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Summary

A computer programme, calculating the thermal and mechanical behaviour
of fuel pin sheaths, has been written in the framework of the develop-

ment of the sodium cooled fast breeder reactor SNR.

This programme, named CRASH (CReep Analysis in a fuel pin SHeath), allows
to determine the evolution in the time, of the tri-axial stress and

strain states, when creep or plasticity takes place in the material.

The basic assumption for this calculation is the axi-symmetry of the
sheath. The loads, which can be taken into account by the programme,
are: an outer pressure, an inner pressure, a temperature gradient and

a fuel-clad radial and axial interaction. These loads can be any func-

tions of the time.

The programme has been conceived in a sufficiently general way as to
allow modifications, as soon as the knowledge of the material behaviour

under irradiation would improve.

It is so that the programme can use any creep or plastic law and that

the material properties can be any functions of the temperature.

On the other hand, in spite of this general character, the computing
time is sufficiently small as to allow parametric studies. The possibi-
lities of application of the programme are thus rather large: they cover

the design of fuel pins as well as the analysis of experimental results

of irradiation on sheath materials.
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Zusammen fassung

Im Rahmen der Entwicklung des Schnellen Natriumgekiihlten Brutreaktors
SNR wurde ein Maschinenprogramm geschrieben, das das thermische und

mechanische Verhalten der Brennelementhiille berechnet.

Das Programm mit dem Namen CRASH (CReep Analysis in a fuel pin SHeath)
bestimmt die dreidimensionalen Spannungs— und Dehnungszustinde in Ab-
hingigkeit von der Zeit bei Kriech- oder Plastizitdtsverhalten des Ma-

terials.

Die Grundvoraussetzung der Rechnung ist die Axialsymmetrie der Hiille.
Die Belastungen der Hiille, die in dem Programm beriicksichtigt werden
konnen, sind: der AuBendruck, der Innendruck, der Temperaturgradient
und die axiale und radiale Wechselwirkung des Brennstoffs mit der Hiille,

Diese GroBen konnen beliebige Funktionen der Zeit sein,

Das Programm wurde in einer geniigend allgemeinen Form verfaft, um leicht
Umschreibungen vornehmen zu kdnnen, die den Fortschritt im Wissen um

das FestkOrperverhalten unter Bestrahlung beriicksichtigen. So kann das
Programm beliebige Kriech- oder Plastizititsgesetze verwenden und die
Materialeigenschaften kdnnen ebenso dem neuesten Kenntnisstand entspre-

chend eingegeben werden.

Andererseits ist die Rechenzeit trotz des allgemeinen Charakters genii-
gend klein, um Parameterstudien durchfiihren zu konnen. Die Moglichkei-
ten der Anwendung des CRASH-Programmes sind so recht groR: sie erfassen

den Entwurf eines Brennstabes ebenso wie die Analyse experimenteller

Ergebnisse der Bestrahlungen von Hiillmaterialien.




Sommailre

Un programme de calcul du comportement mécanique et thermique des
gaines des élements combustibles a été écrit dans le cadre du de-
veloppement du réacteur rapide, surgénerateur, refroidi au sodium

SNR.

Ce programme, appelé CRASH (CReep Analysis in a fuel pin SHeath),
permet de déterminer l'évolution dans le temps, des etats tri-axiaux
de contrdinte et d'allongement des gaines, lorsque du fluage ou de

la plasticité a lieu dans le matériau,

L' hypothése de base pour ce calcul est que la gaine préseﬁte une
symétrie de révolution. Les sollicitations, qui peuvent etre prises

en compte par le programme, sont: une pression extérieure, une pres-
sion intérieure, un gradient de temperature et une interaction radiale
et axiale entre le combustible et la gaine. Ces sollicitations peuvent

étre des fonctions quelconques du temps.

Le programme a été congu de fagon trés génerale, de maniére a pouvoir
€tre amélioré a chaque progrés des connaissances sur le comportement

mécanique des matériaux sous irradiationm.

C'est ainsi que le programme peut traiter n'importe quelle loi de
fluage ou de plasticité et que les propriétés du materiau considéré

sont toutes des fonctions quelconques de la temperature.

D'autre part, malgré le caractére geénéral du programme, le temps de
calcul est suffisamment réduit que pour permettre des études parame-

triques.

Les possibilités d'application du programme sont donc vastes: elles

vont du design d'éléments combustibles d 1'analyse de résultats expéri-

mentaux d'irradiation sur des materiaux de gainage.




0. Introduction

A computer programme calculating the thermal and mechanical be-
haviour of fuel pin sheaths has been written in the framework of the

development of the sodium cooled fast breeder reactor (SNR).
The report summarizes the method of calculation used and gives a
brief description of the programme. In the first part the basic equa-

tions for the calculations of the stresses and strains will be given.

The second part shows how these equations are applied in the programme

and describes briefly the auxiliary calculations.

The third part gives a description of the programme, its input and out-

put data.




1. General method of calculation

1.1, Basic assumptions

One has assumed, throughout this report, that the fuel pin

sheath could be considered as a perfect circular cylinder.

On the other hand, all the loads on the sheath (inner and outer
pressure, axial force, temperature distribution) are considered as

axisymmetric.

The sheath is considered as a long tube and the calculations are
performed for cross sections far enough from the ends, in order to
have negligible end effects, Furthermore, axial variations of the
loads, as an axial temperature gradient or an axial variation of the

fuel sheath contact pressure, are considered as negligible,

The material is assumed isotropic in what concerns all its proper-

ties.
The creep or plasticity occurs at constant volume,

All the calculations will be handled in cylindrical coordinates (r, 9,

z).

1.2. Components of the stresses and strains

The analysis of stresses and strains in a solid body requires i
the determination of the various components of the stresses and the

i
strains for all the points of the solid. E
In a general problem in cylindrical coordinates, one must determine E

T T an he !
rz’ 0z dt i

6 components of the total strain €rr Egv €5 Yigs Yyps Yg,o

the 6 components of the stresses Gpr Tgr T, Togo

cal coordinates, with the various components of the stresses on each

face. The arrows indicate the positive directions of the various stress

components. The convention of sign is the same as in [ﬂ :

|
|
The figure | shows a sheme of a small element of volume, in cylindri- {
|
|
i




- the normal components are positive if they produce tension
and negative if they prd&uce compression

- the positive direction of the shear components is the same
as the positive direction of the coordinates axes if a ten-
sile normal stress has the positive direction on the corres-

ponding axis.

1.3. Symmetry considerations

With the assumptions of symmetry made hereabove (para 1.1.),

some of the stress and strain components disappear:

i) In axisymmetric problems the stress components T Yo, and
the total strain components Y. Yez must be equal to. zero,
to satisfy the condition of symmetry. Moreover, all the other

components are independent of the coordinate 0[1].

In long tubes, where axial variations of the loads are assumed

[
-
~r

negligible, all the cross sections remain plane and perpendicu-
lar to the axis of the cylinder after deformation. This can be
easily shown: consider two adjacent axial slices in the sheath
(fig. 2a). These two elements have identical deformations. Fur-
thermore both elements are symmetrical with respect to their
mid-plane and, as the loads are symmetrical with respect to this
plane, the deformations are also symmetrical with respect to the
mid-plane., If the cross sections don't remain plane, the two ele-
ments can no more be applied on each other after deformation
(fig. 2b). The continuity of the material could no more comply
with, The cross sections must thus remain plane after deformation
(fig. 2c).

From the condition of plane axial deformation, it results that Yeg is

equal to o. This fact imposes in turn that L is equal to o.

As the loads variation is axially negligible, the stresses and strains
don't vary with z or, in other words, all their components are indepen-—

dent of z. Only one section in the whole sheath is thus considered for

the calculation.




e

However, if one wants to know the influence of the temperature
level in the sheath or of the power per unit length, calculations
can be done for several cross sections in the sheath. Neverthe-
less, these calculations assume that the axial temperature gra-
dient or the axial variation in power distribution have no influ-

ence on the stress and strain distribution in the considered
cross—section.

With the assumptions of symmetry made, only three components of

the stresses (or, oe and cz) and three components of the total
strains (er, €q and sz) are different of zero., This means, in other
words, that the principal directions are the coordinate axes direc-—
tions.

Moreover, all the components of the stresses and strains are func-

tions of the radial coordinate only.

1.4, Basic equations for the determination of the stresses and strains

In the theory of elasticity [l], use is made of three types of
equations to determine the stress and strain states of elastic materi-
als: the equilibrium equations, the compatibility equations and the re-
lations between stresses and strains. As will be shown later, in the
two first types of equations, no assumption is made about fhe behaviour
(elastic, creepiug or plastic)of the material. These two first types of
equations can thus also be used for creep or plastic analysis. The

third type of equations describes the behaviour of the material. This

will be first investigated.

1.4.,1. Relations between stresses and strains

In creep or plasticity problems, the total strains are usually
divided in three parts:

- the elastic strains (noted by the index el)
- the thermal strains (noted by the index th)

- the creep or plastic strains (noted by the index c)




The elastic strains are well known [1]. They are expressed in terms

of the stresses by the classical Hooke's laws:

' .
r el = El% u(o8 + oz)- (1.1a)

=1 -
€8 o] = E,UB u(cr + oz). (1.1b)
[ 1
€2 e1 T EL% u(cr * OG)J (1.1¢c)

The thermal strains are the same in the three directions. This comes

from the assumption of isotropy of the material (para 1.1). One has:

rth - % th - Sz th =T (1.2)

In this expression, the value o represents the thermal expansion co-
efficient. If the thermal expansion is not linear with the temperature,

a is a function of the temperature.

The value T represents in fact the temperature difference between the
state for which the stresses and strains are calculated and a reference
state, where the stresses are assumed equal to zero and for which the
dimensions are given. The value T is generally a function of the coordi-

nates. In this particular problem, it is a function of r only.

The relations between the creep or plastic strains and the stresses are
empirical equations. These empirical equations are generally obtained
from experimental results for uniaxial stress states. The empirical

creep or plastic laws are generally of the form [2], [3]:

seq = f(oeq,T,t,...) (1.3)

These empirical laws are very often intricate and non linear. This fact

brings up many difficulties in the mathematical solution of the equa-

tions.
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The relation (1.3) has, of course, not the same expression for
plasticity and creep. Its expression can also differ from one

material to the other.

However, as will be shown later, an iterative solution of the
equations is possible with the assumption that the permanent

strains are known functions of the coordinates. The discussion
of the form of the equation (1.3) will be made in more details

later in para 2.6. and 2.7.

As the permanent strains obtained with equation (!.3) are written
for a uniaxial state, the question arises then to find an equiva-
lence between a uniaxial stress or strain state and a triaxial one.

This question is discussed with some details in [4].

