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Introduction

The principal task of the Institut für Heisse Chemie at Karls
ruhe has been for some years, and will be for some more years,
to study the reprocessing of power reactor fuels, in particular
with respect to fast breeder reactors. In other words, the larger
part of the work of this institute has to do with the recovery

of uranium and plutonium from nuclear fuels. Now, although
plutonium is certainly a transuranium element, and certainly
a very important one, it is not intended to report on plutonium
recovery since it is 'understood to be outside the scope of this
symposium. However, we are also doing some research on different
aspects of transuranium element chemistry, one of them being
the recovery of by-product actinides from power reactor fuels,
which is covered in this report, and a second one being the
chemistry of metal-organic actinide compounds, which will be
discussed by Basil Kanellakopulos 1).

Actlnide Production in Power Reactors

It is a well-known fact that rather large amounts of long-lived
neptunium, americium, and curium isotopes are formed during
reactor operation, particularly if the fuel receives a high
burn-up, as in modern light-water reactors and in future fast
breeder reactors. Table 1 shows a few examples of actinide
concentrations in fuels from two light-water reactors 2,3) and

from a projected sodium-cooled fast breeder reactor4). Future
production rates will of course much depend on the nuclear

power growth and on the reactor strategy followed in a parti
cular country. Detailed calculations have for instance been

carried out in the United States for different assumptions
regarding the power growth and the reactor strategiesS).
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Table 1: Neptunium, americium, and curium isotope contents
(grams per ton) in high burn-up fuels from two
light-water reactors (Yankee PWR, Vallecitos BWR)
and a projected sodium-cooled fast breeder reactor
(Karlsruhe Na-1 design study)1-3

24

15

133

0.39

0.48

d)

burn-up core, burn-up
17,400 ca. 86,000
MWd/t ;MWd/t

analyzed31calc.4l

0.29

0.12

d)

123

1.0

7.9

d)

I Vallecitos BWRb )

I
burn-up burn-up
24,300 16,070
MWd/t IMWd/t
analyzed31calc. 2)

455

119

Isotope content (g/t) in fuel from

Na-1 FBRc )Yankee PWRa )

1.2

7.6

39

burn-up
22,400
MWd/t
calc. 2)

460

122

Isotope

237Np

241Am

243Am

242Cm

244Cm

a) 691 days after reactor shutdown
b) 476 days after reactor shutdown
c) At reactor shutdown
d) Not calculated or analyzed, respectively
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However, due to the uncertainties inherent to these assumptions,

even the most detailed calculations can, at present, give only

the order of magnitude of the isotope amounts to be expected.

A much simpler, and certainly less exact, order-of-magnitude
estimate for the case of the Federal Republic of Germany is

shown in table 2. The figures in this table have simply been
calculated by making the following assumptions:

1. The nuclear power growth is as predicted by the pessimistic

figures of the forecast report KFK-566 6), which are identical
to the optimistic figures of the earlier report KFK-366 7).

2. The nuclear power production is done by advanced pressurized

water reactors fuelled with slightly enriched uranium
without fuel recycle.

3. The thermal eff1ciency of the power plants 1s 32 %, the
plant capacity factors are 0.7.

4. The fuel burn-up is 25.000 MWd/t, the isotope content is

that calculated2) for the 22.400 MWd/t Yankee PWR fuel

(cf. table 1).

5. "Year of production" means, that the material 1s produced

in the reactor. Before the isotopes become ava11able, the
fuel must be unloaded, cooled, and processed.

Although table 2 is indeed a very rough approximation only,

it gives at least the impression that surprisingly large amounts

of these actinides will be produced in the near future during
normal power reactor operation. In fact, it appears that power

reactor fuels will provide by far the most important source
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Table 2: Estimated production (kg per year) of neptunium-237,
americium-241/243, and curium-244 in power reactors
in the Federal Republic of Germany

Year

Isotope production, kg/a

241Am 243Am 244Cm

1970

1975

1980

1990

2000

39

120

390

910

7.7

31

77

240

510

2.5

9.8

25

77

160

0.5

2.0

4.8

15

32

for transuranium elements up to curium. Considering the possible
uses of these isotopes in technical and in scientific applica

8-10)tions , it is certainly justified to study recovery processes
for these by-products during or after fuel reprocessing.

Neptunium

Neptunium is different from the two transplutonium elements in
that it easily forms valency states which are extractable in
Purex reprocessing systems. This means that neptunium may either
be coextracted with the uranium and the plutonium, or may be



- 5 -

sent to waste and recovered from this source. Although experience
in a number of plants shows that coextraction of neptunium in
a Purex first cycle is far from being complete11 ,12), this

approach is attractive since it does not afford severe changes
or additions to the plant equipment.

