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Abstract

It is shown that the variation in critical radius upon substitution

of a new compositon in a central zone of a reactor can be approximated

by a three-parameter equation, one of the parameters being ßB /B , ther r
relative difference of the radial bucklings in the two reactor zones. A

comparison with multigroup calculations shows the validity of the

equations derived. ~lodifications are introduced which make them applicable

for a considerable range of difference in the nuclear parameters of the two

compositions. It is also shown that the presence of a reflector does not

greatly interfere with the method. Finally an evaluation is given of three

substitution experiments which were performed on the critical facilities

S~~K and }1ASURCA.
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INTRODUCTION

The method of progressive substitution serves to determine physics

parameters of reactor compositions built into the central zone of a zoned

critical experiment. In the past it has been used extensively to measure

material bucklings in thermal lattices (see for example ref. 1 to 3). It

is the aim of the present work to provide a simple but physically meaning­

ful model for the interpretation of progressive substitution experiments

in fast criticals. The parameters asked for are the material buckling arid

the critical radius cf a reactor with a core consisting entirely of the

composition under investigation.

The substitution experiment starts with a core consisting entirely

of a reference compostion (composition 2) ~hich must be available in

sufficient quantity to build the whole core, and should have nuclear

characteristics not too different from the compostion under investigation

(composition I). Starting from the core center composition 2 is re­

placed stepwise by composition 1 until the central zone has reached its

maximum size. After each step the change in reactivity or in critical

radius is measured.

From these data one seeks to derive sufficient information to de­

termine the pa~ameters of interest.

In the practical cases which will be discussed the experiment was

performed in cylindrical geometry: the central zone extended axially throughout

a cylindrical reference core and its size was increased stepwise in radial

direction.

In deriving a method of interpretation special attention was given to

the effect of spectral mismatch between the two regions, the presence cf

a radial reflector and larger differences in the material bucklings.
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CALCULATIONAL METHODS

One-Group Perturbation Theory

This approach makes use of the conventional formalism of perturbation

theory. The differences in the nuclear parameters of the two compositions

as well as the perturbation of the flux upon introduction of the central

zone are assumed to be small~ so that second order terms are negligible.

Also the spectral interaction at the boundary of the two zones is neglected.

Under these conditions the change in reactivity when the central zone is

substituted can be written as

(I)

A = () 2wherev-I Ef-Ec-DBtransv.

Sand S+ are the real and adjoint sources respectively

Vo is the total volume of the reactor and

VI is the volume of the central zone.

(2)

(3)
2.405 .

where r o= B ~s the core radius plus
r.

reflector sav~ngs.

In many instances it is more expedient to work with the change in

critical radius (örc ) rather than with the reactivity change ~k/k. The change

in radius compensating for a reactivity change ök/k is approximately given by

D~B2 ök
r f$$+dV = __JSS+dV Vo k

ö~c = _ ök _1_~;S+dV
r o k 2DB2 fejHp+dV

r Vo

or

Using Eq. I, 3 and the general neutron balance equation

(4)

one finally gets

~rc

r o=-----
dq> dq>+
-- -- dV }
dr dr

(5)
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From Eq. 4 follows

ßBr 1 (ßA _ ßD)
T='2 A D

r

and Eq. 5 can be rewritten

J cjJ</>+dV J (cjJ</>+ - _1 d</> dcjJ+)dV
ßB

r
VI V B2 dr dr

ßD 1 r
T---- ... ZD

r J </>cjJ+dV f cjJcjJ+ dV
Vo Vo

(6)

(7)

Under the assumption that the fundamental distribution of the fluxes is

known with sufficient accuracy Eq. 5 could be used to determine ßBr/Br
and ßD/D from the changes in critical radius found after the steps in a

substitution experiment, and to extrapolate the critical radius to the

case of complete substitution,where the core consists entirely b( the composition

under investigation.

However, in most substitution experiments with fast cores the dif­

ference in the neutron spectra of the two zones causes significant reactivity

effects at the zone boundary, so that the change in reactivity or critical

radius is not described weIl by the above formalism even if the difference

in material bucklings in the two zones is small. It is therefore necessary

to use a more detailed analysis which includes the neutron spectrum and its

spatial dependence.

The Overlapping-Group Method

In order to make the analysis as representative as possible cf the true

spectra while still working with a small number of groups Storrer and

Chaumont (ref. 4) introduced the concept

description the neutron flux at each point of the reactor is synthesized of

two comportents having the equilibrium spectra of the two compositions. To

give a basis for further discussions the basic equations of Storrer and

Chaumont will be briefly recapitulated:

The space- and energy-dependent flux is assumed to be given by

\f!(E,r) = gl (r)fl (E) + gz (r)'Pz (E) (8)

where ~1(E) and~z(E) represent the equilibrium spectra for the inner and

outer zone and gl (r) and gz(r) are space-dependent functions yet to be

determined.
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Inserting the f1ux as given by Eq. 8 into the general diffusion

equation and integrating over all energy whi1e weighting with the

equi1ibrium adjoint~ either of the two compositions yie1ds the two over­

1apping-group equation for the f1ux in zone i:

D(} 1)illg1 (r) + D(12)rllg2(r) + A(ll)igl (r) + A(12)ig2(r) = 0 (9)

D(21)i llg1(r) + D(22)illg2(r) + A(21)ig1(r) + A(22)ig2(r) = 0 (10)

with

and

D(k,t) i = J'f~ (E)Di (E)\ft (E)dE

A(k.(Ji = JdE {,/,i;.(E) [-E t • i (E)ft(E) + JEi (E'->E>feE')dE'~)

(11 )

(12)

Where the first term in the square bracket of Eq. 12 represents the 10ss

by co11ision and lateral 1eakage and the second both the slowing~down source

and the fission source.

For each zone i equations 9 and 10 yie1d two sets of eigenfunction and

eigenva1ue.

