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Introduction

In the present paper an effort has been made to quantify the term
"effectivity" of a safeguards system and a method has been detailed
which can be used to compare the effectivity of a number of competing

safeguards systems.

It is quite evident that the actual costs incured by a safeguarding
authority in implementing all the measures of a safeguards system, have

to be associated very closely with the effectivity of that system. For
example, a definite probability of detection for a given amount of fissile
material can be set at the beginning as the objection of a safeguards
system 1?1;7. The costs of a specific safeguards system can then be optimized
with respect to this probability by varying the cost parameters (measuring
instruments, containment etc.) of the system. As has been shown later,
such optimized costs may be used to determine the relative effectivity of

comparable systems.

The question of effectivity has been studied with two different models

of safeguards systems. The first one may be called the inspector's system.
In this model the inspectors can detect a diversion by observation and
surveillance and the model is based on the theory of games 172;7. The other
is a statistical model based on the flow measurements of fissile material
at strategic points. The second model has been treated at the beginning in
a simplified manner, when statements of the form 'something has been di-
verted' or 'mothing has been divetted', have been treated. At a later stage

tﬁis model has been elaborated.

It may be noted that both these models do not represeat the reality
exactly and completely. Certain salient features of these two models
have been chosen to bring out the important characteristics of the method,
which has been developed in this paper for quantifying the effectivity of

a safeguards system.



Model for the Inspector's System; Cost Optimization and Definition of

Effectivity

The game theoretical model for the inspector's system is of the following
form: In a nuclear facility the operator can divert a certain (not quantified)
amount of fissile material at r places. There are k ( € r) inspectors who
safeguard the plant in a certain interval of time ts €t € tl.If an inspector
is at a place where a diversion takes place he detects it with the probabili-
ty q. (This is an extension of the model given in 172_7; it is assumed for
example, that one inspector has a number of assisting personnel who safeguard
a certain area of the plant according to a.given strategy.) The plant opera-
tors and the inspectors have been assumed to choose, with the help of stocha-
stic experiments, certain strategies that is their mode of operation. A
strategy of the operator would be to choose in the interVal‘to &t £ t,

the places where he would divert a certain amount of fissile material, simi-
larly a strategy of the inspectors would be to choose the places where they
would control. It is assumed that the operators and the inspectors behave

in an optimal way that is both choose optimal strategies.

To complete the game theoretical model, the pay off matrix has to be defined,
i.e. the gain or the loss which the operator and the inspectors will have

in case the operator diverts fissile material and this diversion is detected
or not detected. Similarly, the gain or the loss of the inspectors when they
detect or do not detect the diversion of fissile material. It is assumed

that in all intervals of time in question the operator diverts at m
places and m = const. It is defined that

(i) 1If the operator does not divert any material he has fhe

gain (and the loss) zero.

(ii) 1If the operator diverts material and this diversion is
detected at least once, he has the loss ¢, the inspectors have

the gain c.

(iii) 1If the operator diverts material and this diversion is not

detected, he has the gain d, the inspectors have the loss d.

With these definitions the gain of the operator becomes the loss of the

inspectors and this game becomes a so called two person zero sum game.



Now it can be shown 1#2_7 that the optimal strategies for the operator
and the inspectors are those strategies in which all possible strategies
occur with equal probabilities. In this case the gain(or the loss) of the

inspectors is given by
k o
W=c¢c=~- (c +4d) (1- %—— ) _ (1.1)
(definitions of all the symbols used are given at the end of this paper)

This gain is greater than zero, if the number k of the inspectors is

less than ko, where

g
ko=t U= 7F 35 (1.2)

The probability of detection P (d,mo) is defined as the probability that the
inspectors detect at least at d places a diversion when the operator diverts

at m places. In the following the simplified expression

p(mo) =P (d=1, mo) (1.3)

is used which gives the probability that the inspectors detect a diversion at
least at one place when the operator diverts at m places. If it is assumed
that the operator diverts the same amount of material at all places, m, is

a measure for the diverted material. The calculation gives
gk T
pm) =1- (- ) (1.4)

The error second kind B(mo), that is the probability that nothing will be

detected although the amount m_ will be diverted, is given by

o
m,
Bmy) =1 -p (m) = (1- &) ° (1.5)

The error first kind, i.e. the probability that a diversion will be detec-
ted if nothing will be diverted, is zero (the inspectors indicate diversions

only, if they see them directly).