The first German reprocessing plant, called WAK13 ), 1s now
near to completion at Karlsruhe. This WAK is a prototype Purex
plant with a capacity of 40 tons of Uranium oxide per year.
Originally no provisions had been included for the recovery of
neptunium. Later, in the frame of a long-range program common
ly executed by Gesellschaft für Kernforschung (owner of WAK)
and Gesellschaft zur Wiederaufarbeitung von Kernbrennstoffen
(operator of WAK), it was decided to add a neptunium recovery
unit based on a coextraction approach. Thus, a study on the
behaviour or neptunium under WAK flowsheet conditions was under
taken by Werner Bähr14 ), while counter-current runs were per
formed in cooperation with Wilhelm OChsenfeld15 ).

The first question was, what is the chemical state of the
neptunium during fuel dissolution? The most conclusive results
were obtained by spectrophotometric studies14 ). They showed that
during dissolution of uranium dioxide and of uranium metal in
nitric acid, all the neptunium is present in the pentavalent
state. This may perhaps be due, at least in part, to the presence
of large amounts of nitrous oxides during dissolution. However,
if the dissolver solution is boiled for some time after complete
dissolution, and the nitrous oxides are allowed to escape from
the dissolver, oxidation to neptunium(VI) takes place, and is
complete within a few hours.

Next, the extraction behaviour of neptunium(VI) in the presence
of uranium was studied14 ). The results shown in f1g.1 lead to
the conclusion that under the flowsheet conditions of the WAK -
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ca. 1.5 M nitric acid in the aqueous phase, ca. 60 % organic

loading in the scrub section, flow ratios organic by aqueous
of 2by 1 in the extraction section and 6 by 1 in the scrub
section - essentially all of the neptunium(VI) will be extract
ed. However, a cold laboratory counter-current run resulted
in a neptunium yield of only 54 %in the organic product,
although all the neptunium had originally been present as
neptunium(VI) in the feed solution15 ). Apparently some reducing
agent, presumably nitrous acid, is formed during extraction,
or is introduced with the process chemicals.

On the other hand, nitrous acid is used in the Hanford Purex
Plant to catalyze the oxidation of neptunium(V) to (VI) by
nitric acid11 ). Thus, the influence of varying concentrations

of nitrous acid and of uranium on the neptunium extraction
was studied14 ), and was found to correspond to the results
obtained by Sidall and DUkes 16 ) in the absence of uranium.

As an example, fig. 2 shows the change of the neptunium
distribution coefficient with time at various nitrous acid
concentrations, starting with neptunium(V), at a constant organic
uranium loading of ca. 75 %and a constant aqueous nitric acid
concentration of 1.5 molar. In fact, the equilibrium distribu
tion coefficients finally reached could well be correlated with
the equilibrium data given for uranium-free systems by Sidall
and Dukes.

In an attempt to raise the neptunium yield, the influence of
some oxidizing agents was studied17 ). In order to avoid the
oxidation of plutonium(IV) to (VI) and to suppress the oxida
tion of fission products like cerium, the oxidant was intro
duced into a lower stage of the HA mixer-settler, i.e. near
to the raffinate exit. Chromium(VI) and eerium(IV) both oxidize
neptunium(V) rapidly to (VI), and a counter-current run starting
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with neptunium(V) in the feed, and introducing chromate into

the third-to-last settIer chamber of the 16-stage mini-mixer
settIer, resulted in a neptunium yield of ca. 98 % in the HA
product. However, both oxidants have severe disadvantages, since
fission product cerium is rapidly oxidized to cerium(IV) by

chromate, which would lead to insufficient decontamination,
while cerium(IV) as the oxidant, because of its good extract
ability, would move up to higher stages of the extractor and,
besides, would also exchange to some extent with fission product
cerium(III). Now, Dukes had found in 1959 that neptunium(V)
is also oxidized rather rapidly by pentavalent vanadium18 ), and
in fact a number of counter-current tests introducing this
oxidant into the fourth settIer chamber led to neptunium recoveries
of between 87 and 97 %in the HA product, even though all the
neptunium in the feed solution had been present in the penta
valent state17 ).