The first is the eigenfunction

<PB. = f. (r)\/). (E)
~ ~ J~

and eigenva1ue

(13)

2EB. = B.
~ ~

(14)

where f.(r) is the fundamental mode distribution for zone i (in the cy1indrical
~

core zero order Besse1 function) and B. is the correponding radial buck1ing.
~

The second solution is given by

with the eigenva1ue

2 I Det i (A)
11· = - -- ----
~ B~ Det.(D)

~ ~

A
_ (12)1 11l '''''\\.:_
- A TI \r::.JJ.Lll

(11) 1
zone

zone 2

(15)

(16)

where the h.(r) are the solutwns of the equation
~



- 5 -

2llh. (r) = ll. h. (r)
1. 1. 1.

(in the cylindrical case: zero order hyperbolic Bessel functions)

and

(17)

Det. (A) = A( ) .A( ) .-A ) .A( ). (18)
1. I I 1.22 1. (12 1. 21 1.

The physical meaning of these results is that the flux in each zone

consists of one component having the equilibrium spectrum for the respective

composition and spatially the fundamental mode distribution and of a second

component determined by the difference of the equilibrium spectra and a

spatial distribution decreasing away from the zone boundary with a relaxation

constant llt.

The total flux in each zone may be written as

-
$. = X. $B1.. + X.~ .

1. 1. 1. 111.

where the X. and X. are constants yet to be determined.
1. 1.

(20)

The above formalism which was derived up to this point by Starrer and

Chaumont (ref. 4) gives the possiblity to find the change in critical radius

or in reactivity upon introduction of a central zone by different approaches.

A direct continuation of the theory is the evaluation of the change in

critical radius by solving the criticality determinant. For this purpose the

reactor is approximated by a bare two zone core. The fundamental and tran­

sient eigenfunctions fand h are then definitely determined by the boundary

conditions at the core edge and center (zero flux and derivative, respectively).

In order to simplify calculations these eigenfunctions will now be re­

written in the form

F. (p.) = F. (B.r ) = f(r)
1. 1. 1. 1.

and H. (p.) = H. (wr ) = h(r)
1. 1. 1. 1.

The radial derivatives then become

df. (r) dF(p. )
1. B. 1. = B. F' (p.)= d (p.)dr 1. 1. 1.

1.

dh. (r) dH(p. )
and 1. 1. ll·H! (p.)= lli =dr dp. 1. 1. 1.

1.

(21)

(22)

(23)

(24)
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the derivative with respect to p being denoted by a prime. The mathematical

form of the functions Fand H are shown for different geometry in Table I.

At the zone boundary the overlapping group theory requires continuity

in the flux and in the energy integrated current, weighted by either of the

two equilibrium adjoint spectra. This requirement leads to the following

set of equations in the coefficients X

A
• X F ( ) _ (21)2

2 2 PZ2
A(22)2

(25)+)

\Vhen the reactor is critical .the determinant ~ET) of this set of equations

disappears. When the reactor is near critical the change &rc which is

necessary to bring about criticality is given by

!J.rc = DET
dDET/dro

(26)

(the core radius rentering into DET through the eigenfunctions Fand H).
o

Using the original core radius for calculating the right side of Eq.

26, one obtains for 6rc the change in critical radius brought about by

substituting the central zone.

Evaluating the determinant one finds that it can be written in the

form

+)
The Pzi and Pzi are the values of Bir and ~ir, respectiv~ly, at the zone
boundary. The underlined expressions are zero (Eq. 14)
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DET = a{Fi(pzt)F2 (PZ2)-F1 (pzt )Fi(P Z2»)

+ b ti (Pzl)FZ(pzZ)+F, (pz,)Pi(pzz»)

+ c F} (P z I)F2 (p z2)

with

{

DA
I D (D) ( B (12)2 (21)~) H' (X )H (-p ) +a = 2 et l -BI~I- 2~1 D A I ~ I 2 2

(11) I (22) 2 z z

(27)

c =

and
(D (11) ID(22)2-D(21) JD (12)2) (D (11) ID(22) 2-D(l2)lD (21)2)

d = B B x
J 2 Dell)1 D(22)2

x HI (pzI)H2 (pz2)
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Forming of this expression the derivative with respect to r one noteso
that the expressions (Fi(p

z
l:}F2 (p z2) - FJ (p zI }Fi(pz2)}' b, c and d are

sufficiently small so that the derivative is essentially given by

For equal BI and B2 the expression (Fj(pzt)F2(Pz2) - Ft(PzI'F;(pzZ}}

disappears. Therefore we find by differentiation with respect to BI

(28)

Using the general differential equation

F"(p} + n-I F' (p) + F(p} = 0 (30)
P

(n=1 plane geometry ; n=2 cylinder n=3 sphere)

and the boundary condition

P = B r020
(31)

one can show that with good approximation

d
dro

P -I= -F' ( }F' ( ) (-!!-)o BI Po 2 Po P 2
z2

(32)

The results for ßr then becomesc

ßrc

(33)

where a, b, c, and d are the factors appearing in the four terms of Eq. 27.
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Eq. 33 gives the change in critical radius in four terms in different

combinations of the fundamental eigenfunctions. It can be easily shown

that the coefficients b/a, c/a, and dia which still contain the transient

functions are essentially constant except when the central zone radius is very

small or very large. Thus, in principle Eq. 33 can be used directly for the

evaluation of substitution experiments. Ho~ever, the physical meaning of

the expression becomes more evident if it is ~e~itten, making some further

simplifications:

We will allow the indices ] and 2 to be dropped and assume the same

parameter (eigenfunction, eigenvalue, diffusion constant) to apply for both

compositions where this does not introduce serious error (as in the case when

differences are involved). We define

liDn=
D -D

(]])1 (11)2

D(I])]

D ";D
(22) I (22)2

D(22)2
(34)

One then gets for a and b

a=Bf~IDet] (D)Hj (pz ] )H2 (Pz2)+~2Det2 (D)H] (pz1 )Hi (Pz2P
and with

(35)

and (from Eq. ]4)

(36)

(37)

We may now re~ite Eq. 33 in the form

Lire = ] {LiB ( nF" ( )F( ) nF '2( )+ n-]F( )F' ( »'2 n-] -a Pz Pz Pz -P z Pz Pz Pz Pz
B

2
F (p)p

o 0

+ n-] liD F( )F'( )J + QPz D Pz Pz

where the differences in the F] and F2 functions have been neglected and

all terms not containing LiB/B or LiD/D explicitly were included in the rest
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term Q.

