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1. Introduction

In the present paper an effort has been made to quantify the term

"effectivity" of a safeguards system and a method has been detailed

which can be used to compare the effectivity of a number of competing

safeguards systems.

It is quite evident that the actual costs incured by a safeguarding

authority in implementing all the measures of a safeguards system, have

to be associated very closely with the effectivity of that system. For

example, adefinite probability of detection for a given amount of fissile

material can be set at the beginning as the objection of a safeguards

system {-1_7. The costs of a specific safeguards system can then be optimized

with respect to this probability by varying the cost parameters (measuring

instruments, containment etc.) of the system. As has been shown later,

such optimized costs may be used to determine the relative effectivity of

comparable systems.

The question of effectivity has been studied with two different models

of safeguards systems. Tbe first one may be called the inspector's system.

In this model the inspectors can detect a diversion by observation and

surveillance and the model is based on the theory of games L-2_1. The other

is a statistical model based on the flow measurements of fissile material

at strategie points. Tbe second model has been treated at the beginning in

a simplified manner, when statements of the form 'something has been di­

verted' or 'nothing has been diverted', have been treated. At a later stage

this model has been elaborated.

It may be noted that both these models do not representthe reality

exactly and completely. Certain salient features of these two models

have been chosen to bring out the important characteristics of the method,

which has been developed in this paper for quantifying the effectivity of

a safeguards system.
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2. Model for the Inspector's System; Cost Optimization and Definition of

Effectivity

The game theoretical model for the inspector's system is of the following

form: In a nuclear facility the operator can divert a certain (not quantified)

amount of fissile material at r places. There are k ( ~ r) inspectors who

safeguard the plant in a certain interval of time t o ~ t ~ t 1.If an inspector

is at a place where a diversion takes place he detects it with the probabili­

ty q. (This is an extension of the model given in L-2_/; it is assumed for

example, that one inspector has a number of assisting personnel who safeguard

a eertain area of the plant aceording to a,given strategy.) The plant opera­

tors and the inspeetors have been assumed to choose, with the help of stocha­

stie experiments, certain strategies that is their mode of operation. A

strategy öf the operator would be tö choose in the iriterval t o ~ t ~ t 1
the places where he would divert a eertain amount of fissile material, simi­

larly a strategy of the inspectors would be to choose the places where they

would control. It is assumed that the operators and the inspectors behave

in an optimal way that is both choose optimal strategies.

To camplete the game theoretical model, the pay off matrix has to be defined,

Le. the gain or the loss which the operator and the inspectors will have

in case the operator diverts fissile material and this diversion is detected

or not detected. Similarly, the gain or the loss of the inspectors when they

detect or do not detect the diversion of fissile material. It is assumed

that in a11 intervals of time in question the operator diverts at mo
places and m = const. It is defined that

o

(i) If the operator does not divert 80y material he has the

gain (and the loss) zero.

(ii) If the operator diverts material and this diversion is

detected at least once, he has the loss c, the inspeetors have

the gain e.

(iii) If the operator diverts material and this diversion is not

deteeted, he has tile gain d, the inspectors have the loss d.

With these definitions the gain of the operator becomes the loss of the

inspectors and this game beeomes a so ealled two person zero sum game.
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Now it can be shown {-2_7 that the optimal strategies for the operator

and the inspectors are those strategies in which a11 possible strategies

occur with equal probabi1ities. In this case the gain(or the 10ss) of the

inspectors is given by

k m
W == c - (c + d) (1- ~ ) 0

r
(1.1)

(definitions of all the symbols used are given at the end of this paper)

This gain is greater than zero, if the number k of the inspectors is

1ess than k , where
o

kar
o

mo r-;:­
(1- +-V c+d ) (1.2)

The probability of detection P (d,m ) is defined as the probability that the
o

inspectors detect at least at d p1aces a diversion when the operator diverts

at m places. In the following the simplified expression
o

p(m ) == P (d = 1, m )o 0
(1.3)

is used which giv~the probability that the inspectors detect a diversion at

least at one place when the operator diverts at m places. If it 1S assumed
o

that the operator diverts the same amount of material at a11 p1aces, mo is

a measure for the diverted material. The calcu1ation gives

p(m ) = 1
o

rn
(1- qk ) 0

r
(1.4)