Next, the behaviour of neptuni~m 1n the 1B partition bank was
studied. In the WAK flowsheet, uranium(IV) nitrate is used
as the reductant for plutonium. Reduction of neptunium(VI) by
uranium(IV) is rapid only to the pentavalent neptunium19),
while further reduction to neptunium(IV) is rather Slow20).
As a result, some of the neptunium will be present as non-ex
tractable neptunium(V) in the 1B bank and thus will accompany
the plutonium, while some will be present as neptunium(IV) and
may accompany the uranium, in amounts which depend on the parti
cular flowsheet conditions like acid concentration, flow ratios,
organic phase loading; temperature;and residence time. These
predictions were confirmed by counter-current runs in which
between 30 and 93 %of the neptunium went with the uranium while
between 7 and 70 %accompanied the plutonium. Nevertheless, we
feel that in the case of the WAK this is not so bad as it may
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look ata first glance, since this plant accidentally involves
a rather fortunate flowsheet feature. The aqueous waste streams
of the second uranium and plutonium cycles of this plant are

combined in a common low-level waste evaporator, called 3W. This
means that in order to recover all the neptunium which went to
the 1B bank, both the uranium and the plutonium second cycle
have simply to be run in such a way that the neptunium goes to
the aqueous raffinate. Thus only minor changes in the second
cycle flowsheets will be necessary in order to direct the nep
tunium to the 3W evaporator, fromthe bottoms of w~ich the
element ~y then be recovered by anion exchange.

In conclusion, recovery of a considerable part of the neptunium
should be possible in the WAK, with only moderate changes to
the plan itself.

Americium and Curium

In contrast to neptunium, these two elements are unavoidably
directed to the high-level waste during Purex reprocessing.
Recovery will thus have to start from this material, which means
that separate facilities will be necessary in order to do the
job. Up to now there are no plans in Germany for a commercial
recovery facility of this type. Our work on recovery processes
for these isotopes should thus be regarded as a pure development
work, the economic success of which is still questionable.
However, we are planning to build a facility called LISA in
which such separation processes can be demonstrated.

There is a different source of americium-241which can provide
limited amounts of this isotope, that is the americium-241
formed during storage of plutonium. Normally, it will certainly



- 9 -

not be economic to process the stored plutonium just for the
recovery of this americium, but there is one point in the
plutonium fuel cycle where at least a minor part of this
actinide can be recovered, that is from the scrap which arises
during the fabrication of plutonium fuels. This scrap must be
processed in order to recover the valuable plutonium, and here
an americium recovery step can be provided. One way to recover

the plutonium from the scrap is to dissolve the material
(usually uranium-plutonium oxide) and to isolate the plutonium
by anion exchange. The first portion of the ion exchange column
effluent contains most of the americium, but only little uranium
and plutonium. Thus a process has been devised for the recovery
of the americium from this solution21 ) which consists of the
following steps:

The americium-rich part of the raffinate from the ion exchange
column is evaporated to about 0.5 to 5 g/l americium. Uranium
and plutonium are extracted away from the strongly acidic solution
by 0.5 M tricapryl methyl ammonium nitrate (TCMAN) in an aromatic
diluent, like Solvesso 22 ). After removal of uranium and plutonium,
the aqueous solution is adJusted to about 7 M ammonium nitrate
and a pH of about 1.5 by the addition of ammonia and of solid
ammonium nitrate. Americium is well extracted from this highly
salted solution by 0.5 M TCMAN 23- 25 ). After scrubbing the organic
phase with 7 M ammonium nitrate (pH ca. 2) to remove impurities,
americium is stripped with dilute nitric acid. Finally, americium
oxalate is precipitated and calcined to the oxide. Batch tests
of this flowsheet with a minimum of multistage steps resulted in
americium recoveries of more than 98 %, with a total impurity
content of less than 1 %.

Returning now to the recovery of americium and curium from
Purex high-level wastes, one major difficulty with this material
is that aseparation of trivalent actinides from lanthanides must
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be accomplished. There is only a limited number of processes
which do this job, some of them using highly corrosive reagents
and high salting strengths, like the Tramex Process developed
in Oak Ridge 26 ,27). Moreover, a previous separation of the
actinide/lanthanide group from the bulk of the impurities is
usually necessary. At Hanford, where arecent campaign was carried
out to recover americium and curium from the Shippingport blanket
processing waste 28 ), this pre-separation of the actinide/lantha
nide group was done by extraction with 50 % TBP from the highly
salted Redox high -level waste, followed by a HDEHP extraction
for further purification of this group. The isolation of ameri
cium and curium was then achieved by a modification of the Han
ford ion exchange process. We feel that processes needing high
salting and highly corrosive reagents will perhaps not be applied
to economic routine processing facilities. Thus we were looking
for some different approach.

