2,JE JW = JS-1 IF(TXZ(JS)-XZ(JW))346,346,344 CALL FORHAL(XZ(JW),XZ(JS),GIN,NN,ZJ,FELD) RZJ = RZJ+ZJ

216 217 218		346 348	IF(XC(JS)-XC(JW))350,350,348 CALL FORHAL(XC(JW),XC(JS),GIN,NN,CJ,FELD) RCJ = RCJ+CJ	
219 220 221		350 352	$RI = R_{2}J+SL*RCJ$ IF(FA(KF))352,343,352 WA(KF,JS) = WA(KF,1)	
222 223 224	C	343 303	CONTINUE	
225	C			
220		410	$CIR = CXR \times C(1)$	
228		414	SR(1) = CLR*PS(1.1)	
229			SR(2) = CLR * PS(L, 2)	
230		412	IF(EXA)414,416,414	
231		414	CLA = CXA*(SL-1.)	
232			SA(1) = CLA*PS(L,1)	
233			SA(2) = CLA*PS(L,2)	
234		416	CLZ = GXZ*G(L)	
235			SZ(1) = CLZ*PS(L, 1)	
236	~		SZ(2) = UZ*PS(L,2)	
220	L			
230			IE(EXR)420.422.420	
240		420	AR(1.JS) = SR(1)*(WW(2.JS)+WW(3.JS))	
241		422	IF(EXA)424,417,424	
242		424	AA(L, JS) = SA(1)*(WA(2, JS)+HA(3, JS))	
243		417	AZ(L,JS) = SZ(1) * WW(1,JS)	
244	С			
245			DO 301 JS=JEI,JE	
246			IF(EXR)430,432,430	
247		430	$AR(L_{2}JS+1) = SR(2)*(WW(2_{2}JS)+WW(3_{2}JS))$	
248		432	- 17 (EXA)4343313434	
250		201	$AA(1, 1S+1) = S7(2) \times WW(1, 1S)$	
251	с	201	FXKURSICNSVERLAUF	
252	õ		Q(1) = T, $Q(2) = E(T)$, $Q(3) = L(T)$, $Q(4) = LV(T)$	
253	Ċ		Q(5) = AEZ(T), $Q(6) = AER(T)$, $Q(7) = AEA(T)$	
254	С		Q(8) = DAEZ(T), $Q(9) = DAER(T)$, $Q(10) = DAEA(T)$	
255	С		EINGABE DER EXKURSIONSDATEN	
256		500	READ 1, IF, (F0(I1), I1=1, IF), ID, (TDT(I2), I2=1, ID),	
257	~]	L IA, (AKO(I3), AK1(I3), AK2(I3), AK3(I3), HE(I3), I3=1, IA), BETF, TO	
258	C		KUNSTANTEN	
209			DV = DEIF/ALU	
261			BL = DV/ALA FO = TO x/V	
262			$TMO = 10 \times WO$	
263			DC = DX*ALO*TMO**DX	
264	С		POLYNOM DER DOPPLERTEMPERATUR	
265			READ 1,QMA,QME,NU, (U(J), J=1,NU)	
266	С			
267			DO 503 J=1,NU	
268	_	503	UR(J) = U(J)/TMO	~~~
269 2 70	С		DO 505 I3=1,IA	UN

271			RAO = AKO(13)/GZ-BV		
272			RA1 = AK1(13)/GZ*1.E-3		
273			$RA2 = \Delta K2(T3)/G7*1_F-6$		
274			$RA3 = AK3(13)/G7*1_F-9$		
275	C				•
276	Ŭ		DO 505 I2=1.ID		
277			CD = TCT(12)/DC		
278	C				
279	•		DO 505 11=1.IF		
280	С			ANFANGSBEDINGUNGEN	
281	-		0(1) = 0.		
282			Q(2) = EQ		
283			Q(3) = FQ(11)/AF		
284			Q(4) = Q(3) * BL		
285			DO 507 J=5.10		
286			OY(J) = 0		
287		507	Q(1) = 0		
288		201	$\Delta I F = R \Delta \Omega$		
289	C			ANEANGSWERTE	
290	Ŭ		15 = 0		
291			NS = 1		
292			NABB = NABB+1		
293			$\Delta D = 0$		
294			AMAX = ALF		
295			FMAX = Q(3)		
296			HMAX = HE(I3)		
297	•		DO 509 L=1.LP		
298		509	$P(L) = PT(L \cdot 1)$		
299			PO = PTO(1)		
300			OS = EB		
301			DO 511 J=5.7		
302		511	PK(J) = 0.		
303-	- · ;		PK(10) = 0.		· · · · · · · · · · · · · · · · · · ·
304			PRINT 1. NABB		
305			PRINT 2		
306		590	QSE = QS * GPS		
307		592	H1 = HE(I3)		
308			GO TO 610		
309	С			AUSDRUCK VON ZWISCHENERGEBNISSEN	
310	-	600	IF(IND)648,648,610		
311		610	PK(1) = Q(1)		
312		-	PK(2) = Q(2)		
313			PK(3) = Q(3) * AF		
314			PK(4) = ALF		
315			PK(8) = AD		
316			IF(JS)630,620,630		
317		620	IF(Q(2)-EMA)622,626,624		
318		622	T = Q(2) * VC		
319			GC TO 640		
320		624	IF(Q(2)-EME) 626;626;628		
321		626	T = TM		
322			GD TO 640		
323		628	T = (Q(2)-QM)*VC		
324			GC TO 640		
325		630	DO 631 J=5,7		

326		631	PK(J) = Q(J)	
327			T = (Q(2) - QM) * VC	
328			PK(10) = P(LP) *T	
329			DD 633 1 = 2 • 1 P	
330			K = 1 P - 1 + 1	
221		633	PK(10) = (PK(10) + P(K)) * T	
222		000	P(10) = P(10) + P0	
222		640		
222		040		
224	~		FRINT STR	
222	ι L		A M A Y = M A Y 1 F (A M A Y A 1 F)	
220		648	AMAX = MAXIF(AMAX)ALF	
331	~		FMAX = MAXIF(FMAX)Q(3))	
338	L		INTEGRATIONSSCRIPT	
339		650	1F(JS)540,652,654	
340		652	CALL RUNGE (3, H1, 1, Q, Q2, QY)	
341			CALL REUTD(Q,DQ)	
342			GC TO 656	
343		654	CALL RUNGE(9,H1,1,Q,QZ,QY)	
344			CALL R CUTE (Q, DQ)	
345		656	IF(NS)700,810,700	
346	С		SCHRITTWEITENKONTROLLE	
347		700	CRIT = MAX1F(SGF*H1*ABSF(DQ3)/Q(3),SGE*(Q(2)-QY(2))/Q(2))	
348			IF(CRIT-1.)720,710,710	
349		710	$H1 = H1 \times 0.5$	
350			00 711 [=1,10	
351		711	Q(I) = QY(I)	
352			G0 T0 650	
353		720	HMAX = MAXIF(HMAX.HI)	
254		• • •		
355		730		
254	c	1,2%		
257	υ U	000	GRENZE EINER REGENONOSTHASE	
250		0.1.0	11 (NJ/)10 (010) 010 - 0.0 -	
250		0-1-0-	1E(4)2)-437/09/0709/070/020	
209		029		
200		0.20	NS = 0	
301		0.40		
362		840		
363		842		
364		849	P(L) = P(L) / 2	
365			PO = PIO(2)	
366		850	JS = JS + I	
367			NS = 1	
368	C			
369			DO 851 L=1,LP	
370			IF(EXR)852,854,852	
371		852	B(2,L) = AR(L,JS)	
372		854	IF(EXA)856,851,856	
373		856	B(3,L) = AA(L,JS)	
374		851	B(1,L) = AZ(L,JS)	
375	С			
376			IF(JS-JE)870,870,860	
377		860	NS = -1	
378			GO TO 592	
379		870	QS = E(JS)	
380			GD TO 590	