In order to arrive at a definition of effectivity one could proceed

in the following manner:

a) Some common property of all the safeguards systems is postulated,

which relate the probability of detection with the diverted

amount.

b) The costs for each of the systems are optimized with respect to the

postulate.

As will be seen, the costs optimized in this manner, as a function of

the diverted material, can be defined as a measure of the effectivity

of a system.

The postulates used in this paper are:

(1)

Postulate 1

There exists a relation between p (mo) and the amount diverted m

for example, of ﬁhe following type:
o)

p(mo) = ]l-g a (1.6)

This corzesponds to the assumption that the probability of detection
for smaller amounts should be smaller and should increase with

larger amounts.

Eq. (1.4) gives together with (1.6) a condition for k and ¢

(ii)

q*k =1 (1I- e a):a

3 1.7)

Postulate 2

e o, T T e e D s

The error of the second kind 3(mo) is less than Bo for m  greater

than m__:
00

(1.8)
B(moo) < Bo

This gives with (1.5)
1

m
q-k *r (1- B "00) (1.9)



Equ. (1.7) and (1.9) are compatible if

1

€& -~ —
a in BO (1.10)

[o]e]

(iii) Postulate 3

The error first kind a is less than ay This is always
fulfilled in the framework of the inspectors system chosen in

this paper.

Note: Further work to quantify these postulates is in progress. For

example instead of (1.6) a step function which is zero form_€ém
o oo

might be more reasonable.

The total costs of the inspector's system as a function of k and q are

assumed to be as follows:

c =a1k+a (1.11)

2q

Optimization of C with respect to the boundary condition (1.7) (it is

assumed that (1.10) is fulfilled) gives

1 a0 L
3

2 2
Copt 2 (ula2a3) 3 k opt ( a } ‘opt o

(1.12)

It may be seen from (1.12) that Co is independent of m (Curve I in Fig. 1).

pt

Let us assume that another safeguards system is represented by curve II

in Fig. 1. It may then be defined that

(i) The effectivity of a safeguards system is given by the costs as
a function of the amount m of diverted material optimized with

respect to the postulates given above.



(ii) One safeguards system is more effective than another
in a certain interval of m if in that interval of m
the optimized costs of the former system are less than those

of the latter system.

Some further comments may be made on the last definition:

(i) According to this definition system I in Fig. 1 is more effective

A 1

than system II for mo<om . For m > m ' system II is more effec~

tive than system I.

(ii) In reality a given amount of budget may be taken to be available
for safeguards purposes. It is quite conceivable that the actual
amount of the budget determines the effectivity of any two systems
as shown in Fig. 2. For C = C' system II is more effective

opt opt
as it enables one to detect a smaller amount of diverted material.

For C = C » system I is more effective.
opt (o}

pt

(iii) In case the two systems do not differ according to the definition
given above, the probability of detection P(d, mo) instead of p (mo)
may be used for fixing the effectivity of a system. In that case
two sets of curves, instead of two curves as given in Fig. 1, have

to be compared, and a more sophisticated comparison may be possible.

In the following pages it has been shown that the same definition
of effectivity can be used for the second model which is based on the
statistical measurement of fissile material throughputs. Only the state-

ment ''detection'" has to be defined in an appropriate manner.

Models for the Flow Measurement System

The following models refer to those parts of the fuel cycle for which one

can establish a material balance.

In the interval of time t €t s t, the inspector is continously measur-
ing, n-times at the same time, the throughput of a plant (input Jin and
output Jout) at strategic points by flow measurements. Because of measur—
ing errors these measurements are not exact. The variance of one measurement
2, it is independent of the amount of measured material. One exact

is ©
J



measurement would give at t = t, the inventory J = Jin - Jout of the
plant. The result of n measurements is the average value

J (in general not equal J). At time t = t the inventory I of the
plant is measured m—times. The variance of the measurement is op »
the average value of the m measurements is TI. The inspector compares the
two values J and I and states that a diversion has/has not taken place.

