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Abstract: The potential energy of a nuc1eus is calculated as a function of its shape using the method
of Strutinski. The nuc1ear shapes are composed of two spheroids (centres z = ±Zl; z-axis =
symmetry axis) smoothly joined by a central hyperboloid (neck) or a central spheroid (belly).
The corresponding shell-model potential is constructed from two harmonie oscillators centered
around z = ±Zl and smoothly joined by a third oscillator centered aroundz = O. A generalized
form of Nilssons's spin-orbit and [2 term is used.

1. Introduction

As a first step towards the understanding of nuclear fission, shape isomerism and
related phenomena, one studies the "deformation energy" i.e. the difference between
the total intrinsic energy of the nucleus having some given shape minus the total in­
trinsic energy of the same nucleus having a spberical shape. In determining the energy
of strongly deformed nuclei we bave to account for saturation as tbe basic property
of nuclear matter. Since, furtbermore, we are mainly concerned with the deformation
energy of heavy, fissile nuclei, the liquid drop model (LDM) suggests itself asan ade­
quate basis of a phenomenological description. Many calculations of the deformation
energy within the LDM have been performed since the basic paper of Bohr and
Wheeler 1) with various degrees of sophistication as to the LDM and the variety of
investigated nuclear shapes 2- 5). In the early sixties, it was realized that the nuclear
shell structure which leads to fluctuations of the actual nuclear density around the
constant liquid drop value, creates a significant modification of the LD energies.
Myers and Swiatecki 6) achieved a remarkable improvement of the LD mass formula
by adding a shell correction term which depends on the difference of the actual den­
sity ot shell-model levels from a smooth average level distribution. This shell correc­
tion term is constructed such as to tend to zero at large deformation. Strutinski 7)
showed that the effect of the shell structure was directly related to the fluctuation of

337

December 1970
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the nuclear density and that it could lead to an important modification of the LD
energy at small as well as large deformations. The "Strutinski prescription" of cal­
culating the shell correction term gives rise to a very successful parameterization ot
ground state masses 8) and predicts the existence ot nuclear shape isomers. It bas
consequently been widely adopted as a phenomenological method for calculating the
deformation energy of heavy fissioning nuclei. The various groups of authors ditfer
in the ehoice of the shell-model potential and the parametrization of nuclear shapes.

1v
- - - - - - - - - EF - - - - - - -

- - - - - - ko - - - - - -

Z, Z

Zo Z, Z

Fig. 1. Potential V(z) for a given nuc1ear shape. Ir not otherwise mentioned, the input parameters in
all the figures are the ones given in sect. 3.

Hitherto, only nuelear shapes with rotational symmetry around a body-fixed axis
(z-axis) have been considered in this way. Furtbermore, most of the calculations were
restrieted to nuclear shapes wbieh are invariant against refleetion with respect to a
plane perpendicular to the axis of rotational symmetry. We sball shortly designate
shapes with this additional symmetry as symmetrie sbapes contrary to asymmetrie
shapes.

Strutinski et al. 9) use a polynomial p(z) (p, 0/, z = eylindrical coordinates) for
parametrizing tbe nuclear surfaee and a Saxon-Woods potential of the same con-
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tour. Nilsson et al. 10) and Krappe 11) describe the deformed potential by adding
higher multipoles to the ordinary Nilsson potential t. Nix et al. 12) determine the
shell-model potential which should correspond to a nuc1ear droplet of given shape
on the basis of an effective nucleon-nuc1eon interaction.

Demeur and Reidemeister 13) and Mosel and Greiner et al. 14) have calculated
the single-partic1e energies in a two-center potential composed of two harmonic oscil­
lators. These calculations show the gradual change of the level scheme as one goes
from the original spherical potential of the fissioning nuc1eus to the final configuration
of two separated fragments. The wave functions for such a potential were also given
by Wong 15). In these last-mentioned papers 13-15) the shell-model calculation is
not correlated with the LDM.

In this paper, we describe the average potential for a strongly deformed fissioning
nuc1eus by two oscillator potentials focussed around the centres of the emerging frag­
ments and smoothly joined by an inverted oscillator which is to describe the neck
part ofthe dumb-bell shaped nuc1eus (see fig. 1 for the z-dependent part ofthe poten­
tial.) This potential has already been treated in ref. 13) for the case ofheavy ion scat­
tering. We discuss the physicaljustification of this model in subsect. 4.3. In sect. 2 we
present the theory: We define the specific droplet model to be used in subsect. 2.1
and shortly rephrase the computation ofthe shell correction in subsect. 2.3. The shell­
model potential is discussed in subsect. 2.2, which is complemented by the appendices
Band C where the explicit form ofthe basic wave functions and ofthe matrix elements
of the generalized spin-orbit and , 2 term is presented. Details of the droplet model
are given in appendix A and of the l1Umerical procedure in appendix D. The input
parameters are listed in sect. 3. Sect. 4 contains results on level schemes (subsect. 4.1)
and potentiallandscapes (subsect. 4.2).

2. Theory

2.1. DROPLET MODEL

(la)

(lb)for z > Zo.

for z < -zo,

The shape of the nuc1eus at the saddle point, as calculated by Cohen and Swiatecki
within the droplet model, can be approximated to a high degree of accuracy by two
spheroids connected by a hyperboloidal 01' a spheroidal neck 16). Assuming that this
parametrization continues to provide a suitable description when shell effects are
inc1uded, we restrict ourselves to this family of nuc1ear shapes. Using cylindrical co­
ordinates (z-axis = axis of rotational symmetry) the nuc1ear surface is represented
in the following form:

2 _ 2 [1 (Z+Zl)2J
P - a 1 - 2 '

Cl

p2 = ai [1- (Z~;1)2J '

t Work based on a deformed Nilsson potential with a Gaussian central barrier is in preparation,
private communication from Th. Johannson.
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In the central region -Zo < z < Zo we distinguish three possibilities:

(lc)

hyperboloid for postfission shapes.

ellipsoid for prefission shapes,

hyperboloid for prefission shapes,p2 = a~ (1 + :;) ,

p2 = a~ (1- :;) ,
p2 = -a~ (1- :;),

The usual requirement of a shape independent nuclear volume and, in our case, also
of a smooth surface at the joining points z = ±zo leaves us with three independent
parameters to describe a particulaI' shape. Examples of these nuclear shapes are given
in fig. 12.