Using Eq. 30 it is easy to show that

and

n n-'2 n-lp F"(p )F(p )-p~' (p )+p. F(p )F' (p )
1. Z Z2, Z ~ Z Z

Pz
n-I J n-I 2 ' 2 )p F(p )F'(p ) = - p (F (P)-F (p) dp, z z

o
Po

pn-l F'2(p ) =~ J pn-l F2(p)dp
o 0 Po 0

Pz

J n-I 2= -2 p F {p)dp
o

(38)

(39)

(40)

Our final equation for the change in critical radius therefore becomes

Po
J pn-l F2(p)dp
o

rßr- = o~__
c

Pz
n-I 2 ßD J n-I 2 '2p F (p)dp - 2D. p (F (p)-F '(p»dp

o

(41)

IR
Ri.1with R. =

~
~

The first two terms of Eq. 41 correspond exactly to the perturbation

formula (Eq. 7). The other terms are different from 0 only if the spectra

in the two medii are not the same and they are proportional to the surface

of the zone interface. They may therefore be interpreted as interface terms

caused by the interaction of different spectra at the zone boundary. In

practical applications it is generally sufficient to consider the contribution

proportional to F2
(p ), omitting the last two terms becausez

(42)

This leaves us with an equation in three terms which is physically inter­

pretable and weIl suited for the evaluation of substitution experiments.
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For easier comparison with results below Eq. 41 may be rewritten,using

Eq. 14 and 16, as:

l:!.r =
c

p
1 2 An Z I 2 '2

pn- F (p)lp-~ f pn- (F (p)-F (p) )dp
o

BI ~- - R2F(p )F' (p )
III Z Z

-.H.
B

(A(t I) I A(22)2-A(2l) I A(22)2) (A(ll) I A(22)2-A(t2) I A(2IJl)

A
2net2A

(4Ia)

As the derivation of Eq. 41 and 4la is rather complicated and the

influence of the various approximations is not easy to estimate it will be

helpful to look at another mathematical approach before describing practical

applications.

Calculation of l:!.r Using an Overlappin~-Group Perturbation Formalism
c

We know from perturbation theory that a reactivity change is given

exactly by the equation

f <P +P.<P dV
V 0 P

l:!.k I
- = ----- (43)

k f S+S dV
V 0 P

o
where the real fluxes and source are given for the perturbed case whil& the

adjoint quantities are forUhe original reactor. In first order perturbation

calculations the unperturbed fluxes are being used throughout. Avoiding this

,approximation we will now use the information provided by the overlapping

group theory to include the perturbation of the real fluxes into the

consideration.



- 12 -

The perturbed flux in the central zone is given by

F ( ) () ((p, ( ) - A(l2) I \f} (E)\ H (p )
4>p = I PI fl E + a\.'2 E A

Onl
11 ) I 1 (44)

a being an unknown coefficient. (This expression is equivalent to Eq. 20,

the coefficient of the fundamental component can be set equal to one with­

out loss of generality.

The unperturbed adjoint flux is

(45)

Before using these fluxes to calculate ~k/k it is convenient to rewrite

Eq. 43 in the form

f t (M -M )(4) +o<jH)dV f +p dV + f 4> +M o4>dV
V 0 P 0 0

VI
4> cr-_lf>0

VI
o P

lik I (46)k= =
f S+S dV f S+S dV
V o p V o p

0 0

where ]'.1 and Mare the perturbed and the unperturbed diffusion operator.
p 0

The term containing Mo<jJ disappeared because of the relationship
o

f 4> +M o4>dV =0 (47)
V 0 0

I

The first term J 4>+P4> dV corresponds to normal perturbation theory and does
V 0 0

not need I further evaluation. For calculating the second term we

set 04> equal to the transient term and find

f + f +~. A(2) I J -4> M o4>dV = a F2 (P 2)f2(E)M f2(E) - A ~I (E) H1(PI)dV
VI P VI P (11)1 ,

=

Using Eq. 30 and the corresponding equation for the transient functions

(49)
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one can calculate the volume integrals

r
PIHj(PzI)F2(Pz2)-B2HI(PzI)Fi(pz2)z n-I n"'"1J r F2 (P 2)HI (PI )dr = 2 2 r (50)z

0 PI + B2

r
PIH I (Plz)Fi(pz2)+B2Hj (pzl )F2 (p z)z n-I - n-Iand J r Fi(P2)Hj(P I )dr = r (51 )2 2 z

0 III + B2

(52)

eliminating the diffusion

III

Det
l

(A)
= a -:-----

A(ll) 1
_I J <j> +M o<j>dV
21T V P

I

Introducing these expressions in Eq. 48 and

coefficients by using Eq. 14 and 16 we get

n-I
r

z

The remaining task now is to calculate a, the coefficient of the transient.

A direct calculation from the system of linear equations (Eq. 25) re­

presenting the boundary conditions in the overlapping group formalism leads

to complicated results which so far could not be evaluated meaningfully.

An alternative approach which certainly is a rather crude approximation

is to disregard the difference of the eigenvalue and the fundamental dis­

tributions for the two compositions and to postulate continuity of values

and derivatives of the overlapping gro~p fluxes at the zone boundary in the

following form

(53)

~ being the transient coefficient in the outer zone. This yields the result

a = (54)

and therefore

(55)_I J<j> +M o<j>dV
21T V p

t
Collecting all contributions and rewriting the result in terms of change in

critical radius one finds



P,o
f pn-1FZ (p)dp
o

r
o/J.r = ---.,;:...-_-

C
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{

Pz Pz
/J.B n-l Z !J.D n-l Z 'z- :B f p F (p)dp - 2D f P (F (p)-F (p»dP

o 0

(56)

(the influence of the perturbation on the normalization integral was neglected)

We see that this expression is almost identical with the first four terms
Det 1(D)

in Eq. 41a (except for the factor DetZ(D) in the denominator of the interface

terms). The fifth term (which approximately would compensate the fourth one)

and the lastmrm do not appear. As only the first three terms give significant

contributions this discrepancy is of little practical importance although the

investigation of its origin might be quite interesting.