Two kinds of statements are possible:

a) The unaccounted losses 1 of the plant (MUF) are
taken into consideration in form of a fixed fraction
e of Jin? that is 1 = Jin' The inspector states either,
that something has been diverted or that nothing has been
diverted; he does not state anything on the amount of divert-

ed material.

b) The inspector states that an amount m greater than m' and
smaller than m" is missing. Only after this statement he
takes into consideration the possible unaccountable losses

(MUF) of the plant.

These models can be described with help of different statistical procedures

namely:

(1) the classical Bayes procedure,
(ii) the method of confidential intervals,

(iii) the testing procedure.

In the first method it has to be assumed that the parameter of the
stochastic variable which is to be estimated, is itself a stochastic
variable. The distribution function of this variable has to be known or
some suitable assumptions have to be made. In the second method the
statement of likelihood has to be introduced. In this paper the last named
method has been used as it allows for statements which can be used directly

for calculating the effectivity defined in part 2.

3.1 Model A: Not Quantified Statements of the Inspector

3.1.1 Statements of the Inspector

The inspector's hypothesis is J =1 + 1, 1 =€'Jin' This means that he



assumes that the fraction ? of Jin has been lost in the plant (MUF).
Naturélly this fraction can vary for different campaigns. It is assumed
here that the inspector can estimate from his experience the value of §

for the next campaign.

Note: Because of measuring errors, theinspector does not know Jin
exactly, therefore, he does not know 1 exactly even if he knows E .

It is further assumed that he can estimate 1 in a satisfactory manner.

The inspector tests his hypothesis with the help of his n and m measurements
by a test &. This test § is defined by a region of acceptance A (§ ) =

(- @, z) and a critical region K (8§) = A (8) in the following way: If

on the basis of the next n and m measurements the following relation

holds

J-I~-1c¢kK (8) (3.1)
the inspector rejects his hypothesis that is he states that there was

a diversion. If, on the other hand, the following condition is fulfilled
J-TI-1¢A () (3.2)

he does not reject his hypothesis, in actual practice this means that

he states that there has not been any diversion.

The value of z and the error first kind, i.e. the probability that
J-I-1¢K @) for J-1 =1 =0, are intimately connected. In order
to establish this connection and for later purposes a special case of
the general law of transformations of distribution functions is intro-

duced here (see for example Lf3;7):

Let f‘q (x!) and fg (XZ) be the frequency functions of a, and a,.

Then ! 2
£ (Zl) = }/ dzzfa (zl+22)faq(22) (3.3)
L 1 2
is the frequency function of b = a; = a,.

Now the error first kind o is given by

a =p@F-I-122/J-1-1=0) (3.4)
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If it is assumed that J and I are normally distributed with expec-

tation values J and I and variances ch/n and oIZ/m, then with (3.3)

2 2 2 2
/nm 1 n m ]
i-q = oo / dz1 /dz2 exp[ 'f( 3 (z1+z2 J) + ) (z2 J+1) )
JI J I
- -2
This result in 1
2 2 3
o g
z J I
o= 1-¢ ('&')gd = (— + = ) (3.5)
Here, ¢ (x) is given by
X
1 / £2
p(x) = ——= exp (- 7 ) dt (3.6)
Vew 2

Egq. (3.5) gives the connection between a and z. Lateron the value of z
and therefore that of o will be established with the help of the postulates

given in part 2.