In this report use will be made of the Mises or of the Tresca theo-

ries:
- the Mises theory states that two states of stress or strain
are equivalent when the deformation energy is equal for the
two states. Knowing the state of stress or strain at a point
in a tridimensionnal state, one can define an equivalent stress
or strain in a monoaxial state, by equating the equality of

the deformation energy for the two states. One gets finally:

2

1 2 2
ceq -vral/Qor 06) + (o8 oz) + (or oz) (1.4 )
and, in the same way, for the strains:

VG; 2 2 : 2
seq —4~§ (er ce) + (e8 ez) + (er sz) (1.5 )

- The Tresca theory states that two states of stress or strain are
equivalent when the maximum shear stress is equal for the two states,
This leads finally to the following definition of the equivalent stress:

g =0 -0 . (1.6 )
eq max min

s




..12...

. res tively th argest and the
where 9 nax and O .in 2re respectively the larg

smallest values of or, % and oz.

For ¢ one has:
eq

= % (e -€ .) (1.7)

One has further assumed that the permanent strains verify the Mi-
ses relations [3], [5], [6]:

re B¢ rc zc eBc zZc (1.8)

and the condition of constant volume [3], [5], [6]:

Ere T C o T E e T 0 (1.9)
The combination of the equation (1.8) and (1.9) with, either the re-
lations (1.4) and (1.5), or (1.6) and (1.7), leads to the following
relations between the creep strains and the stresses:
Eeg cf
€Ee ™5 o - 1/2(08 + cz)] (1.10a)
eq
€aq cf
Sgc = 5|0 = }/2(0, + "z)] (1.10b)
eq
Eeg cf
€ = °eq o, 1/2(0r + 08)] (1.10¢)

The relations (1.10) are known as the Soderberg equations [7]. In con-
clusion of this paragraph, one can give the expression of the relations

between the total strains and the stresses:
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1 1
= E[Or u(o8 + oz). +oT + e (t.11a) |
L
1 , I
=1l - i
e E["e uo_+ 0| + aT + g (1.11b) |
€ = l{o - w(o_+ 0 )T + oT + ¢ (l.ilc)
z El z r 87 zc

In these equations, the values of the creep or plastic strains can

be replaced by their values given in (1.10).

These equations express that each element of the solid body is

in equilibrium under the various forces acting on it.

In tri-axial problems, there are generally three equilibrium equa-
tions, one for each of the three coordinate directions. For this par-
ticular problem, the projection of the forces gives a non trivial
equation in the radial direction ounly [l]. On the figure 3, one has
represented the stresses on the 4 lateral faces of an element of volume.

The resulting forces on the various faces are worth:

- face | (or + dor)(r + dr)do dz

- face 2 - ordedz E
- face 3 or 4 9 dr dz

Surming the projection of these forces in the radial direction, one

gets: F
}I
|
|

. de
(Or + dor)(r + dr)de dz o rd6 dz Zoedr dz sin 7 = 0 (1.12)

This leads finally to: |

r, 8., (1.13)
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1.4.3. Compatibility equations

These equations express that the solid remains continuous
after deformation. The deformation of an element of volume are not

arbitrary. Due to the presence of neighbouring elements, some res-

trictions exist to the deformations, which are expressed by rela-

tions between the components of the total strains.

With the symmetry considerations made in para 1.3, one can deduce
very easily the compatibility equations. If u is the radial displace-

ment. the value of the radial total strain is then:

er=§‘;‘ (1.14)

Consider now a circumference, having a radius r before the deforma-
tion of the solid. After deformation, its radius is (r + u). The cir-
cumferential change in length is thus:

AL = 2n(r + u) - 2nr = 2wy (1.15)

and the expression of the tangential total strain:

_ AL _ 21u _ u (1.16)

Finally, from the symmetry considerations, the axial total strain is

independent of r, 8 and z. One gets thus:

E_ = C3 = constant (1.17)

1.5. Solution of the equations for known permanent strains

In this paragraph, a solution of the system composed of the equi-

librium equation (1.13), the compatibility equations (1.14), (1.16) and
(1.17) and the relations between stresses and total strains (1.11) will

be given by assuming that the permanent strains €re® €8, and €, c are

known functions of the radial coordinate [3].
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The values of the stresses, as functions of the total strains and

of the permanent strains, are first determined from the equations

(1.11),
One gets:
E HEy E
Or =Tml Ty aT] + o (sr - erc) (1.18a)
e
E t E _
e =T - omlT+ 0~ aT] * 1y (Fg T el (1.18b)
ue
E t E
Oz =3 — T - aT] + T (ez ezc) (1.18c)
with:
et = Er +€g t ez (1.19)

One replaces then the stresses in the equilibrium equation (1.13) by

their values as a function of the strains, given by the equations

(1.18).
One gets:
u det _ 1 +u  d(eT) der _ derc
1 - 2u dr ] - 2p dr dr dr
E_— € E__ - € o
r 8 re B¢
+ = = 0 (1.20)

One uses then the compatibility equations (1.14), (1.16), (1.17) to
replace the values of €. g and €, in the equation (1.20).

Noting that:

e =¢c +e.+e =244 ' (1.21)
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one has:
%y , 1ldu _.E_ - l ~ 2y [ 3 ch]
dr2 r dr r 1 -y dr r
I + u d(aT)
= It (1.22)

The equation (1.22) allows to find the expression of the radial
displacement u. The integration is performed as follows:

The equation (1.22) can still be written:

1 + u d(aT)
1 -y dr

[l d(ur)] _ 1 - 2p “rc ~ f8c ]+

Tl -y [ dr r (1.23)
A first integration between the limits a and r gives, after group-

ing all the constants into C]:

r e - €
d(mc)=1—2u[re +rf _5-____€’sdr]
dr 1 - n rc a r

. t 5 aTr + C. r (1.24)

A second integration leads to:
r re =-e¢
u=l ZU[j edr+frdrf —E(:—-Q-Edr]
I - u re r
a a

r
+ ! “J[ aTrdr + C r2 + C (1.25)
H a 1 2

Making use of the formula of mtegration by parts and of the Leib-

nitz formula, the term with double integral sign becomes:
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r r e - € 2 pr € € |
f rdrf re Ac dr “Lj re fc dr [
2 r ;

a a %

N : }

) a(erc - eec)rdr (1.26) .

One gets finally for the expression of the radial displacement:

1 - 2u r erc - eec E%
T u)[ .[ AT fa r dr]
r C
+.l__+_.l“.-l- aTrdr+Cr+——g- (1.27)
I - ur a 1 r

Replacing now in equations (1.16) and (i.14) the value of u by the

expression (1.27) one gets for the tangential and radial total strains:

r
= ) R 1=
6= T rzjraaTrdr + 2(l — u)[ Jr r(e + g )dr

=

€

r Erc - ch C2 |

,:/' re_ ¢ dr] +c v -3 (1.28) i

a r '{

€E = - €, + L+ u oT + 1 = 2y [a E
r 2] 1 - u I -y re i
L €re ™ %oc ?

+J[ S— dr] + 2Cl (1.29) i

a |

The equations (1.28), (1.29) and (1.17) allow to determine the total
strains and, with the help of equations (1.18), the stresses in the

sheath, at the condition that the permanent strains are known functions

of the radius.

The constants Cl’ C2 and CB’ which appears in these equations, are inte-
gration constants. These last ones must be determined by the help of

boundary conditions. This is the object of the two next paragraphs. é

In the first one (para. 1.6), an analytical expression of the integration




constants will be given in the case where there is no contact bet-

ween the fuel and the sheath.

In the second one (para. 1.7), the case of contact between fuel and

sheath will be treated.

1.6. Determination of the integration constants. Boundary condi-

tions in the absence of contact

The boundary conditions can be expressed, in this case, as

follows:

- the radial stress at the inner face of the sheath must be equal
to the inner gas pressure

- the radial stréss at the outer face of the sheath is equal to
the outer pressure (coolant pressure)

- the integral of the axial stress on a cross section of the sheath

is equal to the axial force acting on the tube

To equate the two first conditions, one needs the expression of the
radial stress. This last one is obtained by replacing, in equation
(1.18a), the values of €.s €g and €, by their expressions (1.29),
(1.28) and (1.17). One gets finally:

- €

1 1 r 1 T fre B¢
o =E[———_——————f aTrdr + _2f dr
r I - u r2 a 21 -pl) a r
r
l-2uj"
- (e + e, )rdr
201 - u2) . re fc
+ i I B ] (1.30)
O+ =-20) O+ wr2
One equates now that:
(o) = -p ’ (1.31)

(0 ) pap = Py (1.32)
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The minus sign, appearing in the second member of these two equa-
tions, is due to the fact that a positive pressure corresponds to

a compressive stress.

Putting:
I b
-—;[ oTrdr = L (1.33)
2
b a
1 b :
-—z-f (e, *+ g, )rdr = M (1.34)
b a
b Erc - E8
J[ ————;7——5 dr = N (1.35)
a

the conditions (1.31) and (1.32) become finally:

c C P

1 2 u - a
=2w 201 - 2w Cy = - (I + g (1.36)

C C

1 _ 2 M - 1 +p 1 - 2u

TR I e i R IR TEREED
SUSE E P (1.37)
2¢1 - w) Wg ‘

In the third boundary condition, use is made of the axial stress. This
last one is obtained with the help of equation (1.18¢c), in the same

way as for O hereabove. One has:

€ + €
1 u + _X¢ B¢

2 rc I +u

re__-—¢ 2uc, + (1= u)C
u j rc - B¢ dr + 1 3] (1.38)
a

(1 - 2p)(1 + W)
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On the other hand, the boundary condition on o, can be written:
b

Zﬁ[ g rdr = F (1.39)
a 2 z

The axial force on the sheath can be expressed in function of the

outer and inner pressure. One gets:

2 2
Fz = n(paa - pbb ) | (1.40)

The boundary condition (1.39) becomes finally:

2 o l-w o b [2 AR L u
-2 I =2 C3 T2 2
sz - azp
_ _ M _ 1+ b a
=T N] E 72 (1.41)

The three equations (1.36), (1.37) and (1.41) constitute a system of

equations in the three unknowns C,, C, and C_,. The solution of this

) 3
system 1s:
b2 1 - 3y I 1 - 2y
“ 72 2[1—u“2<1—u>M'2<1-u)N]
- a
2 2
1 - 2u Pp? T P2
- — R— (1.42)
b® - a
2.2
__ah  [1+y 1 - 24 o
©2 bz_az[ S TN I IO i

P, - P
-1+ uylLir—é] (1.43)




2 _ _ 1 -2y a
a2 (L - M) 5 (1.44)

These three constants, brought in the equations (1.28) and (1.29),
allow to determine the total strain distribution, satisfying the boun-

dary conditions and compatible with the permanent strain distribution.