Some years ago, Weaver and Kappelmann at Oak Ridge had developed
an actinide/lanthanide separation process which they called
Talspeak29 - 31 ) and which seemed rather attractive, needing no
corrosive materials nor any salting. This process 1s based on the
preferential extraction of the lanthanides over the actinides
by acidic organophosphoraus compounds like di(2-ethylhexyl)
phosphoric acid (HDEHP) from a solution containing a carboxylic
acid, like lactic acid, and a polyamino polyacetic acid, like
diethylene triamine pentaacetic acid (DTPA). Although a pre
separation of the actinide/lanthan1de group was still involved,
we feIt that this step could be eliminated by using the flowsheet
which is shown in fig. 332). In this flowsheet, americium and
curium are extracted in the 1A bank by HmEHP along with the rare
earths from the high-level waste concentrate complexed by a
complexant like citric acid. This is a conventional step which
has successfully been applied in Oak Ridge33 )and in Hanford34 ,35).

In the 1B bank, the actinides are partitioned away from the
lanthanides by preferential backwashing of the actinides with a
Talspeak-type solution (lactic acid plus DTPA, pH ca. 3). Finally,
the rare earths are backwashed by nitric acid and sent to prome
thium recovery or to waste.
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Judging from equilibrium data one could predict that the process
should work, provided that there was no adverse kinetic effect,

since slow extraction kinetics had been observed with some of
the systems involved29- 31 ). Thus we did some preliminary kinetic

studies32 ) which showed that the trivalent actinides and lan

thanides reached equilibrium fast enough that essentially no

kinetic inhibition of the process was to be expected. With other

fission and corrosion products, slow extraction kinetics were

found in some cases, but fortunately this will even aid in the
decontamination of the americium/curium fraction. Let us take,

as an example, the corrosion product iron. On the basis of
equilibrium distribution coefficients, trivalent iron should

follow the actinides in the extraction as weIl as in the
partition step. However, since both the extraction of iron by

HDEHP from citrate-complexed solution and its backwash by

lactic acid - DTPA are slow, good decontamination from this

metal 15 obtained.

The flowsheet has been tested in a number of counter-current

runs which were performed with cold synthetic solutions. In

table 3 the flowsheet conditions are shown under which the
extraction and partition mixer-settlers were run. Fig. 4
presents the behaviour of the actinides and the lanthanides:

coextraction in the 1A bank, and good separation 'n the 1B

bank with americium and curium yields of about 99 %. In fig. 5,

the behaviour of zirconium/niobium-95, ruthenium-106, and
iron is shown. Decontamination factors obtained ranged from

400 for ruthenium, 500 for europium, 700 for iron up to more

than 1000 for zirconium/niobium and cerium.

In conclusion, it seems that a one-cycle flowsheet of the
type discussed may be a quite reasonable basis for a commercial
recovery of americium and curium from high-level wastes.
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Table 3: Flowsheet conditions for counter-current runs (R.E. =
mixed light rare earths).

Runs No.l (Am) , Runs No.4 (Zr/Nb) Run No. 7 (Cm)
2(Eu), 3(Ce) 5(Fe), 6(Ru)

0.05 M R.E. nitrates 0.05 M R.E. nitrates 0.025 M R.E. nitrates
0.25 1".1 NaN0 3 0.02 M Fe(N03}3 0.01 M Fe(N03)3

lAF 0.35 M Na citrate 0.02 M Al(N03)3 0.01 M Al(N03)3
pH = 2.5 0.25 M NaN03 0.125 M NaN03
flow 120 ml/h 0.35 M Na citrate 0.25 M Na citrate

pH = 2.5 pH = 2.5
flow = 120 ml/h flow = 180 ml/h

0.35 M Na citrate, pH = 2.5 0.25 M Na citrate
lAS flow 40 ml/h pH = 2.5

flow 40 ml/h

lAX 0.3 M HDEHP, 0.15 M TBP, Shellsol-T, flow 180 ml/h

lBX 1 M lactic acid, 0.05 M Na5DTPA, pH = 3.0, flow 72 ml/h

lBS 0.3 M HDEHP, 0.15 M TBP, Shellsol-T, flow 64 ml/h
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Fig. 1 Extraction of Neptunium(VI) as a function of the uranium
loading of the organic phase and of the nitric acid

-4 -3 2- 0concentration. 5·10 M Np, 5'10 M cr04 ' 25 c.

Fig. 2 Dependence of the neptunium distribution on the contact

time and on the nitrous acid concentratlon in the presence
of 0.6 M total uranium (ca. 75 % loading of the organic
phase), starting with Np(V)

Fig. 3 Principle flowsheet for Am/Cm recovery from high-level
waste.

Run No. 5 (Fe).

Fig. 5

of counter-current experiments

of counter-current experiments

Run No. 6 (Ru).

Run No. 2 (Eu).7 (Cm).

Fig. 4 Concentration profiles
(cf. table 3):
Run No. 1 (Am). Run No.
Run No. 3 ( Ce ) •
Concentration profiles
(cf. table 3):
Run No. 4 (Zr/Nb).
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