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Abstract

The SATURN - Code, swell and thermal analysis under reactor conditions, con-
tains a macroscopic modelling analysis of the thermal and mechanical effects

of the different types of void volumes. This paper follows a presentation given
on the ANS - winter meeting 1968 and published in KFK 878 "Theoretical and
Computer Analysis on the Behavior of Fast Reactor Fuel Pins and Related Parts

of the Core Under Operational Conditions'. Its basis was an application of the
original form of the SATURN - Code on a core analysis; a graph of a core ana-
iysis is given in this paper in fig. 13.

The first part of this paper treats the thermal effects of the porosity, central
void and open gas gap. A new relation for the porosity dependence of the thermal
conductivity is deduced. For given gas contents and determined ranges of pore
temperatures and sizes a simple approximate equation results. Central void is very
effective in reducing the central temperature; making use of it means increa-
sing the linear rod power. The in-pile migration of the porosity in the hotter
regions of oxide fuel forms resp. increases the central void and densifies the
hotter region. This effect is calculated by a two - zone porosity model. For

the open ideal gap fuel - clad filled with inert gases and mixtures of He with
fission product gas mixtures the temperature drop is calculated as a funciton

of gap width, linear rod power, clad inside temperature and clad inside radius.

The second part of this paper treats the interaction and burnup behavior. The
problem is partitioned concerning weak and strong contact interaction. The
weak contact interaction is realized if cracks caused by thermal expansion are
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existent. A way is described to treat the
state of the swelling crack ~-free fuel in contact with the clad. For the case

of a hollow cylindrical fuel a two—zone model consisting of the fuel and the

clad is used with a strong axial friction force in the imterface . For the solid
cylindrical fuel a three - zone model consisting of two fuel zones is proposed.
While a strong axial friction force is assumed between the cuter fuel zone and the

clad, this friction force is neglected between the two fuel zones.
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1. Introduction

This paper deals with a macroscopic modelling analysis of the thermal and
mechanical effects of the different types of internal veid volumes such as
open and closed porosity central void, open and closed gap, crack structure,
dishing and radial wedgesiand their changes under operation. This analysis is
based on the fact that fuel swelling is at present the most important effect
in regard to the burnup limitation. Therefore the type, size and shape of
internal void resp. gas volumes,and their in pile changes are of great im-

portance for the fuel pin design.

All these equations and models are compiled in the SATURN - code, swell and ther-
mal analysis under reactor cquitions. In a more completed and elaborated stage
this code is intended to calculate pin designs and operational pin behavior
especially in view of the German SNR core. This code w o
predictions of pin behaviour; it is thought to be a selective tool and help for

economy in core designs.

2. Thermal behavior

The first part of the work treats the thermal effects caused by the different
types of void volumes especially by the porosity, the central void and the open

gap fuel clad.

2.1 Porosity effect on thermal conductivity

There is a considerable divergency between the existing theoretical relations
for the porosity dependence of the thermal conductivity and the known experi-
mental data as is shown later in the discussion of our results. The relation-
ship based on the following model is in a satisfactory agreement with the re-
sults experimentally obtained. If the real porosity structures according to

fig 1. are idealized by arrangements on the base of connecting in parallel and
in series of the fully dense and the void volumes’it is possible to calculate
the thermal conductivities of any porous body such as sintered material with an
anisotropic pore distribution or powder material. The practical applicability
often fails because necessary input data as e.g. the open and closed porosity

and the degree of anisotropy are not known.
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Fig. 1 Possible models for the arrangements of the fully dense and the

porous phase.

In the appendix A the simpler case of isolated resp. closed porosity is cal-

culated according to the following model:

v i /%
7

Fig. 2 Model for a sintered body with only closed porosity.

The following general relationship for the porosity dependence of the thermal

conductivity is obtained

2/3 1

(1 - ) n
1 + %-Pl/3(n - 1)

k =%k jl - aP
(o]

where k = thermal conductivity of the porous material

k= thermal conductivity of the fully dense material
k .
®x = — ratio of k to kP' kP is the thermal conductivity of the pore

kp

P = porosity = reiative voiume fraction of the pore phase

a = anisotropy factor (a = | means isotropic pore distribution)

This relationship is of course not only valid for a porous fuel but generally

for any two-phase system such as e.g. for cerments. We realize that the aniso-
tropy factor a and the ratioy of the thermal conductivity ko to kP are charac-

teristic of this relatiomnship.

It has to be noted that isotropy is related to a statistically averaged macros-

copic region; locally anisotropic pore shapes are allowed.



For the critical case given by u¥»ocand isotropic pore distribution a = 1,
which is very important in practice,the following approximate equation results

from equation (1)

2/3

k=k°(l—P ) (2)

In fig. 3 the ratio of the thermal conductivity of the porous material k to
the thermal conductivity of the fully dense material ko isplotted versus the
porosity for the special case of isotropic pore distribution given by a = 1|
with x as parameter. The thick line represents the critical case for n=> <<
given by equation (2), which is a good approximation for * values greater than
50.