1.7. Determination of the integration constants. Boundary conditions

in the case of contact between fuel and sheath

The solution of this problem is only possible, if some assump-
tions are made about the behaviour of the fuel itself, when a contact

occurs with the sheath.

It has been assumed that the actual outer fuel radius, when the contact
is established, is equal to -the deformed inner sheath radius and is

worth:
a+u =r.- pc/u.r (1.45)

In this equation, a + u, represents the deformed inner sheath radius,
assumed equal to the outer fuel radius after contact, re is an hypo-
thetical outer radius, that the fuel would have in absence of contact,
P, is the contact pressure and o is a radial fuel strength coeffi-

cient.

The values of re and « are assumed to be known functions depending of

the time only.

Furthermore, it has been assumed that when the contact is established,
the friction between the fuel and the sheath is such that the fuel and
sheath strains in the axial direction are equal [8]. The fuel-sheath

axial interaction can then be equated as follows:

2f / o (1.46)

In this equation, €, is the sheath axial strain, € f is an hypothetical

fuel axial strain, that would exist in absence of axial force on the
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fuel, the force sz is the axial force introduced in the sheath by
the pressure of the fuel (positive if tensile) and @, is an axial
fuel strength coefficient. The values €, ¢ and a are assumed to be
known functions of the time. This last condition (1.46) must only

be satisfied when €, f is larger as €," Indeed the use of the boun-
dary condition (1.46) with €, greater as € ¢ would mean that a ten-
sile force could be generated in the fuel column., This is, of course,
not possible, due to the division in pellets and due to the proper-
ties of the fuel column itself. In this last case, the boundary con-
dition in the axial direction is determined as in para 1.6. (equa-

tions 1.39 and 1.40).

The swelling and plastic behaviour of the fuel can be taken into ac-
count by a proper choice of the four functions of the time Teo Oy € ¢

and o .
Z

The boundary condition on the inner face of the sheath can then be

written:

(0 ng = 7P, " P, (1.47)

Taking the value of P. given by the equation (1.45), one gets:

(O ) paa = Py~ o(Fg = 2" u,) (1.48)

The equations (1.30) and (1.27) allow to determine respectively the

values of (o ) and u .
r'r=a a

Putting these values into (1.48), one gets finally the following equa-

tion:

[ i ) (]+u)aar]C _{l. .
1 = 2qu E 1 2
a

(1 + u)ar
Ea

w ..
]Cz *T-m G

1

>t [pa +a (r, - a)] (1.49)
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On the other hand, the boundary condition in the axial direction

is expressed by:

In bo rdr = n( 2, - b2 ) + F (1.50)
A &Py Py 2f ‘

Using the value of sz given in (1.46), the equation (1.50) becomes:

b
2 2
25[802 rdr = n(a P, b pb) + uz(ezf ez) (1.51)

This leads finally to the expression:

24 [ - U 1 + U z ]
L + C. =
1 - 20 1 1 - 2u E 12 - oyl 3
2
b Auw oo o 2-uw M
72 [‘1 sl T B N]
b” - a
b2 - a2 o€
1w uPpY TP Tzt ] (1.52)
E | 2 2 2 2 :
~ b” - a n(b” - a”)

The boundary condition on the outer face of the sheath can be expressed
in the same way as in the para. 1.6. The equation (1.37) remains still

valid in this case.

The equations (1.49), (1.37) and (1.52) constitute a system of 3 equa-
tions, allowing to determine the three unknowns Cl’ C2 and C3. These
equations are intricate and they will not be analytically solved here.

In the programme, they are directly numerically solved.

1.8. Principle of the solution

In para 1.5, the equations allowing to calculate the stress state
in a sheath for a known distribution of permanent strains, have been
written. The integration constants appearing in the equations were deter-

mined in para 1.6 and 1.7.
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Actually, the problem remains still unsolved since the permanent

strains are not known.

However a solution is possible by an iterative method [3]. For each

time where the states of stress and .strain are to be calculated the

following calculation steps can be performed:

1. Take a first guess of the distribution of permanent strains in

the sheath for the time to be calculated

2. TFrom this distribution of permanent strains and for the tempe-

rature distribution and the inner and outer pressure correspond-

ing to the calculation time, determine the value of the integra-

tion constants with the formulas of para 1.6 or 1.7

3. Calculate the distribution of the total strains in the sheath

with the equations (1.28) and (1.29)

4, Determine the state of stress in the sheath at the time of calcu-
lation from the values of the total strains with the help of equa-
tions (1.18) .

This stress state satisfies automatically the boundary conditions
and is compatible with the permanent strains state postulated at

the begin of the process

5. With the help of a creep or plastic law, calculate the increments
of permanent strains between the previous calculation time and the

present one

6. Compare the calculated permanent strains obtained in step 5 with the
assumed values of step 1.

If the differences are smaller as a given criterion, begin the cal-

culation for the next time., If agreement is no reached, go to the

next step

7. Determine a new estimate of the creep or plastic strains and begin

the process again at step 2

The successive calculation steps summarized hereabove will be reviewed

in more details in the part 2 hereafter.
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2. Practical application of the method

2.1, Generalities

The states of stress and strain will be determined for various
points in the thickness of the sheath, located in the same cross

section, and at various times.

At time O and in cold state, one considers n + | points of calcula-
tion, equally spaced in the thickness of the sheath, the first one
being located at the inner side of the sheath, the latest one at the
outer side. If corrosion occurs during the life of the sheath, its
thickness is reduced, but only the cold radius of the n+! th point
varies with time, the cold radii of the other points remaining con-
stant. If the spacing between the two last points becomes O, the num—

ber of points is reduced by 1.

The states of stress and strain will be determined for various values
of the time called '"the calculation times". In order to determine the

boundary conditions for each of these calculation times, one needs to

know the values of the inner and outer pressure P, and P, and, if a
solid contact with the fuel is taken into account, the values of e,
Ay € ¢ and @, as explained in para 1.7.

Moreover, one needs some data to calculate, for each calculation time,
the temperature distribution, As will be shown later (para 2.3), for
each time of calculation, the temperature distribution can be determined

from the value of the linear power q' and the coolant or average sheath

temperature T .
mp ture cs

One has thus to determine, for each time of calculation, the values of

the 8 or 4 variables functions of the time, respectively if a fuel con-

tact is considered or not.
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2.2. Determination of the variables functions of the time

The 8 variables functions of the time constitute a part of
the input data of the programme. As explained hereafter three me-

thods to give these input data are possible.

2.2.1. The 8 variables are parabolic functions of the time

— i o — — — o —— — — it v tanm m— m m— e m— o o — —

With this method, one needs only to give, as input data,
the 3 coefficients of the parabolas for each variable., Some coeffi-
cients can, of course, be equal to O in order to have a constant va-

lue or a linear increase or decrease with the time.

The intervals between the successive calculation times are equal with

this method.

This method provides an easy input for the simple problems.

2.2.2. The 8 variables are given by points

For each time of calculation, the value of the time is given,
followed by the values of the variables. One assumes that the functions
are linear between two successive points of calculation. The length of

the time intervals is no more a constant,

This method allows to follow, with a good accuracy, any functions of the

time.

It needs however a large number of input data (Up to 9 values for each

point of calculation).

2.2.3. Cycling of the time dependent variables is performed

If the time dependent variables are cycled, these cycles can,
of coufse, be represented with the method of para 2.2.2. However, to
save time in preparing the input data, a special subroutine allows to
calculate the successive cycles, when the first one only is described
by the method of para 2.2.2. A number of cycles is also specified and

the programme proceeds until this number is re:ched.
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One distinguishes two types of variables:

- the variables q', Tcs’ Py ®p and a, are reproduced, at each
point of any cycle, equal to the value they have at the corres-

ponding point of the first cycle.

- the variables P> T¢ and €, ¢ are increased or decreased during
each part of any cycle, of the same value they increased or de-

creased during the corresponding part of the first cycle.

This allows to simulate the increase of inner gas pressure due to

the fission gas release and the radial and axial swelling of the fuel.

2.3. Calculation of the temperature distribution

The temperature distribution in the sheath is determined, for
each time of calculation, from the linear power q' and the coolant or

sheath average temperature Tcs.

It is assumed that a part of the power is generated in the sheath it-
self, mainly by y-heating. The fraction of the heat generated in the
sheath F. is a datum of the problem. This datum is assumed to remain

h
constant with the time. The heat sources in the sheath are thus worth:

F q
o e
(b” - a)

q=

One assumes first that the coolant temperature is given. Then:

T =T (2.2)

The wall outer temperature is calculated with the help of a heat trans=
fer coefficient h. The value of this coefficient is assumed independent

of the time and of the temperature.

- 9
Tn+l Tco * 2nbh (2.3)




The temperature distribution in the sheath is determined with the
help of the conduction theory by assuming that the heat flows in
radial direction only. This theory [9] states that the temperature

distribution, for each ring between two points of calculatioﬁ, is

given by:

d2T 1 dT q

ZrTa Tk (2.4)
r

where k is an average heat conductivity in the considered ring.

After integration, this equation leads to the following temperature

distribution:
T=—%—Er2+Alnr+B (2.5)

where A and B are integration constants, to be determined by the

boundary conditions.

For the outer ring, the outer temperature and outer heat flux are
known. One can thus determine the integration constants for the outer
ring. This allows in turn, to calculate the temperature and the heat
flux at the inner side of the ring, values which are equal to those

at the outer side of the next ring.

A recurrence method allows then to calculate the temperature distri-
bution in the successive rings. The knowledge of the outer temperature

leads to:

= -9 2 - .
Ti+l 4k isl + A ln I + B (2.6)

The heat flux at the outer surface of the ring is known. Its value
determined by a heat balance, is expressed by:

2 2
' - -
Q' - ow(bT -

Piere

)q

Oipp = 2nri . 2.7)

+1
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On the other hand, it is equal to:

qr.

dT i+1 A
0. . = - k[—— = -k (2.8)
i+l drlr. 1 2 ri+l

After determination of the integration constants with the help of
the equations (2.6), (2.7) and (2.8), one gets finally the follow-

ing expression for the temperature distribution:

’ r.
_ Q.2 _ 2 l[ﬂl - g 2] i+l
T=T, 0 *35a ") Yglzr 20 110 (2.9)

This equation allows us to determine the temperature Ti’ by making
ORE . NN Sy 1{91-— ﬂ-bz] 1n itL (2.10)
i i T T T idan T 2 ) :

Moreover, the average temperature of the ring can be determined by

the equation:

r
1 i+1]
T, = P rz)Jfr 21Trdr (2.11)
i+l i i
One gets finally:
T =1, o+ @2 - 1D
av i i+l 8k i+l i
'L'2 r
Mq' _9q,21[1 _ i a]
* k[2n 2 P ][ 7" 3 3 InT (2.12)
ra—ri 1

As said hereabove, the value of k in the preceding equations is the
average heat conductivity in the considered ring. As the conductivity
of the material is a function of the temperature, its value must be

determined by an iterative process:
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One calculates first the value of Tav i with a value of k correspond-

ing to Ti+l' Using now the value of k corresponding to the calculated

T,y i° O0e determines a new value of Tvi This process is repeated
until the difference between two successive values of Tav { is less
as a convergence criterion, With the last value of k, one calculates

then the inner temperature of the ring with the equation (2.10). This

process can be repeated for all the rings starting from the outermost

one.