The error second kind ß(m ), that i s the probability that nothing will be
o

detected a1though the amount mo will be diverted, is given by

ak mo
ß(m ) == 1 - P (m ) = (1- ~ )o 0 r (1.5)

The error first kind, i.e. the probability that a diversion will be detec­

ted if nothing will be diverted, is zero (the inspectors indicate diversions

only, if they see them directly).
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In order to arrive at adefinition of effectivity one could proceed

in the following manner:

a) Some common property of all the safeguards systems is postulated,

which relate the probability of detection with the diverted

amount.

b) The costs for each of the systems are optimized with respect to the

postulate.

As will be seen, tmcosts optimized in this manner, as a function of

the diverted material, can be defined as a measure of the effectivity

of a system.

The postulates used in this paper are:

p(m ) .. l-eo

(i) Postulate 1----------
There exists

for example,

a relation between p (mo)

of the following type:
_ mo

a

and the amount diverted mo

(1.6)

This cor~esponds to the assumption that the probability of detection

for sma11er amounts should be smaller and should increase with

larger amounts.

q. k .. r (1- e

Eq. (1.4) gives together with (1.6) a condition for k and q

1
a
): (13 (1. 7)

The error of the second kind ß(m ) is less than ßo for m greatero 0

than m
00

This gives with (1.5)
1

m
q • k ~ r (1- ß 00)

o

(1.8)

(1.9)
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Equ. (1.7) and (1.9) are compatible if

1
m 1n 80

00

(1.10)

The error first kind a is less than a • This is alwayso
fulfilled in the framework of the inspectors system chosen in

this paper.

~2!~l Further work to quantify these postulates is in progress. For

example instead of (1. 6) a step function which is zero for m 'm
o 00

might be more reasonable.

The total costs of the inspector's system as a function of k and q are

assumed to be as follows:

(1.11)

Optimization of C with respect to the boundary condition (1.7) (it is

assumed that (1.10) is fulfilled) gives

(1.12)

It may be seen from (1.12) that C t is independent of m (Curve I in Fig. 1).op. 0

Let us assume that another safeguards system is represented by curve 11

in Fig. 1. It may then be defined that

(i) The effectivity of a safeguards system is given by the costs as

a function of the amount m of diverted material optimized with
o

respect to the postulates given above.
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(ii) One safeguards system is more effective than another

in a certain interval of m , if in that interval of mo 0

the optimized costs of the former system are less than those

of the latter system.

Some further comments may be made on the last definition:

(i) According to this definition system I in Fig. 1 is more effective

than system 11 for m < m '. For m > m ' system 11 is more effec-o 0 0 0
tive than system I.

(ii) In reality a given amount of budget may be taken to be available

for safeguards purposes. It is quite conceivable that the actual

amount of the budget determines the effectivity of any two systems

as shown in Fig. 2. For C t = C' t system 11 is more effectiveop op
as it enables one to detect a smaller amount of diverted material.

For C • C 2, system I is more effective.opt opt

(iii) In case the two systems do not differ according to the definition

given above, the probability of detection P(d, m ) instead of p (m )o 0

may be used for fixing the effectivity of a system. In that case

two sets of curves, instead of two curves as given in Fig. 1, have

to be compared, and a more sophisticated comparison may be possible.

In the following pages it has been shown that the same definition

of effectivity can be used for the second modelwhich is based 011 the

statistical measurement of fissile material throughputs. Only the state­

ment "detection" has to be defined in an appropriate manner.

3. Models for the Flow Measurement System

The following models refer to those parts of the fuel cycle for which one

can establish a material balance.