As the linear dependences

k
i(— = ] nP (3)
o

. . . 2/3 . .
are sometimes used in literature, the curve | - P /3 is replaced by straight
lines in three sucessive porosity ranges. The slopes n of this straight lines

have the following values:

For 0 £p€o.1] n= 2.5
0.1 €P €0,15 n=2 (4)
0.15 € P € 0,25 n=1.7

The strong decrease of the thermal conductivity at small porosities is especially

remarkable. The relative decrease of the thermal conductivity becomes smaller

with increasing porosity.

1-
The ratio x = — of the thermal conductivity of the fully dense material ko
P
to the thermal conductivity of the pores kP has to be calculated to evaluate
numerically relation (1) and to realize under which conditions the approximate
relation (2) is valid. In treating the heat transfer through the open ideal gap
in chapter 2.3 the following equation for the thermal conductivity of the uni-

dimensional gap kP is deduced.



kp = KT~ o+ 4CRTP36 (5)
part of part of

conduction radiation

where
TP = (absolute) temperature within the pore
= gap width
kCTPS= thermal conductivity of the filling gas. kc and s are gas properties
CR = material properties related to the coefficient of emissivity

Equation (5) can directly be applied for the cracks oriented perpendicularly
to heat flow direction and for the cylindrical pores with axes parallel to
heat flow direction. For pores which are spherical and cylindrical with axes

perpendicular to heat flow direction the introduction of a shape factor ¢ is

necessary. Thus one gets.

s 3
kP kCTP + 4CLT, ¢d (6)

where
¢ = shape factor

d = largest dimension of pore in direction of heat flow

The following values are deduced in the appendix B

= 0,79 for spherical pores

= 0.64 for cylindrical pores with axis perpendicular

]
:Q'M P L]

to heat flow direction

The shape of the pores has only a weak influence on the heat conductivity of the
pores. For the case of isotropic pore distibution statistically averaged over

a macroscopic region, the anisotropic pore shapes have to compensate. According

to eqﬁation (6) the thermal conductivity of the porevggfgﬁgly depeﬁés on the
temperature in the radiation part, furthermore it is proportional to the pore

dimension.



In fig. 4 the ratio u = ko/kP for oxide is plotted versus the pore dimension,
pore temperature and type of gas are parameters. The maximum temperature of
interest is about 1700°C on account of the pore migration towards the ceater
of the fuel for higher temperatures. It can be seen that for He n ratios are
only weakly dependent on pore dimension as in this case the part of radiation
is negligible , It is required to apply the lengthy expression (1) because x
values about 5 result. The influence of the pore dimension is considerable for
fission product gas consisting of 15 7 Kr and 85 7% Xe as in this case the part
of the radiation is of the same order as the part of the conduction. The
approximate equation (2) can be applied for pore sizes up to 100 u and more

at a temperature about 1000°C and for pore sizes smaller than about 30 u at
temperatures about 1700°C. As the thermal conductivities for carbide are about

7 times greater than for oxide, these % values have to be multipied by a factor

By differentiating equation (2) it can be seen that the relative conductivity
change due to an absolute change of the porosity resp. of the relative fuel
density is constant over a wide range of density. The following relation re-

sults

for 0.70 €Dy € 0.92 &£ = 1.75 a | 7

DF = 1 - P = relative fuel density

Two practically important consequences result from equation (7)

AT - T.)
a. x = const. ‘—E;Ltri;;'= = 1.75 4Dy (8)
el F
T -T
b. T, T, = const. Xy 2—FE (9
o C X To - TC F

where
x = linear rod power
To = central temperature
TF = fuelsurface temperature
T, = coolant temperature



That means:

a. An absolute density change of 10 7 causes a relative change of the tempe-

rature drop in the fuel of 17,3 Z.

b. The temperature ratio ('1‘o - TF)/TO - TC is about 1 for oxide and carbide
with Na-bonding, for carbide with He-bonding about 1/2. Therefore an ab-
solute density change of 10 Z causes a relative change of linear rod

power of 17.5 7 resp. about 9 7.

These results, especially the strong decrease of the thermal conductivity

at small porosities are in a good agreement with experimentally obtained re-
sults(j to Q}. In a report<<7>>published recently a still stronger decrease
compared with that of fig. 3 was obtained, furthermore the porosity dependence
was obtained as temperature dependent. These results are in accordance with ours
if a temperature dependent anisotropy of the porosity distribution is assumed.
In literature some theoretical relationships are known the most prominent of

which are the simplified form of the Loeb equation*(?l}, the Maxwell - Eucken
equation <9> .

%=1-P<8> resp. %:—;=1—P<9>

P
l+—2-

and the equation of Russe11<:lq> . All these equations supply a too small almost
linear decrease of the thermal conductivity. Bétter agreements could only be
reached by the introduction of fitting factors. A theoretical treatment of
recent date <31,12>>1ed to an opposite trend of the factors n compared with the

values of (4) i.e. increasing values of n for increasing porosities.