381	С	ENDE DER EXKURSION
382	Ť	900 IF(JS)600.600.910
383		910 IE(0(3)-03E) 920-600
384		920 IF(2.5*AMAX+ALF)930,600,600
385		930 $JS = -1$
386		G0 T0 619
387	С	AUSDRUCK DER ENDERGEBNISSEN
388		940 FMAX = FMAX*AF
389		ETOT = (Q(2) - EO) * TOT
390		CALL ENVER(Q(2),EB,WX,VX,ZIN)
391		EEXC = VRII*(Q(2)*WX-EB*VX)
392		PRINT 4, FMAX, AMAX, HMAX, ETCT, EEXC
393		PRINT 5,BETF,T0,AKO(I3),AK2(I3),F0(I1),AK1(I3),AK3(I3),TDT(I2)
394		PRINT 6,D,ELO,RC,CS,TM,EXZ,SF1,BET,RZ,QM,TB,EXR
395		PRINT 7,SF2,ELA,HC,CV,RHO,EXA,EV,DEX,WO,RHOB
396		KP = 1
397		KF = 2
398		CALL PHI(X,Y)
399		PRINT 8 and a feature management of the second se
400		PRINT \$,AT(1),ET(1),PTO(1),(PT(L,1),L=1,LP)
401		PRINT S,AT(2),ET(2),PTO(2),(PT(L,2),L=1,LP)
402		PRINT 10
403		505 PRINT S,QMA,QME, $(U(I), I=1, NU)$
404	С	FCRMATE
405		1 FURMAT(1H1,50X,32HZWEITE EXKURSIUN NACH BETHE-TAIT/1HK,58X,
406		LIDHZYL INUERREAKTUR;20X;4H NR ;14) 2 FORMATIZUL - ZEIT AN ZUENERGIE EN EUELUSS 10M AUALEA 10M OUA ENR AN
407		2 FURMAILIAL ZEIIJOAJIAENERGIEJOAJOHELUSSJIUAJAHALEAJIUAJAHASEAKAAA 1 sy touk eyd dad ay touk Autokat sy oma doddied ay tiuzento ten
400		1. JON JURASEAR STADE STATIONALS SUCH STATES JAS JAS DURELEASTAS LUCENIAS I EN 20 AV EURDNICK / OUINTISTEER EV AUKI/C AV JUN/CON/C 27V 1001/MILSTEER
409		
410		3 FORMAT/F9.4.F11.4.F14.5.2F15.5.2F14.5.F15.5.F11.1.F14.51
412		4 FORMAT (8H.IMAXIMIM.E26.5.F15.5/5H.H1) =F8.5/1H.L.50X.15HE.TOT(M.IOULE)
413		-1 = F12.4.27X.15HF = FXC(MARHEF) = F12.44
414		5 FORMAT (9HKB, FFF, =F9, 6, 16X, 4HT0 =F10, 3, 16X, 4HK0 =F7, 2, 9X, 4HK2 =
415		1 F7.2/34X,4HF0 =E10.4,16X,4HK1 =F7.2,9X,4HK3 =F7.2,16X,5HTDT =
416		3 E11.5)
417		6 FORMAT (6HL D = E10.4,6X,6H LO = E10.4,6X,5H RC = F10.3,6X,5H CS =
418		1 E10.4,6X,6H TM =F10.3,6X,6H EXZ =F10.6/6H SF1 =E10.4,6X,6H BET =
419		2 E10.4,6X,5H RZ =F10.3,6X,5H QM =E10.4,6X,6H TB =F10.3,6X,
420		3 6H EXR = $F10.6$
421		7 FORMAT(6H SF2 =E10.4,6X,6H LA =E10.4,6X,5H HC =F10.3,6X,5H CV =
422		1 E10.4,6X,6H RHO =F10.4,6X,6H EXA =F10.6/6H V =E10.4,6X,6H DEX =
423		2 E10.4,6X,5H W0 =F10.5,27X,6H RHOB=F10.4)
424		8 FORMAT(35HJDRUCKPOLYNOME P(0),P(1),,P(N))
425		9 FORMAT(14H IM BEREICH E12.5,5H - E12.5,5X,2H=,4E20.8/6E20.8)
426		10 FORMAT(45HJPOLYNOM DER DOPPL.TEMP. U(0),U(1),,U(N))
427		11 FURMAT (62HKD1E GUELTIGKEITSBEREICHE DER DRUCKPULYNUMEN REICHEN NIC
428	~	THI AD21
429	C	CO TO 00
400	r	
432	L	900 CALL EVIT
736		777 UALE EATT

JOB	2705691	100	-007	PHCNT	1		INR	THURNAY	,		
\$SRC											
1			FAU	N – Z		ZWEI	TE EXKU Zyli	RSION NACH Ndergeometr	BETHE-TA	IT	
4							FLUSSVE	RTEILUNGEN	PHI(R).	PS1(7)	
5	5 Č										
e			SUBROUT	INE PHI (X , Y , Y	1,Y2)					
1 8 9			DIMENSIC Common K	DN U(6,2) (P,KF,L,H	,U1(6 2,RZ,	,2),U2() RC,RRC,	5;2);UE A	(6,2),UN(12	,2),A(4,	2)	
10) C		15/40 11	0 0 50							
12	2	8	IF(KP-1) IF(KF-1)	10,10,40							
13	s c							A 4			
14	+ Ն ։	10	EINLESER	N DEK FLU	SSPUL	YNUM-KUI	2771212	NIEN			
16	, 5 C	10	REAU LI	¥17							
17	7		DC 11 1	[P=1,2							
18	3		READ 1,0	(U(N, IP),	N=1,N	F)					
19) C		ABLEITUN	IGEN							
21	,		MI = 0.								
22	2		W2 = W1+	+1.							
23	B		W1 = W2+	+1.							
24			Ul(N, IP)	= W1+U(N,IP)						
25		21	U2(N, IP)	= W2*U1	(N.IP)					
20			QUADRATE								
- 28	<u>}</u>	· -	NM = -2*	NF-1	·····				. – –		
29)		DO 31 1	=1,NM							
30)	31	UN(I,IP)	= 0.							
32											
33	-		I = K + N	1-1							
34	•		IF(N-K)3	34, 32, 34							
35	5	32	UN(I, IP)	= UN(I,	IP)+U	(N, IP)*(J(N,IP)				
36) 7	24		1 - 10/7	101 4	⊃ ⊕07N 1	(01+H/V	10)			
38	8	11	CONTINUE	- UNVIS	187 +	2. TU (11)	IP / TUIN	9181			
39	, С			-							
40) C		INTEGRAL	-POLYNOM	ε						
41			UE(1,1)	= U(1,1)	- F						
42			UE(1,2)	$= U(1_{2}2)^{2}$	₹•) \± 5						
44	•		WR = 2	- 0///1/2	1743						
45	5		DO 35 I	=2,NM							
46			WZ = WR+	1.							
47	, ,		WR = WZ+	1.							
48) }	36	1F(1-NF)	= 11(1.1)	/ 1/7						
50)	20	UE(1,2)	= U(1,2)	/WR						