~ t " t l the inspector is continously measur­

the throughput of a plant (input J. andIn
strategie points by flow measurements. Because of measur-

In the interval of time t o
ing, n-times at the same time,

output J t) atou
ing errors these measurements are not exaet. The variance of one measurement

is OJ2, it is independent of the amount of measured material. One exaet
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measurement would give at t = t 1 the inventory J = J. - J of the1n out
plant. The result of n measurements is the average va1ue

J (in general not equal J). At time t = t} the inventory I of the
2plant is measured m-times. The variance of the measurement is 01 '

the average value of the m measurements is I. The inspector compares the

two values J and land states that a diversion has/has not taken place.

Two kinds of statements are possible:

a) The unaccounted los ses 1 of the plant (MUF) are

taken into consideration in form of a fixed fraction

€ of J. , that is 1 = J .. The inspector states either,
10 1n

that something has been diverted or that nothing has been

diverted; he does not state anything on the amount of divert­

ed material.

b) The inspector states that an amount m greater than ro' and

smaller thanm" is missing. Only after this statement he

takes into consideration the possible unaccountable losses

(~ruF) of the plant.

These models can be described with help of different statistical procedures

namely:

(i) the classical Bayes procedure,

(ii) the method of confidential intervals,

(iii) the testing procedure.

In the first method it has to be assumed that the parameter of the

stochastic variable which is to be estimated, is itself a stochastic

variable. The distribution function of this variable has to be known or

some suitable assumptions have to be made. In the second method the

statement of likelihood has to be introduced. In this paper the last named

method has been used as it a110ws for statements which can be used directly

for calculating the effectivity defined in part 2.

3.1 Model A: Not Quantified Statements of the Inspector

3.1.1 Statements of the Inspector

The inspector's hypothesis is J = I + 1, 1 =t J .• This means that he
~ 1n
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assumes that fue fraction I of J. has been lost in the plant- (MUF).
in

Naturally this fraction can vary for different campaigns. It- is assumed

here thatthe inspector can estimate from his experience the va1ue of )

for the next campaign.

Note: Because of measuring errors~ theinspector does not know J.
---- in
exact1y~ therefore~ he does not know 1 exact1y even if he knows ~ •

It is further assumed that he can estimate 1 in a satisfactory manner.

The inspector tests his hypothesis with the help of his n and m measurements

by a test o. This test 0 is defined by a region of acceptance A (0 ) =
(- 00 ~ z) and a critica1 region K (0) = A (0) in the following way: If

on the basis of the next n and m measurements the fo11owing relation

ho1ds

J - I - 1 E K (0) (3.1)

the inspector rejects his hypothesis that is he states that there was

a diversion. If~ on the other hand~ the fo11owing condition is fu1fi11ed

J - I - 1 E A (0) (3.2)

he does not reject his hypothesis~ in actual practice this means that

he states that there has not been any diversion.

The value of z and the error first kind~ i.e. the probability that

J - I - 1 E K Cd) for J - I - 1 = o~ are intimate1y connected. In order

to establi.sh this connection and for later purposes a special case of

the general law of transformations of distribution functions is intro­

duced here (see for example 1-3_7):

Let f~ (xl) and f~ (x2) be the frequency functions of a
1

and a 2 •
-1' -2-

Then

00

f b (zl) • _f clZZf'l (ZI+Zz)f
a2

(z2)

lS the frequency function of b = a
1

- a2•

Now the error first kind (l is gi.ven by

(l = p (J - I - 1 ?- z / J - I - 1 = 0)

(3.3)

(3.4)
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lf it is assumed that J and I are normally distributed with expec­

tation values J and land variances 0J2/n and 012/m, then wirh (3.3)

i +1. -! dZ I / dzZ
-_ -IM

This result in

a. = l-</>
z(-) .° =° I

1
"2

(3.5)

Here, • (x) is given by
x

Hx) r:ll I exp
t 2

) dt= (- -
'2.

.- .,
(3.6)

Bq. (3.5) gives the connection between a. and z. Lateron the value of z

and therefore that of a will be established with the help of the postulates

given in part 2.