2.2 Thermal central void effect and in-pile pore migration

By the fabrication of a central void the most effective possibility is given
to reduce the temperature distribution in order to increase the linear rod
power. For oxide fuel an in-pile pore migration towards the center of the fuel
occurs in hot fuel regions for temperatures above ca. 1700°C, This pore
migration causes a formation or an increase of the central void and a densi-
fication of this hotter fuel region. Both effects lead to a possible increase
of the linear rod power for a given central temperature. In<<jQ>»this effect
was calculated by a three-zone model. But with regard to the relatively small

zone of the porosity change the application of a two-zone porosity model is



reasonable. In <34,15;>the increase of the linear rod power was calculated
with a two-zone model but without regarding thedensification effect and by
fixing the fuel surface and center temperature. As by a change of linear rod
power the relative large temperature drop in the gap fuel-clad also changes,
it is more realistic to fix coolant or clad temperature and the central tem-
perature. Inn<?6;>we generally treated the two-zone model. Especially the den-

2/3) - relation. On account of com—-

sification was considered by the (1 - P
pleteness a summary is given in appendix C. The following equations for the

temperature drops in the two porosity zones are ebtained:

' X V- ey (T (r )2 (%)2 (rr)z
k_(T)dT = . — ] -1=2)-(-2)1n{—= (10)
° 4D, g - P12/3 v/ \*r/ \*r %o
P
T 2 2
1 -P r D T

fko(T)dT = Mg . 53 1 - ..’l) - lT=%— -l (;-E) (1)
4 o 1 -P F 11 P

F II ,

k= thermal conductivity of the fully dense material

x = linear rod power

D = relative fuel density for a reference solid or hollow cylinder
of homogenious porosity distribution with the same linear rod
power and fuel radius. In the case of a hollow cylinder Do means
the smear density relating to the fuel radius.

The other symbols are explained in the next figure.

Two assumptions relating to the amount of migrating porosity on the base of

a two - zone model are possible. The porosity above a given temperature related
to the pellet density or related to the smear density migratesto the center.
The last assumption is probably realistic for large fabricated gap widths

. 5.4

U P IS ate o
spondingly the

~_

because of gap closmre during startup {(chapter 2.3). Corr
porosity of the outer zone related to pellet density or to the smear density

remains unchanged.

In the following only the case of porosity migration related to the pellet

density is calculated according to figure 5.



C = central void

I = inner densified zone with porosity PI

IT = outer zone of unchanged fabricated
porosity PII

. = fabricated central void radius

r, = central void radius after porosity
migration

r, = zone boundary radius

'F = fuel radius

T = T(ro) I, = T(rP) Ty = T(rF)

Fig. 5 Two-zone porosity model for the porosity migration in a hollow

cylinder of homogenious fabricated porosity.

From a mass balance the following relations between the porosities and the

radii are obtained

)
Do = (] - PII) [l -‘(;;>‘J (12)

r2=l—PIIr2+PII-PI .2 | (13)
0 1-p; C 1-P. P

For the numerical evaluation the following temperature dependence of the thermal

conductivity for the fully dense stoichiometrie UO2 resp. (U

0.8Pu0.2)02 is used.

4.9 cmPC

41.2 -1 W : 1
ko(T) * T+ 4.9 + 6.55 10 3T3 [—-—-——} T in OK (14)
This equation was obtaimed by averaging the results of the following authors

<j7 to 22;>and by using the(1 - P2,3)—relation.

In fig. 6 the linear rod power is plotted versus the relative fabricated
central void volume for homogenious porosity distribution and for the two—

zone model caused by the porosity migration. Central temperature and clad inner



temperature are fixed, smear density
homogenious porosity distribution a
occurs by increasing the fabricated
density leads roughly to a parallel

higher linear rod powers because of

is parameter. It can be seen that for
steep increase of the linear rod power
central void volume. Increasing the smear
shift of the curves in direction to

the better thermal conductivity in the

hollow cylinder. Considering the pore migration by using the two—zone poro—

sity model; the linear vod powers are

considerably higher especially for

small fabricated void volumes. It must be noticed that the real central void

volumes are larger especially for sm

For relatively small fabricated cent

all void volumes and low smear densities.

ral void volumes the linear rod power is

higher at low smear densities because of the dominant increase of the in pile

central void. For large fabricated central void volumes the linear rod powers

trend to increase with enlarging smear densities because of the dominant in-

crease of the thermal conductivity.

In fig. 7 the linear rod power of a hollow cylinder related to that of a solid

cylinder of the same smear density is plotted versus the relative central void

volume for oxide and for carbide with He— and Na-bonding according to:

rﬁh

>
fas

— 373 + 1
-7

>
w

1

rehill - —m—m——— e
F 2
| (rF/ro) -1

in (rF/ro)fJ

(15)

%_|1- <1 -
o]

the solid cylinder

heat transfer coefficient

(o}

(1 - ro/r

213
)2>

F

ratio of the linear rod power of the hollow cylinder to that of

fuel=clad

thermal conductivity of the fully dense fuel(temperature averaged)

This relation is deduced in Appendix €. A homogenious porosity distribution

fixed. These ratios of the linear rod

powers are nearly independent of the

smear density. Of course the linear rod powers themselves become smaller with

decreasing smear density because of th

e decreasing thermal conductivity. The

increase of the linear rod power for carbide with He-bonding is roughly less

than half of that of oxide, the increase of the linear rod power for carbide

with Na-bonding is a 1little more than

that of oxide.
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2.3 Thermal effect of the gap fuel clad

Two cases have to be discerned concerning the mean free path of the gas mole~
cules which can be larger or smaller than the gap width. Under operating
condititions the mean free path for all gases is smaller than 1 uy. That means
that the case for which the mean free path is larger than the gap width can
only be realized for the contact of the fuel and the clad by the roughness of
the surfaces. In the following only the case of the open gap is treated. This
case is of great importance for the mechanism of the gap closure and opening

during thermal cycling e.g. during the startup phase.