- 1		~ ^	A 14 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
51		30 25	$UN(1_{1}1) = UN(1_{1}1)/WL$
52	r	30	UN(1)ZY = UN(1)ZYWK
54	C		A(1, 1) = U(1, 1)
55			$\Lambda(1,2) = U(1,2)$
56			A(2.1) = ABSE(U(2.1))
57			A(2,2) = ABSF(U(2,2))
58	С		
59	č		NORMIERUNGSINTEGRAL
60			HH2 = H2*H2
61			RRC = RC + RC
62	C		
63			$YZ = UN(NM_{2}1)$
64			$YR = UN(NM_{2}) * RRC$
65			DO 37 I=2,NM
66			K = NM - I + I
67			YZ = YZ + HH2 + UN(K, 1)
68		31	$YR = (YR+UN(K_{0}/2)) * RRC$
69			YI = HZ + YZ + YR
70	~		60 10 90
72	C C		AUCODUCK DED ELUSCON VNOM-KOEFETTTENTEN
72	U U	40	$\frac{1}{2} \frac{1}{1} \frac{1}$
74		40	PRINT 2. (11(N.2).N=1.NF)
75		1	FORMAT(35HJFLUSSPOLYNOME A(0),A(2),,A(2N)/10H AXIAL 6E20.8)
76		2	FORMAT(10H RADIAL 6E20.8)
77			GO TO 90
78	С		
79		50	W = X * X
80			IF(KP-3)52,60,70
81	C		
82	C		AXIALE WERTE
83		52	Y = U(NF, 1)
84			$YI = UI(NP_{1}I)$
82			UU 33 N=2 INF
90 97			$K = N\Gamma - NT I$ $I = (NF - N) 53, 53, 50$
88		59	$A_1 = A_1 + A_1 + A_1 + A_1 + A_2 $
89		53	Y = Y = W + U(K - 1)
90			Y1 = Y1 * X
91			IF(KF-2)90,54,90
92		54	$Y2 = U2(NF_1)$
93			DO 55 N=3,NF
94			K = NF-N+2
95		55	$Y_2 = Y_2 \times W_1 U_2(K_1)$
96			GO TO 90
97	C		
98	C		RADIALE WERTE
99		60	$Y = U(Nr_y Z)$
100			LL = ULLNC94J DD 41 N−2.NC
102			UU OI 14-2914F K = NF-N+1
102			IF(NF-N)61.61.64
104		64	Y1 = Y1 + W + U1(K + 2)
105		61	$Y = Y + W + U(K_2)$

106		$Y1 = Y1 \times X$
107		IF(KF-1)62,62,90
108	62	Y2 = U2(NF,2)
109		DO 63 N=3,NF
110		K = NF-N+2
111	63	$Y_2 = Y_2 + W_2 + U_2 (K_2)$
112		GO TO 90
113	С	
114	С	INTEGRALWERTE
115	70	IF(KF-2)74,74,76
116	С	AXIAL
117	74	IX = 1
118		GO TO 78
119	C	RADIAL
120	76	IX = 2
121	78	Y = UE(NF, IX)
122		DO 79 N=2,NF
123		K = NF - N + 1
124	79	Y = Y * W + UE(K, IX)
125	С	
126	90	RETURN

JOB	27056911	00-007	PHCNT	1	I	NR	THURNAY	,	
\$SRC									
	1 C 2 C	F A	<u>UN-Z</u>		ZWEITE	EXKUR ZYLIN	SION NACH	BETHE-TAI	T
	3 U				OTE HM	LENDEN	NETIONEN	D/0471 7	10513
					DIE UNIT	VERKEU	INKTIUNEN	KIPDI/12	12211
	6	SUBROU	TINE RAND	X • XA	XE.FX.CF)				
	7 C	0000000			,				
	8	COMMON	KP,KF,L						
	9 C								
1	0	IF(X-X	A)70,70,10)					
1	1	70 X = .9	*XA+.1 *XE				•		
1	2	GO TO	10						
1	3	10 DO 11	J=1,10						
1	4	12 CALL P	HI(X,Y,Y1)						
1	5	IF(Y1)	16,14,14						
1	6	14 XE = X							
1	<i>(</i>	15 X = 1	*XA+•9*XE						
1	0	60 IU	12						
2	9 0	10 D = 1-	FA 5120.20.18						
2	1	20 IFIARS	E(D)-1-E-	, 122.3	22.11				
2	2	30 IF(D)1	1.22.90						
2	- 3 C								
2	4	$11 \ x = x -$	D/Y1						
2	5	GO TO	80						
2	6 C								
2	7	22 CF = Y	/Y1						
2	8	GO TO	90						
2	9 C								
3	0	80 CALL P	HI(X,Y,Y1)	ł					
3	1	PRINT	1,KP,L,J,F	×,×,	Y,Y1				
3	2	1 FORMAT	124HJKEINE	: ITE	RATION IM R	RAND/5	HJKP = 15,5	X,3HL =15	,5X,3HJ =15
3	5	1,5X,4H	FX =E15.5;	5X,31	HX =E15.5,5	»х, ЗНҮ	=E13.5,5X	•4HY1 =E1	2.31
3	4 E C	LALL D	UMP						
2	ラしん	OA DETUDN							

JCB	2705691	100-007	PHCNT	1	INR	THUF	RNAY	
\$SRC								
1		FAU	N - Z		ZWEITE E	XKURSION NA YLINDERGEON	ACH BETHE	-TAIT
4					ENERGIE	UND VOLUME MIT	ENANTEIL I E) EX	DES TEILCORE
6		SUBROUT	NE ENVER	RIQ,EX,W	X,VX,ZIN)			
9 10 11		DIMENSIC 1 WF(3),V COMMON K	IN A(4,2) (F(3) (P,KF,L,F	,F(2),P 12,RZ,RC	(2),R(2),I ,RRC,A,HRI	RA(2),RM(2) R,RYRZ,S	,Z(2),WJ	(2),VJ(2),
13 14 15 16		X = EX/C F(1) = > F(2) = > P(1) = A) (/A(1,2) (/A(4,2) ((4,1)			- 		
17 18 19 20	• 1. 9	P(2) = A R(1) = R R(2) = R RA(1)= C	(3,2)/S Z C					
21 22 23 24	с	RA(2) = KF = 3 DO 11 L=	R(1) :1,2					
25 26 27	C	$FD = A(1)$ $IF(FD) 8_{1}$ $R_{2}(1) = 0$,1)-F(L) 8,10					
29 30 31		RM(L) = WJ(L) = VJ(L) =	RA(L) 0. 0.					
33 34 35	C	10 IF(A(3,1 12 Z(L) = H	.1 .)-F(L))1 12	4,12,12		·		
36 37 38 39		GO TO 2 14 Z(L) = S Z(L) = N KP = 2	0 GQRTF{FD/ HIN1F(Z(L	A {2,1}) .),H2)	1.65)			
41 42 43 44	C	$20 \ ZX = 0.$ FX = X/A TE(P(1)-	(1,1) (X)24,22	9• 2722F (1				
45 46 47 48 49		22 RX = R [L GO TO 3 24 RX = SQR RX = MIN KP = 3) 00 17F((A(1; 11F(RX;R(2)-FX)// L))	A(2,2))			
50	,	CALL KAN	DIRAIRAL					