The average temperature of the sheath is determined as follows:

n
2 _ 2]
, EI[Tav i(ri+l ri)
T = (2.13)
av (b2 _ a2).

If the average sheath temperature is given, one proceeds by iteratioms.

The following steps are successively made:

1. The outer sheath temperature is made equal to the given average

temperature:

n+l Tcs (2.14)

2. A temperature distribution is calculated and an average tempera-

ture is determined with the method described hereabove

3. An error on the average temperature is calculated:

E = Tcs - Tav (2.15)

If this erroris greater as a convergence criterion, a new value

13
, called Tn+

is calculated:

of Tn+

1 1

T =T + E (2.16)

The process is repeated from step 2 until the convergence is reached.
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The knowledge of the temperature allowsto calculate the various
properties of the material at each calculation point: expansion
coefficient, creep or plasticity parameters. The Young's modulus
and the Poisson's ratio, however, are the same for all the points
of calculation., Their value is determined for the sheath average

temperature.,

2.4, TFirst guess of the permanent strains at the end of a time

interval

The values of the permanent strains at the beginning of a
time interval are known. They are equal to the values at the end

of the previous interval,

This postulates in fact that these permanent strains are known at
the beginning of the first interval, it is to say at time O. In

what concerns the creep strains they are identical to O for time O.

More difficult is, of course, the problem for the plastic strains
because these last ones are not time dependent. This problem has

been solved by the use of an hypothetical origin of the time (equal
to -1 hr), at which all the loads on the sheath (inner and contact
pressure, outer pressure, temperature gradient) are equal to zero.
For this time, the stresses in the sheath are equal to zero and, con-
sequently, also the plastic strains. The loads are then increased
during the time interval between -1 hr and O hr up to their value

at time O.

This expedient allows to have a first time interval at the beginning
of which the permanent strains are known. For the first iteration of
a time interval, the permanent strains increments are determined as

follows:

% At
As'ci = ci %
J J At

|

for i=1, n+l (2.17)

%
where j is r or 9 or z, Asjci is the increment at the convergence for
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the previous time interval, At the present time interval length

% , ,
and At the previous time interval length.

For the other iterations, corrections to the Aejci are brought

using the method of para 2.8.

The values of the assumed permanent strains at the end of a time

interval are thus worth:

€, . =€, .+ Ae. , - (2.18)
jei jei jei

2.5. Calculation of the states of stress and total strain for a

given state of permanent strain

This part of the calculations is performed in three steps
summarized at points 2, 3 and 4 of para 1.8. These steps will be

described in more details hereunder:

The determination of the integration constants is made with
the help of the expressions (1.42), (1.43) and (1.44) of para 1.6.,
in the case without fuel contact, or by solving the equations (1.49),

(1.37) and (1.52), if a fuel contact is considered.

In these equations, appear the values of the integrals L, M and N gi-
ven by the expressions (1.33), (1.34) and (1.35). These integrals are
numerically calculated with the well known trapezoidal rule. The ex-

pression of these integrals become than:

n

1
A LA a(Ty, DTy, Fyap) (Fyay - )] (2.19)
y B
M=— 1 1/2((€rc i * %oc i)ri
b” i=l
* (erc iv1 T Ce6c i+l)ni+1)(ri+l - ri)] (2.20)
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€rc i+l ~ ¢ i+l)
+ (r

T+l

fap - ri)] (2.21)
In the case of contact between fuel and sheath, the three equations
(1.49), (1.37) and (1.52) are numerically solved, i.e. all their
coefficients are numerically determined and brought into the subrou-

tine SIMQ [10], which allows to solve a system of linear equations -

2.5.2. Calculation of the total strains

The knowledge of the integration constants allows then to
calculate the total strains from the equations (1.28) and (1,29).
In these equations, the value of r is successively made equal to
the various X in order to assess the total strains at the various
points of calculation. The integrals appearing in these equations
are determined with the trapezoidal rule in the same manner as for

the integration constants hereabove.

2.5.3.. Calculation of the stresses

When the total strains are known, one can determine the stres-

ses for each point of calculation with the help of the equations (1.18).

For the calculation of the permanent strain increments, one needs to
know the equivalent stress at each calculation point., When creep cal-
culations are performed, use is made of the values of the average equi-
valent stress on the time interval. For plastic calculations, the va-
lues at the end of the time interval are used. The equivalent stress
values are determined with either the equation (1.4) or (1.6) at the
beginning and at the end of the time interval. Average values on the

time are then determined with the formula:

= I/Z(OZq .+ 0 .) (2.22)

o . i
eq 1 i eq i _
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2.6. Determination of the creep strain increments corresponding

to a stress state

The creep phenomenon is generally described in the literature
[2], [5], [6] in terms of creep velocity, i.e. the equivalent creep
rate is usually expressed as a function of the equivalent stress,
the température and the time. Other parameters, as the equivalent

creep strain or the neutron dose, can also be taken into account.

The equivalent creep strain increments will thus be expressed as a
product of the average equivalent creep rate during the time inter-—

val, by the time interval:

eq i eq ht (2.23)

[
(4]
it
m o

Among the numerous creep laws available, two laws were choosen, the
parameters of which can be easily found for many materials in the li-

terature about creep. They are:

2.6.1, First'creeR'law (Norton's law)

=]

=Ko (2.24)

In this equation, K and n are functions of the temperature., These
functions are given in the programme in form of tables for various
values of the temperature. The values for each point of calculation

are determined by interpolation in this table.

The value of the temperature used for the interpolation is the arith-

metic mean temperature during the time interval:

T, = - (2.25)

As the curve of K as a function of the temperature is not too far from

a straight line in a diagramme T-log K, the interpolations are performed

on the values of log K.




This creep law is expressed by:

¢ = Kko" " (2.26)
eq eq

where K, n and m are functions of the temperature. Their values are

interpolated from a table of properties in the same way as for the

first law.

In this creep law, the equivalent creep velocity is an explicit func-

tion of the temperature, the stress and the time only. The various

parameters appearing in the equation are deduced from experimental re-

sults performed at constant equivalent stress and constant temperature.

In the equation so obtained, the equivalent creep rate can, however,

be an implicit function of the creep strain.

This fact is of great importance, when use is made of this creep law

with an equivalent stress which varies with the time.

The equivalent creep strain curve as a function of the time for each

point of calculation will indeed strongly depend of this choice:

Consider curves of the equivalent creep strain in function of the time

for various values of the equivalent stress (figure 4a and b). Assume

that during the time interval O to £ the material is loaded with an

average equivalent stress Oy At the time s the representative point

in the diagramme will be At = AS; assume further that, during the time

interval t, to t,, the material is loaded with a mean equivalent stress

1 2’
2 and, between t2

4a is relative to increasing values of the stress with time, the figure

o and t3, with a mean equivalent stress Oqe The figure

4b to decreasing stresses. The problem arises now to determine the equi-

valent creep velocity between t, and ty. Two main theories are in pre-

sence [3]:

- the time hardening rule states that the equivalent creep velocity

is a function of time only. The creep velocity for the points At

and Bt will thus be respectively equal to the creep velocity at !

points A't and B't (fig. 4a and b).
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The curve of the equivalent creep strain as a function of the

time will thus be: O At Bt Ct

-~ the strain hardening rule states that the equivalent creep velo-
city is a function of the equivalent strain only. The creep velo-
cities at points AS and BS aré thus respectively equal.to the
creep velocities at points A'S and B'S. The curve of the equiva-

lent creep strain as a function of the time is thus O As BS Cs

The figures 4a and 4b show clearly that the strain-hardening rule
leads to larger creep strains as the time-hardening rule, when the
stress increases with time. The opposite conclusion is valuable when

the stress decreases with time.

In the programme, one can perform calculations with any one of the

two rules.

If the time hardening rule is used, the equivalent creep velocity is

determined for a value of the time equal to the mid-interval time:

T . Ko“q[t——*—ﬁ] (2.27)

When use is made of the strain-hardening rule, one calculates first
the value of the time corresponding to the point A's on the figure 4.

This time is worth: -

—_ (2.28)

K02

¢ = [(mH)EI 1/(m+1)

The average time for the interval between t, and t2 will thus be in

this case:

_ (m+l)e1 1/ (m+1) £, —’tl :
t, = [——-—n i (2.29)
Ko : '
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2.7. Determination of the plastic strain increments corresponding

to a stress state

The determination of the equivalent plastic strain increments
requires the knowledge of the curves of the equivalent plastic strain

as a function of the equivalent stress for various temperatures.

These curves are in fact a property of the material and the trend
of these curves can thus present significant differences from materi-

al to material.

Two types of curves of ce - € can be used in the programme:

q pl eq

2.7.1. First plastic law

This law assumes simply that the equivalent plastic strains
are equal to zero for equivalent stresses smaller than the plastic limit.
Beyond this limit, the equivalent stress remains constant and equal
to ‘this plasﬁic limit, whatever the equivalent strain may be. Such
an idealized behaviour of the materials is often used for theoreti-

cal analyses of plastic flow [ll].

This plastic law can be represented on a diagramme 0/(epl + eel) by
two straight lines: a inclined one with a slope equal to the Young's

modulus and an horizontal one, as shown on figure 5a.

The plastic limit is considered to be a function of the temperature.

In the programme, this function is given in a table.

For each point of calculation, the programme interpolates in this table

to determine the plastic limit.

The plastic strains increments are determined as follows:

If Ais the representative point at the beginning of a time interval

and if ceq i is the equivalent stress at the end of the time interval
determined with the method of para 2.5, the point B on figure 5a is
considered to represent the state at the end of the interval, The equi-
valent strain in this point is the same as for the point C, intersection
of the horizontal Oeq 1 and a straight line of slope equal to the Young's

modulus and going through A. | E
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The equivalent plastic strain increment is then equal to the strain

difference between points A and B,

1f this difference is negative the strain increment is made equal

to O.

This means, in other words, that, if the stress at the end of the
interval is smaller as the value at the beginning, the representative

point lies on the straight line A C and below the point A.