We represent the deformation energy in the LDM as a sum of a surface (Esurf),

a curvature (Ecurv) and a Coulomb term (Ecou1 ):

ELDM = Esurf +Ecurv +ECoul , (2)

. [ (N-Z)2JEsurf = POA3 1-P1 ~ (Bsurf(s)-l),

.1. [ (N -Z)2JEcurv = yok 1-P1 ~ (Bcurv(s)-l),

(3a)

(3b)

(3c)

(4a)

where s denotes a set of shape parameters. The values for the parameters Po, P1' Yo
and 1'0 are taken from the literature and are listed in sect. 3. Essentially they are ob­
tained by fitting the experimental ground state masses. The qllantities Bsurf, Bcurv and
BCoul are the surface area, the mean curvature and the Coulomb-energy divided by
the corresponding quantities for the spherical nucleus:

Bsurf = ~ ·fdS,
4nl'oA3

(4b)

(4c)

where R 1 and R2 are the Gaussian radii of principal curvature, dS and d,. are the
sllrface and volume elements and p(,.) is the charge density. Explicit formulae are given
in appendix A.
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2.2. POTENTIAL MODEL

As stated in the preceding section, we only consider nuclear shapes which are corn­
posed of two spheroids smoothly connected by a hyperboloid of revolution (or by
another spheroid). We have to choose tbe single-particle potential in such a way that
the average nuclear density, calculated within this shell model, decreases from its
value in the interior to zero in a narrow vicinity of the LD surface. PhysicaIly, the
most reasonable choice appears to be a Saxon-Woods potential the range of which is
determined by the surface of the corresponding LD [ref. 9)]. We hope that a less
realistic but simpler model consisting of two smootbly joined oscillators will produce
quite similar results. This hope is based on the surprising success ofthe Nilsson model
in describing the spins of the ground and first excited states of deformed nuclei and,
last but not least, on the observation that Strutimki's shell correction only depends
on tbe density of sheIl-modellevels near the Fermi energy. We expect tbis quantity to
be sufficiently weIl reproduced by our less realistic potential. The greater simplicity
oi our model should enable us to speed up the numerical determination of the poten­
tiallandscape whicb is a point of considerable practical interest. We shall comment
on some numerical details in appendix D and on the physical justification of our
potential model in subsect. 4.3.

We choose the sheIl-model potential Uo such that surtaces of constant potential
are spheroids connected by a hyperboloid of revolution with the same centres, join­
ing points and axis ratios as the corresponding LD shape. Using cylindrical coor­
dinates (p, cjJ, z) with tbe z-axis as tbe symmetry axis this is achieved by the following
potential:

(5a)

for z < - Zo (region I)

for - Zo < z < Zo (region 11)

for z > Zo (region 111).

(5b)

In eqs. (5b), (6a) and (6b) the upper sign bolds for a hyperboloidal (Zl > zo), the
lower signs for a spberoidal (Zl < zo) central part. The parameters are self-explana­
tory: In is the nucleon mass, W1. is the oscillator frequency perpendicular to the axis
ofrotational symmetry, the parameters Wb Wo and Vo describe tbe two-center poten­
tial in the z-direction. The requirement of smooth joining at z = ±zo leads to the
following relations:

(6a)

(6b)

We assume in this section that all the potential parameters ate known. We shall show
in subsect. 2.3 how they are determined from a givell shape of the droplet surface.
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The eigenfunctions ~v of the unperturbed Hamiltonian Ho

Ho~v = [T+ UoJ~v = Bv~v, (7)

can be represented analyticaIly; the corresponding eigenvalues Bv are obtained as
solutions of a transcendental equation (see appendix B).

The potential Uo(p, z) is not a realistic nuclear sheIl-model potential because it
contains no spin-orbit term. Furthermore, a corrective term should be added which
makes the eigenvalues of the potential more similar to the ones of a Saxon-Woods
weIl. In the case of the Nilsson potential, the deformed harmonic oscillator is correct­
ed by the term

(8)

Here the parameters K and fl are chosen so as to reproduce the sequence of low­
energy levels of odd-even nuclei as weIl as possible; Wo is the oscillator frequency for
the spherical nucleus, and I, aare the operators of orbital angular momentum ltimes
I/li and 2/li times) the intrinsic spin. In Nilsson's ansatz for the potential, the orbital
angular momentum ' t is formulated in terms of stretched coordinates Xt, Yt, Zt

[ref. 10)] t. The corrective potential Vc~rr is diagonalized in the space of eigenfunc­
tions of the Hamiltonian [-Ll(pt, Bt, 4>t)+P;] where Pt, Bt, 4>t are the polar coor­
dinates corresponding to Xt, Yt, Zt and LI 1S the Laplacian written in these coordinates.
These basis functions can be characterized by the principal quantum number N. The
expression -tN(N+3) in eq. (8) is the trace ofthe operator I; in the subspace defined
by the principal quantum number N.

We wish to introduce a correction term of a similar structure with the diffe,rence
that the more the orbitals are concentrated around the centres of the left- and right­
hand spheroid, i.e. the more the two fragments are preformed, the more the orbital
angular momentum is to be related not to the origin Z = 0 but to the fragment centres
at Z = ±Z l' This is achieved if we replace the position vector in the definition of 1by
a quantity proportional to VUo:

1 = ,. x p ~ (V U°x p) const.