51		30 RM(L) = RX		
52		VF(1) = RX + RX		
53		KP = 4		
54		CALL PHILDY, VP1		
55		GALL FILLING DN/ HEIII - HEIINAVDAAAI IN		
22	•	Wr(1) = Vr(1) + tK + A(1) 1		
56	C ·			
57		VF(2) = 0.		
58		WF(2) = 0.		
59		VF(3) = 0.		
60		WF(3) = 0.		
41		A7T = ABCC/7TNN	and the second	
01		ALI = ADJF(LIN)		
02		DL = L(L)/AL1	,	
63		ZN = 1.		
64	C			
65		32 DO 31 K=2,3		
66		IE(7N-AZT)34.40.40		
67		$347X = 7N \pm 0.7$		
40		$\frac{J_{T}}{2M} = \frac{2M}{2M}$		
00		LIN = LINTI.		
69		KP = 2		
70		CALL PHI(ZX,FZ,FZ1)		
71		IF(F(L)-FZ)35,39,39		
72		35 IF(RX-R(L))36,38,38		
73		36 RX = RX - D7 + CF + F71/F7		
74		$28 \times D = 3$		
77				
12		$\Gamma A = A/\Gamma L$		
16		CALL RAND(RX;RA(L);R(L);FX;CF)		
77		RRX = RX + RX		
78		VF(K) = VF(K) + RRX		
79		KP = 4		
80		CALL PHI(RX.YR)		
81		31 WE(K) = WE(K)+88X*Y8*F7		
02				
02	~	60 10 32		
8:5	C			
84		39 KP = 4		
85		40 VJ(L) = (VF(1)+4.*VF(2)+2.*VF(3	3))*DZ/3.	
86		WJ(L) = (WF(1)+4.*WF(2)+2.*WF(3	3))*DZ/3.	
87		11 X = X/S		
88	C			
89	•	$VV = V_1(1) + V_1(2)$		
on		1E(VV)60.60.50		
50				
91		20 KF = 2		
92		CALL $PHI(Z(2), YZ)$		
93		VX = 2.*(VV-Z(2)*RZ*RZ)/HRR		
94		WX = 4.*(WJ(1)+S*(WJ(2)-Z(2)*Y)	Z*RYRZ))/HRR	
95		GO TO 86		
96		60 VX = 0		
07				
71		04 TE17TN 300 00 99		
70		00 17121N/90,90,00		
99	-	88 PKINI $1_{2}(Z(1)_{3}RM(1)_{3}1=1_{3}Z)$		
100	C			
101		1 FORMAT(1HJ,46X,7HZMAXI = F9.4,4)	K,7HRMAXI =F9.4, 7X,8HZM/	AXII =F9.4,
102		1 4X,8HRMAXII =F9.4)		
103	C	-		
104	-	90 RETURN		
. w .		ar 1987 - 4 14 1994 - 7 1994 - 7 19 19 19 19 19 19 19 19 19 19 19 19 19		

JCB	3107690900	-004 PHCNT	1	INR	THURNAY	
\$SRC						
]		FAUN-Z	ZWEI	TE EXKUP ZYLIN	SION NACH BET IDERGEOMETRIE	HE-TAIT
4	+ C 5 C		DIE	INTEGRAM	IDEN	
C	5 ⁷ 7 C	FUNCTION FVONX(X)			
8 9 1 (3 9 C	COMMON KP,KF,L				
11		AXIALE FUNKTIONE	N			
13 14 19 16	10 12	CALL PHI (X,Y,Y1 IF(KF-2)12,14,16 FVONX = Y**L*Y1* GD TO SO	,Y2) Y1			
17	14	FVONX = $Y * * L * (Y)$ GC TO SO EVONX = $-(Y * * (L + V))$	*Y1-Y*Y2)			
20	C	GO TO SO	Z I I			
22 23 24	C 20	RADIALE FUNKTION CALL PHI (X,Y,Y1 [F(KF-2)22,24,26	EN \$¥2)			
25 26	22	FVONX = Y * L * (X * GO TO SO FUCALY = Y * L + Y + Y + Y + Y + Y + Y + Y + Y + Y +	(Y1*Y1-Y*Y2)	-Y*Y1)		
28	24	GO TO SO FVONX = Y**(L-1)	1* Y1 *Y1*Y1*Y1			
30 31	C 90	RETURN				

JCB	3107690	1900-004 PHCNT	1	INR	THURNAY	
\$SRC						
	L C 2 C 3 C	FAUN-Z	ZWE	ITE EXKUI ZYLII	RSION NACH BETHE-TAIT NDERGEOMETRIE	•
4	+ C 5 C		ABL	EITUNGSW	ERTE (NUR DOPPLERRUEO	:KW.)
(5 7 C	SUBROUTINE ROUT	(Q,DQ)			
8 - 9 10	3 9)	DIMENSION A(4) COMMON KP,KF,L 1 RA1,RA2,RA3,AI	2),UR(10),Q(H2,RZ,RC,RRC F,ALA,BV,DQ3	4),DQ(3) ,A,HRR,R ,QMA	YRZ,S,EO,CD,DX,NU,UR,	AC,RAO,
11	L C					
12	2	IF(Q(2)-QMA)10;	20,20			
13	3 C					
14	÷ 5	10 AD = CC*((E0/Q) GD TO 30	2))**DX-1.)		y a mina ana ing di sua. A	
16	5 C	20 TD - 110(4)(1)				
	7 3 3	$20 \ \text{IR} = \text{UR(NU)}$ $D0 \ 21 \ \text{J=2,NU}$ K = NU-J+1				
2(,	21 TR = TR*Q(2)+UF	(K)			
21	L	AD = CD*((1./TF))	()**DX-1.)			
22	2 C					
23	3	$30 \text{ ALF} = RA0 + Q(1)^{3}$	*(RA1+Q(1)*(R	(A2+Q(1)*)	RA31)+AD	
24	+ L					
2:		DQ(1) = Q(3)	E+01/1+N1 A			
20	7	DQ(2) = Q(3) + A(2)	.FTQ147*ALA			
29	2	DQ3 = DQ(2) DO(3) = O(3) * RV	/ -0(4)*ALA			
20	, ,	04(3) - 4(34×03	e santrara.			
30)	RETURN				