2.7.2. Second plastic law

The curve of the equivalent plastic strain as a function of

the equivalent stress is assumed to be an exponential (fig. 5b) of

the form:

e = Pl o (2.30)

where P and Q are functions of the temperature. The parameters P and
Q are determined in the programme in such a way that the points

(00 s € = 0.2) and (orp’ Erp) lie on the curve:

In € - 1n 0.2
rp

Q = — . (2.31)
1n crp 1n 9.9
[1n orp In 0.2 - 1In 9.9 in Erp]
: lno_ - 1lngo . :
P=e 0.2 (2.32)
where © is the equivalent stress giving 0.2 7 plastic equivalent

0.2
strain and orp and erp are the rupture stress and strain.

The values of %.2° Orp and'erp are input data of the programme. They

are given in a table as a function of the temperature. The programme

interpolates in this table the value of o , 0 and €__ for each point
0.2 Tp p

of calculation and then calculates the values of P and Q.
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The equivalent plastic strain at the end of the time interval is
calculated for each point with the equivalent stress for this time.
The equivalent plastic strain increment is determined as the diffe-
rence between the end value and the beginning value. If this in-
crement is negative its value is made equal to O for the same rea-

son as hereabove (para 2.7.1.).

2.8, Convergence method

When the creep or plastic equivalent strain increments corres-

"ponding to the stress state are calculated, they are compared to the

first guess assumed at the beginning of the process. If a sufficient
agreement is reached, the calculation of the next time interval can

be started. If, however, the.agreement is not sufficient, a correc-
tion is to be brought on the guess of the equivalent strain increments,

in order to get a better agreement at the next iteration.

The precision of this process is very important in what concerns the
rapidity of convergence of the calculation., It is thus very important,
in order to reduce the calculation time to use a method allowing to
reach the convergence with a small number of iterations. On the other
hand, the method must be sufficiently general to permit the use of any

creep or plastic law.

A method, responding to these criteria has been settled up from the

Newton-Raphson theory of solution of a system of non-linear equations
[12],[13].

For each of the n+l points of calculation, one gives at the beginning
of each iteration a value 61 of the equivalent permanent strain incre-
ment and one gets at the end of the iteration an other value of the in-

crement equal to 6 ,.
ci

At the convergence one must have:

6 . = éi for i=1, n+l (2.33)
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Each value of 6ci can in fact be considered as a non linear func-

tion of the n+l variables éj:

JICE SRR Y 5

ci ) for i=1, n+l (2,34)

n+1

One has thus to solve the following system of equations:

fi(él,..., 6j,..., 6 )Y ~-6,=0 for i=1, n+l - (2.35)

n+l 1

One knows a first approximation of the solution of this system of
equations. This first approximation is given by the values 6 taken

for the first iteration.

One can now calculate corrections ASi to these first values. By develop-
ing the function fi(éj) in Taylor's serie limited at the linear term,

one gets:

n+1
P

£ (5) = £(6,) + - (b0 >[86 ] y for i=1, n+l (2.36)

The equations (2.35) hereabove become then:

n+|

(hs, )[a6 ]5 60— A6, = 6 - f, (5 ) for i=1, n+l (2.37)

[
W o™+

1

These n+l equations constitute a system of n+l linear equations with
the n+! unknowns Aéj. This system can easily be solved on a computer
with the help, for instance, of the subroutine SIMQ [10]. The solution
of this system gives us the corrections on the 6j. The values of the
strain increments to be introduced at the beginning of the next itera-

tion are thus worth:

P ¥
éj‘ - 5; + 86, for j=1, n+l | (2.38)
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In the equations (2.37) hereabove, appear the values of the first
partial derivatives. In the programme, these partial derivatives are

determined by finite differences:

afi 1 L % %
[8—6-;]6j= 63‘ = ‘ﬁ [fi(él,...,éj + h,...,5n+1)

® kY

e ., 0
- fi(él"",éj’...,én"'l)] (2039)

2.9, Subdivision of the time interval

It has been observed that the convergence becomes very difficult
when the permanent strain increments are toolarge. For this reason and
also in order to reach a greater accuracy in the results, one has li-
mited the length of the time steps. This is made automatically in the
programme. The criterium used is that the eduivalent permanent strain
increments during a time stép must be smaller than or equal to the equi-
valent elastic strain for the same point of calculation at the end of
this time step. The time intervals specified in the input data can
thus be automatically divided in subintervals to satisfy the criterion

hereabove.

At the beginning of each time interval, the programme calculates a guess
of the stresses at the end of the time interval by making the assump-

tion that the permanent strains increments are equal to zero during the

time interval. From this guess of the stresses, one calculates with a
creep or plastic law a guess of the permanent strain increments. This
guess is compared to the elastic strains. If necessary, the time inter-—
val length is divided and the variables functions of the time are cal-

culated for this new value of the time.
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2.10. Method of interpolation

It is mentioned hereabove on several occasions that interpo-
lations are made in a table of properties. These interpolations are
performed in the programme with a special subroutine allowing li-
near or parabolic interpolations. The values of the temperature in
the table must be given in increasing order. The subroutine searchs
first between what points lies the value of the temperature Tx for
which a property is to be determined. Assume that Tx lies between

Tj and Tj . Then, the interpolated value of the property Ax’ in the

+1
case of parabolic interpolation, will be expressed by:

(bm - an)(Tx - Tj) + (an2 + me)

Ay = Ap + (T, = T)) R (2.40)
with

a=h - A ' (2.41)
b=A,, " A | (2.42)
m= Tj - TJ._l (2.43)
n= T T (2.44)

Using the same definitions as hereabove, one gets for a linear inter-

polation:

- )
Ax = Aj + (Tx TJ.)n (2.45)
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3. Short description and directions for use of the programme

3.1. Brief description of the various subroutines included in

the programme CRASH

The programme CRASH, in its version 2B, is constituted of
a main programme and 21 subroutines. The total amount of cards is

about 2000, The programmation language is FORTRAN IV,

Hereafter, follows a brief description of the various subroutines

constituting the programme:
MAIN PROGRAMME :

the main programme makes first the initialisations used during all
the job. At the beginning of a new problem, it puts the permanent
strains equal to zero. At the beginning of a new time step, the va-
lues of the stresses and strains at the beginning of the interval

are made equal to the values at the end of the previous interval,

Moreover, the main programme calls the main subroutines of the pro-

gramme.,
DATA:

reads and prints the data for each problem., It detects also the pos-—

sible errors in the input data,
TIMING:

the purpose of this subroutine is to determine, for each calculation

time, the values of the time dependent variables. From the maximum
length of the time subinterval calculated in the subroutine DIVIDE
(see para 2.9), the subroutine TIMING determines the values of the (
time dependent variables for the considered calculation time. The sub- ’
routine is divided in two main parts, the first one being used when
the time dependent functions are expressed as parabolas, the other
one being used when these functions are given by points or are cyclic

functions (para 2.2).
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PARAB:

is an auxiliary routine zalled from TIMING. It calculates the values
of the various functions dependent of the time when they are para-
bolic (para 2.2.1).

CYCLE:

This is also an auxiliary subroutine for TIMING. Its determines the
values of the functions dependent of the time when they are cycled

(see para 2.2.3).
DIVIDE:

determines the maximum length of the time subintervals in order to

avoid convergence difficulties (see para 2.9)
INIT:

is used for the division of the initial interval between -1 and O hr,

needed in the case of plastic calculations as explained in para 2.4.
CORROS :

determines the value of the outer radius for each calculation time,
in the case where corrosion occurs on the outer surface. The values
of the stresses and strains for the outer calculation point are also

corrected with the help of CORF.

CORF':

This is a small auxiliary routine used in CORROS.
CALC:

determines the first guess of the permanent strain increments (para
2.4), In the case where the swelling is taken into account, it controls
if a contact is established or not and makes then the choice between

the boundary conditions to be used (para 1.6 and 1.7).
TEDI:

calculates, for each calculation time, the temperature distribution in
the sheath, following the method of para 2.3. When the temperature di-
stribution is determined, this routine performs the various interpola-
tions in the table of the properties, in order to assess these proper-

ties for each point of calculation.
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INTER:

this auxiliary routine, called in TEDI, performs the interpola-
tions in the table of the properties with the method explained

in para 2,10.
ITER:

performs the iterations on the permanent strain increments. This
subroutine calculates the partial derivatives afi/aéj and deter—
mines the corrections to the permanent strains increments (see
para 2.8). The errors on these increments are also calculated here

and compared with the convergence criterion,
STRAIN:

the boundary conditions are determined in this subroutine by using
the method of para 1.6 or 1.7. The stress and total strain states
compatible with the boundary conditions are then calculated for a

given state of permanent strain.
CREEP:

calculates the equivalent creep strain increments according to the

para 2.6,
PLAST:

the equivalent plastic strain increments are assessed here with the

formula of para 2.7.

EQSSR:

this auxiliary routine calculates the equivalent stress or strain
from the three components of the stress or strain by the equations

of Mises or Tresca (para 1.4.1).
SIMQ:

this IBM subroutine [lO] allows to solve a system of linear equations. ;
It is used to solve the boundary conditions equations in STRAIN
and to determine the corrections on the permanent strains increments

in ITER. ?
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PRINT:

prints the results of the calculations at the end of each time

step.
MAX:

small auxiliary routine allowing to determine the maximum ele-

ment of an array.
PAGE:

this routine counts the lines to be printed and takes a new

page when it is necessary.
TIMAX:

allows to terminate the calculation when a given permanent strain
is reached.
The figure 6 shows a diagramme illustrating how the various sub-

routines are interdependent from each other.

3.2. Description of the input data

The input data for CRASH-2B are given with format specification.
All the floating-point numbers are specified with the format E!1.5,
whereas the integers have a format I3. When formats are specified,

values equal to O may remain blank.

A list of all the input data, with their location on the cards, their
format, their meaning and their dimension, is given in the table 3.1

hereafter.
The following remarks may be dome about the input data:

I. A data deck is constituted of a card number 1, followed of a series
of cards decks each representing one problem. The card 1 is thus

read only once per run.

2. Each problem is constituted of the following cards:

o
- one card n 2

o
- one card n 3
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(o]
- one card n 4

- one card n° 5a

- a serie of cards n° 5b and ¢, the number of which is equal
to the value of MM oncards 5a. The card 5b and c are omitted
if MM is equal to O, In this case, the programme makes use
of the same properties as for the previous problem. When MM
is>0, its minimum value is 2 or 3 respectively if linear or
parabolic interpolation is performed.