We also have to find a suitable generalization of the trace term -tN(N+3) which
should be meaningful independently of the existence of the quantum number N and
which should be equal to -tN(N+3) in the limit of the original spherical nucleus and
the limit of two totally separated spherical nuclei. For this we write N as a function

t The coordinates are defined as

Ymw.l
X t = X --;

li Ymw.l ymwz
Yt = Y --; Zt = Z --,

li li
where W z is the oscillator frequency in the direction of the symmetry axis (= z-axis).
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of the eigenenergyeN of an isotropic harmonic oscillator of frequency co

eN 3
N = - --,

hco 2

which leads to

!N(N+3) =! {(e~)2_~}.
2 hw 4

343

(9a)

This expression can be made independent of the existence of the quantum number N,
if we replace eN by the eigenenergies Sv of the unperturbed Hamiltonian Ho.

Bv 3
N-'t---

hco 2
(9b)

The frequency co must be weakly form-dependent in such a way that it becomes equal
to the frequency Wo for the original sphericalnueleus and equal to the frequencies of
the two emerging fragments in the case of totally separated oscillators. This can be
achieved by the ansatz

co = wov'Bcuris), (10)

where Bcurv(s) is the ratio of the mean curvatures of the deformed and spherical nu­
eleus:

J (1 1)dS -+-
B ()

= deformed shape R1 R2

curv s J (1 1 ) .
dS -+-

spherical shape R1 R2

(11)

(12)

The shape dependence of Bcurv(s) is very smooth as it should be. The only motivation
of this choice is that it exhibits the desired behaviour in the limiting cases and that it
smoothly interpolates between them.

We thus arrive at the following form of the corrective operator Vcorr :

co {h ( ) (VUOxp)2 2[(8v )2 9J}
v;,orr = - -1' -----:::z(1 VUOXp +It N22 -!lth --;:; -- .

h mw (mw ) hw 4

If the potential Uo is a spherical oscillator (Uo = !111w~r2), the form (12) of Vcorr

becomes identical to the form (8) used by Nilsson. If the potential U0 consists of two
totally separated spherical oscillators, the potential Vcorr is effectively equal to the
Nilsson term (8) for each of the two oscillators. The generalized form of the spin­
orbit and , 2 terms are the simplest scalar operators which can be constructed from
the vectors (1, p and VUo' The choice of these terms is thus direcdy motivated. On
the other hand, the generalization (12) of the trace term !N(N+3) seems to be rather
arbitrary. In this context, two remarks are in order: (i) The Strutinski shell correction
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depends on1y on differences between discrete sing1e-partic1e levels and averages of
sing1e-partic1e energies. Therefore, the influence of the trace term on the potential
landscape is not 1arge in any case. (ii) The motivation of adding a trace term is just
to make the level schemes calcu1ated on the basis of (12) agree with Nilsson's choice
in the case of a spherica1 nuc1eus and two comp1etely separated spherica1 fragments.
This has the advantage that one may use the same 01' nearly the same va1ues of 1( and f1
which were adjusted by Nilsson 10) and other authors 9) to obtain a correct level
sequence for odd nuc1eL

A correct level sequence can on1y be achieved if the va1ue of 1( depends gentlyon
the principa1 quantum number N [refs. 8,10)], Le. I( must be chosen weak1y state
dependent.

Seeger and Perisho 8) showed that an empirically successfu1 choice of this state
dependence is given by

1(0
1( = I(N = ~======

3,,1!(N+1)(N+2)

Again, we generalize this form by rep1acing N according to (9b) which leads to

21(0
I( = -:,;==;======::-=

~(2Bv/hw)2_1

(13)

(14)

The operator Vcorr defined in eq. (12) has non-diagonal elements in the basis of the
eigenfunctions ~vof Ho. So we rep1ace Sv by the arithmetic mean of the eigenenergies
sv" SV2 corresponding to the bra and ket state:

21(0
1( = ,

~wv,+BV2)/hwy -1

in the matrix element <~v,lVcorrl~v,)'
We emphasize that this choice of 1( represents an arbitrary generalization of a form

of I( which had turned out to be empirically successful. Whether this genera1ization is
usefu1 01' not can on1y be decided by comparing the calcu1ated level scheme for strong­
ly deformed nuc1ei (e.g. in the second minimum) with experimental evidence.

It is this arbitrariness in the detailed form of Vcorr which is a rather strong argument
in favour of using a deformed Saxon-Woods potential as is done by the authors of
ref. 9). There, no 12 term occurs and the spin-orbit constant is likely to be state- ,md
shape-independent. On the other hand, both are phenomeno10gica1 potentials in the
first pIace, and furthermore the shell correction of Strutinski as a difference term is
likely to be quite insensitive to finer details of the potential.

The corrective potential (12), (14) is diagona1ized in a sufficient1y 1arge subspace
of eigenfunctions ~v. We emphasize that the basis states ~v a1ready inc1ude the effect
of an arbitrari1y strong deformation within the admitted family of shapes. Consequent­
1y, the dimension of the space of basis functions need not be increased as we go from
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small to large deformations like a strong constriction in the neck part. This is a rather
important advantage which is gained through the simplicity of our potential model.

2.3. DEFORMATION ENERGY ACCORDING TO STRUTINSKI'S METHOD

We calculate the deformation energy according to the method of Strutinski 7):
The deformation energy is given as the sum of the LD part ELDM, a correction due to
the pairing, and a shell correction.

(15)

The pairing term is given by the difference between the BeS energy Encs and the sum
ESM of occupied single-particle energies 17,18).