It should further be noted that the difference in the fundamental flux

distribution for the two zones as weIL as the changes in the normalization

integral were neglected in the evaluation. Similar simplifications were

made in deriving Eq. 41a. The terms going beyond first order perturbation

theory in both express ions therefore represent only the effect of spectral

overlap, while the overall flux distribution is still considered to be

essentially unchanged.

Summary of the Results from Overlapping Group Calculations

The two approaches used to find the change in critical radius upon

introduction of a central zone yield expressions of the form

!J.rc
r n { !J.Br Pz n-] Z !J.D PZn-l Z 'z

=----- - B f p F (p)dp- ZD f p (F (p)-F (p»dp
Po r 0 0
f pn-1FZ (p)dp
o

n-l
R1RZpz

Z(R1+RZ)
(57)
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where contributions which are considerably smaller than the three terms

given have been omitted. Eq. 57 is the basis for all practical applications

to be discussed in this report.

In evaluating a substitution experiment one fits the expression to

measured data with bB IB , bD/D and B/~Det~/A2 being the parameters to be
r r

adjusted. (In general it leads to better results to calculate bD/D from

multigroup data and to use it as a fixed parameter.) The change in the

critical radius for complete substitution may be found directly from bBr
or by extrapolating the measured data using Eq. 57 with the fitted parameters.

A more detailed discussion of practical applications will be found further

below.

The Influence of the Reflector

So far expressions for the change in critical radius upon introduction

of the central zone have been derived for bare reactors only. A reflector which

is present in most practical cases introduces a third zone into the problem.

In the first order perturbation formalism only the normalization

integral is affected by the reflector. The same conclusion may be drawn for

the expression derived from the overlapping group formalism, as long as the

central zone is small enough so that the spatial dependence of the spectra

near the zone boundary is the same as in a bare core.

As the central zone approaches the core blanket boundary the spectral

interaction of all three reactor zones makes an analysis very difficult. This

does not affect the buckling determination which usually can be done at

smaller zone radii but it introduces an uncertainty of about 005 cm when in

a reflected reactor the critical radius is extrapolated to the case of

complete substitution. One may try to avoid this difficulty in the following

way: For a number of zone radii r one makes multigroup calculations of thez
change in critical radius br for both the reflected and unreflected case.c
Assuming that the differences between the br for the reflected and bare

c
reactor are calculated correctly (even though their absolute values may be

wrong) one now subtracts these differences from the measured br which arec
thereby supposedly corrected to correspond to the bare core and can be extra-

polated to the case of complete substitution without difficulty. After the
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extrapolation the calculated differences between the reflected and bare case

are added again to the substitution curve, yielding the final result. This

method was used quite successfully for predicting the final critical radius

in the French substitution experiment MASURCA IB?' JA'. It presupposes, how­

ever, that the spectral interaction between the reflector and both core

zones is correctly given by the multigroup calculations, which is certainly

not always the case.

(58)6 r
o c

In many instances it is convenient to calculate the change in critical

radius for complete substitution (6 r ) from t~e 6B found by the fit. Forocr
the bare reactor one has approximately

6B
r= -rc Br

In order to study the reflected case one has to look at the in­

dividual terms of Eq. 57. For complete substitution the transient term must

be dropped as there remains no boundary between the OvO core zones. The

terms with jZ
pn- JF2(p)dP will be essentially the same for complp.te substitution

o
in the bare and reflected case. A significant difference in Ö r LS causedo c
only by the diffusion term. It is

Ö r (bare) - ö r (ref1.)o c 0 c (59)

where RS stands for reflector savings.

To a good approximation we can then write

n-l '2
AD B RSp F (p)
u r 0 0 öD= - ------,,1'-:::---- r (bare) =- RS
2D (J/2)p~ F 2(po) 0 D

(60)

(61)RS öD
D

or
öB

r-- -Br

Eq. 60 is equivalent with the wel1 known resultof one-group diffusion theory

that the reflector savings is proportional to the diffusion coefficient of

the core material. The difference of spectral interaction between the

blanket and either core composition is still not taken in account and the

uncertainty of about 0.5 cm quoted above for the evaluation of a direct fit

still remains. Similar as in the case of direct extrapolation a correction
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may be found by comparing multigroup calculations for the reflected and the
unreflected case.

NUMERICAL EXPERIMENTS

In order to test the validity of the results derived by overlapping

group theory a large number of multigroup calculations were performed on

a test case of substitution of plutonium for uranium fuel. The composition

for the core and blanket zones for this test were chosen according to

preliminary data then available for SNEAK 3A-2 and 3B-2 (ref. 8 and 9). The

atomic densities are shown in Table 2. The substitution is performed in cylindri­
cal geometry, the unperturbed critical radius is 57.85 cm (bare) or 44.05 cm
(reflected) •

nirect Calculations

The first numerical experiment was the calculation of the change in

critical radius as a function of the central zone radius for the unreflected
model reactor J) directly by multigroup diffusion theory and 2) by the over­

lapping group formalism using Eq. 33 (with F1(p)=F2 (p)=Jo «B1+B2)r/2) and

Eq. 41. The nuclear parameters in these equations (D;~,Bl"!) were derived·

fram multigroup constants and the fluxey found by the multigroup calculations.

The radios Ri = IHi/Hi I were set equal to unity in order to see if such a
simplification was possible.

The results are shown in Fig. 1 and 2. We see that the overlapping group

results give a good approximation to the multigroup data and that the

simplificationsmade in going from Eq. 33 to Eq. 41 had no significant effect.

Further we see that all terms beyond the third, that is, the interface terms

proportional to F (p )F' (p ) and to F' (p 2) only yield very small corrections.z z z
This confirms that, as stated in Eq. 57, the change in critical radius can

be described essentially by three terms: A buckling and a dnfusion con­

tribution corresponding to the result of first order perturbation theory and

in addition an interface term proportional to the square of the flux at the

zone boundary.
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Fitting of Core Parameters

The results of multigroup calculations were used not only to test the

validity of the express ions derived by overlapping group theory but also

to test the possibility of deriving differences in buckling and critical

radii from the shape of the substitution curve.