3.1.2 Probability of Detection and Error Second Kind

The probability of detection p (mo) is defined by the probability that

J-I-1 >z, if m, is to be diverted. This means
p (my) =p (J-I-1 >z/ J-I-1 = m)) (3.7)

Again with the help of (3.3.)
1
2 02 2
— ) (3.8)

n m

Z~ T, Y
po ) s o0

!

p (m) = 1~ ¢(

With the help of the probability of detection the error second kind
R (mo), i.e. the probability that J-I-1¢A(§) if Hb is to be diverted, can

be calculated:
B(“b) = p (J-I-1 <z/ J~I-L = HB) = 1-p (HB) (3.9)
Therefore from (3.8)

Bm) = ¢ ("0 ) ‘ (3.10)
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3.1.3 Costs and Optimization of Costs; Effectivity

The following form of the costs for the safeguards system based on

flow measurement has been assumed:

®1 %
+ —= +Bm+gn (3.11)
GJZ 012

C=

With this form the capital and the operating costs of the system have

been symbolized. The postulates of part 2 are now

(i) A function for the probability of detection p(mo) is
postulated. Together with (3.8) this gives a condition

for 6 :
z - my
° = (3.12)
¢ (1-p(my) :
Here, J‘ is the inverse function for ¢.

(ii) It is postulated that the error second kind is less than

Bo for m, greater than m, . This gives with (3.8,10)

o
z-m
L= (myy) = ¢( ——— ) <f, (3.13)
In the case of eq. (1.6)
1 1
a% — in —— (3.14)
Moo 8o

is obtained.

(iii) It is postulated that the error first kind is less than a .

This gives with (3.5)
Z .
L =40 =« (3.15)

or in the limiting case

z
1= ¢ () = o (3-¥6)
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Eq. (3, 16), that is condition (iii) fixes the value of z.

Eq. (3.12) and eq. (3.16) give a new condition for o:

2
m
%= §° = 2 (3.17)

6 e ) 67 amp )Y

Now again the problem is to optimize the costs in (3.11) with respect
to the variables cJZ, 012, n, m. Besides the condition (3.17) there are

natural conditions of the following form

n, m >1; a <0J2 < ay; bl < 012 < b2 (3.18)

Example

Let n=m=1 and assume that in the following the conditions (3.18) and (3.14)
(or the equivalent for (3.14) for another form of the postulatedxxna))are
fulfilled. Then from (3.11) and (3.17)

*1 @9
c (012) = 5 + . +*8p * 8y (3.19)
S -012 I

C(oIZ) has the form given in Fig. 3.

The optimum costs Co and the optimum values of 012 and GJZ are obtained

pt
in the following form:
2 o 2 2.2

C (02 ) = l+y ( ] +% 0y, 02 = S o2 YS .
opt * Io SZ Y2 27 "Io 1+¥Z > “Jo l+Y2 ’

a -1...-

2_ ( 1 ) 2

Y a2

(3.20)

The optimum costs as a function of m, can be expressed as follows
2

t PPN IR St P o
,c(‘# (1=-%)= ¢ " (1-p(mp) . x= (1+Y2)(;%+a2)

Copt(mo) = 2
Mo

(3.21)

Two numerical examples are given to illustrate the method:




i3

(i) For p(mb) eq. (1.6) let a = 0.5; let o= 0.05., Furthermore, let
m be chosen that O £ m, € 1 in the sense that m = 1 means the
unity of the effective mass / 4 /. The results are shown in Fig.4a
and 4b: Fig. 4a gives the postulated probability of detection and
Fig. 4b gives the optimum costs divided by ¥ as a function of m .
Here, X is defined by (3.21)

(ii) Let p(mo) be a step function as shown in Fig. 5a, and x, = 0.05.

Fig. 5b gives the optimum costs divided by X as a function of m .

Now, according to the definition given in part 2, fig. 4b or fig. 5b
gives except for the factor X the effectivity of the safeguards system based
on flow measurement. It can be compared with that of the inspector's system

once the cost factors are known.

Note: From (3.21) it is seen that the optimal value of 5}2 is a function

of the amount of diverted material. This is not disturbing for the following
reason. As already said in part 2 in practice there is a fixed budget Cépt'
This budget establishes with eq. (3.20) the smallest agount m; of fissile
material which can be detected (see Fig. 4b). Since5'3 is an essentially
ascending function of m s it would mean that all diverted amounts m greater
than m_ can be detected for this fixed budget. The same is true for the

boundary of the critical region z.