Encs-EsM = 8odd+ L 2V;(8v-tGllV;)
v>o

(16)

(17)

Here, Gll
, Ll ll, v;, GP, LlP, v:' are the pairing force matrix element, the gap parameter

and the occupation probability far neutrons and protons, respectively, Indices V(ll)
indicate neutron (proton) quantities; L" means that the single-particle energy 8 0 dd

occupied by the unpaired proton is to be omitted from the summation; L' means
summation over states below the Fermi level only. A completely analogous equation
holds for a system with an odd neutronnumber. In the case of a doubly even nucleus
there 1S no term 80 dd and no exclusion in the second sumo

The shell correction Esc is the difference between the sum of occupied single­
particle energies and an average of this sum which is obtained on the basis of a smooth
level distribution gll(8), gP(8) for neutrons and protons 7).

f
An fAP

Esc = ESM - -00d88g
11
(8)- -00d88gP(8),

ll( ) _ 1 '\' [3 (8-8v) 2J -«e-ev)/y)2g8------=-LJ---- e ,-Jny V 2 Y

where the upper limit of the integration is defined by

(18)

(19)

Equations analogous to (18) and (19) hold for protons.
We still have to establish a one to one correspondence between the parameters

specifying the shape of the LD and the ones defining the potential U0 \ see eqs. (5a)
and (Sb)]. For this we require that the sm'face of constant potential

(20)
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coincides with the given surface of the LD. If the constant k o is known, we thereby
uniquely specify the potential parameters. We determine k o by requiring that in the
case of a spherical oscillator of frequency Wo the surface defined by (9a) should be
identical to the surface of a sphere with the LD radius R = l'oAt

(21)

The frequency Wo is chosen differently for neutrons and protons; it is adjusted so as
to approximate the experimental rms radius of the neutron and proton distribution.

We remark that, contrary to the Nilsson model, equipotential surfaces which do not
coincide with the LD surface, generally do not enclose a volume independent of de­
formation.

3. Parameters of the theory

The LDM part of the deformation energy contains the radius parameter 1'0' the
surface constant ßo and the curvature constant Yo, and the parameter ßl which deter­
mines the symmetry energy (see eqs. (2)ff.). We choose the same numerical values as
v. Groote and Hilf 5):

1'0 = 1.123 fm,

ßo = 17.8 MeV,

ßl = 1.7826,

Yo = 6.5 MeV.

The shell-model part contains the well-known parameters l' and J1, of the Nilsson
model 13). Here, we use the values given by Seeger and Perisho 8) in connection
with the generalized state dependence of l' [eqs. (14)]

1'0 = 0.18,

1'0 = 0.21,

J1, = 0.62 for protons,

J1, = 0.308 for neutrons.

The oscillator energy unit nwo is taken to be

nw o = 38/At MeV, for protons,

nwo = 44/At MeV, for neutrons.

The pairing force constants were taken over from ref. 18). They are fitted to the ob­
served odd-even mass differences of nuclei in the actinide region

Gn = 17/A MeV; GP = 20.5/A MeV.

The parameter y for the level density formula (18) was taken to be

y = 5 MeV

which is approximately 0.7nwo for nuclei in the actinide region.
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4. Results

4.1. SINGLE-PARTICLE ENERGY SCHEMES

In this section, we show the migration of single-particle levels as a function of half
the distance between the centres of the two fragments (Zl)' As the two remaining in­
dependent shape parameters, we choose the ratio adcl of the half-axes of the left
and right spheroid and the ratio ao!co ofthe half-axes of the central hyperboloid. The
values for these parameters are fixed in the following way:

(i) The quantity adcl is put equal to 1, which means that the spheroids in regions
land III [eq. (Sb)] are spheres.

(ii) In the case offig. 4, the ratio ao!co is also put equal to 1, while in figs. 2 and 3
this quantity is put equal to 1000 for prefission shapes [eq. (Ic)]. The choice of this
large value is equivalent to a model of two overlapping spheres, i.e. two oscillators
without a region II. For postfission shapes, the joining point zo, obtained for given
values of Zl and ao!co, does not always correspond to areal value of the radial co­
ordinate

In this case, we choose the ratio ao!co in such a way, that the hyperboloid touches the
spheres at the points p = 0 and Zo = ± (Zl - Cl)' With this choice ofthe shape param­
eters of the droplet, the parameters of the potential U° are uniquely specified.

In fig. 2 we show the spectrum ofthe unperturbed energy levels 8v [see eq. (7)]. For
the limiting cases of the original sphericalnucleus and the two completely separated
spherical fragments, we may characterize these levels by the principal quantum
number N. The central barrier for the largest value of Zl shown in the diagram turns
out to be Vo = 38.3 MeV. The degeneracy which corresponds to completely sep­
arated spherical oscillators is only achieved for levels weIl below this value of Vo, as
can be seen from the diagram.

In figs. 3 and 4, we show the level plot for the eigenvalues Sv of the complete Hamil­
tonian H = Ho + Vcorr ' As to be expected, the level diagram is dra stically changed
by the spin-orbit coupling and the generalized 12 correction. The intervals between
corresponding energy levels should be larger by a factor of 2+ for the totally separated
spherical oscillators as compared to the original potential, because the energy unit is
known to be proportional to A -+. This requirement is automatically fulfilled by our
choice of Vcorr and the conservation of potential volumes (see subsects. 2.2 and 2.3).

4.2. POTENTIAL LANDSCAPES

In this section, we present results for the deformation energy as calculated in the
pure LDM [ELDM, eq. (2)] and the LD model with shell and pairing corrections
(0", eq. (15)]. As independent shape parameters we use the ratios adcl' aO!al and
ao!co. In all calculations of potential surfaces the ratio ao!co is kept constant.