JCB	3107690	900-004	PHCNT 1	INR	THURNAY	
\$SRC						
1	C C	FAUN	N - Z	ZWEITE EXKUP Zylin	RSION NACH BETHE- Ndergeometrie	-TAIT
4				ABLEITUNGSWI	ERTE (ALLE RUECK)	4.)
2 6 7		SUBROUTIN	NE ROUTE(Q,D	Q)		
8 9 10		DIMENSION COMMON KF 1 RA1,RA2,	N A(4,2),UR(P;KF;L;H2;RZ RA3;ALF;ALA	10),Q(10),DQ(9), ,RC,RRC,A,HRR,R) ,BV,DQ3,QMA,QME,	,B(3,10),N(3) (RZ,S,E0,CD,DX,NU ,QMW,N,LP,B	J,UR,AD,RAG,
11		IF(Q(2)-0	ME)10,20,20			
14		10 TR = UR(N DO 21 J=2 K = NU=	1U) 2,NU 1+1	· · · · · · · · ·		
17	, , ,	21 TR = TR + G $AD = CD + (GO TO 3G)$)(2)+UR(K) (1./TR)**DX	-1.)		
20 21 22	c c	20 AD =CD*((EC/(Q(2)-QM	W))**DX-1.)		
23	C	30 ALF = RAG)+Q(1)*(RA1+	Q(1)*(RA2+Q(1)*F	RA3))+AD+Q(5)+Q(6	5)+Q(7)
26	, ,	DQ(1) = Q $DQ(2) = Q$ $DQ3 = DQ($	2(3)*ALF+Q(4 2))*ALA		
28 29 30	С	DQ(3) = 0	1.3)*8V -C(4)*ALA		
31 32 33		IF(N(KF)) 34 DQ(KF+3) DQ(KF+6)	34,34,36 = 9. = 9.			
34 35 36	С	GU TU 33 36 DQ(KF+3)	= Q(KF+7)	0/21		
37 38 39		DQ(KF+6) DO 37 L=2 I = LP-L	= B(KF;LP)* 2;LP .+1			
40 41 42	С	33 CONTINUE	= (DQ(KF+6)	+01KF,1]]∓Q[2]		
43		RETURN				

JCB	2205691000	01 PHCN	F 1	INŖ	THURNAY	
\$SRC						
	1 С	FAUN-Z		ZWEITE EXH	URSION NACH BETHE	E-TALT
	2 C			ZYL	INDERGEOMETRIE	
	3 C	тог				
	+ L 5 C			MINLEREI	SKENNSTUFFTEMPERAT	URIQI
	5 C					
	7	DIMENSION A(4	,2),QT(5)			
	B	COMMON KP,KF,	_,H2,RZ,R	C,RRC,A,HRR,	, RYRZ , S	
	9 C	DEAD 1 //A OF	50 7 F N			
1		KEAU IJQAJQEJI	JQ; ZIN			
1	2	JE = XFIXF(()	DE-DAJ/DO)+1		
1	- З С			•		
1	4	READ 1,SF1,SF	2,RC,RZ,H	C,QM,CV,TM		
1	5 C					
1	5	S = SF 2/SF 1				
1	r R	PMA = CV * TM				
1	7	EME = EMA+QM				
2	0	VC = 1./CV				
2	1	KP = 1				
2	2	KF = 1	C & L:			
2	5 4	HOD = HCADOC	-NU			
2	5	KP = 4				
2	5	KF = 2				
2	7	CALL PHI(112, YI	-12)			
2	8	KE = 3				
2	9 7	DALL PHI(KZ;Y)	< _) v			
3	1	CALL PHI(RC.Y)	20)			
3	2	W0 =2.*YH2*(S	*YRC-(S-1	.)*RYRZ/RRC))	
3	3 C					
3	4	KP = 2				
<u>د</u>	2 4	VP = 3	(3,1),Y1)			
3	7	CALL PHI(RZ,A	(4,1),DP)			
3	B	A(4,2) = S*A(4)	4,1)			
3	9 .	CALL PHI(RC,	Y,Y1)			
4	2	A(3,2) = S*Y				
4	1	PMAX = MAXIFL	A(1,2),A(4,2))*A(1,1) /))+//?))	}	
4	2	PMIN = MINIP() OT(1) = FMA/P	1137217A1	4;111*A(0;1)	1	
4	4	QT(2) = EME/PI	MAX			
4	5 m	QT(3) = EMA/PI	MIN		the second s	
- 4	5	QT(4) = EME/PI	MIN			
4	7 C	0.0 LUT 1 90 TH	ENA OTIC	1 001 07 04	07(0)	
4		PRINT 2.SE2.H	CV OT 12	1, SFL, KZ, QM	121(2) (4)	
5		KP = 1		* # # ** V. # === * 1 == # *E * 1		

5 1			Υ.Ε. = <u>2</u>		
51			RP = Z		
52			CALL PHILA,Y)		
53			PRINT 3		
54	С				
55			WA = 0.		
56			WE = 0.		
57			VA = 0.		
58			VE = 0		
50					
29			q = qA - bq		
60			K = 1		
61			QG = QT(1)		
62	С				
63			DO 11 J=1, JE		
64			a = 0 + D0		
65		10	[F(Q-QG)] 12.12.14		
66		12	68 TO 120-30-40-50-601-K		
47		37	CO TO (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
60		14	00 10 (10910911910904)9K		
08		18		· · · · · · · · · · · · · · · · · · ·	
69			VE = 1.		
70			K = K+1		
71			GO TO 60		
72	С				
73		17	WA = W		
74			VA = 1		
75		16	K = KT		
74		10	$K = K T_{A}$		
10			QG = QI(K)		
((-		GU TU LU		
78	С				
79		20	TD = VC*Q*W0		
80			GO TO 11		
81		30	CALL ENVER(Q, EMA, WA, VA, ZIN)		
82			TD = VC*(O*(WO-WA)+EMA*VA)		
83			GO TO 11		
84		40	CALL ENVEDIO EMA WALVAL 7TN)		
07		40	CALL ENVERINGERATINATION		
20			CALL ENVERIQUEMENVENVENVENVEN		
86			IU = VC*(Q*(W)+WE-WA)+EMA*VA-EME*VE)		
87			GO TO 11		
88		50	CALL ENVER(Q,EME,WE,VE,ZIN)		
89			TD = VC*(Q*WE+EMA-EME*VE)		
90			GO TO 11		
91		60	TD = VC*(O*W = OM)		
92		11	PRINT 4.0. WA. WE.VA.VE.TO		
03	c	* *	receive including and and and a		
5 5	C	7	CODMATICALLATION COLOR CONCERCION COLATI		000 / 11/14
94		1	FORMATIOINIMITIERE DRENNSTOFFIEMPERATO	OR IM ZWEIZUNENZYLIM	JER/INK,
95		1	$135X_{9}4HRC = 10.3_{9}11X_{9}4HIM = 10.3_{9}10X_{9}5HL$	EMA = +10.5, 10X, 5HQAI	=F10.57
96		2	10X,5HSF1 =E12.4,11X,4HRZ =F10.3,11X,4H	HQM = E10.4,35X,5HQEI	=F10.5)
97		2	FORMAT(10X,5HSF2 =E10.4,11X,4HHC =F10.3	3,11X,4HCV =E10.4,35)	, SHQAF
98]	L=F10.5/36X,4HW0 =F10.5,35X,5HEME =F10.5	5,10X,5HQEF =F10.5/)	
99		3	FORMAT (17HJE.DICHTE(ZENTR.), 11X, 29HE.MI	ITTEL/Q IN TEILCORE	E MIT.
100		1	15X, 30HVDL. ANTEIL DES TETICORE MIT.	15X.14HMITTI . BR. TFM	•/11HJ
101			0(KJ/G).18X.7HE) FMA.13X.7HE) FME.1	18X.7HE) FMA.13X.7H	E) EME.
102			2 - 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	CONTINUE & FUMPENAND CON	- /
102			LEATINY/// Eadmat/Eig 7 EV dega o EV dega o For ei		
103	~	4	TURMAIT12.1, DX, 2720.8, DX, 2720.8, F28.5)		
104	C				
105			CALL EXIT		