3.1.4 Comparison of the Statements with those introduced earlier 1?1_7

(1) The likelihood of diversion Pd was defined as a statement of the
inspector, as the assessment that an amount has been diverted with
likelihood Pd. The errors first and second kind in this paper are
fixed before the measurements of the inspector take place. However,
they can be interpreted as being used after the measurements in the

following way:
(i) J-I~1€A: With likelihood 1-8 no diversion has taken place.
(ii) J-I-1€K: With likelihood l-o a diversion has taken place.

In this sense, l—a and 1-8 are the above mentioned likelihoods of

diversion.
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(2) The risk of detection was defined as a statement of the operator:
If the operator intends to divert a certain quantity m s he is able
to calculate before the beginning of the measurements the risk RD

that the inspector comes to a statement P.. This is the probability of

d
detection in this paper which has been calculated for fixed o, B.
Therefore the probability of detection is - in the words of 1f1~7 -

the risk for a fixed threshold of alarm.

(3) The probability Pp of proving was defined as a statement of the
safeguards system designer; it is the prohability that in the case of
the diversion of the amount m of fissile material the inspector makes

any statement P . about the diversion of the fraction S of m . In our

d

case Pd is fixed, namely l-o and 1-B . Therefore, in our case the

probability of detection corresponds to Pp’ too.

Model B: Quantified Statements of the Inspector

3.2.1 Statements of the Inspector

As mentioned earlier, in this model the inspector first states the missing

material. Thereafter he takes into consideration the losses.

The inspector divides his n flow measurements and his m inventory measure-

ments in the following form:

n=n, + n,; m=m + m, (3.22)

1 1

The ny and m, measurements are used by him for making a hypothesis on the

missing material whereas he uses the n, and m, measurements for testing his

4

hypothesis. The average values of the n and m, measurenments are 3; and
= 1

A, =3 - 1 (3.23)

¥ow the hypothesis of the inspector is
2

o
i

o)

o, = (

A-g, ¢J-1 €A, +0 1

1 13 ) (3.24)
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or, in short
H= a0y €268+ 0fs 2= (3.25)
(More generally H ={A: A-a, £ ) £ A+ azg ).

2 and m, measurements the inspector tests his hypothe-

sis with a test § which is given by the critical region K(§) for by = 3& -1
2

With the help of the n

)

(. . (3.26)
K (8 '{AZ' by £ 8y = o3 by B4 ""1}

This means that the inspector rejects his hypothesis if Azg K (8) and that he
does not reject his hypothesis if 4, ’ K (8).

Note: 1In the case that the hypothesis (3.25) is rejected, the inspector
divides his n and m measurements anew, that is he takes another set of n,

and ml measurements to form his hypothesis.

The test given above is characterized by an operation characteristic P ()
which is defined by

P(A) = p(8,eK(8)/J-1 = A}=1~p(A1-014A £ A +o,/ J-1 = Y] (3.27)

2 1

The calculation gives

1

A.~c,— A A, +o,= X 0.2 g2 =

171 1 J I 2
TR N VY L0, = + )

) 92

P(A) = 1+ ¢(
(3.28)

The form of P (A) is given in Fig. 6.

For example, the upper boundaries for the errors first and second kind can

be expressed in terms of the operation characteristic P(A):
(i) a, the upper boundary for the error first kind is given by
p(AzeK(é)/ J-IeH) € o (3.29)

With (3.28) one obtaines

a = P( A= A+ o]) = 3 - ¢ ( 21 ) (3.30)

2 2
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(ii)/3, the upper boundary for the error second kind, is given by

P (Azf K(8)/J-1 fH) £ g (3.31)

With (3.28) one obtains

8= 1P\ = &t o) =g 2ty - L (3.32)
; 1 i dy 2 *
From (3.30) and (3.32) one sees
o+ B=1 (3.33)