The potential surfaces are presented in the form of perspective views: The energy is
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Parameters al/cl = 1, ao/co = 1000. Further information is given in subsect. 4.1.
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plotted on a vertical axis as a function oftwo shape parameters. The surfaces are seen
from a direction perpendicular to this vertical axis, more specifically, the point of
sight is chosen to be in the plane of zero energy and far away from the depicted part
ofthe surface in order to avoid perspective distortions. This is schematically indicated
in fig. 5. For every line drawn in figs. 6 to 11 one of the shape parameters adc l 01'

80/81 1.05 1.0 0.95 0.9 0.85 0.8 0.75 0.7
'"~.

r
3~0.5

0.567

- 0.533

0.7

0.767

0.833

0.9

0.967

1.033

1.1

'l'
8 Yc1

I

/
7

p?

, I

/
/

/
,~

I I '/

I ±z'
!±Y/~f---
L .. ,

Fig. 5. Range of the variables al/cl and aO/al and angle of the point of sight for figs. 6 to 11. The
deformation energy presented in figs. 6 to 11 is calculated for the crossing points of the lines of
constant parameter al/cl and aO/al' These straight lines are the projection into the plane of zero

energy of the curves shown in figs. 6 to 11.

aO/al is kept constant. The projection of such curves on the plane of zero energy is
shown in fig. 5. The deformation energy was calculated for the 80 crossing points in
fig. 5. In the pictures of potentiallandscapes (figs. 6 to 11), the intervals between the
lines connecting calculated points of the potential energy were subdivided into five
equal parts. The energy at the crossing points of these additionallines is obtained by
interpolation. By this way, it is made more obvious that the parameter lines form a
surface.

A comparison of figs. 6 and 7 shows that the energy surface is drastically changed
by the shell and pairing corrections. Fig. 7 shows a deformed ground state for 236U

(see table 1b). A second minimum of the function fff is only slightly indicated in fig. 7
and becomes more pronounced if the energy is minimized with respect to all three
independent shape parameters (compare tables Ib and Id).

The saddle point of the LD energy is clearly seen in fig. 6. The corresponding values
of the energy and shape parameters are given in table la. In fig. 7 we see two saddle
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Fig. 6. Energy ELDM of the liquid drop for the nucleus 236U. The shape
parameters al/cl and aO/al are varied in the range shown in fig. 5. The

third shape parameter ao/co is given the constant·value ao/co = 0.6.

ENERGY (MeV)

Fig. 7. Deformation energy Ii for 2 36U. The ground state energy is nor­
malized to zero. Parameter ao/co = 0.6.
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Fig. 9. Energy ELDM of the liquid drop for 226Ra. Parameter ao(co = 0.6.
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TABLE 1
Minima and saddle points of the energy of deformation

1a) LDM saddle pointslfor ao/co = 0.6

Nucleus al/Cl al/aO Zi Zo Ci ELDM

236U 0.70 0.95 3.551 2.047 7.401 5.36
226Ra 0.767 0.85 5.459 3.386 6.387 8.44

1b) Minima of the energy of deformation for ao/co = 0.6

Nucleus adCi aO/al Zi Zo Ci tff

236U 0.7 1 0 0 8.79 0
236U 1.03 1 0 0 6.78 1.56
226Ra 1.007 1 0 0 6.84 0
226Ra 0.7 1 0 0 8.66 2.83

1c Saddle points for ao/co = 0.6

Nucleus adci aO/ai Zi Zo Ci tff Comment

236U 0.83 0.90 4.64 3.06 6.22 9.24 see fig. 12c
236U 0.69 0.94 3.81 2.16 7.43 9.0
226Ra 0.63 0.85 5.65 2.98 7.38 13.5

1d Minima of the energy of deformation for 236U with no restrictions on the shape parameters
ao/co

ai/Cl aO/ai ao/co Zi Zo Ci tff Comment

0.7468 1.0038 0.5524 0.721 1.411 8.083 -0.25 see fig. 12a
0.85 0.9949 0.4521 1.509 1.176 7.052 -0.07 see fig. 12b

The energy of the lowest minimum (ground state) is normalized to zero. The unit of length is 1 fm,
the unit of energy is 1 MeV.

points of comparable energy leading to fission (see also table lc). The shape corre­
sponding to one of them (smaller value of ao/at) is plotted in fig. 12c. In a11 these
results, the parameter ao/co was kept constant. We have used a search program to
find minima of the deformation energy ~ as a function of the three shape parameters
adci> ao/at and ao/co. Thus the ratio ao/co which so far had the fixed value of
ao/co = 0.6 was now free to vary. The results are presented in table Id, figs. 12a and
12b. The energy of the ground state relative to the LDM energy did not change very
much compared to the results discussed before, however, the energy of the second
minimum was appreciably lowered. This shows that in our parametrization, it is not
possible to describe the relevant symmetrie shapes with only two parameters. Recently
it has been shown t that the saddle point energy for 236U is lowered if asymmetrie
shapes are inc1uded.

t Private communications from S. G. Nilsson and V. M. Strutinski.
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We have also perrormed ealculatiolls for the nucleus 226Ra. Comparing these re­
sults with the 236U data the following points are noteworthy: (i) The LDM-saddle
point for radium is higher in energy and eorresponds to a more eonstrieted shape
(fig. 9, table 1a); (ii) The energy ß has two minima, as also found for uranium. The
deepest minimum for radium eorresponds to an almost spherieal spheroid, the seeond

4
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Fig. 12. Shapes for 236U. The shape parameters are given in tab1es 1d and 1c.

minimum to a more pro1ate one (fig. 10, table 1b). Fig. 10 shows one saddle point
1eading to fission. Beyond this saddle point there appeal' to be two valleys. It would be
interesting to find out whether both ofthem lead to an exit to fission. It is eoneeivab1e
that onee the asymmetrie degree of freedom is included, one valley leads to symmetrie
and the other valley to asymmetrie fission. This eould thus provide an understanding
of the three-peak mass distribution observed for fission of 226Ra.