3. L 2 Probabi1ity of Detection and Error Second Kind

The probabi1ity of detection p (mo) is defined by the probability that

J-1-1 >z, if mo is to be diverted. This means

= p (5-1-1 >z/ J-I-1 = m )o
(2.7)

Again with the he1p of (3.3.)
1

?
°12 2z-roc (jJ~

P (m ) = 1- </>( ) er = ( -- + )
0 (5 n m

(3.8)

With the help of the probabi1ity of detection the error second kind

ß (m ), i .e. the probability that J-1-1 e: A(<') jf TI! is to ee diverted, can
o 0

be calculated:

Therefore from (3.8)

I-p (m )
o

(3.9)

(3.10)
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3.1.3 Costs and Optimization of Costs; Effectivity

The f0110wing form of the costs for the safeguards system based on

flow measurement has been assumed:

C= (3.11)

With this form the capital and the operating costs of the system have

bean symbolized. The postulates of part 2 are now

(i) A function for the probability of detection p(m ) is
o

postulated. Together with (3.8) this gives a cOlldition

for 6" :

z - mo
a = tri (1-p(m )o

Rere, fl is the inverse function for ~.

(3.12)

(ii) It is postulated that the error second kind is less than

ßo for mo greater than mo • This giveswith (3.8 , 10)

z-m
1 (moo ) =$( 00

) <8- p
a 0

In the case of eq. (1.6)

a~
1 in i--_. --

moo ßo

is obtained.

0.13)

(3.14)

(iii) It is postulated that the error first kind is less than

This gives with (3.5)

CL •
o

z
1 - ~(-) = CLa 0

or in the limiting case

z
1- <p (-) • CLa 0

(3.15)

(3.16)
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Eq. (3, 16), that is condition (iii) fixes the value of z.

Eq. (3.12) and eq. (3.16) give a new condition for 0:

2
mo

-1 -1 .2
($ (l-a)- $ (l-p(m )))

o 0

(3.17)

Now again the problem is to optimize the costs in (3.11) with respect

to the variables ai' 0 12, n, m. Besides the condition (3.17) there are

natural conditions of the fol10wing form

(3.18)

Example

Let n=m=l and assume that in the fo110wing the conditions (3.18) and (3.14)

(or the equivalent for (3.14) for another form of the postulatedp(m ))areo
fulfilled. Then from (3.11) and (3.17)

C (a
r

2)
a l a 2 0.19)= 2 + + ß r + 82

S -or2
0

1
2

C (0 r2) has the form given in Fig. 3.

The optimum costs Copt and the optimum va1ues of 0
1

2 and oJ2 are obtained

in the following form:

2
C (0

10
) =

opt (
a 1 a 2

-2- + 2 ); 0 10 =
y

2
y =

(3.20)

a
X= (1+i) ( y; + (2)

m 2
o

The optimum costs as a function of m can be expressed as follows
o 2

C (m) = X ( $-1(1-°0)- ep-1(1-p(mo)
opt 0

(3.21)

Two numerical examp1es are given to illustrate the method:
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(i) For p(m ) eq. (1.6) let a • 0.5; let a= 0.05. Furthermore, leto
m be chosen that 0 ~ m ~ 1 in the sense that m = 1 means the

o 0 0

unity of the effective mass {-4_7. The results are shown in Fig.4a

and 4b: Fig. 4a gives the postu1ated probability of detection and

Fig. 4b gives the optimum costs divided by ~ as a function of m •
o

Here,~ is defined by (3.21)

(ii) Let p(m ) be a step function as shown in Fig. 5a, and ~ = 0.05.o 0

Fig. Sb gives the optimum costs divided by~ as a function of m •
o

No~, according to the definition given in part 2, fig. 4b or fig. 5b

gives except for the factor X the effectivity of the safeguards system based

on flow measurement. It can be compared with that of the inspector's system

once the costmctors are known.

than m
o

boundary of the critical region z.