JCB	2705691100	-007 PHCNT	1	IN	IR	THURNAY
\$SRC						
	1 C 2 C	F A U N - Z		ZWEITE	EXKURSIC ZYLINDEF	DN NACH BETHE-TAIT Rgedmetrie
	3 L 4 C 5 C	EVDNQ		ENERGIE	AUSBEUT	E DER EXKURSION (Q)
•	6 Č					
	7	DIMENSION A(4,2),G(10),	,DA(3),DE	3(3),DV(3	3),CW(40,3),Q(250),VX(250),
i	8	2 EEX(250), V(500	()) L) D7 D7	. 00C V F		c
1	0 C	CUMMUN RESERVES	Πζ ιΚζι Κι	JAKU 1415	INKINIKLI	15
1	1	READ 1,Q(1),ZIN	,IE,MD			
1	2	READ 1,SF1,SF2,	RC,RZ,HC	,RHOB,QM	I,CV,TB,	VK, (G(K), K=1, NK)
1	3	PRINT 1, SF1, RC,	TB,SF2,F	RZ,QM,RHC	B,HC,CV	
1	4 5 С	PRINT ZITCTNIK	=1 , NK /			
1	6	S = SF2/SF1				
1	7	H2 = HC*.5				
1	8	KF = 1				
2 T.	9	KP = 1	01			
2	1	HRR = HC*RRC	07			
2	2	VRH = 3.1415927	E-3*HRR*	RHOB		
2	3	VRM = VRH/3.				
2	4 5	KF = 3				
2	2 6	RP = 2 CALL PHI(H2.A(3	.1).Y1)			
2	7	KP = 3				
2	8	CALL PHI(RZ,A(4	,1),DP)			
2	9	A(4,2) = S*A(4,	1)			
ار ۲	1	PA = MAXIF(A(1)) CALL PHI(RC. Y	2/;A(4;4 .Y1)	21)		
3	2	A(3,2) = S*Y				
3	3	KP = 4				
3	4	CALL PHI(RZ, YRZ)			
3:	5	RTKZ = RZ + KZ + TR	L			
3	7	EB = QM+DE				
3	8	KP = 1				
3	9	CALL PHI(X,Y)				
4		PRINT 3		RECTIMN	UNC DEP	INTERON ATIONSPOREETTIENTEN
4	2	$ME = 2 \neq MD$		DESITO	UNG DLK	INTERPOENTIONSROEDTIETERTER
4	3	DM = FLOATF(MD)				
4	4	DA(1) = .5/(DM*)	DM*DM)			
.4	5	DA(2) = -2.*DA(1)	1)			· · · · · · · · · · · · · · · · · · ·
4	7	$D8(1) = (24_*)$	DM) *DA(()		
4	B	DB(2) = (23.*	DM) *DA(2	2)		
4	9	DB(3) = (22.*)	DM)*DA(3	3)		
5	D	CW(1,1) = (1D)	M*{61]	L 。 *DM))*[)A(1)/3.	

51 52			CW(1,2) = -(1DM)*(27.*DM)*DA(1)/3. CW(1,3) = (1DM)*(12.*DM)*DA(1)/3.
53 54			DO 11 M=2,ME
55			$CW(M_N) = CW(M-1_N) + DR(N)$
56		11	DB(N) = DB(N) + 2.*DA(N)
57	С		BESTIMMUNG DER ENERGIEVERTEILUNG
58			JE = IE*MD
59			J = 0
60			EI = FLOATF(IE)
61			$QX = (Q(1) \neq PX/EB - 1 \cdot)/E1$
62			$\frac{\sqrt{1}}{\sqrt{1}} = 1_{0}$
64			FFX(1) = VRH*(O(1)*WX-FB*VX(1))
65	C		
66	•		DO 21 I=2,3
67			QXI = QXI+QX
68			Q(I) = Q(I)/QXI
69			CALL ENVER(Q(I), EB, WX, VX(I), ZIN)
70		•••	EEX(I) = VRH*(Q(I)*WX-EB*VX(I))
71	~	21	UV(1) = VX(1-1) - VX(1)
12	L		DO 25 1=4-1F
74			0.01 = 0.01 + 0.000
75			Q(I) = Q(1)/QXI
76			CALL ENVER(Q(I), EB, WX, VX(I), ZIN)
77			EEX(I) = VRH*(Q(I)*WX-EB*VX(I))
78			DV(1) = DV(2)
79			DV(2) = DV(3)
80			DV(3) = VX(1-1) - VX(1)
81			
83			J = J + 1 IF(NV(1))24.22.24
84		22	V(J) = 0.
85			GO TO 25
86		24	V(J) = DV(1) * CW(M, 1) + DV(2) * CW(M, 2) + DV(3) * CW(M, 3)
87		25	CONTINUE
88	С		
89			MM = MU
90			PP = VX(1E)
92			$\frac{1}{1} = \frac{1}{2}$
93			DV(2) = DV(3)
94			DV(3) = PP
95			DO 27 M=1, MM
96			J = J+1
97		27	V(J) = DV(1) * CW(M, 1) + DV(2) * CW(M, 2) + DV(3) * CW(M, 3)
98		20	MM = MC
77 100		29	$rr - v_0$ $V(1F+1) = 0.$
101	C		BESTIMMUNG DER KINETISCHEN ENERGIE
102	•		DX = (PX-EB/Q(1))/(DM*EI)*.5
103			JB = -MD+1
104			DO 39 I=1, IE
105			JB = JB+MD

106		DQ = Q(I) * DX
107		
108		
100		
110	c	EC - 0.
111	C	
111		
112		
113		$EC = EC+V(J) \neq DQA \neq (I_{0}+QM/(DE+DQA))$
114		ENG = G(NK) * DQA
115		DO 35 K=2,NK
116		NG = NK - K + 1
117		35 ENG = (ENG+G(NG))*DQA
118		EK = EK+V(J) * ENG
119		DQA = DQA + DQ
120		EC = EC+(V(J)+V(J+1))*DQA*(1.+QM/(DE+DQA))
121		ENG = G(NK) * DQA
122		DO 33 K=2,NK
123		NG = NK - K + 1
124		33 ENG = (ENG+G(NG)) *DQA
125		37 EK = EK + (V(J) + V(J+1)) * ENG
126	С	DIFFERENZQUOTIENTEN
127	•	IE(I-1)38.38.36
128		$36 \ DGO = O(1-1) - O(1)$
129		$DEC = {E(\Delta - E(X)RM)/DGQ}$
130		OFE = (FEX(I-1)-FEX(I))/DGO
121		
122		
122		FRINT DJUGGUFEJUFN 20 FCA - ECHVIDA
122		
104		$E \mathbf{A} = E \mathbf{A} \mathbf{V} \mathbf{A} \mathbf{A}$
100		XI = EB/Q(I)
130	~	39 PRINT 49Q(1)9ECA9EEX(1)9EX19VX(1)9X1
131	L	
138		DGQ = Q(TE) - EB/PX
139		DFC = ECA/DGQ
140		DFE = EEX(IE)/DGQ
141		DFK = EKI/DGQ
142		PRINT 5, DFC, DFE, DFK
143	С	
144		1 FORMAT(44H1DIE ZUSAMMENHANG EKIN(Q) BEIM ZYLINDERCORE /1HL,30X,
145		2 6H SF1 =E10.4,10X,4HRC =F10.4,10X,4HTB =F10.4/31X,6H SF2 =E10.4,
146		3 10X,4HRZ =F10.4,10X,4HQM =E10.4/31X,6HRHDB =F10.4,10X,4HHC =,
147		4 F10.4, 10X, 4HCV = E10.4
148		2 FORMAT (41HKPOLYNOM DER KIN.ENERGIE G(1),,G(N) =/(E18.8,6E19.8)
149		2)
150		3 FORMAT(15H1ZENTR.E.DICHTE,21X,7HCARNOT-,8X,7HEXCESS-,6X,
151		2 11HKINETISCHE-,14X,12HV(E)EB)/VC,20X,4HEB/Q/4X,7HQ(KJ/G),38X,
152		3 11HENERGIE(MJ)//)
153		4 FORMAT (F10.4.E35.5.2E15.5.E25.5.F30.8)
154		5 FORMAT(E45.4.2E15.4)
1-55	e	A second s Second second se Second second s Second second se
156	v	CALL FXIT