F01' a eritieal judgment of the results, so rar presented, it is important to know how
sensitive they are with respeet to variations of the input parameters (seet. 3). For this,
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we have arbitrarily enlarged the pairing force matrix elements. Using the values

357

GD = 20.5/A MeV, GP = 23.5/A MeV,

we 0 btain the energy surfaces shown in figs. 8 and 11. These figures must be compared
to figs. 7 and 10. The most striking difference is that, in the calculation with the en­
larged pairing force, we obtain a minimum only for spherical shapes of the nuc1ei
236U and 226Ra. For prolate spheroidal shapes a steady increase of the energy is ob­
served. This resulc is easily understood by noticing that the shell correction term to
the LDM energy favours those nuc1ear shapes for which the level defJ.sity at the Fermi
sUl'face is low, while the pairing interaction favours a high level density at the Fermi
surface, For a nucleus like 236U or 226Ra the level density in question has a maximum
for a spherical shape. If the pairing force matrix elements have a large value, there
will only be one minimum of the deformation energy, since both the LDM and the
pairing force term favour the spherical shape.

4.3. DISCUSSION

One wants to construct a potential form sufficiently general to describe the nucleus
in all stages of the fission process up to the final separation of fragments. H, at the
same time, one likes to retain oscillator potentials in view of their simplicity, one is
automatically led to consider a two-center potential ot the type which is proposed by
us and several other authors 13-15). We have stated already in subsect. 2.2 that the
generalization of the correction terms (spin-orbit and [2) involve some arbitrariness
which does not appear if one uses a deformed Saxon-Woods potential. This arbi­
trariness however, concerns only finer details of the potentiallandscape which are any­
how probably beyond the scape of a phenomenological theory.

On the other hand, there is a more serious principal objection to the potential model
we propose: In our potential model a barrier is introduced between the nascent frag­
ments which is larger, the larger the central constriction of the nuclear droplet. AI­
though it is quite obvious that a potential barrier must finally develop between the
two separating parts, we would expect that, as a consequence of nuclear saturation,
the potential barrier develops only in a rather late stage of the fission process, when
the diameter of the neck part approaches twice the surface thickness (i.e. 2-4 fm).
In our case, a sizeable barrier may already be present at the second saddle point
(Va = 5.6 MeV for 236U; Va ~ 7 MeV for 226Ra). This barrier produces a reduced
average density in the neck part while in fact there should be essentially the same
average density in the neck and in the nascent fragments.

The answer to this criticism is that, in the Strutinski method, it is not the average
density but the fluctuatiol1 of the density around the average droplet value which is
to be determined by the potential model. While it is true that our potential model
leads to an incorrect average density in the neck part, it may weIl reproduce the fiuc­
tuation correcHy.

The fiuctuation of the density is correlated with a fiuctuation of the density of
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single-partic1e levels near the Fermi-energy BF' It is this fluctuation of the level den­
sity which enters our calculation in terms of the shell correction. In a more realistic
potentiallike the deformed Saxon-Woods potential, the main effect on the levels near
BF of a constriction in the central part is that those single-partic1e levels are pushed
upwards in energy which correspond to orbitals exhibiting in the neck part large
amplitudes in p-direction.

In the two-center oscillator model we describe a central constriction by a barrier
in the z-direction between the later fragments. The introduction of such a barrier will
most strongly affect the single-partic1e states with the lowest number of nodes n" in
the z-direction: The corresponding energy B~z increases as a consequence of intro­
ducing the barrier. The total single-partic1e energy t Bv is the sum of the energy B~z

in the z-direction and the energy BII.LA in p-direction (see appendix A)
o 0z 0

Bv = Blly +BII.LA •

For astate with low nz to be near the Fermi energy BF, the energy ~II.LA must be large,

i.e. the number n.L ofradialnodes (BII.LA = nOh(n.L +1)) must be Zarge.

So we see that the main effect, in the vicinity of the Fermi energy, of introducing
a barrier is to raise the single-partic1e energies corresponding to states with a higher
number of radial nodes and a low number nz ofaxial nodes. This is qualitatively the
same effect as for the constricted Saxon-Woods potential. We, therefore, have reason
to expect that the two-center potential reproduces correctly the effect on the shell­
correction of a central constriction. Of course, the total density as weIl as the single­
partic1e energies far below the Fermi energy are not meaningful quantities in this
model.

A large part of this work was done while one of the authors (K.D.) stayed at the
Niels Bohr Institute in Copenhagen. He would like to express his deep gratitude for
the warm hospitality that was extended to him.

We profited much from the contact with V. M. Strutinski and his collaborators.
We thank them for stimulating discussions and valuable comments.

The Gesellschaft für Kernforschung, Karlsruhe, supported a stay of B.L.A. at the
Kernforschungszentrum. The Niels Bohr Institute and the Kernforschungszentrum
provided the facilities for performing the numerical calculations. We are very grateful
for this support.