Thus o and B cannot be made as small as one would like to have. However,
this would not matter much, as instead of postulating certain values
ofdeuui/é, it may be postulated that the generalized errors are smaller

than some given values. More exactly

(1) It is postulated that the generalized error first kind, that is the

probability that A, > A+ ag, or A2 <byma oy for AeH and a >1 is

smaller than ao:

(3.34)
P(8>0) + a0, 8,< by = a0y /x e H) £ ag
or
a =2 = o ﬁéﬁllgl ) = o (a-1) o, ) (3.35)
o] 02 02

(ii) It is postulated that the generalized error second kind, that is the

probability that by~ 9y 4 Az £ Al + 0, for x > Ay + bcl and b > 1 is

smaller than 80:

p( &y § K(8) X <4;=b ol)}\>A1+bcl) N (3.36)

or g g

B, = #((b+1) ;,f )= 6((b-1)

1
Ta
L

) (3.37)
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These postulates mean that the probability, that for X€H the value of A2

falls far from H (>Al + aoy or<A -aol) respectively that for A far from H

1
(>A1+ b01 or<Al— bol) the value of A2 falls into the region of acceptance,

is smaller than a, respectively Bo*

3.2.2 Probability of Detection

It is assumed that in the course of the next campaign the amount m of

fissile material disappears. The probability that from the n, and m, measure-

ments the inspector will find a value of b, between A and A+ dA is given by

p(a % A% A+dA / J=I+mo) (3.38)

1

The probability that from the n, or m, measurements the inspector will

find a value of A2 between A- 9, and A +0,5 is given by

‘ p(A-clé A€ A+ 0]/J=I+m0) (3.39)

2

In this case the inspector states that the amount m greater than A-o] and

smaller than A+ o, is missing.

1
As probability of detection p (mo; m’, m') the probability is defined that

the inspector makes a statement of the form 'an amount m with

1 1
m'i=0

m - o, €mn+ 0, is missing' wherem -~ o, 2 m', o + o, € m". Then

I
. 1 Yy o oy LA £ > £ = =
p(mb, m', m') //’ dA p(A o A2 A+o]¢ sAl A+dA /T I+m0)
m'+o

1

1
m-=c
I

= dA p(A-o,éA. %0 +o, [/ J=I+m )+ p(A€A,€A+dA [J=T+m )
J i Z 1 o - ] (o]

m'+cI
mn_m _Ol
%9
1 - % °1 Vi x2
" dx / ¢( 5, (x+1))- ¢ ( 5, (x=1)) _/ exp (- —5—)
m'-m_+0
o 1
g
1

(3.40)
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Example: Let

m' = mo—Zol; m' = m o+ 201 (3.41)
In this case from (3.40) )
+
<m>=2¢<1>—/"—3— ax 6 2 (e-1) (-—"—2—> (3.42
p(m - X ¢ 5 X exp > .42)
-1

Up to now the unaccountable losses (MUF) were not considered. They may be
taken into consideration in the following way. The inspector who states that
an amount m greater m' and smaller than m'" is missing, says: Because of my
experience I assume that the fraction S of the total input is MUF. Therefore
I state according to (3.24) that the amount A with

bymoy=§ I, €A a+ o =TI (3.43)

has been diverted. Accordingly the probability of detection p(mo, m', m") is

the probability that the inspector will state that the amount Awith
fi -g. - £ ) €4 - :
o -, § Jin A Em *+0, SJin (3.44)

where m -~ o 2nm', o o, £ m', has been diverted if the amount m will be

diverted.

3.2.3 Costs and Optimization of Costs; Effectivity

The costs of the safeguards system are as given by (3.11). Now the inspec-—

tor makes quantitative statements, therefore the postulates of part 2 have

to be modified as they were adjusted to the case of non—quantitative state~
ments.
The following postulates are established to take care of the quantitative

nature of the model B.

(i) In connection with the probability of detection it is postulated
(1) m' and m" are functions of m s that is m'(mo) and m"(mo).
B .« = o ' H
) 3 (@): = p(a; n'(m), '@ ))
(11) The generalized error first kind is less thancb.