- Thenfollow the data concerning the time dependent variables.
Following the value given to ITIM (1,2 or 3) on card 3, a se-

ries of cards of type respectively 6, 7 or 8 is given.

i) If ITIM = | on card n° 3, the following cards are given:
- one card n° 6a
~ one card n° 6b
- one card n° 6c
.~ one card n° 6d
- one card n° 6e
- oﬁe card n° 6f
- one card n° 6g ‘
- one card n° 6h
o

- one card n 61

The last four ones must only be given if IFZ = | on card

n’ 3. In the other case (IFZ=2), they must be omitted. |
ii) If ITIM = 2, a series of cards n® 7a and b is given. The

value of TIME on the first card 7a must be equal to O.

For each calculation time,two cards, one card 7a and one |

card 7b are given. The calculation proceeds until a value i

of TIME equal to O is encountered, The easiest way to ter-
minate a problem is thus to give two blank cards at the
‘end of the series of cards 7. The number of time values -
is limited to 100. |
iii) If ITIM = 3 on card 3, cycling of the time dependent vari- i
ables is performed. The variables PUL (power per unit length),

TCS (coolant or sheath average temperature), PB (outer pres-—
sure), ARF (radial strength coefficient of the fuel) and AZF
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(axial strength coefficient of the fuel) are reproduced
equal to theirselves from cycle to cycle. The variables
PA (inner gas pressure), RF (fuel radius) and EZF (axial
fuel strain) follow a linear increase or decrease in each
part of any cycle, with a rate equal to the rate of the
respective part of the first cycle (see para 2.2.3). The
following cards are to be given:

- one card n° 8a ‘

- a series of cards n° 8b and ¢, the number of which is
equal to NCA on card 8a (maximum value allowed is 10).
These cards allow to describe the first cycle.

The calculation proceeds until the given number of cyc-

les on card 8a is reached.




Table 3.1.

List of the input data

Card Datum fortran colums format description
name
1 IDAY 1 to 3 I3 day these three data are used to print the date on the
(see re- IMONTH 4 to 6 I3 month|listing of the results
marks | ;
“and 2) IYEAR 7 to 9 I3 year

NPRGM 10 to 12 13 number of problems to be calculated

DDEQD 13 to 23 El11.5 strain increment used for the calculation of the partial derivatives
in the convergence process. If blank, the programme takes the nominal
value 5 x IO_6 (equal to the value h in para 2.8)

EPSILI 24 to 34 El1.5 | maximum error allowed at the convergence in the iterative process to
determine the thermal conductivity. If blank, the programme takes the
noﬁinal value .1°C (see para 2.3)

EPSIL2 35 to 45 EI1l1.5 | maximum error allowed at the convergence in the iterative process to
determine the creep strains increments. If blank, the programme takes
the nominal value 2'10_6 {see para 2.8)

TETI 46 to 56 E11.5 | time (hrs) from which test printing is required. If no test printing
is required, this value and the following ones on the card 1 remain
blank |

ITESTI 57 to 59 13 If>0, test printing 1 is obtained

ITEST2 60 to 62 I3 If:>0,'test printing 2 is obtained

ITEST3 63 to 65 I3 If>0, test printing 3 is obtained

ITEST4 66 to 68 13 If>0, test printing 4 is obtained

ITESTS 69 to 71 I3 If>0, test printing 5 is obtained

- 6% -




Table 3.1. (continued)
Card 2 TITLE I to 80 20A4 Title of the problem. Maximum 80 free alphameric characters
allowed
Card 3 N 1 to 3 13 number of radial subdivisions in the thickness of the tube
(maximum 20 divisions)
IF¥Z 4 to 6 I3 'if 1, the loads on the sheath are:
a) inner and outer pressure, axial force due to these pressures and
temperature gradient
b) fuel swelling if any in radial and axial direction
if 2, only the loads mentioned sub a) are taken into account '
LEQ 7to 9| I3 if 1, the equivalent stress—strain is determined with the Mises theory
if 2, the equivélent stress—strain is determined with the Tresca theory
‘ (see para 1.4.1) .
LCP 10 to 12 13 - 1f 1, creep calculations are performed
- 1if 2, plastic calculations are performed
LCR 13 to 15 13 In the case where LCP=1 (creep calculations),
- 1f 1, use is made of the Norton creep law: € = k ol (para 2.6.1)
- if 2, use is made of the creep law: € = ko t™ (para 2.6.2)
In the case where LCP = 2 (plastic calculation),
- if 1, the stress-plasfic strain relation is given by two straight
lines (para 2.7.1)
- 1if 2, the stress—plastic strain relation is an exponential curve
(para 2.7.2)
LTSH 16 to 18 I3 - if 1, time hardening creep rule is used (para 2.6.2)
- 1if 2, strain hardening creep rule is used (para 2.6.2)
This datum is only used when LCP = 1 and LCR = 2

_Og_




Table 3.1. (continued)

ITEM 19 to 21 I3 - if 1, the coolant temperature is given (para 2.3)

, - 1if 2, the mean sheath temperature is given (para 2.3)

IINT 22 to 24 I3 the interpolation in the table of properties is parabolic, 1f 1 is
given or linear, if 2 is given (see para 2.10)

ILPR 25 to 27 13 if 0, only a summary of the table of stress and strain is printed
for each time (only the maximum values)

if 1, the complete table is printed

if>1, one line out of the given value is printed

ITIM 27 to 30 13 if 1, the variables functions of the time are parabolic (para 2.2.1) 1
if 2, these variables are given by points (para 2.2.2) =
if 3, these variables are cyclic functions of the time (para 2.2.3) l
ILIM 31 to 33 I3 if 1, the calculation proceeds up to a given maximum value of the time

if 2, the calculation proceeds until a given permanent strain is reached.
If this is net reached for the given maximum time, a special message is

printed and the programme shifts to the next problem

Card 4 RA 1 to 11 Ell.5 cold inner radius of the tube (mm)
RB 12 to 22 El11.5 cold outer radius of the tube (mm)
‘HTC 23 to 33 El1.5 | heat transfer coefficient between coolant and sheath (W/cmZOC)

This value must only be given when ITEM=1. For ITEM=2 it may be blank
FPS 34 to 44 El11.5 | Fraction of the heat generated in the sheath (-)
CARRA 45 to 55 Ell.5 Corrosion rate (mm/hr); if blank, no corrosion occurs

ECMAX 56 to 66 Ell.5 Maximum permanent strain (-)(May be blank for ILIM=1)




Table 3.1. (continued)

Card 5a MM 1 to 3 I3 number of temperature values in the table of the properties. If O, the
programme uses the same values as for the previous problem. This value
must thus not be equal to O for the first_problem. If different of O,

the minimum value of MM is 3 or 2, respectively if a parabolic interpo-

lation (IINT = 1) or a linear one (IINT = 2) 1s asked

Card 5b TT(J) 1 to 11 E11.5 | Temperature value, for which the following physical properties are
given (OC):
AKT (J) 12 to 22 | EI1.5| heat conductivity of the sheath (W/cm C)
ALF(J) 23 to 33 E11.5 | thermal expansion coefficient of the sheath between 0°C and the given
" temperature (-/°C) ;
YMT(J) 34 to 44 El11.5 | Young's modulus of the sheath (kg/mmZ) T
AMUT (J) 45 to 55 El11.5 | Poisson's ratio of the sheath (=)
AKN () 56 to 66 Ell.5 K parameter for the two creep laws
ANN(J) ) 67 to 77 Eil.5 n parameter for the twé creep laws
Card 5c AMN(J) 1 to 11 E11.5 | m parameter of the creep law € = ko ™

These last three values are only used when creep calculations are per-

formed (LCP=1)

PS2(J) 12 to 22 EI11.5 |- Yield strength of the material (kg/mmz), if LCR = 1
' = 95, of the material (kg/mmz), if LCR = 2

PRS(J) 23 to 33 E11.5 | rupture stress of the material (kg/mmz)

PRE (J) 34 to 44 Ell1.5 rupture strain of the material (-)

These last two values must only be' given when LCR=2. For LCR=1 they may
be blank

The number of cards 5b and 5c must be equal to the MM value
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Table 3.1. (continued)
Card 6a TIMEM 1 to 11 E11.5| maximum calculation time (hr)
(see re- DTIME 12 to 22 El11.5| 1length of time interval (hr)
mark 2) , ‘
NPR 23 to 25 I3 if equal to O a printing is obtained for the time 0. and for the
- last time3if2>0 a printing is obtained for each time out NPR
Card 6b PULO 1 to 11 E11.5 | |Coefficients in the equation of the power per unit length. The
PUL1 12 to 22 E11.5 | <power per unit length is calculated for each time with the expression:
PUL2 23 to 33 E11.5| |q' = (PULO) + (PULI)t + (PULZ)t2
where q' 1is in W/cm and t in hr
Cards 6¢c TCSO 1. to 11 El11.5 | [Coefficients of the equation of the coolant or sheath average temperature:
TCS1 12 to 22 E11.5 <'I'cs = (TCSO) + (TCS1) + (TCSZ)t2
TCS2 23 to 33 E11.5 | [with T__ in °C and t in hr
Card 6d PAO 1 to 11 E11.5 | [Coefficients of the equation of the inner pressure:
PAI 12 to 22 | EIL.5|dp_ = (PAO) + (PAD)t + (PA2)t’
PA2 23 to 33 E11.5 | |with P, in kg/cm2 and t in hr
Card 6e PBO 1 to 11 E11.5 | [Coefficients of the equation of the outer pressure:
PBI 12 to 22 El11.5 1P = (PBO) + .(PBl)t + (PBZ)t2
PB2 23 to 33 El11.5 | [with Py in kg/cmz and t in hr >
Card 6f RFO 1 to 11 El1.5 | [Coefficients of the equation of the free fuel radius:
RF1 12 to 22 Eil.5 Jrf = (RFO) + (RF1)t + (RFZ)t2
RF2 23 to 33 E11.5 | |with e in mm and t in hr
Card 6g ARFO 1 to 11 E11.5 | [Coefficients of the equation of the radial fuel strength coefficient:
ARF1 12 to 22 El1.5 ar = (ARFO) + (ARFI)'t + (ARF?_)t2
ARF2 23 to 33 E11.5 1, in kg/mm3 and t in hr
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Table 3.1.