ri

MITTLERE BRENNSTOFFTEMPERATUR IM ZWEIZONENZYLINDER

SF1 = SF2 =	2.368E-03 3.243E-03	RC = 76. RZ = 54. HC = 95. WQ = 0.69	500 1 200 0 900 0 410	FM = 3078.00 QM = 3.923E-0 CV = 3.400E-0	10 EN 14 EN	4A = 1.04 4E = 1.43	652 8882	QAI = QEI = QAF = QEF =	1.01882 1.40074 3.51895 4.83806
FLUSSPOLYNOME Axial Radial	A(0),A(2),,A(2N) 1.00000000 00 1.0014372E 00	-3.23113058 -6.91389588	-04 6.615 -05 -1.46	57 340 E-0 8 32239 E-08	-1.2237786 4.3201940	E-11 E-12 -	0. 4.2352660E-16		
E.DICHTE(ZENTR	.) E.MITTE	L/Q IM TEI	LCORE MIT	vo	LANTEIL DE	S TEILCORE	MIT		MITTL.BR.TEMP.
Q(KJ/G)	E) EM	A	E) EME		E) EMA	E)	EME		к
0.900000	0.00000	00	0.00000000	0.	0000000	0.000	00000		1837, 33470
1.000000	0.000030	00	0.00000000	Ô.	00000000	0.000	00000		2041.48300
1.1000000	0.043036	28	0.00000000	0.	04407512	0.000	00000		2242.05950
1.2000000	0.141976	81	0.00000000	0.	15291057	0.000	00000		2419.34370
1.3000000	0.245997	11	0.00000000	0.	27712222	0,000	00000		2566. 33290
1.4000000	0.344964	68	0.00000000	0.	40470282	0,000	00000		2683.30870
1.5000000	0.420347	65	0.03528107	0.	50894451	0.035	95668		2777.77020
1.6000000	0.479443	81	0.10454772	0.	59634733	0,110	64259		2869-49313
1.7000000	0.526361	18	0.18012145	D.	67017696	0.197	30888		2967-15080
1.8000000	0.561788	51	0.25541848	0.	72932334	0.288	86516		3075,14130
1.9000000	0.590128	97	0.32779057	Ō.	77934703	0.381	88184		3195.58250
2.0000000	0.613301	19	0.38890620	0.	82246078	0.464	58352		3328.49402
2.100000	0.632495	40	0.43781399	0.	86000344	0.534	19864		3471-12600
2.2000000	0.648526	47	0.47952991	0.	89289281	0.596	47852		3621.88690
2.3000000	0.661340	94	0.51509518	0.	92041515	0.652	03146		3779.85660
2.400000	0.670875	62	0.54358306	0.	94180341	0.698	50816		3943.93100
2.5000000	0.677917	25	0.56745278	0.	95827129	0.739	11031		4113.24310
2.600000	0.683052	66	0.58783722	0.	97077145	0.775	19856		4287.26840
2.7000000	0.636718	90	0.60543280	0.	98004458	0.807	57106		4465.57540
2.800000	0.689250	20	0.62073307	э.	98668853	0.836	78135		4647.80950
2.900000	0.690898	55	0.63411101	0.	99117127	0.863	24980		4833.64010
3.0000000	0.691866	99	0.64586782	0.	99389677	0.887	32677		5022.77720
3.1000000	0.692480	57	0.65599456	0.	99568311	0.908	378309		5214.83360
3.2000000	0.692894	22	0.66425309	0.	99692683	0.926	85312		5409.44330
3.3000000	0.693153	55	0.67089553	0.	99773123	0.941	. 84874		5606.13810
3.400000	0.693293	31	0.67622407	٥.	99817770	0.954	24850		5804.52920
3.5000000	0.693339	98	0.68047123	0.	99833106	0.964	42669		6004.29660
3.6000000	0.694104	26	0.68382715	1.	00000000	0.972	70212		6202.21890
3.7000000	0.694104	26	0.68644667	. 1.	00000000	0.979	34356		6403.74540
3.8000000	G. 694104	26	0.68845028	1.	00000000	0.984	56239		6605.94980
3.9000000	0.694104	26	0.68994566	1.	00000000	0.988	56114		6808.66600
4-0000000	0.694104	26	0.69101575	1.	00000000	0.991	.49669		7011.75800
4.1000000	0.694104	26	0.69173189	1.	00000000	0.993	51063		7215.11100
4-2000000	0.694104	26	0.69223086	1.	0000000	0.994	94900		7418.63830
4-300000	0.694104	26	0.69261199	1.	00000000	0.996	07440		7622.29330
4.400000	0.694104	26	0.69289530	1.	0000000	0.996	93017		7826.04770
4-5000000	0.694104	26	0.69309668	1.	0000000	0.997	55259		8029.87150
4.6000000	0.694104	26	0.69323041	1.	00000000	0.997	97510		8233.74480
4. (000000	0.694104	26	0.69330786	1.	0000000	0.998	22522		8437.64830
4.8000000	0.694104	26	0.69333908	1.	0000000	0.998	32811		8641.56770
4.900000	0.694104	-26	0.69410426	1.	00000000	1.000	00000		8849.44333
5.000000	0.694104	26	0.69410426	1.	00000000	1.000	00000		9053.59180