Note: From (3.21) it is seen that the optimal value of 6.i2 is a function

of the amount of diverted material. This is not disturbing forfue following

reason. As al ready said in part 2 in practice there is a fixed budget C' •opt
This budget establishes with eq. (3.20) the smallest amount m' of fissile

2 0

material which can be detected (see Fig. 4b). Since f ~ is an essentially

ascending function of m , it would mean that all diver.ted amounts m greater
o 0

can be detected for this fixed budget. The same is true for the

3.1.4 Comparison of the Statements with those introduced earlier /-1 7

(1) The 1ikelihood of djversion Pd was defined as a statement of the

inspector, as the assessment that an amount has been diverted with

1ikelihood Pd. The errors first and second kind in this paper are

fixed before the measurements of the inspector take p1ace. However,

they can be interpreted as being used after the measurements in the

following way:

(i) ]-1-1 €A: With likelihood 1-6 no diversion has taken p1ace.

(ii) J-I-1€ K: lvi th likelihood l-a a diversion has taken place.

In this sense, l-a and 1-6 are the above mentioned 1ikelihoods of

diversion.
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(2) The risk of detection was defined as a statement of the operator:

If the operator intends to divert a certain quantity m , he is able
o

to calculate before the beginning of the measurements the risk ~

that the inspector comes to a statement Pd. This is the probability of

detection in this paper which has been calculated for fixed ex, 6.

Therefore the probability of detection is - in the words of 1-1_7
the risk for a fixed threshold of alarm.

(3) The probabi1ity P of proving was defined as a statement of the
p

safeguards system designer; it is the prohabi li ty that in the case of

the diversion of the amount m of fissile material the inspector makes
o

any statement Pd about the diversion of the fraction ) of mo • In our

case Pd is fixed, name1y 1-ex and 1-6 • Therefore, in our case the

probabi1ity of detection corresponds to P , too.
P

3.2 Nodel B: Quantified Statements of the Inspector

3.2.1 Statements of the Inspector

As mentioned earlier. in thi s model the inspector first states the missing

material. Thereafter he takes into consideration the losses.

The inspector divides his n f10w measurements and his m inventory measure­

ments in the following form:

n n + n . m = ml + m~1 2' :.:
(3.22)

The nt and m
1

measurements are used by him for making a hypothesis on the

missing material whereas he uses the n
2

and m
Z

measurements for testing his

hypothesis. The average va lues of the n l and m
1

measurements are J
nl

and

I
m

1

Let

'\ = (3.23 )

N'ow the hypothesis of the inspector is
2 2 1

I:, -0 ~J-I ~ (
0J °1

)
2" (3.24)1:,1 + a

l
; °1 = -- + --

I t n l ml
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or, in short

H = )..:{ Li
l
- °1

~ ).. ~ Lil + oll; ).. = J-I (3.Z5)

niore generally H = {)..: öl-al ")..'=ö + aZJ).I

With the he1p of the nZ and mZ measurements the inspector tests his hypothe­

sis with a test C; which is given by the critical region K(C;) for A... = J - I
-L m

Z
m

2

(3.26)

This means that the inspector rej ects his hypothesis if Liz € K (8) and that he

does not reject his hypothesis if LiZ I K (0).

Note: In the case that the hypothesis (3.25) is rejected, the inspector

divides his n and m measurements anew, that is he takes another set of n l
and ml measurements to form his hypothesis.

The test given above is characterized by an operation characteristic P (A)

which is defined by

(3.27)

The ca1cu1ation gives

Li -0 - A öl+01- A
P(A) = 1+ ~( 1 I )- ~( ); 02

°2 °z
(3.28)

The form of P (A) is given in Fig. 6.