(continued)

Card 6h EZFO 1 to 11 E11.5 | [Coefficients of the equation of the fuel axial strain:
EZF1 12 to 22 Ei1.5 <€Zf = (EZF0) + (EZFl)t + (EZFZ)t2
EZF2 23 to 33_ E11.5 | lwith €. f in (<) and t in hr
Card 61 AZFO 1 to 11 El1.5 | [Coefficients of the equation of the axial fuel strength:
AZF1 12 to 22 EI1.5 |qa_= (AZFO) + (AZFI)t + (AZF2)t°
AZF2 23 to 33 El11.5 | |with o, in kg and t in hr .
The cards 6f to 6i inclusive must only be given when IFZ=1. For IFZ=2
they must be omitted '
%ard 7a TIME 1 to 11 E11.5| Time (hr), at which the functions depending of time (q', t.g> Pys Py
matk 2) Tgr Cofr Spp0 Opg) 3T glven
PUL 12 to 22 E11.5| Power per unit length (W/cm)
TCS 23 to 33 E11.5 Coolant or sheath average temperature (OC)
PA 34 to 44 El1.5 | Inner pressure (kg/cmz)
PB 45 to 55 E11.5| Outer pressure (kg/cmz)
RF 56 to 66 El1.5 Free fuel outer radius (mm). May be blank if IFZ = 2
ARF 67 to 77 El11.5 | Radial fuel strength constant (kg/mmB). May be blank if IFZ - 2
Card 7b EZF 1 to 11 E11.5 | Free fuel axial strain (-) May be blank if IFZ = 2
AZF 12 to 22 E11.5 | Axial fuel strength constant (kg). May be blank if IFZ = 2
KPR 23 to 25 13 if 0, the results for this time are not printed

if 1, the results are printed

The maximum number of'cards 72 und 7b 1s 100

—’IS—




Table 3.1. {(continued)

Card 8a NCYC 1 to 3 13 Number of cycles asked
éiiﬁ Ei— NCA 4 to 6 I3 Number of cards of type 8b and c necessary to describe a cycle

(maximum value is 10)
NCPR 7to9 13 . If O the first and last times only are printed
If>0 a printing is obtained for each cycle out of NCPR at the

positions where KPR>O0 on cards 8c

Card 8b
Card 8c

are identical to cards 7a and b. Their number is equal to NCA. They describe the first cycle of the series

- GG -




w h =

5b
5¢
6a
6b
6c
6d
6e
6f

6 h
6i

Table 3.2.: Fields occupied by the various data on the input cards
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Table 3.2. (continued)
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3.3. Description of the output

The output possibilities of the programme are too large to be
described here in details. Only the most usual output will be ex-

plained here.

A part of such an output is reproduced at figure 7. The programme
prints first all the input data, exactly as they are on the input
cards. A part of them is then printed again in a more legible form.

For each calculation time where a printing is asked, one gets then:

~ the number of iterations to reach the convergence, the maximum

error on the permanent strains and its location.
- the values of the various functions dependent of the time,

- a table of the stresses and strains for each of the calculation

points in the thickness

In this table,one finds successively for each point: the cold radius,
the radius after deformation, the temperature, the equivalent stress,
the equivalent permanent strain, the three components of the stress,
of the total strain, of the permanent strain, of the thermal strain

and of the elastic strain.
In the table, a letter M is printed beside each maximum value.

A summary of the table with all the maximum values and their location

is then given.

3.4, Warning and errors messages

The programme is able to detect some errors made by the user in
the preparation of the input data or efrors occuring during the calcu-
lations. A list of the various messages is given hereunder with more
detailed explanations. _

- DATA ERROR IN THE TABLE OF PROPERTIES
END OF JOB -

explanation: the temperature values in the table of'properties are

y

not given in increasing order. This error causes the job to be termi-

nated. The table of properties is printed.

users response: correct the table of properties
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- MATERIAL PROPERTIES NOT FOUND
END OF JOB
explanation: the value of MM (number of temperature values in
the table of properties on card 5a has been given equal to O for
the first problem of a job. This error causes the job to be ter-
minated.

users response: give a correct table of properties

- NUMBER OF PROPERTIES NOT SUFFICIENT FOR THE TYPE OF INTERPOLATION
ASKED
END OF JOB

explanation: the number of temperature values in the table of

properties is smaller than 2 or 3, respectively if linear or pa-
rabolic interpolation is used. This causes the job to be termina-

ted. The table of properties is printed.

— DATA ERROR AT THE TIME xxxx.x HOURS
THE PROGRAMME SHIFTS TO THE NEXT PROBLEM
explanation: at the beginning of a problem for which the time de-
pendent functions are given by points (ITIM=2) or are cyclic func-
tions (ITIM=3), the programme has encountered a time value smaller
‘as the preceding one. This error causes the programme to shift to
the next problem.

users response: correct the input data

- TOO MUCH INPUT DATA
THE PROGRAMME SHIFTS TO NEXT PROBLEM
explanation: the number of calculation points for the functions de-
pendent of the time is larger as 100, when ITIM=2. This message is
also printed when the number of calculation points for the first
cycle (ITIM=3) is larger as 10.
users response: In both cases, reduce the number of calculation points

to the admissible wvalues.
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SINGULAR MATRIX ENCOUNTERED IN THE CALCULATION OF THE PERMA-
NENT STRAIN INCREMENTS AT TIME xxxx.x HOURS AFTER xx ITERATIONS.
THE PROGRAMME SHIFTS TO THE NEXT PROBLEM

a linear equation system (see para 2.8)., The matrix of this sys-—

tem may be singular for one of the following reasons:

- there is a data error in the gebmetry of the pin, if this mes-
sage is printed during one of the first time intervals

- one of the functions dependent of the time is erroneous (This
error occurs then for the time printed).

- one has given unrealistic properties of the materials

- a large extrapolation in the table of properties has been per-
formed causing unrealistic values of properties to be calculated

- the iterative process does not converge due to too large calcu-
lation intervals (éee para 2.9) or to a incorrect choice of the
permanent strain difference DDEQD (on card 1) for the calculation
of the partial derivatives.

This error causes the programme to shift to the next problem.

- correct the data errors if any

- give more adequate values of the properties to avoid the
extrapolation

- use smaller time intervals

- use an other value for DDLEQD

CONVERGENCE NOT REACHED AT xxxx.x HOURS (MAXIMUM ERROR IS
CXxxExx(xx))

is limited to 30. If the convergence criterion is not verified for
this number of iterations, the message hereabove is printed. The pro-
gramme begins then the calculation of the next time interval with
incorrect values of the permanent strains. The maximum error on the
permanent strain increments and its location are printed.

The causes of the convergence difficulties are the same as those.of

the previous error. This can also occur when use is made of a too small

convergence criterion.
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users response.

- see the previous error

- use a larger convergence criterion

-~ WARNING. VALUES OF THE MATERIAL PROPERTIES WERE EXTRAPOLATED AT

THE FOLLOWING CALCULATION TIMES (HRS):
XXXX.X  XXXXeX  oose

This warning message appears each time that a table of stress
and strain is printed, when between this printing and the previous
one values of properties were extrapolated. As explained hereabove
an extrapolation of the creep or plasticity properties can be the
cause of a great inaccuracy particularly when this extrapolation

is large.

3.5. Test printing

A printing of intermediate results is always possible thanks to
the variables ITEST!, ITEST2, ITEST3, ITEST4 and ITEST5 on card 1 of
the input data. A list of the tesf printed variables is given in the
table 3.3. hereafter. As soon as one of these variables is larger than
0, the corresponding test printing is obtained for all the calculation

times larger as the value of TETI on card 1.

This test printing facility was particularly usefull during the check-

ing of the programme but can also be used to find data errors.

e s




11

12
21
22

23
24
31
32
33
41
42
51
52

ICB

TIME
TCSP
,R(T)
,TIME
,ECRS(I)
ECEQS (I)
,UE(I)
,FSR(I)
,IERR
,DECEQ(I)
Al(D)
,SEQ(T)
,SEQE(I)
,DECM

, TIME
ARF

9

b

b4

b

’

»

b4

H

Table 3.3.: Test printing list

HTC ,
TCSS ,
TE(L)
AZFA ,
DECR(I) ,
DECEQ(I) ,
ERE(I) ,
FST(I) ,
KS ,
DECEQC(I),
A1(2) >
AKNI(I) ,
PP(I)
EEEQ ,
DIIME

EZF ,

™ .
PULP ,
ETH(I) ,
PA ,
ECRE (1),
ALR(I) ,
ETE(I) ,
FSz(I) ,
TIME
DECEQ(T),

.« ..

ANNI(I),
Qr(1) ,
DTIDIV. ,
TIMEP
AZF

AMU
PULS
TAV(I)
AL

ECTS (1)
AMR(I)
SRE (I)
DECEQC(I)
ERR

B(I)
AMN1(I)
ECEQS(I)
FD
DTIMEP

2

b

’

TCH

AKN1(I)
AM
DECT(I)
ANR(I)
STE(I)

TIMM@Y

s

s

»

ECEQE(I),

PUL

TCS ,
ANNI(I) ,
AN
ECTE(I) ,
SZE(I) ,
DECEQC(I)

DECEQC(I),

TCS R

TCSE , PUL

AMNI(I) , PP(I)
Cl s, C2

ECZS(I) , DECZ(1), ECZE(I)

SEQE(TI)

DECEQ(I), SS

PA , PB

’

, SLP(I)

3

)

PULE

L QB(D)

c3

RF

..Zg_
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4. Conclusions

The programme CRASH has a very general character:

- it takes into account practically all the possible loads on the
sheath: outer coolant pressure, inner gas pressure and axial force
resulting from these pressures, temperature gradient and fuel-

sheath radial and axial interaction.

- these loads can be any functions of the time and three different
methods allow to introduce them in the programme depending of

their complexity.

~ although two creep laws and two plastic laws only are programmed
in the version described here, the programme can use any creep or

plastic law,

- all the properties of the material can be any function of the tem—

perature.

Notwithstanding its general Character, the computing time of the pro-

gramme is small enough to alliow intensive parametric studies.

The possibilities of application of the programme are thus rather large:
they cover the design of fuel pins as well as the analysis of experi-

mental results of irradiation on possible sheath materials [14].

Such a general programme can thus be improved as soon as one has a bet-
ter knowledge of the creep or plastic phenomenon. The main possibilities

of improvement of CRASH could then be: s

- the development and the programmation of a better creep or plastic

"law for the materials able to be used as sheath materials.,

- to account the effects of irradiation on the creep and plasticity

phenomena.

- the modifications of the material properties with the number of

cycles when cycling occurs.