The multigroup calculations give the critical radius as a function of

the central zone radius. To this function, Eq. 57 was fitted by the least

squares method in the same way as this is done in the evaluation of an

actual experiment. The resulting values for ßB In and ß r (extrapolated) arer r 0 c
compared to the corresponding values found by multigroup calculations for

"the case of complete substitution.

In the cylindrical geometry of our test case we have

Pz Pz 2
n-l 2 2 Pz 2 2f P F (p)dp = J pJ (P)1p=2 (J (p ) + J 1(pz»o 0 z0 0

(62)

n-l 2 '2
p (F (p) - F (p»dp

""'z

== ~ f
o

pn-l (J2(p)_J2
1

(p»dp= lp J J
1

(63)
o . 2 z 0

r r 3.0860 0= =
Po 2.405 B

2 r
J pn-1 F2 (p)dp J pJ (p)dp00 0

(64)

For the direct calculations described above the ratios R) and RZ were set

equal to unity. However, during the work on fitting procedures it was found

that deviations between multigroup data and fit curve can be decreased by

about a factor of 10 if at leastR1 is calculated explicitly. (RZ was left

equal to unity, this should not have any significant effect, except possibly

for very large zone radii.)

Thus we get

(6.5)

Using relations 62-65 the fitting equation becomes
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z z z p z J~ (p z)
= xlP (J (p )+J1 (p » + XZp J (p )J1 (p ) + x3 --------~---------

Z 0 Z - Z Z 0 Z . z 1+(1 (~ )/I1(~ »
o z z

(66)

b.B
with B

r = -0.648 Br x1
r

and till
-D = -0.648 B' xr Z

2Det
l
A/A

The quantity x = - serves here as a fitting parameter only and is
3 0.648 111

of no further practical interest.

In Tabies 3 and 4 results of the fitting procedure are shown for the

test case described above. The muItigroup calculations giving the change in

critical radius as a function of the central zone radius were performed for

the reflected and the unreflected reactor. In the reflected case the

resuiting b.Br/Br was decreased by 2.5% in order to account approximately

for the smaller normalization integral. All calculations were performed

with tilllD (or xZ) as a variable and as a fixed quantity.

Fits were made including an increasing number of steps, starting

with the first four. The results are always given in the line corresponding

to the last step included.

The results with b.D/D as a free parameter show rather large scatter

while when till/D is fixed we get very good data for the buckling and the

critical radius in the unreflected case as weIl as for the buckling in the

reflected case, as long the central zone boundary does not approach the blanket.

ßorc for complete substitution in the reflected case was calculated by

extrapolation to the core-blanket boundary and also using Eq. 60 with very

similar results. It is generally found 0.5 cm smaller than the multigroup

value. As stated above, this is caused by different spectral interaction be -

tween the blanket and the two core zones which is not taken in account by

the method.
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Extension of the Method to Large Bucklirig Differences

The equationSused above were derived under the assumption that the

two core medii have about the same material buckling. It is, naturally,

of considerable interest, whether an expression similar to Eq. 57 can be

used for the evaluation of a substitution experiment when the difference

in the bucklings is larger. An attempt was made to modify Eq. 57 so as

to describe such a case more realisticly and the result was tested on model

cases with a 6B IB of -10% and -30%.r r

A mathematical treatment of the overlapping group theory which is valid

for large buckling differences would certainly be very involved. Eq. 57

therefore was modified using some physical considerations.

We have seen, when deriving Eq. 57 from the perturbation formalism that

it represents essentially a reactivity balance.

Considering the integrals in the first two terms as weighting integrals

it becomes clear that the situation is described more correctly if pzis

redefined by basing its value on the actual critical radius after each

substitution step:

r
... 0

Pzm = Pz2 r +6r
o c

As above, r is the critical radius for a bare core of the original composition.o

When the sum on the right hand side of Eq. 57 actually describes a

reactivity difference, then it must be proportional to the difference in

(1/r 2) rather than to 6r • An expression which fulfilles this demand butc c
becomes equal to 6r for small 6B is

r
3(1 c 1 1

6 (r ) =~ -. -m c 2 2 ( A)2r r +ur
\.00 C J

This will be used on the left side of Eq. 57 instead of 6rc •

Finally, we know that the equation must also be satisfied for the case

of complete substitution of a bare core where only the first term remains,

while all others disappear.

In order to yield an identity in this case 6 B/B must be replaced by
r r

(69)
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r 1 being the bare critical radius after complete substitution.

(ßmo(rc))/ro takes the place of -ßB/~as a fitting parameter. The two

quantities are related to each other by

-1 -1
ßB r - r 1

B
r = _0~-_-:-1- = -1 + .; 1!-2 (A (r) Ir )mo c 0r r

o

The modified form of Eq. 57 therefore becomes

(70)

)dp

n-l 2 '2p (F (p )-F (p))dp-

n-l
R1R2Pzm B DeiA

2(R1+R2) l.l A2 >} (71)

In order to test Eq. 71 the original test case w#s modified by decreasing

the Pu-concentration in the central zone first to J3.5xl020 (Modification 1),

then to 12.oxl020 atoms/cm3 (Modification 2). Changes in critical radii as

found by multigroup calculations were fitted to Eq. 71, and the values for

ßBr/Br and the extrapolated critical radius were deduced from fits for

different numbers of steps. The calculations were done for the reflected case

only and ßD/D was used as a fixed parameter.

The results are given in Tables 5 and 6. Again we note that the

dependence on the number of steps included is only very slight as long as the

central zone radius does not become to large. The agreement with the values

found by direct multigroup calculations is quite good, the buckling of the

central zone as deduced from the fit having accuracy of about 2% even in

the most unfavourable case. Of a similar quality are the values for the

extrapolated critical radius. üf course, the result of two numerical

experiments do not provide adefinite proof for the general validity of the

methode However, they give a strong indication that substitution may be

used successfully even if the differences in the material bucklings of the

two zones are large.
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EXPERIMENTS ON CRITICAL FACILITIES

The Substitution Experiment MASURCA lB -+ lA'

This experiment was partieularly suitable for a test of the progressive

substitution method sinee it was eontinued until the eentral zone boundary

reaehed the blanket, that is, until the original eomposition was eompletely

replaced by the new one.