For example, the upper boundaries for the errors first and second kind can

be expressed in terms of the operation characteristic P(A):

(i) CL I the upper boundary for the error first kind i s given by

With (3.28) one obtaines

(3.29)

CL = P( A= Ö+ ° ) =I
3

2
) (3.30)
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(ii) /', the upper boundary for the error second kind, is given by

p (A2t K(o)/J-I fH) ~ ß

With (3.28) one obtains

ß = I-PO. = /', + ° ) ep(
2 0]

) - 1= -- 2I I
°2

From (3.30) and (3.32) one sees

CI. + ß= 1

(3.31)

(3.32)

(3.33)

Thus Ci and ß cannot be made as small as one wou1d like to have. However,

thi!'l would not matter much, as instead of postu1ating certain values

ofol and ft ' it may be postulated that the generalized errors are smaller

than some given values. More exact1y

(i) It is postu1ated that the generalized error first kind, that is the

probability that Ö
2

> Ö] + aotor Ö
2

<6
1
-a 0] for AEH and a>l is

smaller than a. :
o

or

(3.34)

a. = 2 - <p(
o

i a+1)o]

°2
) - (3.35)

(ii) It i8 postu1ated that the generalized error second kind, that 18 the

probability that Ö 1- 01 ' Ö2 ' 6 1 + 01 for A > Ö] + bOl and b > 1 is

smaller than S :o

(3.36)

or

(3.37)
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These postulates mean that the probability, that for)j~H the value of .62
falls far from H (>8 1 + aOt or<8 1-ao l ) respectively that forA far from H

(>8 1+ bOJ or<8 1- bOI) the value of 82 falls into the region of acceptance,

is smaller than a o respectively ßo '

3.2.2 Probability of Detection

fissile material disappears. The probability that from the n
l

and

ments the inspector will find a value of t::. 1 between 11 and !J.+ dl1 is

It is assumed that in the course of the next campaign the amount m of
o
m

l
measure-

given by

(3.38)

The probability that fromthe n
2

or. m
2

measure.ments the inspeetorwill

find a value of 11
2

between /).- °
1

and t::. +0 1, is given by

(3.39)

In this ease the inspector states that the amount m greater than 11-01 and

smaller than 8+ °1 is missing.

mli
) the prob.ability is defined that

form I an amount m wi th

Then°
1

1S missing ' where m- 0
1
~ ml , m+ 01 ~ mH.

m:l-o
1

== J dt::. P(I1-01~t::.2~1I+al)1I ~111~I1+dll /J=I+mo) =
ml+o

1

As probability of detection p (m ; mT
,

o
the inspeetor makes a statement of the

&- ° • m~~ +I

m"-o

= r Idl1 p(l1-oJ~I1,,~11
/ I ~

m'+o
1

+0,
I

/ J=I+m ). p(I1'I1.~lI+dt::. /J=I+m )
o· I 0'

m"-m -0
o I

2
x
2

)

ml-m +0
o 1

(3.40)
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Examp1e: Let

m' = m -20 • m" = m + 20101' 0

In this case from (3.40)

(3.41)

p(m ) = 2<P(1)o

01 2
<P( (x-I» exp (- ~ )

0')..
(3.42)

Up to now the unaccountab1e losses (MUF) were not considered. They may be

taken into consideration in the fol1owing way. The inspector who states that

an amount m greater m' and sma11er than m" is missing, says: Because of my

experience I assume that the fraction r of the total input is MUF. Therefore

I state according to (3.24) that the amount A with

(3.43)

has been diverted. According1y the probability of detection p(m , m', m") is
o

the probability that the inspector will state that the amount) with

m-01- \ J in & A ~ m+0 1 -)' J in (3.44)

where m- o} ~ m', m+0
1

' m", has been diverted if the amount mo will be

diverted.

3.2.3 Costs and Optimization of Costs; Effectivity

The costs of the safeguards system are as given by (3.11). Now the i.nspec­

tor makes quanti.tative statements, therefore the post~1ates of part 2 have

to be modified as they were adjusted to the case of non-quantitative state-

ments.

The fo11owing postulates are established to take care of the quantitative

nature of the model B.