In <?3>>we treated this case which is brought up to date. In the appendix D the

following equation for the temperature drop in the open ideal gap is obtained:

~

r s+l
s+l AT
6 = 7 ‘ (16)
X 4 AT\  _
Zwr] R 1 [ (’ T ']
L - 4
& = gap width, constant along the fuel surface

AT = temperature drop in the gap
T. = internal clad temperature
r., = 1internal clad radius

x = linear rod power

with
k
C
= e 17
Cc " a7
kc,s = gas constants related to the thermal conductivity of the gas
contents according to equation (19)
and
g (18)
C =
S S
€y €
g = Stefan Boltzmann constant
3 = emissivities of the fuel - resp. the internal clad surface

1,2
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The following equation experimentally obtained~<24>»was used for the thermal
conductivity of the possible gases, i.e. of filling gases He and Ar and of the

fission product gas mixtures of Kr and Xe

k. = k,.T (19)

[
H
(o]

ki = thermal conductivity with i standing for the gas component i

It has to be noted that the kinetic theory of gases,it is true, supplies princi-
pal dependences but the conductivities themselves are relatively inaccurate,

so that it is reasonable to use experimentally obtained values. The thermal
conductivities in.<?4>'differ a little in the exponent s of the eduation (19).
In order to describe the different gas types by different 6 scales in the fig.

8 and 9 we used a mean value of s and adapted the new dependence to 800°K. The
resulting error is smaller than 5 Z, which is within the inaccuracy of these

values. Table 1 contains the so obtained thermal conductivities.

Table 1: Thermal conductivities of the inert gases

W
gas type thermal conductivity k [ ° ]

cm C

He 1.58 107

Ar 1.97 107 0.79

k = -6 T
Kr I.15 10
Xe 0.72 10°° o
T in abs. temp. K

The following experimental result concerning the thermal conductivities of gas
mixtures is reported ini<?4,25:>. If the volumetric concentration is plotted
along a linear scale and the conductivity along a logarithmic scale nearly
straight lines result. That means the following concentration dependence of

the thermal conductivity is approximately valid.

. X X .
k = kl . k2 2 with X+ x, = 1 (20)
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kl , = thermal conductivities of the pure components 1 and 2
s

Xy 9 = volumetric concentration of the two compoments

3

The following simple expression for the concentration and temperature depen-
dence of the thermal conductivity of a binary mixture is got by putting

equation (19) into equation (20).

1, 2 s
k = le kZC T (21
In the same way the thermal conductivities of ternary mixtures e.g. for He

and the fission product gas consisting of 15 Z Kr and 85 Z Xe can be obtained.

In fig. 8 the temperature drop in the open ideal gap is plotted versus the

gap width with clad inside temperature, linear rod power and gas type as
parameter. Different gap width scales are valid for the gas types such as the
innert gases and mixtures with gaseous fission products. For the assumed con-
ditions it can be seen that by increasing the gap width first a steep tempe-
rature drop occurs succeeded by a saturation behavior. While the steep increase
is given by the prevailing of the conduction part, the saturation phase is given
by the prevailing of the radiation part. The temperature drops for the given
conditions are relatively large for He. The same temperature drops are reached
for the other inert gases and mixtures with the gaseous fission products at
remarkably smaller gap widths according to the remarkably lower thermal conduc-

tivities of these gases.

In fig. 9 the heat transfer coefficient for the open ideal gap is plotted ver-
sus the gap width in a double logarithmic plot for the same conditions as in
the preceding fig. 8. These curves are obtained simply by the values of fig.
8. It can be seen that for relatively small gap widths straight lines result.
The reason for it is that the following equation for the heat transfer coeffi-

cient h for the critical case AT<§TI is valid as it is shown in appendix D.