}~URCA lB was a uranium graphite eorewith a depleted uranium refleetor

(see Table 2). It was replaeed by the plutonium graphite eomposition of

MASURCA lA' in sueeessive radial steps starting at the center of the assembly.

The radius of the original eore was about 33.2 em. An evaluation of the

experiment was performed after the substituted zone had reaehed a radius of

r z = 20.716 em.

In Table 7, the first three lines show the information (ref. 5) received

on changes in critical radius up to this point. Evaluations were made

using these data directly or correcting them for the presence of a reflector

using the results of multigroup calculations, as described above: Line 4 - 7

of Table 7 show the results of multigroup calculations for a bare and a

reflected system, the calculated difference ßr (refl.) - ßr (bare) and thec c
measured data corrected by these valqes.

The data were then fitted to Eq. 66 using two types of least square

procedures. In the first method (which was also used in the numerical

experiments) the expression

L: (ßr - ßr )2c,calc. c,meas.
n

was minimized (direct fit). The integer n refers to the individual steps.

The second method takes in account that the quantity which is measured

actually is the difference in critical radius between one step and the next.

Therefore one minimizes the expression

\' [ J2L ßr - ßr - ßr -ßr(c,n c,n-l)calc (c,n c,n-l)meas.
n

(difference method.)
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The ealeulations were performed both with ßD/Das a free parameter and

with a fixed value of ßD/D = 0.0193 whieh was derived from multigroup

ealeulations. Also found by multigroup ealeulations was the value used for

the deeay eonstant of the speetral perturbation ~1 = 0.167.

w~en refleetor-eorreeted measured data were used for the fit the

extrapolated radius for eomplete substitution was found from the eurve

after reintrodueing the influenee of the refleetor by adding to the eurve the

multigroup data for ßr (refleeted) - ßr (bare).e e

The results for the direet and the differenee method of fitting were

praetieally the same so that it will suffiee to present the data as found

by the differenee methode These are given in Table 8 and in Fig. 3 and 4.

Also shown is the final result whieh was found as the experiment was

eontinued to eomplete substitution. ~{hen the refleetor eorrection were

applied and ßD/D was treated as a fixed parameter the extrapolated eritieal

radius was eonsistently very elose to the eorreet value. When ßD/D was

treated as a free parameter the data found fram the first few steps are grossly

erroneous, only after the sixths step is ineluded the eorreet result is

approximated.

The data found without refleetor eorreetion g1ve a very similar

result for ßB /B "however, the extrapolated eritieal radius is in error by
r r

about 0.5 em.

The evaluation of the MASURCA experiment was performed with data whieh

were provided as the substitution proeeeded. Areevaluation of the data after

the experiment was eompleted gave small ehanges in the eritieal radii (see

Fig. 3 and 4). Using these new data in a final analysis one will probably

find somewhat redueed errors when ßD/D is used as a free parameter while

otherwise it appears that the results will remain essentially unchanged.
In their own evaluation the MASURCA group reaehed results very similar to
those quoted above (ref. 6 and 7).

Experiments on SNEAK

Two substitution experiments were performed in the course of the work

on the assemblies SNEAK-3A and 3B whieh were simulations of steam-eooled

fast reaetors (the hydrogen being introdueed in the form of polyethylen

foils) with uranium fuel only and a eentral plutonium fuelled zone,

respeetively. (For eompositions, see Table 2.)
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The first substitution consisted of the stepwise introduction of the

plutonium zone in the uranium core of SNEAK-3A-2. As in the MASURCA-ex­

periment, the plutonium zone extended axially through the who1e core.

The radius was increased in 10 substitution steps. The final zone radius was

29.91 cm, which is close to 2/3 of the total core radius of 44.9 cm. Only

very small changes in critical radius were observed during the experiments.

The evaluation was performed with ~/D as a fixed and as a free

parameter. The only reflector correction applied was to decrease the

resu1ting differences in bucklings and diffusion constants by 2.5% in order

to take in account the influence of the ref1ector on the normalization

integral. The method of reducing the measured data to the bare case, using

aseries of multigroup calculations was not applied here, because the amount

of calculations necessary seemed to be quite large for a rather uncertain

improvement. (A correction of this type included in a previous report of

the experiment (ref. 10) was of pre1iminary natureand based on the com­

positions of the test core.) In the light of the good agreement in the

MASURCA ease between the evaluation which was reflector corrected by

multigroup calculations and the measured critical radius after complete

substitution one might reconsider the above standpoint. However, the total

effect of the correction (~0.5 cm in ~r corresponding to 0.3% in ~k) is
c

not 1arge enough to be of great practica1 importance.

A small correction to the measured points was taking in account the

influence of the irregular core boundary on the interface term. This effect

was calcu1ated from the value of the interface term taken from a preliminary

evaluation and the ratio between an estimated effective interface area and

the interface area for a circular zone periphery.

The results of the evaluation are given in Table 9 and in Fig. 5 and 6.

Consistent values are found only when ~D/D is taken in a fixed parameter.

For variable ßD/D a comparable result is found only when all substituion

steps are included in the evaluation.

The second substitution experiment performed in SNEAK consisted of

introducing a central zone with modified structural materials (simulating

Inconel) into the core of SNEAK-3B-2. The substitution was performed in 5

steps with a final radius of 20.59 cm. Since SNEAK-3B-2 already has two
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core zones (with plutonium and uranium fuel) the actual core configuration

becomes quite complicated and is not covered by the theory as presented

above. However, it ~vas assumed, that as long as the substituted "Inconel"

zone does not approach the outer boundaries nf the Pu-fuelled core zone

(at r=29.9 cm), a two-zone treatment will describe the problem sufficiently

weIl. The original core was assumed to consist entirely of the Pu­

composition and to have the corresponding radial buckling. The values for

~ r (extrapolated) and ~B resulting from the evaluation therefore are toocr
be intepreted with respect to the pure plutonium core. The results as given

in the second part of Table 9 and in Fig. 7 and 8 appear to be of the same

quality as those found for the other experiments discussed above. Not

apparent from the figures and tables is the fact that their was practically

no interface effect found in the evaluation of the Inconel substitution. This

indicates that the interface effect found for the other experiments was due

mostly to the interaction of the different fuel materials.