(i) In connection with the probability of detection it is postu1ated

(1) m' and mll are functions of m , that ism'(m) and m"(m ).
0 0 0

(2) P (m ): = p(mo ; m' (m ), m" (m »
0 0 0

(ii) The generalized error first kind is less than Ct •
0

(iii) The generalized error second kind is less than ßo '
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Examp1e

Let according to (3.41)

(3.45)

and as in (1.6)

15 (m ) = 1- eo

m
o- --a

Then from (3.42) and (3.45) the following conditions are obtained

2
0

1
= b = const;

2
o = g (m ) = : g2 0

(3.46)

Furthermore it is assumed that the postulates (i, ii) are satisfied by

(3.46) •

Therefore, the problem 1S to optimize

(3.47)

with respect to the conditions (3.46)

= g (3.48)

and the natural conditions

(3.49)

The solution is sketched below:

Let

(3.50)

According to (3.49) the allowed regions for Yl and Y2 are
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From (3.48) one obtains

(] 2 = nS " b 2= m S
J 1 I 2

where

(3.51)

(3.52)

S =1
Y2 (l-y2)

(-Y (b+g)+b)- S = (y
1

(g+b)-b)2 '2 Y -Y1 2
(3.53)

The costs (3.47)

C = (3.54)

are optimized so that the relation

0.
1

8
1

1 0.262
1 1 1

C(n ,m) 2( 2 ) 2 0.
1 )2

0.
2 )2= -) + 2 (- n = (- m = (-o 0 SI S2 0 8

1
S

1
0 82S2

(3.55)

is obtained.

2 2
To optimize C(no ' mo) with respect to 0J ' 01 ' the eq. (3.52) is inserted

into eq. (3.55) and the following is obtained:

+
(3.56)

The minimum given by the boundary va1ues of 2 2
1S 0J , °r :

2 2
20.

1
2 0.

2C(n ,m ; a
Jo °ro ) = -- + (3.57)

o 0 a
2

bZ
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2 2
This is the absolute minimal va1ue of the costs C. By fixing 0J and G'

o 10
the va1ues of y1and Y2 are fixed andfuerefore, byeq. (3.50), nv and m~

for all v,~ with 1 t: v ~ n - 1, and 1 ,(; l' ~ m - 1. This assumes that the

boundary condition (3.51) for YI,2 is fulfi11ed.

The equations determining the optimal va1ues of YI and Y2 are
2

0/ ß 2
°1

2
0 1a

2 0 ß2bZ
8

10
= = =:A; 820 = = = : B (3.58)n 01,,1 m CX 20 0

therefore

(3.59)

Eq. (3.59) leads to an equation of third order in«:

where

Co= ~I (l+B- *)
A - b b

CI= bAI L ( A - B) (A1-A2) - (g+b) (l+B- A) + (~ -1) B 7
A

(3.60)

b b2 bA = (g+b) ( - - 1) - A2 = (g+b) (-A - 1) B + bB
I A A

As follows from (3.51) one has to choose that solution of (3.00) which satis­

fies the condition

a
2

~y~l
2

(3.61)

Eq. (3. 57) g~ves the effectivity of the system under consideration - i t is

independent of roo '
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(3.62)m") =m' ,

Note: In the framework of the inspector's system one had quantitative

statements, too, but they were not used, for one wanted to compare the

inspector's system with the system based on flow measurement in the form

of the former model A. For example, in the framework of the inspector's

system, the probability of detection p (m ; m', m") is given by
o

m" 2 m -v
o

( mO ) ( qk) (1-~ )
v n n

v=m'

Therefore, it would be possible to compare the inspector's system with the

system based on flow measurement in the form of model B also.

4. Compilation of Hain Formulas of Different Models

The more important expressions developed for the probability of detection,

error first and second kind, cost functions, and effectivity, for the two

safeguards systems, have been shown in Table I.

5. Conclusion

The analysis carded out in this paper shows that the effectivity of a safe­

guards system can be defined in a quantitative way. It also shows that the

effectivity defined in this manner can be used to compare widely different

safeguards systems.

Two models for a safeguards system with flow measurement, were studied on

the basis of testing hypotheses for the amount of diverted fissile material.

From the mathematical stand-point it is of particular interest, to note that

these tests were adjusted only with respect to the costs which they themselves

cause, and not, as is usually the case, the los ses (positive or negative)

which they cause. This slightly unusual way was chosen as in the case of

safeguards systems, the losses are difficult to quantify.