3
I

S

1
¢t 37 4CRT (22)

This equation is identical to equation (5). For rather small gap width the
second term in (22) is also negligible leading to the straight lines in the
double logarithmic graph. For larger gap widths the curves branche out although the

influence of clad inside temperature and linear rod power is not very great.
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3. Interaction and burnup behavior

The treatment of the mechanical, interaction, and burnup behavior of fuel pins,
~which is underway, starts from the Crash computer program, creep analysis in

a fuel pin sheath, for the cladding <?6>>. This program generally calculates
 triaxial states of stresses and strains at any time during the lifetime of
the creeping cladding for the main assumptions of axisymmetry and plane strain.
The input data resp. time dependent input functions are the inner and outer
pressure, possibly an additional axial force, the temperature distribution
with the thermal expansion, and the creep law. The calculation method con-
sists in the solution of the equilibrium equation, the compatibility equation
for the total strains, and the stress strain relations starting from a given
state of permanent strains. The total strains are divided in the elastic
strains, given by the tridimensional Hookes law, the thermal strains, and the
space and time dependent permanent strains. The integration of the equations

of this stress strain Problem suppliesthree integration constants to be
determined by three boundary conditions. The calculation is carried out by the
following iteration procedure. Starting from a first guess of the permanent
strains for a given time interval, the state of stress compatibel with the
input functions and the given permanent strains is calculated. By the aid
of the given creep law and the Mises or Tresca theory corrected values for

the permanent strains are obtained. This procedure is repeated until the

convergence is reached and then repeated again for the successive time steps.

Basing on the assumptions of axisymmetry and plane strain, the main equations

for the stress and strain state of the swelling porous fuel in a temperature

field are.
dcr o, ~ Og
- + =0 (2
dr T - (23)
o = radial, tangential, resp. axial stress
r,B8,Z
r = radius within the cladding

The relations between the strains and the radial displacement are

- du -u e |
e = ir €g = €g const. (24)
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€ radial, tangential, resp. axial strain
r, 8,2

u radial displacement

and the stress strain relations are

™
[}

T E

1
—[or-n(ce+cz)] +aT+8A+erc

= 1 -
€g = E‘[;e o + cz?] taT+BA+eg (25)

1
€ =E{oz-u(cr+ce)] + o T+BA+¢

S SR A

total elastic -thermal swelling permanent
strains
with
E = Young's modulus
4 = Poissol's ratio
@ = thermal expansion coefficient
T = temperature
B = (linear) swelling rate
A = burnup
€l = d = 1,9,2) = radial, tangential, resp. axial permanent strain

The boundary conditions necessary for the solution of the stress and strain

state lead, as is shown below,to a partition of the problem.

/
The mechanical behavior of the fuel is much more complicated than that of the

clad because of the following main reasons: Firstly, the fuel has a fabri~
cated porosity partly open and partly closed and furthermore develops a poro-
sity filled by fission gas during burnup, the so-called gas swelling. This
partly consums the fabricated porosity. This is corresponding to a relatively
large fictive compressibility,. Secondly, the fuel, especially oxidelis brittle
for lower temperatures so that cracking occurs where a tensile stress exists
e.g. during the thermal cycling. Thirdly, the thermal strain o T and the-
swelling strain B A are quite different deformations in regard to their strain
rate. While the thermal expansion occurs rather quickly linked with a crack
formation, especially for oxide, the swelling expansion occurs long-term., Be-

cause of these quite different strain rates comnected with a different mecha-



nical behavior it is reasonable to eliminate in (25) the thermal strain aT
in order to treat it seperately. This procedure is also reasonable in view
of the different interaction behavior characterized by different boundary

conditions. .

3.1 Weak contact interaction during the 'crack phase"

A qualitative characterization supplies the following picture. The cracks

in oxide are caused by thermal cycling e.g. for the startup phase because

of its brittleness for lower temperatures. The thermal expansion is generally
given by the brittle-plastic behavior of the fuel, the thermal expansion
coefficients of the fuel and the clad, initial gap widths and further void
volumes, and the restraining conditions. At the initial time of the startup
phase, the fuel forms cracks extending to the central axis of the pin<:2i> .
Unrestrained extension occurs in radial and axial direction till the expansion
is limited by a restraint in any direction. Then the expansion preferably
occurs in direction to the plastic eenter zone by closing the cracks and partly
consuming the porosity in the piastic zone~<?8, 29:7. Pellet end-face dishing
can be consumed by axial expansion. The porosity in the plastic zone is
available in accordance with the gas pressure within the pore, the surface
tension pressure, and the restraining outer pressure. In the case of sufficient
large initial gap widths the thermal expansion occurs without appreciable
contact pressure, a part of the gap volume being localized as crack volume.

The succeeding fuel swelling occurs unrestrained in at least one directionm,

the remaining gap volume being filled without strong contact pressure. The
duration of this phase increases with initial gap width which. is limited by the

thermal gap effect treated in chapter 2.3 .

The duration of the phase of weak contact interaction can be elongated by
fabricating radial wedges‘<30>»according to fig. 10. For this wedge shaped
peilet the tangential swelling in the outer fuel zone with the inferior creep
behavior occurs untestrained in the direction to the wedge shaped void volumes
The radial swelling preferably occurs in the direction to the void volumes of
the inner fuel zones, given e.g. by the central vo{d:and'the porosity because
of the superior creep behavior of the central zone. Of course this concept

is only effective if the unrestrained low temperature swelling is not con-
siderable larger than the restrained swelling. This concept could become
important for He-bonded carbide fuel elements in view of the stronger inte-

raction behavior.
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C = central void
= wedge shaped pellet
(possibly two porosity zones)
W = wedges
Cl = cladding

Fig. 10. Pellet with radial wedges causing weak contact interation during the

swelling.