(iii) The generalized error second kind is less than 8.
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Example

Let according to (3.41)

m' =m- 20 ; m"
o

1} = mo+201; o, fixed (3.45)

1

and as in (1.6)

ml B
o

p (m) =1le

Then from (3.42) and (3.45) the following conditions are obtained

2 2
o, = b = const; o, =38 (mo) =:g (3.46)

Furthermore it is assumed that the postulates (i, ii) are satisfied by
(3.46).
Therefore, the problem is to optimize

“1 %
C = + + Bln + 82m (3.47)

oJZ 0.2

T

n = = = 8 (3.48)

and the natural conditions

2
=n: = m;: . < < . £6°£
n, + n, =n; m1+m2 m; nv’ mV>O, a, 53 a3 ‘b1 5; b2
(3.49)
The solution is sketched below:
Let
n, = ymn; m= yom (3.50)

According to (3.49) the allowed regions for Yy and y, are
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leg e9-1 Loy oo L
SEY, sl pf Y ¢ o (3.51)

From (3.48) one obtains

2 _ .2
where
v, -y ¥, (1-y,)
Syv oy vy (bre)b)s 5y = —o—m— (y (g+b)-b)  (3.53)
1 72 172
The costs (3.47)
*1 *2
c = + + Bl n + Bzm (3.54)
nS1 nS2
are optimized so that the relation
1 1 1 1
o.B = o,B = o = a =
171, 2 272 | 2 1 .2 2 (2
C(n_,m ) = 2( ) T+ 2 ( ) s n_ = (< ) s m = (< )
o’ o S] 82 o BIS] o 8282

is obtained.

JZ’ 012, the eq. (3.52) is inserted
into eq. (3.55) and the following is obtained:

To optimize C(no, mo) with respect to ©

2 2 1 2 (3.56)
¢ (no’mo’ 95 > GI ) c.2 * c.2

. . . . 2 2
The minimum is given by the boundary values of GJ > Op ¢

C(no,m : 02 . 02 = 1 + 2 (3.57)
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2 2
This is the absolute minimal value of the costs C. By fixing 8& and‘:I
: o o
the values of y]-and y, are fixed and therefore, by eq. (3.50), n and g#
for all vg/uﬂwith 1€vE€n-1, and 1 é/M € m - 1, This assumes that the

boundary condition (3.51) for Yi.0 is fulfilled.
b

The equations determining the optimal values of Yy and y, are

2
2 2 2
o B8 o
S b TN L L S (3.58)
10 o, ml 20 m az
therefore
v, -y ) ¥y, (1-y,)
= * (y,(b+g)-b) = -B; - - (y,(g+b)-b) = A (3.59)
¥~y 2 Y7y
172 1772
Eq. (3.59) leads to an equation of third order in&X:
y 3+C y 2+C y,#C =0 (3.60)
1 271 1”1 ¢
where
A b
C = Kl (1+4B- 7))
A =D _5y ca-a) - Sby by 57
C,= EA1 L (5= B) (AjmA)) = (g+b) (148~ ) + (3 —1) B/
bA
A _ b 2 b, -
Cy= bzl 124, (B~ Nt ot () (1 _/
b % b
A= (g#0)( 7 = 1) = Zp s Ay = (g#b) (- 1) B + bB

As follows from (3.51) one has to choose that solution of (3.60) which satis-

fies the condition

8,a B,a, B,a 8,b,,
11 y €1 - 2 272 £y 1~ 22 (3.61)

Eq. (3.57) gives the effectivity of the system under consideration - it is

independent of m
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Note: In the framework of the inspector's system one had quantitative
statements, too, but they were not used, for one wanted to compare the
inspector's system with the system based on flow measurement in the form
of the former model A. For example, in the framework of the inspector's

system, the probability of detection p (mo; m', m'") is given by

m" 2 mo"'V
" k
pa m', w) = 1 (T I - Lk (3.62)
v=m' B

Therefore, it would be possible to compare the inspector's system with the

system based on flow measurement in the form of model B also.