- to account the swelling of the material under irradiation.
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Nomenclature

Variables

—

o> => B o T o T o RN = SN ')
N o w N

= I
N
Hh

g2 - =x =

=

o
]

o
o

(¢}

-

H 8 R O a0 0 U
rh

sheath inner radius

sheath outer radius

integration constant

integration constant

integration constant

Young' modulus

fraction of the heat generated in the sheath

axial force on the sheath

axial force on the fuel .

heat transfer coefficient between coolant and sheath
finite difference on the permanent strains increments
(see para 2.8)

thermal conductivity of the sheath

coefficient appearing in the creep laws (see para 2.6)
integral defined by the equation (1,33)

coefficient of the second creep law (para 2.6)
integral defined by the equation (1.34)

coefficient of the creep laws (para 2.6)

integral defined by the equation (1.35)

inner gas pressure l

outer coolant pressure

fuel-sheath contact pressure

coefficient of the second plastic law (para 2.7.2)
heat source in the sheath

total linear power

coefficient of the second plastic law (para 2.7.2)
radial coordinate

hot free fuel radius

time

temperature
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coolant temperature

coolant or sheath average temperature

radial displacement

radial displacement at the sheath inner surface

axial coordinate

sheath thermal expansion

radial fuel strength constant

axial fuel strength constant

shear strain component

shear strain component

shear strain component

guess of the equivalent permanent strain increment at
point i

calculated equivalent permanent strain increment at
point i

guess of the equivalent permanent strain increment at
point j for the previous iteration

length of a time interval .

correction to the guess of the equivalent permanent strain

increment

' equivalent strain

radial component of the strain
equivalent fupture strain

value defined by the relation (1.19)
axial component of the strain

hot free fuel axial strain
tangential component of the strain
angular coordinate

Poisson's ratio

equivalent stress

radial stress component

equivalent rupture stress

axial stress .component

tangential stress component

equivalent stress, leading to 0.2 7 permanent strain

summation sign
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T, shear component of the stress
Tre shear component of the stress
Tez shear component of the stress
9 heat flux

9 . . . .

3 partial derivation sign

Subscripts
a at the inner sheath surface
av average
b at the outer sheath surface
c permanent (creep or plasfic)
el elastic
f fuel
i relative to the i th point of calculation
r radial
p rupture
th thermal
z axial
tangential
Superscripts
- average
. time derivative

w relative to the previous time interval or to the

previous iteration
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Strain curve in time and strain hardening

a) Increasing stress b) Decreasing stress

time hardening

-———— strain hardening

Figure 4
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Interdependence of the various subroutines from each other

CALC

ITER

STRAIN

MAIN

DATA

TEDI

TIMING

PRINT TIMAX

DIVIDE

CORROS

INTER

/ \

SiMQ

PLAST

CREEP

EQSSR

Figure 6




CRASH-28B BN-GF

COLD QUTER RADIUS
CORROSION RATE
MAX. ERR. ON AV,

CPTIONS USED.

K

TEMP,

SAMPLE PROBLEM

COLD INNER RADIUS

3.000 MM
0.00450 MU/HR
0.100 nc MAX.

IFZ =1 FUYEL SWELLING IS TAKEN INTO ACCCUNT

LEQ= 1
Lcp =2
LCR =2

ITEM=1 THE COOLANT TEMPERATURE IS GIVEN
IINT=2 LINEAR INTERPCLATION IS USED
ITIM=3 CYCLING OF THE TIME DEPENDENY VARTABLES IS PERFORMED

ILIM=1 A MAXIMUM RUNNING TIME IS GIVEN

TABLE OF THE PROPERTIES OF THE SHFATH MATERIAL.

ERR.

EQUIVALENT STRESS/STRAIN STATE DETERMINED BY THE MISES CRITERION
PLASTICITY CALCULATIONS ARE PERFGORMEN
THE STRESS—PLASTIC STRAIN CURVE IS EXPONENTIAL

2.600

ON PLAST.STR. 0.200E-05 -

MM HEAT TRANSFER COEF.

17 8769

12.100

PAGE 1

W/CM2 DC

HEAT FRACTION IN SHEATH 0.0300 -

TEMPE- THERMAL LIN. EXPAN. YOUNG'S POISSON'S CREEP PARAMETERS PLASTICITY PARAMETERS
RATURE CONNUCT. COEFFICIENT MonDuULUS RATIO K N M A B C
oC W/CM DC -/nC KG/MM2 - - - - - - -
600.00 0.21800 0. 18500E-04 16000. 0.3000 0.0 0.0 0.0 20.00 40,00 0.25000
700.00 0.23400 0.18700E-04 15000. 0.3000 0.0 0.0 0.0 18.00 35.00 0.30000
STATE OF STRESS AND STRAIN AFTER 0.0 HOURS. 1TH CYCLE)
ITERATIONS NUMBER 5 v - ERROR ON PLAST.STRAINS 0.123E-06 -(11)
LINEAR POWER 500.00 W/CM CODLANT TEMPERATURE 600.00 oc AVERAGE TEMPERATURE 645.87 ocC
INNER PRESSURE (GAS) C.0 KG/CM2 CUTER PRESSURE 0.0 KG/CM2 AXTAL FORCE 19.00 KG
HOT FREE FUEL RADIUS 2.6320 MM RAD. FUEL STRENGTH 5000. KG/MM3 CONTACT PRESSURE 62.02 KG/CM2
FREE FUEL AX. STRAIN 0.012100 - AX. FUEL STRENGTH 0.100E 09 KG
YOUNG'S MODULUS '15541. KG/MM2 POISSON'S RATIO 0.3000 -
TABLE OF STRESSES AND STRAINS.
IN- CcoLD HOT TEMPE- EQU. FQU. PLAST. STRESS TOTAL PLAST. THERMAL ELASTIC
DEX RADIUS RADIUS RATURE STRESS STRAIN STRATN STRATIN STRAIN STRAIN
- MM MM e KG/MM2 - KG/MM2 - - - -
R —0.62 0.012785 M 0.000002 0.012521 M 0.000262
1 2.6000 2.6319 671.63 M 7.39 0. 000002 T —6.87 0.012260 -0.000001 0.012521 M -0.000260
7 -8.77 0.012100 -0.000002 0.012521 M -0.000420
R -0.74 0.012394 0.000000 0.012316 0.000078
3 2.6800 2.7129 661.37 3.06 0. 000000 T —2.22 0.012270 0.000000 0.012316 —0.000047
b z ~4.25 0.012100 -0.000000 0.012316 -0.000217
R ~0.71 0.012023 —0.000000 0.012115 ~0.000093
5 2.7600 207939 651,28 2.60 0. 000000 T 2.22 0.012268 0.000200 0.012115 0.000153
z 0.21 0.012100 -0.000000 0.012115 —-0.000016
R =0.57 0.011667 -0.000001 0.011918 —-0.000250
7 2.8400 2.8748 641.35 6.30 0.000001 T 6.45 0.012256 0.000000 0.011918 0.000338
z 4.59 0.012100 0.000000 0.011918 0.000182
R -0.33 0.011318 -0.000017 0.011724 -0.000389
9 2.9200 2.9557 631.57 9.94 0.000017 T 10.31 0.012235 0.000011 0.011724 0.000501
z B.74 0.012100 0. 000006 0.011724 0.000370
2 -0.00 0.010947 -0.000096 M 0.011533 ~0.000491 M
12.74 M 0. 000096 M T 13.26 M 0.012206 0.000054 M 0.011533 0. 000619 M
z 12.15 ™ N.012100 0.000042 M 0.000525 M

0.011533

Figure 7a




CRASH-28 BN~GFK SAMPLE PRCBLEM

VALUES AND LOCATIONS CF MAXIMA,

IN- coLn HOT TEMPE- EQU. EOU. PLAST. STRESS
DEX RADIUS RADIUS RATURF STRESS STRAIN
- MM MM ple KG/MM2 - KG/MM2
R -0.74 4
671.63 1 12.74 11 0.000096 11 T 13.26 11
z 12.15 11
STATE OF STRESS AND STRAIN AFTER 10000.0 HOURS. 5TH CYCLFE)Y
ITERATIONS MUMBER 3 - ERROR ON PLAST.STRAINS (0.125E-06
LINEAR POWER 500.00 W/CM COCLANT TEMPERATURE 600.00
INNER PRESSURE (GAS) 50.00 KG/CM2 CHTER PRESSURE 0.0
HOT FREE FUEL RADIUS 2.6430 MM RAD. FUEL STRENGTH 5000.
FREE FUEL AX. STRAIN 0.017100 - AX. FUEL STRENGTH 0.100E 09
YOUNG*'S MODULUS 15562. KG/MM2 POISSNN'S RATIO 0.3000
TABLE 0OF STRESSES AND STRATINS.
IN—- coLD HOT TEMPE~- EQU. EQU. PLAST. STRESS
DEX RADIUS RADIUS RATURE STRESS STRAIN
- MM MM o] KG/MM2 - KG/MM2
R —-6.85 M
1 2.6000 2.6417 666,79 M 22.01 0.006701 T 14.10
z 16.08
R 6422
3 2.6800 2.7221 656.49 22.29 0.006727 T 14.58
4 17.31
R -5.61
5 2.7600 2.8024 646,36 22.58 0.0067T0 T 15.03
4 18.51
R -5.02
7 2.8400 2.8828 636.37 22.87 0.006823 T 15.44
4 19.67
R ~4a46
9 2.9200 2.9631 626.53 23.17 0.006887 T 15.80
[4 20.80
R ~4.22
10 2.9550 2.9982 622.26 23.30 M 0.006919 M T 15.95 ™
z 21.28 M
"VALUES AND LOCATICNS CF MAXIMA.
R -6.85 1
666.79 1 23.30 10 0.006919 10 T 15.95 10
z 21.28 10

1/ 8769
TaTAL PLAST. THERMAL
STRAIN STRAIN STRAIN
0.012785 1 -0.000096 11 0.012521
0.012270 ¢4 0.000054 11 0.012521
0.012100 — 0.000042 11 0.012521
- &)
2108 AVERAGE TEMPERATURE 643,81
KG/CM2 AXIAL FORCE 119.40
KG/MM3 CONTACT PRESSURE 635,22
KG
TOTAL PLAST. THERMAL
STRAIN STRAIN STRAIN
0.004726 M —-0.006676 0.012425 M
0.016048 M 0.002896 M 0.012425 ™
0.017099 0.003781 0.012425 M
0.004512 -0.006693 0.012219
0.015707 0.002765 0.012219
0.017099 0.003929 0.012219
0.004292 -0.006719 0.012018
0.015380 0.002645 0.012018
0. 017099 0. 004074 0.012018
0.004068 ~0.006752 0.011819
0.015064 0.002535 0.011819
0.017099 0.004216 0.011819
0.003840 —0.006792 0.011624
0.014760 0.002435 0.011624
0.017099 0.004357 0.011624
0.003738 ~0.006813 M 0.011539
0.014630 0.002395. 0.011539
0.017099 0.004418 M 0.011539
0.004726 1 -0.006813 10 0.012425
0.016048 1 0.002896 1 0.012425
0.017099 —- 0.004418 10 0.012425

-

PAGE 2

ELASTIC
STRAIN

—-0.000491
0.000619
0.000525

oC
KG
KG/CM2

ELASTIC
STRAIN

~0.001022
0.000728
0.000894%

=0.001015
0.000723

0.000951

-0.001007
0.000717
0.001008

=0+001000
0.000709
0.001063

—~0. 000992
0.000700
0.001118

—0.000989
0.000696
0.001141

-0.001022
0.000728
0.001141

11

11

M
]

Figure 7b