3.2 Strong contact interaction of a solid or hollow cylindrical fuel with the clad

After the filling of the gap and crack volumes a contact fuel-cladding is
realized. Two cases have to be distinguished concerning the hollow cylindri-

cal fuel resp. solid cylindrical fuel.

For the case of a hollow cylindrical fuel produced by fabrication or by in-pile

central void formation the application of a two~zone-model is reasonable.

I =F fuel zone
IT= Cl cladding

ro = central void radius
ry = fuel outside radius
r, = clad outside radius

Fig. 11 Two-zone model for the case of a hollow cylindrical fuel

The stress strain relations of the clad are given by the equations (25) without
the swelling term, the concerning relations for the fuel are given without
the thermal strains. On the basis of these equations and the boundary condi-

tions discussed below, the stress and strain state in the fuel and the clad
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is determined for a given swelling rate and creep law. The complication

arises from the fact that the gas swelling rate itself is stress dependent.

Therefore the problem has to be solved by an iteration procedure. Starting from

a swelling rate e.g. for the solid fission products, the stresses in the

fuel are calculated. These stresses supply a gas swelling rate with the aid of

the assumptions below. This procedure is repeated until the convergence is

reached. Assumptions concerning the gas swelling are <3l, 32,33, 3€> .

a.

b.

Not released fission gas forms partly fission gas induced bubbles and partly
migrates to fabricated porosity. 7

A definite distribution of fission gas induced bubbles and fabricated

pores is realized and determines the amount of fission gas, per bbbble or
pore, contributed by a definite fuel volume.

The fission gas bubble radius is determined by the following equilibrium

equation.
2y
= + 0
Pf r H (26)
Pf = fission gas pressure within the bubble
y = surface tension of the fuel material
r = radius of bubble
GH = hydrostatic stress component adjacent to the bubble

The closure of the fabricated porosity is finished if this equilibrium is

reached.

The solution of this problem requires the determination of six integration
constants given by the boundary conditions. The formulation is trivial for

the following four boundary conditions.

a. The radial stress at the outer surface of the clad is equal to the outer
coolant pressure.

b. The radial stress at the inner surface of the fuel is equal to the inner
gas pressure.

c. The radial stress at the outer surface of the fuel is eéu#irtd'ﬁﬁe radial
stress at the inner surface of the clad.

d. The radial displacement at the outer surface of the fuel is equal to the

radial displacement at the inner surface of the clad.
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The formulation of the remaining two boundary conditions related to the

axial force and deformation in the interface is more difficult. The friction
force in the interface fuel-clad is indeed a shearing force. But it is trea-
ted as a principal axial force in order to apply the formalism valid for axi-
symmetry and plane strain. For thermal expansion experiments<2%> a sliding

of the fuel along the sheath was only observed for a rather short fuel length,
In analogy the friction force is hypothetically assumed to be such that the
fuel and sheath strain in the axial direction are equal. Furthermore the sum

of the internal axial forces is equal to the sum of the external axial forces.

°F oL ) )
2 { UZ’F rdr + 2] GZ,CL rdr = r, Pi - PorCL @7
ro rF
Pi = 1inner gas pressure

Po = outer coolant pressure

The other symbols are given by fig. 11

It must be noted, that the swelling is not restrained at the inner fuel radius
because of the existence of the central void. Furthermore the central void
might be closed like a central void bubble so that its gas pressure could be

unequal to that within the plenum.

For the second case of a solid cylindrical fuel the application of a three-zone

model according to fig. 12

I = inner fuel zone
II = outer fuel zone

IIT = cladding

r, = outside radius of the inner zone
[

rp = outside radius of the outer zone
r, = cladding outside radius

Fig. 12 Three-zone model for the case of a solid cylindrical fuel
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is necessary for the following reasons. The assumptions of a strong friction
force between fuel and clad and the condition of plane strain do not allow

a movement of any part of the fuel relative to the clad on the base of a two
zone model. Because of the rather good creep behavior of the center regions/
a relative axial movement has to be allowed. This is possible by the intro—
duction of an inner fuel zone. The axial friction force between the inner
and outer fuel zone is assumed to be negligible. It has to be distinguished
whether the central core is realized along the total length of the fuel or
whether it is restrained axially by fuel because of the inferior creep proper-
ties of the cold ends of the fuel. While in the first case the center core
exerts no hydrostatic pressure on the outer fuel, a hydrostatiC pressure is
realized in the case of axial restraint by the fuel. The last case could be
realized for solid carbide because of no central void formation for medium

linear rod powers.
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Appendix

A. Deduction of the porosity dependence of the thermal conductivity

By assuming a stationary heat current without sources flowing parallel or

normal through an arrangement of slabs the following relations can be obtained

by simple considerations.