Compilation of Main Formulas of Different Models

The more important expressions developed for the probability of detection,
error first and second kind, cost functions, and effectivity, for the two

safeguards systems, have been shown in Table I.

Conclusion

The analysis carried out in this paper shows that the effectivity of a safe-
guards system can be defined in a quantitative way. It also shows that the
effectivity defined in this manner can be used to compare widely different

safeguards systems.

Two models for a safeguards system with flow measurement, were studied on

the basis of testing hypotheses for the amount of diverted fissile material.
From the mathematical stand-point it is of particular interest, to note that
these tests were adjusted only with respect to the costs which they themselves
cause, and not, as is usually the case, the losses (positive or negative)
which they cause. This slightly unusual way was chosen as in the case of

safeguards systems, the losses are difficult to quantify.

The models are not complete and further work is in progress.
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TABLE I. COMPILATION OF MAIN FORMULAS

§ Instrumented System
i Inspector's system
§ Model A Model B
. % gk, "o Z- Mg m'-m_ -
Probability of ;p(m0)=l—(l— —2) (1.4) |p(m )= 1-¢( } (3.8) o 9
» H n [o] e
Detection ! b]
p(m ;m';m") = L dx /_@(Sl-(x+l)+
o’ 3 m’ - 02
m'-n _+
o 91
o1
oy _ <2
= ¢(=— (x-1))_/exp (- 7 ) (3.40)
0y -
Error first . (Upper boundary)
kind a =0 a= 1-¢ (—6—) (3.5) 3 201
o=3- ¢ ( =)
| 2
Error second 1 ak . M z-m (Upper boundary)
kind Bm )= (1= —=) (1.5) {R(m ) = ¢ ( ) (3.10) 20
. [o] n : [¢] (o} B = ¢( 1 ) - .]-..
Oy 2
. | o a '
Cost function | C = a1k+a2q (L.11) C = 1, 2 + Bn+ Bm (3.11)
' 0.2 0.2 1 2
| hj I
— T ;
Effectivity ‘ Copt(mo) =2 (%%%) 2] In the casen =m = 1 | In the special case given in eq.(3.45)
[optimum costs | | 2a1 2a2
as a function of | C (m) = . C _(m ) = + (3.57)
diverted material) opt "o -1 2] opt o ) b,
| @ 2(1=%)- ¢~ (1-p(m))
(3.21)

€T
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List of Symbols

A(S)
c

c,d

il

J=J.~J
in out

it

K ($)

1= § Ji.n

P (X))

Region of acceptance of the testd
Costs of a safeguards system

Losses of the operator in the framework of the

inspector's system

True inventory at time t

Measured inventory at time t

True difference between input and output

Measured difference between input and output
Critical region of the test é

Number of inspectors in the inspector's system
Losses of fissile material, as a fraction of input
Amount of diverted fissile material

Number of inventory measurements

Number of input and output measurements

Operation characteristic as a function of } = J~I
Probability

Probability of detection

Probability of detection at a certain area in case of
diversion of fissile material in the framework of the

inspector's system

Number of areas at which fissile material ‘can be diverted,

in the case of the inspector's system
Time
. , . 3
Value of the game which describes the inspectors system

Boundary of the critical region of the test in model A
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List of Symbols (continued)

o, B Errors first and second kind

al,Z;Bl,Z Coefficients of costs of safeguards systems
J Test

€ Mathematical symbol for 'element'

¢ Exrror function
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' I
Copt

Fig 1: Effectivity of safeguards systems:0Optimized costs

as a function of material mo to be diverted.
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Effectivity of safeguards systems:Forfixed budget
1 . . .
Copt system Il is more effective, for fixed budget

Copt systemI is more effective.
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C(67)

Copt

Fig-3 Costs of a safeguards system as a function of 62
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Fig.4a: Postulated probability of detection as a

function of diverted material.
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Fig.4b: Effectivity of the system: Optimized safeguards
costs as a function of diverted material.

Meaning of Copt/# and mo’ see text.
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Fig.5a: Postulated probability of detection as a
function of diverted material.
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Fig.6 Operation characteristic of the test given by (3.28)