The models are not complete and further work is in progress.
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TAßLE I. COMPILATION OF MAlN FOm·fiJLAS

Instrumented System
Inspector's system

Model A Model B

0)

01 _ x2
- ep(- (x-1» lexp (- -- )
0- 2

2

I; m
Probability of jl'.:'.p(m )=1-(1- qk) 0
Detection ! 0 n

j!

Ii
1
I

!

1
I

___ .1 _~ __~_._ ~~

(1.4) ( (
z-m

p mo)= 1-ep ~)
I

(3.8) I

P (m "m' "m")0' ,
1=-

(fit

m"-m -0
o )

jO)
0 1

dK L-ep (02

m'-no+o)

(x+1)+

(3.40)
N
W

(3.11)

(Upper boundary)

3 2°1
<X = - - cP( - )z 0z

(3.5)<X = 1-4> (~)
\0

,
\

I <X = 0

.----1-------

Cost function

Error first
kind

Error second k m I z-m I (Upper boundary)
kindß(m )= (1- _.~L) 0 (1.5) !S(m) ... ep (__0) (3.10)11 2<:1

1
1

on,· 0 ° ß = ep( _ ) __

I .__~ 1

02 2

<X <X
C = <XI k+<Xzq (1.11) I C = _1 + _2 + ß n + ß')m

0J2 °12 I "-

I
~.l ..__.__... . . . __

(3.57)

(3.21~.
mo

Lr-----··-·---------·- -- . ----,-.------.--..- -

= 2 ( <XI <X2 <X3) 2] In the case n = m = 1 i In the special case given in eq.(3.45)
i ! 2<X1 2<X2'( ) C .(rn)'" +-i C m = , opt 0 a b
I opt 0 21 2 2
I (ep -l(l-<Xo)- ep-l(l-P(%»1
i~ 2
I
I

I

Effectivity i C t(m)
f " ' op 0.opt1rnum costs i

as a function of !,

diverted materia~
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List of Symbols

A(e)

C

c,d

I

I

J:J. --Jin out

J

K ( e)

k

1 = \ J.in

mo·

m

n

p 0.)

p

p (m )
0

q

r

t

w

z

Region of acceptance of the testS

Costs of a safeguards system

Losses of the operator in the framework of the

inspector's system

True inventory at time t

Measured inventory at time t

True difference between input and output

Measured difference between input and output

. f rCritical reglon 0 . the test t

Number of inspectors in the inspector's system

Losses of fissile material, as a fraction of input

Amount of diverted fissile material

Number of inventory measurements

Number of input and output measurements

Operation eharaeteristic as a function of }. = J-I

Probabi 1i ty

Probability of detection

Probability of detection at a eertain area in ease of

diversion of fissile material in the framework of the

inspector's system

Number of areas at whieh fissile material 'can be diverted,

in the ease ofthe inspeetoris system

Time

Value of, the game whieh describes the inspectois system

Boundary of the eritical region of the test in model A
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Coefficients of costs of safeguards systems
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Copt
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I

mo mo

Fig 1: Effectivity of safeguards systems:Optimized costs

as a function of material mo to be diverted.
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Fig.2: Effectivity of safegu.ards systems:.Forfixed budget

C1
0pt system TI is more eftective, tor fixed budget

C~opt system I is more eftective.
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Copt

Fig.3 Costs of 0 sofeguords system os 0 function of 6z:'-.



30
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Fig. 4a: Postulated probability of detection as a

tunetion of diverted material.
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Fig.4b: Ettectivity of the system: Optimized safeguards

costs as a function of diverted material.

Meaning of Copt Ix and mo' see text.
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Fig.50: PO'stuloted probabili ty of detection os 0

function of diverted material.
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Fi g. 5b: Effectivity of t he system: Cpt imized safeguards

costs as a function of diverted material.
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Fig.6 Operation characteristic of the test given by (3.28)