The thermal conductivity of the connection in series according to the following

figure

(Temperature averaged)

~|

[

. thermal conductivity of
} — ) k1 k2 w phase i

= length of the phase i

i
L Ly A = total length
L
is given by
i ! 1,

with
ks = (temperature averaged) thermal conductivity of the connection in
series
Ly
L 2T

The thermal conductivity of the connection in parallel according to the follo-

wing figure

F = cross sectional area of the phase i

F = total cross sectional area




_21_

is given by:

k = £k, + fk. (A2)

with
E;;; = (temperature averaged) thermal conductivity of the connection
in parallel
Fl
E = F

In order to usethese equations for the calculation of the assumed model

___/ ZEk
55 L

iy

L

it is necessary to make the volumes sufficiently small. Then the tube of
the current can be assumed as a parallelepiped. Furthermore the contribu-
tion of the heat produced in the volume to the heat current entering through

the cross sectional area F can be neglected. Thus the local thermal conductivity

is obtained.

In oder to calculate the thermal conductivity of the arrangement above the ther-
mal conductivity for the comnection in series of the volume II of phase 1 and
the volume III of phase 2 is first calculated with(Al). Then by connecting

in ‘parallel this volume with the volume I of phase | and by application of

1, =1~ 12 and fl =] - f2 (A3)

1

the following relation is obtained.

~ _ _ 1
k=k |1-£ ( - ) (A4)

1
i+1.¢G—-1
2 k2
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In the following f2 and 12 are replaced by the relative pore volume fraction

P. By the relations:

V. F.-L
V2 Tt .
PrycF-T - R'h 43)
X .Y
f = .F;g_ = ._2_..._2 - X_ (A6)
2°F Tx-yv %Y

with X, Y, X as the linear dimensions belonging to F resp. F,, and

2’.Y2
!
X, = a * 12 (A7)

v, = a-l, (A8)

. 1 n . . .
with a and a as anisotropy factors, which must be | for the special case of

an isotropic pore distribution, the following equations are obtained

o 1/3
12 Y m P (49)
a'-
] O 2/3
f2 = a a P (A10)

with'%g' a = a and the last two equations the following general porosity

dependence of the thermal conductivity finally results:

[ ,

k=% |1-ar?3q - ‘ ) (A1)
© 1 .2/3 %
1 +-—- P (T('-— l)
a P
o = fully dense phase 1
P = pore phase 2
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B. Transformation of the unidimensional gap geometry to the cylindrical

and spherical pore geometries relating to the heat tramsfer by radiation

The transformation is approximately performed by substituting the cylindrical

resp.spherical surface of the pore by a plane one as follows.

X

X = ‘% sin $
d = diameter of the cylindrical resp.
spherical pore

6 = equivalent gap width of the uni-

dimensional gap geometry

a. cylindrical pore the axis of which is perpendicular to the heat flow.

b. spherical pore

n/2
% -% = chda
9=0
2 (1)
6 =< d=0.64 d
b4
6
7 27 = fodﬂ
half sphere
(B2)
u —
& =% d=0.79 d
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C. Calculation of the thermal central void effect

1. Two - zone porosity model for in-pile porosity migration

The following two — zone porosity model is taken as basis

C = central void

= inner zone of homogenious porosity PI

II = outer zone of homogenious porosity PII

r = radius of central void To = T(to)

o
r = zone boundary radius T = T(r

P ry P ( ?)
rp = fuel radius TF = T(rF)

T =  temperature

Under fast flux conditions the heat source density in each zone is constant.
For cylindrical geometryand radial heat flow directed to the outside the follo-
wing equations for the heat fiux density in the two zones result from the

heat balance equation

qI ro
zone I: j(r) = 5= (r - - cn
q T 2 T
. P . P
zone II: j(r) = —%L (r =—) + ip = (€2)

ek
]

heat flux density [—HE
cm

heat source density [—Eg]

cm

a)
]

jP is given by equation (Cl1). By means of the Fourier law for cylindrical geo-
metry and radial heat flux

. dr
i = ~kg (€3)

k = thermal conductivity
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and the porosity dependences of the thermal conductivities for the two

2/3

zones according to the (1 - P°'~“)-relation

_p 2/3 _ _ 2/3
kI(T,P) ko(T) (1 PI ) kII(T,P) = ko(T) (1 PII ) (c4)
ko = thermal conductivity of the fully dense material
the following equations for the temperature drop in the two zones are
obtained
To q r 2. r 2 T
rko(T)dT= L 73 P 2 —roz 1n}-1->- (c5)
2(1 =P ) 2 o
T 1
P
TPde_ 1 qn(z_ 2)+q1(2 2, _ zlrF (6
{ °()T_1_p 73|76 v T e 7T TR T T " )
T It LS A ‘ J ’
F

For comparison the relative fuel density D0 resp. heat source density q,

for a solid cylinder of the same linear rod power and the same fuel radius are
introduced. As reference also a hollow cylinder with homogenious porosity
distribution can be used. Than D, means the smear density relating to the fuel
radius‘the same is valid for qqe For fast flux conditions the following relations

are valid

tq =D_:D : D (C7)

with D_=1-P_ and DII = ] - PII (c8)

The linear rod power for the solid and two-zone hollow cylinder is given by

2 2 2 2 2
X =qIp = un(rP r, )+ qrp ® (rF p ) (C9)
= relative fuel density

= porosity

x = linear rod power
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By eliminating of ar and dr1 in equation(CS) and (C6) by (C7), (C8) and

(C9) the following equations are obtained:

T 2 2 2

r’ X I-P <rP) (ro)z (ro) (rP>
k_(T)dT = 2yl o[ey (L) mm(-E (C10)
l° 4D 1 -p 23| \rg/ \rg| \Tg %o
. I
r X b= Py ( p ’ D, Ty ’
k (T)dT = 1= (2] ¢ [=2— - 1] 1n|E (1)
1 o 4%D | _ p 2/3[ o P=P. N
. II

2. Homogenious porosity distribution in the hollow cylinder

By substituting TPby TF and T, by T in (C3), doing the same in (C9) and using
the temperature averaged thermal conductivity-i; the following relation for the

temperature drop in the hollow cylinder is obtained:

2 2Y

I »

- X ‘o (&F

T -T, = —— l - ———3 In{-— (C12)
° F 4Wko(l - PH2/3) r 2 r 2 ro)

porosity of the hollow cylinder

= radius of the central void

= g
o ]o"m

temperature averaged thermal conductivity of the fully dense
material

Index H marks the hollow cylinder

The temperature drop in the gap fuel-clad is given by

- =X
R B Sl Ty (c13)

clad inner temperature

H
"

heat transfer coefficient fuel clad

=
]

The total temperature drop in the fuel and gap isgiven by:
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I - ! 5 In (rF/z:Q)2
T -1y = f.}_l. (rF/ro) -1 i (€14)
o 1’8 2z 2/3 + . h

Ze, (1-2"7)

For the solid cylinder the corresponding equation is obtained

Xsf ) 1
(T -T.)., = — + (C15)
o 1’s  2: [2 -—-ko(l _ PSZ/B) o hl

porosity of the solid cylinder. Index S marks the solid cylinder

Ps =

It is assumed that the smear density Do remains constant during the central

void formation. By means of the relation
2

X Fo V1 . .
Do = (1 - PH) [i -F_;/ =] - PS (Ci6)

finally the following relation for the ratio of the linear rod powers of the

hollow and solid cylinder is obtained for the assumption that the total

temperature drop TO - TI remains constant

r.h
F 2/3‘+l
y a [1- -0
i : °L ° ) i
Xs rn[1-—1—— 1 (r./r )2
¥ (r./t )2_I F' "o
F o + 1

_ D, 2/3
Zko | - 3
i -(rO/rF)
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D. Deduction of the equation for the temperature drop in the

ideal open gap

By integrating theFourier law in the unidimensional form

dT
j = - k()5 D1
i k(T3 (@1
3 P ot fFlusedencitwy
J i ac AL UATUCTILO LG
k(T)= thermal conductivity of the 8as contents within the gap
%% temperature gradient

over the gap width the following equation is obtained

5 = % (T = T) = h (T, = Tp)
T
with _ 1 F
K= s K (T)dT
F o1
I

85 = gap width

h = heat transfer coefficient for the gap fuel~-clad
T, = fuel surface temperature

T; = 1internal clad temperature

(D2)

(03)

Assuming the thermal conductivity of the filling gas in the following form

kC,s = gas constants

(D4)

the following equation for the conduction part of the heat transfer

is obtained

s+l
_ 1 s+1 AT -
g CC TI (1 + §¢-) 1
I
with

c kC

C =~
s+l

AT = T_ - T, = temperature drop in the gap

(D5)



(D6)

is the sum of two components, the conduction part and the radiation part given

by the Stefan - Boltzman law

4
. 4 AT, " '
jp=Cp Ty |1+ TI) 1 (D7)
with s
C =
R ..!_. + .].~ - 1
&1 &2

o = Stefan — Boltzman constant

€ e e .
1,2 = emissivities of the fuel resp. the internal clad surface

Solving the equation (P6) with respect to the gap width & the following

relationship is obtained

I
( 4 AT
[N N ooty —
Trr.  Cr'I [O * T, l]

From (D5), (D6), (D7) and (D2) results for AT<§§I the following expression for

the heat transfer coefficient h

.
oo .G s 1 3
ho= st = kI 4 4CT AT<<I’I (D9)

where k, = (temperature averaged) '"thermal conductivity of the gap".

C
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Fig.3: ~ Thermal conductivity as a function of
porosity for isotropic pore distribution.
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Fig.4: Dependence of the ratio %=, on pore dimension d
for oxide fuel.
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Fig.6:

Increase of linear rod power by central void for-

mation for homogenious porosity distribution and
for in pile porosity migration.

(Central temperatureT, and clad inner temperature; are constant,

smear density D, related to fuel radius rr is parameter)
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Fig.7: Relative increase of linear rod power by central void
formation for oxide and carbide

Assumptions: Homogenious porosity distribution, Central tempe -
rature and clad inner temperature are constant.
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Fig.. 8 Temperature drop AT as a function of the gap width § for the open
ideal gap fuel-clad.

Linear rod power X, clad inside temperature Ty and gas type are parameter
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20 | i\ Fig.:9 Gap width 6§ dependence of the heat transfer coefficient h
\\ for the open ideal gap fuel-clad.
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Fig.13:

of the Na2-Core

Computer listing of the maximum operation times
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