CONCLUSIONS

The results found in this report show that the effect of progressive

substitution in a central zone is quite weIl described by three-term

expressions such as Eq. 57 or for large differences in the bucklings of the

two zones Eq. 71. Eq. 57 contains the first order perturbation terms plus

a contribution due to the spectral overlap at the zone-interface. In addition

to this Eq. 71 takes in account the effect of the change in the fundamental

flux distribution and the normalization integral, as estimated by physical

considerations. The evaluation of numerical and actual experiments with cores

of 30 to 50 cm radius showed that it is possible to measure changes in

radial bucklings wi th an accuracy in the order of 10-3 B__ for very similar- - r-
bucklings and of 2xlo-2 B for large buckling differences. For the extra­

r
polation of the critical radius their remained an uncertainty of about 10-

2
r o

due to the unknown spectral effect of the reflector. A reflector correction

using multigroup calculations yielded very good results in the one case of

the ~~SURCA IB + IA' substitution but the general validity of this method

has yet to be proved.

In any case, it appears that the accuracies reached are sufficient to

make the method an interesting tool for the evaluation of zoned critical

experiments.
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Table I: FLUX DISTRIBUTION FUNCTIONS FOR DIFFERENT GEOMETRIESa )

Plane Geometry .- Cylinder Sphere
~---.--_._-,--

Zone t Zone 2 Zone I Zone 2 Zone t Zone 2

F(p) sin (Po-P2) Jo(PI)
Jo(po) S1n PI sin (po-P2)

cos Pt Jo (P2)-Yo(P2) Y ( )
PI P2o Po

Fl(p) -sin Pt -cos (Po-P2) -J t (p t)
Jo(po) cos Pt sin PI cOS (po-P2) sin (po-P2)

-J t (P2)+Y t (P2) y. ( ) - - -
Pt 2 P2 2o Po Pt P2

H(p) -
sinh(po-P2) 1

0
(Pt)

- _ 10 (po) sinhp t sinh(po-P2)
coshP I -Io (P2)+Ko (P2) K (p )

PI 15'2o 0

H' (p> sinhPI -c1osh(po-P2) It(P1)
- - 10 (po) coshP t sinhP I cosh(Po-P2) sinh(po-P2)

-11 (P2)-K1(P 2) - - - -- -2 - -2
Ko(po) Pt Pt P2 P2

a) P ia defined as B2r , where r is the outer radius of the bare reactor
000



Table 2: 20 3CORE COMPOSITIONS (10 Atoms/ern)

Isotop~i Test Core MASURCA SNEAK

U-Zone Pu-Zone Blanket Assy.1B Assy.1A' Blanket Assy.3A2 Assy.3B2 Ineonel Blanket
Pu-Zone Zone

Pu239 14.5a
16.97 14.76 14.76

Pu240 1.3 1.56 1-;33 1.33
Pu241 0.13 0.15 0.11 o. 11
Pu242 0.006 0.02 0.06 0.06
U235 20.22 0.35 1.54 25.20 0.125 I. 76 20.31 0.56 0.56 1.625
U238 81.06 86.4 399.3 58.06 55.48 418.98 81.04 81.86 81.86 399.414
Al 128.9 129.0 129.10 125.6 127.4
C 8.6 8.6 0.14 564.7 564.7 9.32 9.n 9,.56 0.14
Co 0.19 0.14 -
Cr 36.7 34.1 11.9 10.45 12.28 10.45 34.53 33.72 17.41 11.8
Fe 123.3 124.0 40.1 38.92 48.94 38.92 121.85 119.7 61.99 39.55
H 16.4 16.4 17.92 18.49 18.49
Mg 0.37 0.64 1. 31 1.33
Mn 1.94 2.23 1. 47 0.87
Ni 19.0 18.8 10.2 8.77 6.04 17.10 18.54 17.55 95.00 9.84
0 144.8 145.0 145.29 122.2 122.2
si 1.88 0.46 1.88 2.54 1.79 0.46
Ti 0.55 0.20 0.40 0.38
Mo 0.39 0.29 8.85 0.19
Nb 0.05

a)The Pu239 eoneentration in the test eore was reduced to 13.5xlo~0 in Modifieation I
and 12.oxl0 0 in Modifieation 2



Table 3: RESULTS OF PARAMETER FIT TO TEST CASE (BARE REACTOR)

Results of Fit after this Step

Step I r tJ.r t.D/D free parameter t.D/D fixed parameter(0.0026)z c
(Multi- t.B I t.B I
group) B:(%) I ß r (extrap .) -!.(%) t. r (extrap.)o c B o cr

1 3.07 -0.015 I
2 9.21 -0.022

I3 14.06 0.051
4 20.59 0.289 -6.05 3.50 -2.80 1.62
5 25.49 0.513 -2.34 1.35 -2.74 1.59
6 31.3 0.809 -2.55 1.47 -2.72 1.57
7 35.0 1.036 -3.28 I 1.90 -2.80 1.62
8 40.0 1.257 -2.99 I 1. 73 -2.82 1.63

Multigroup results -2.74 1.628 -2.74 1.628

Table 4: RESULTS OF PARAMETER FIT TO TEST CASE (REFLECTED REACTOR)

Results of Fit after this Step !