Appendix A

EXPLICIT FORMULAE FOR THE DROPLET PART

Here we give formulae for the functions Bsurr , Beurv and Beoul i.e. the surface area,
the mean curvature and the Coulomb energy divided by the corresponding quantities

t For the sake of simplicity, we base our discussion on the IIl1oel'tlll'bed eigenstates l' of Ho.
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10r the spherical nucleus. For the LD shape given by eqs. (1) the surface and curvature
terms may be evaluated analytically

(A.l)

Using the function p(z) given by eqs. (1) one obtains for the above integrals

!ZJÖ1+Ö2Z2+ Ö/ In[J~z+JÖ1+Ö2Z2J
2y ö2

for ö2 > 0; Öl +Ö2Z2 ~ 0

!zJÖl +Ö2Z2 + _Ö_l _ arcsin (V -ö2 z)
J-Ö2 Öl

for ö2 < 0; Öl> 0; Öl +Ö2Z2
~ 0

Jölz forö2 =0;Öl>0

(A.1a)

(A.2a)z(l + Ö3 ) for Ö2 = O.
Öl

The integration is extended over those values of z for which the function p2(Z) is posi­
tive. The parameters Öl' Ö2 and Ö3 depend on whether p(z) is a spheroid or a hyper­
boloid:

far an ellipsoid

for a hyperboloid far prefission shapes

for a hyperboloid for postfission shapes,
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for an ellipsoid

for both types of hyperboloids,

for an ellipsoid

for both types of hyperboloids.

The ratio Bcou! of the Coulomb energy of the deformed nucleus divided by the one of
the spherical nucleus can be expressed in terms of a tripIe integral 20).

B _ 1 15
Cou! - (1'0 At)5 4

J
2Z0 Jl Jl zF2(z)F2(yz) sin2 (mv)

x dz dy dw--------;:~=====:=====:======::===============
o 0 0 2(1-y)+.Jz2(1-y)2+ F2(z)+F2(yz)-2F(z)F(yz) cos (nw),

(A.3)

where Zo = (Cl +zo), and F(z) = p(z-zo)' We evaluate the integral in eq. (A. 3)
numerically by means of a Gauss-Legendre quadrature formula with 32 support
points tor each of the three variables t.

Appendix B

EIGENFUNCTIONS AND EIGEN-ENERGIES OF THE UNPERTURBED HAMILTONIAN Ho

In this appendix, we present the explicit form of the z-dependent part qJn.(z) of the
wave functions ~v and of the secular equation. The results are very simplY obtained
and are also given in less detail in refs. 13 -15). If the Schrödinger equation (7) is
written in cyclindrical coordinates (p, <jJ, z), it can be separated into three ordinary
differential equations. The p- and <jJ-dependent part of the solution is trivial and will
be given at the end of this section. The z-dependent part qJn.(z) is a solution 01' the
equation

(B.l)

where V(z) is given by eq. (5b). In what folIows, we omit the index I1z • If double signs
appeal', the upper and lower signs refer to central hyperboloid and central spheroid,
respectively.

Introducing dimensionless variables in the different regions I, II, III [see eq. (5b)]

t We are grateful to Dr. Hasse for making a computer routine available to us which calculates
the Coulomb energy using this method.
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through the definitions

V21nWO
I] = iXOZ = --Z,

11

( = iX 1(Z-ZI)'

361

Oz
-8

al = -;
hW I

we can write eq. (B. 1) as:

v. oz
o 8

ao = +- --
- hwo hwo'

O~~<PI-(i-~2+al)<p1= 0,

o'lI/<Pu-(=Fi-1J2+ao)<pu = 0,

o,,<Pm-(t(2+ a1)<Pm = 0.

(B.2)

(B.2a)

(B.2b)

Here, <PI> <PlI> <Pm denote the wave function <pez) in the regions I, U and Ur.
We choose the functions qlJl and qlJ2' defined in eqs. (B.3), (B.3a) as linearly in­

dependent basic s01utions of the eqs. (B.2), (B.2b) and the lower sign case of eqs.
(B.2a). In the case of the upper sign in eqs. (B.2a) (central neck), the. differential
equation differs from the remaining ones by the sign of one term. We then have to use
as independent solutions of (B.2a) the functions qlJ 3, qlJ4 defined in eqs. (BA),
(BA') [see ref. 21)], chapter 19].

i{!/3(a, v) = qlJl( -ia, itv),

qlJ4(a, v) = i{!/i -ia, itv).

(B.3)

(B.3a)

(BA)

(BAa)

Here, v stands for one of the dimensionless variables ~, IJ, ( and the parameter a far
one ofthe dimensionless quantities ao, al' The symbol cjJ denotes the confluent hyper­
geometrie function.

The functions i{!/1> qlJ2, qlJ 3, qlJ4 are calculated from recursion relations (HMF
19.2.7, HMF 19.16.3). In region UI (I) we have to choose as a solution a linear com­
bination of qlJ1 and i{!/2 which tends to zero at large values of v( - v). This solution is
the parabolic cylinder function U(a, v) defined by (~ee HMF 19.3.1):

(B.6)

(B.6a)
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(B.6b)

As a consequence of the reflection symmetry of Ho, the eigenstates Vtv as weIl as the
z-dependent parts are either "gerade" 01' "ungerade". This leads to the following
form of the solution <p(z):
"gerade "states:

<PI = AI U(a 1, -~),

lAu ql}3(ao, 1])
<PlI =

Au ql}1(aO' 1])

<Pm = AI U(al, n,

for Zo < ZI (central hyperboloid)

for Zo > z 1 (central spheroid)
(B.7)

"ungerade" states:

(B.7a)
for Zo < z1 (central hyperboloid)

for Zo > ZI (central spheroid)

<PI = AI U(al, -0,

lAu ql}4(ao,l])
<Pu =

Au ql}2(ao, 1])

<Pm = -AI U(al' n·
The requirement 01 continuity of <p(z) and d<p/dz at the joining points z = ±zo deter­
mines the ratio AI/Au and the eigenvalues eZ

:

AI = ql},,(ao, 1]0) , (B.8)
Au U(al"O)

1X1 [~ln U(al' nJ = 1X0 [~ln ql},,(ao, I])J, (B.9)
0' 1;=1;0 01] '1='10

with '0 = a1(zO-zl), 1]0 = 1X0Zo and (J = 1,2,3,4 according to the case considered
[see eqs. (B.7), (B.7a)]. Through the normalization condition

(B.1O)

and eq. (B.8), AI and Au are defined up to an irrelevant common phase.
If the potential V(z) consists of two oscillators only (no region II), the following

simpler forms of the eigenvalue equation and normalization condition hold:

(B.9a)

2 2 foo 2( )1 = IAul - d' U al'"
IXI 1;0

(B.I0a)
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The eigenvalue eqs. (B,9) or (B.9a) must be solved numerically. This can be accom­
plished with a simple and very rapidly working computer programme.