ZWEITE EXKURSION NACH BETHE-TAIT

ZYLINDERREAKTOR

NR 1

ZEIT	ENERGIE	FLUSS	ALFA	A. EXP. AX.	A.EXP.RAD.	A.AUTOKAT.	A.DOPPLER	ZENTR.TEMP.	DRUCK
MILLISEC	KJ/G	N/QCM/S			1/MILLISEC			к	ATM
0.0000	0.9088	7.9590E 15	-7.6923E 00	0.	0.	0.	0.	2673.0	0.
22.3704	1.5824	1.9618E 19	4.3942E-01	0.	0.	0.	-2.1931E 00	3500.2	8.9510E-01
23.3222	2.1755	2.1744E 19	-3.5103E-01	-3.8989E-02	-1.5497E-01	1.1345E-01	-3.3423E 00	5244.7	8.7362E 01
23.6538	2.3641	1.7913E 19	-8.9357E-01	-1.7838E-01	-6.5390E-01	4.6142E-01	-3.7475E 00	5799.4	2.0491E 02
24.2464	2.5692	6.0663E 18	-3.2493E 00	-1.2213E 00	-4.1075E 00	2.7718E 00	-4.1907E 00	6402.6	4.4590E 02
26.8065	2.6077	5.4236E 15	-6.3218E 01	-3.0228E 01	-9.4588E 01	6.1191E 01	-4.2729E 00	6515.8	5.0872E 02
			ZMAX	I = 39.7772	RMAXI = 54.20	00 ZMA	XII = 40.6974	RMAXII =	76.5000
MAXIMUM		2.2882E 19	1.2451E 00						
H1 = 0.720	81								
				E.TOT(MJOULE)	= 5505.2374	·	E.E	XC(MJOULE) =	1458-2601
$B_{\bullet}EFF_{\bullet} = 0$	003000	то	= 2673.000	,	(0 = 0.00)	K2 = 0.	00		
		FO	= 7.959E 15	Î	(1 = 60.00)	K3 = 0.	00	TDT = 2.00	00E-03
D = 1.68	0E 00	L0 = 3.900E-0)7 RC =	76.500	CS = 3.200E - 14	TM =	3078.000	EXZ = 1.000	000
SF1 = 2.36	8E-03	BET = 3.000E-0)3 RZ =	54.200	QM = 3.923E-01	TB =	3500.000	EXR = 1.000	0000
SF2 = 3.24 V = 3.19	3E-03 5E-08	LA = 6.030E-0 DEX = 1.001E 0	D1 HC = D0 WO =	95.000 0.69410	UV = 3.400E-04	RHU = RHOB=	4.6750 2.6730	EXA = 1.000	000
FLUSSPOLYN	OME A(0),	A(2),,A(2N)							
AXIAL RADIAL	1.000	00000E 00 - 14372E 00 -	-3.2311305E-04 -6.9138958E-05	6.61573 -1.46322	40E-08 -1.22 39E-08 4.32	237786E-11 201940E-12	0. -4.2352660E-	16	
DRUCKPOLYN	OME P(0);	P(1),, P(N)							
IM BEREICH	5.0000	0E 02 - 5.0	000E 03 =	2.93869	258-03 -2.35	507254E-05	7.9677551E-	08 -1.49	081824E-10
1.71 IM REDETCU	28499E-13	-1.2215657	E-16 5.3] BODE 64 -	160728E-20 7-61020	-1.2926621E-23	1.3465 788435-02	230E-27 3.38073275-	-0.5 -2 51	58858F-08
1.08	87996E-11	-2.7331906	E-15 3.69	34070E-19	-2.2517209E-23	4.9914	071E-28	vy ~~2+71	
POLYNOM DE	R DOPPL.TE	MP. U(0),U(1)	,,U(N)	0.0000			0 00000000		AAFEAT AT
IM BEREICH -4.15	58890E 03	JE UV - 3.9	000E 00 = E 02 -6.13	-0.29924 10580E 01	2.1495700E 00	JUU143E U4	-2.5452531E	U4 1.39	282291 04

Ŋ

SF1	=	2•368E-03	RC	-	=	76.5000	TB	=	3500.0000
SF2	÷	3.243E-03	RZ	2	z.	54.2000	QM	=	3.923E-01
RHOB	=	2.6730	HC	-	=	95.0000	CV	×,	3.400E-04

POLYNOM DER KIN.ENERGIE G(1),...,G(N) = 2.1525000E-01 6.6184000E-02 1.0349000E-02 -1.2778000E-03

FLUSSPOLYNOME	A(0), A(2),, A(2N)	I			
AXIAL	1.000000E 00	-3.2311305E-04	6.6157340E-08	-1.2237786E-11	0.
RADIAL	1.0014372E 00	-6.9138958E-05	-1.4632239E-08	4.3201940E-12	-4.2352660E-16

ZENTR.E.DICHTE Q(KJ/G)	CARNOT-	EXCESS- ENERGIE(MJ)	KINETISCHE-	V(E)EB)/VC	EB/Q
2.4515	1.3350E 03	1.0831E 03	2.7350E 02	6.1374E-01	0.64545183
2.3948	2.692E 03 1.1825E 03	2.246E 03 9.5585E 02	6.121E 02 2.3882E 02	5.8331E-01	0.66072124
2.3407	2.593E 03 1.0423E 03	2.152E 03 8.3943E 02	5.765E 02 2.0764E 02	5.5279E-01	0.67599063
2.2890	2.490E 03 9.1355E 02	2.055E 03 7.3315E 02	5.417E 02 1.7963E 02	5-2211E-01	0.69126002
2.2395	2.382E 03 7.9573E 02	1.956E 03 6.3639E 02	5.076E 02 1.5452E 02	4.9118E-01	0.70652939
2.1922	2.268E 03 6.8826E 02	1.853E 03 5.4857E 02	4.739E 02 1.3206E 02	4.5984E-01	0.72179881
2.1467	2.149E 03 5.9066E 02	1.747E 03 4.6925E 02	4.406E 02 1.1206E 02	4.2774E-01	0.73706817
2.1032	2.019E 03 5.0270E 02	1.633E 03 3.9838E 02	4.066E 02 9.4339E 01	3.9365E-01	0.75233758
2.0613	1.875E 03 4.2428E 02	1.510E 03 3.3491E 02	3.717E 02 7.8789E 01	3.5825E-01	0.76760695
2.0211	1.727E 03 3.5483E 02	1.386E 03 2.7920E 02	3.374E 02 6.5224E 01	3.2421E-01	0.78287636
1.9825	1.582E 03 2.9366E 02	1.264E 03 2.3034E 02	3.045E 02 5.3448E 01	2.9154E-01	0.79814574
1.9453	1.439E 03 2.4013E 02	1.144E 03 1.8776E 02	2.731E 02 4.3285E 01	2.6024E-01	0.81341512
1.9094	1.298E 03 1.9361E 02	1.028E 03 1.5091E 02	2.430E 02 3.4575E 01	2.3033E-01	0.82868451
1.8749	1.160E 03 1.5355E 02	9.150E 02 1.1930E 02	2.143E 02 2.7170E 01	2.0182E-01	0.84395391
1.8415	1.025E 03 1.1939E 02	8.055E 02 9.2461E 01	1.870E 02 2.0939E 01	1.7475E-01	0.85922329
1.8094	8.942E 02 9.0637E 01	6.997E 02 6.9961E 01	1.611E 02 1.5760E 01	1.4913E-01	0.87449269
1.7783	7.675E 02 6.6806E 01	5.981E 02 5.1390E 01	1.366E 02 1.1519E 01	1.2500E-01	0.88976211
1.7483	6.455E 02 4.7438E 01	5.010E 02 3.6358E 01	1.135E 02 8.1126E 00	1.0241E-01	0.90503146
1.7193	5.290E 02 3.2093E 01	4.088E 02 2.4499E 01	9.196E 01 5.4451E 00	8.1443E-02	0.92030088
1.6913	4.187E 02 2.0343E 01	3.223E 02 1.5453E 01	7.198E 01 3.4253E 00	6.2176E-02	0.93557029