Step r t.r ßD/D free parameter ßD/D fixed parameter (0.0026)z c
ßB ßBr r
T(%) ß r ß r T(%) t. r t. ro c o c o c o cr (extrap.) Eq.60 r (extrap. ) Eq.60

1 3.07 -0.016 I
2 9.21 -0.024 I

3 14.06 0.062
4 20.59 0.303 -3.07 1.64 1.65 -2.82 1.58 1. 59
5 25.49 0.555 -3.29 1.7.0 1.71 -2.85 1. 60 1. 61
6 31.3 0.911 -3.78 1.83 I. 81 -2.96 1.65 1.67
7 35.0 1.168 -4.10 1.92 1.87 -3.09 1. 71 1. 75

I

}fultigroup results -2.74 2.18 -2.74 2.18



Table 5: RESULTS OF PARAMETER FIT TO TEST CASE, MODIFICATION 1

(Cpu9=1.35xI020) Reflected Reactor, ~D/D fixed parameter (0.0062)

Step! r

I
~r

I Results of Fit after this Step
z c I

I ~mo(rc) ~Br
~ rr B o c0 r extrapolated

I 3.17 0.027
2 9.21 0.373
3 14.06 OCö 962
4 20.59 2.088 0.1114 0.1184 7.68
5 25.49 3.084 0.1120 0.1191 7.73
6 31.3 4.327 0.1133 0.1206 7.84
7 35.0 5.114 0.1151 0.1226 7.99
8 40.0 6.132 0.1160 0.1236 8.07
9 I 45.0 7.081 0.1175 0.1254 8.20

Multigroup results 0.1210 8.42
!

Table 6: RESULTS OF PARAMETER FIT TO TEST CASE, MODIFICATION 2
20(Cpu9=1.2xlo ) Reflected Reactor, ~D/D fixed parameter (0.0117)

Step r ~r
! Results of Fit after this Step

z c
~mo(rc) ~Br

~ r

I
r B o c0 r extrapolated

I

I
3.17 0.090 i

! 2 9.21 0.953 I
I

3 14.06 2.258 ·1
4 I 20.59 4.639 0.2319 0.2678 21.0
5 25.49 6.723 0.2321 0.2680 21.02
6 31.3 9.368 0.2350 0.2720 21.45
7 35.0 11.112 0.2372 0.2750 21.78
8 40.0 13.449 0.240J 0.2790 22.55
9 45.0 15.691 0.2422 0.2819 22.55

10 55.0 j 19.804 0.2457 0.2868 23.10

MUltigroup results 0.2893 23.92
. I



Table 7: DATA USED FOR THE EVALUATION OF THE MASURCA SUBSTITUTION EXPERIMENT

Substitution Step Nr. 1 2 3 4 I 5 6 i
!

Radius of central
0 5.98 10.78 11.96 15.82117.941 20.716 25.0 30.0 37.4a i48.91'Pu-Zone 1

I ....
;

Critical Radius 33.18 33.20 33.41 33.46 33.66 33.796 34.027(measured)

!:J.r (measured) - 0.02 0.23 0.28 0.48 0.62 0.85'c

!:J.r (refl.) - 0.10 0.42 0.53 0.96 1.22 1.60 2.22 2.97 4.18 -",
~

c

3.331
+J

~ ~r (bare) - 0.10 0.41 0.53 0.93 1. 18 1.53 2.08 2.66 3.80
::s l1l c
.:l Cl Difference - 0 0.01 0.01 0.03 0.05 0.07 0.14 0.31 0.85l1l (refl. -bare)Co)

!:J.r (measured) - 0.02 0.22 0.27 0.45 0.57 0.78

I
c

(with reflector
correction) ,

a)complete Pu-core for reflected case (calculated)

b)complete Pu-Core for unreflected case (calculated)

Table 8: RESULTS OF MASURCA SUBSTITUTION EXPERIMENT

Steps Used with reflector correction 1without reflector correction

!:J.B /B I !:J.D/D !:J.r i !:J.B/B !:J.D/D !:J.rr r c i r c
(extrap. )i (extrap.)- 1-0.045331 - 4 -0.04062 "'<"1 2.26 ", 1. 73~O\ ~

1 - 5 -0.04079 >:- 2.22 1-0.04475 >: 1.70•.-1 0 •.-1

1 - 6 -0.04290 l.I4 . 2.35 1-0
>04805

l.I4 1.830
'-'

1 - 4 +0.2254 -0.6347 -1.65 +0.2214 -0.6360 -1.80
1 - 5 +0.07422 -0.2710 I 0.16 1+0.06482 -0.2592 1-0.03
I.. i- 6 -0.04417 +0.02232 2.38 -0.05211 +0.03045 1.92

Measured r after complete substitution = 2.323 cmc



Tahle 9: RESULTS OF SNEAK SUBSTITUTION EXPERIMENTS

)'
Result of Fit after this Step

IEXPeriment Step I b.r I b.D/D free parameter b.D/D fixed +r I parameterz c
b.B

t:.D
b.Br b. r r b. rB D o c B o c

I r r

1 3.07 -0.017

N a 2 6.86 -0.068
p:::j ::s
M •.-l 3 9.21 -0.138 0.0111 -1.26
~

s::
0
~ 4 14.06 -0.188 -0.6877 1.515 20.0 -0.0210 0.53r"l ::sz .....

Cf.l Po< 5 18.67 -0.26 0.oZ33 -0.0454 -0.79 -0.0174 0.34
t t 6 23.17 -0.315 0.0194 -0.0365 -ö.70 -0.0151 0.21

~ 7 25.49 -0.366 0.0327 -0.0687 -1.01 -0.0129 0.08
M §
~ • .-l 8 25.86 -0.366 0.0314 -0.0655 -0.98 -0.0124 0.05

s::
~

ca 9 29.60 -0.326 -0.0097 0.0397 0.01 -0.0131 0.09
Cf.l ~

10 29.91 -0.322 -0.0133 0.0488 0.10 -0.0133 0.095

I
.-l

ICl) 1 3.07 0.031
t §
N () 2 6.86 0.152p:::j s::
M H

~
I 3 9.21 0.260 0.3873 -0.9176 -10.5 -0.0055 1.26p:::j

M
r"l

~ 4 15.35 0.680 -o.I~50 0.3332 7.0 -0.0173 1.87z
Cf.l

r"l 5 20.59 1.099 rO.OO93 -0.0905 1.63 -0.0166 1.84z
Cf.l

+)= 0.0502 (U~Pu)

=~0.o733 (Inconel)
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