The part X~P, cjJ) of~v which depends on P and cjJ is given by refs. 22,23)

XIIJ.A(P, cjJ) = JV(2nrteiA4>e-tap2(-Jexp)AL1(exp2), (B,H)

where ex = 1110)J./ti and t = 1-(111. - A). The function L1 is the associated Laguerre
polynomial t; t is the number of nodes in the direction perpendicular to the z-axis
and A can have the values ±A = 111.,111. -2, llJ. -4, ... 1 or O. Here JV is a nOl'mali­
zation factor and the total basic state ~v is the product of the wave functions con­
sidered

(B,12)

If the counting index llz = 0 for the lowest "gerade" solution, 11z is equal to the num­
ber of nodes in z-direction.

Appendix C

MATRIX-ELEMENTS OF THE GENERALIZED [2 AND SPIN-ORBIT TERM

We consider here in some detail the evaluation of matrix elements of the operator
Vcorr [eq. (12)] in the basis discussed in appendix B.

We define the two operators

-/(/1 )2 )2V2=-z:3(VUO Xp =Y2(VUO XP,
tim 0)

and the auxiliary vector C

C = VUoxp.

The spherical components of this vector are

(C.l)

(C.2)

(C.3)

(CA)

(C.S)

In the last equation, lz is the component of angular momentum along thc z-axis

lz=(l'xp)z'

t Note that
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The spherieal eomponents 0' ±' P± and p± are defined in an analogous way as C±.
Using eqs. (CA) and (C.S) it is found that Vi and V2 ean be written in the follow­

ing way:

(C.6)

V2 = 1'2 {(mwi)2p2p;+ e:fp;

+mwi [(P+P_+P_P+) (pz dV + dV PZ) +2ih dV pz] +(mwi)2z;}. (C.7)
dz dz dz

For deriving eq. (C.7) one uses the identities:

P+P_+P_P+ = _p2 = _X2_ y2,

[p+, P-J = [p-, p+J = -ih.

The advantage of expressing Vi and V2 in this way is that all operators aeting on the
variable P ean be expressed simply in terms ot ereation and destruetion operators tor
a two-dimensional harmonie oseillator 24). They are defined by

i = x, y.

We indieate for eompleteness the relations between these operators and those oeeUf­
ring in Vi and V2 •

(C.8)

The non-zero matrix elements of these operators in the representation In.LA>defined
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in appendix Bare

(n.l±l, A±llp±ln.lA) = + (_h_)t ~ (n.l +A+1±1)t,
2mro.l y2

(n.l +1, A±l/p±/n.lA) = + (_h_)t ~ (n.l -A+1+1)t, (C.9)
2mro.l y 2

(n.l±l, A±l/P±/n.lA) = -i(tmhro.l)t )2 (n.l +A+1±1)t,

(n.l +1, A±llp±ln.lA) = i(tmhro.l)t )2 (n.l -A+1+1)t.

Thus the matrix elements of Vi and V2 ean be ealculated if the matrix elements of the
z-dependent operators are known. Although the funetions CPn.(z) are "analytiea11y"
represented (see appendix B), the matrix elements of the z-dependent operators in
eqs. (C.6) and (C.7) eannot be given in a simple closed form. They eould be redueed
to rather eomplieated expressions involving the error funetion. But it is simpler to
ealculate them numeriea11y.

Appendix D

REMARKS ON THE NUMERICAL PROCEDURE

In ealculating the matrix elements (~vll Vcorrl~v), the integration over the eoor­
dinate z is performed numeriea11y with the Simpson method. For small values of the
dimensionless variables C;, 11, ( (see appendix B), the wave funetions cp(z) are obtained
from rapidly eonverging series expansion. For large values of /c;1 01' 1'1, asymptotic
expansions are used (HMF 19.8.1). In the remaining range of C; (and n, the wave
functions cp(z) are obtained by an extrapolation procedure starting from the asympto­
tie solutions and using the differential equation in the form of a difference equation.

The time needed for ealeulating a given number of matrix elements in our basis ~v

is larger than if we calculated them in the basis of eigenfunetions of a deformed har­
monie oseillator. The reason is that a11 the eigenfunetions of the deformed harmonic
oscillator ean be generated from the lowest eigenfunctions by the use of recursion
relations. In our ease, this proeedure is possible only for the p- and <jJ-dependent part
of the basis functions ~v'

On the other hand, as already mentioned, the advantage of using the basis of eigen­
states of Ho [eq. (7)] is that these basis funetions can deseribe arbitrarily large defor­
mations up to the final separation offragments, for instance also a strong constrietion
in the central part. If one wants to describe strongly constricted shapes in terms of
eigenfunctions of a deformed harmonie oscillator, one has to include the more basis
functions the more the potential shape deviates from a deformed oseillator.

For diagonalizing Vcorr we use a11 states up to an energy ;:::;; BF +30 MeV (BF =
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Fermi energy). This number of states is fairly constant for a11 nuclear shapes which
can be assumed within our model. Since the largest part of the computer time is used
for the diagonalization of the single-particle Hamiltonian, this advantage of the meth­
od appears to be important. We think that the functions ~v wruch were explicitly
given in appendix B, could provide a useful system of basis functions for obtaining
the eigenfunctions of a strongly constricted Saxon-Woods potential and for carrying
out Hartree-Fock calculations for strongly deformed nucleL
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