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Equation (8) should read:

(8 )

The relation by Bendershould read:

Bender: EM = 0.01 • V" • Re (9b)
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Abstract

A theoretical analysis of the temperature and velocity distribution in

symmetrical and aSYmmetrical triangular rod clusters is presented.

The analysis is applied to sodium coolant with fully developed turbulent

flow. Coolant mixing is taken into account by correlations for the eddy

diffusivities of momentum and energy. The thermal heat flux at the outer

boundary of the fuel pin is variable in circumferential and axial direction.

Kurzfassung

Es wird eine theoretische Analyse der Temperatur- und Geschwindigkeits­

verteilung in symmetrischen und asymmetrischen Brennstabbündeln mit Drei­

~gl\.§an9:rdn1lng dar-E;es_telLt. ·DieAnalyse -w i rdaufNatri-umaJ. sK1Jl:llmibttel

bei voll turbulenter Strömung angewandt. Die Kühlmittelvermischung wird

durch Beziehungen für die turbulenten Impuls- und Energieaustauschgrößen

berücksichtigt. Der Wärmefluß an der Oberfläche eines Brennstabes ist

variabel in Umfangs- und Längsrichtung.
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1. Introduction

One of the important design characteristics of sodiurn cooled fast reactors
are tightly packed fuel rod bundles with high rod power and small fuel rod
diameters. As a consequence of these close spacings already small devia­
tions from the design specifications, as they can occur for instance du­
ring manufacturing of the rod bundle, will cause considerable variations
in the peripheral velocity and temperature distributions around the fuel
rod. Ttle asymmetrieal temperature distributions will increase the original
rod bowing. As a result the thermal and mechanical stresses can lead to
fuel rod failure.

A number of theoretical analyses have been published dealing with the
aspects of circurnferential temperature and velocity variations for the
symmetrical case r1, 2, 3, 4 7. The present paper is an extension of
an earlier reported work bY FIscher/Shimamune /-5 7. It deals with a theo­
retical analysis of the temperature and velocity distribution in symmetri­
cal and asymmetrical triangular rod clusters. The analysis is applied to
liquid metal coolants with fully developed turbulent flow. Coolant mixing
is taken into account by correlations for the eddy diffusivities of momen­
turn and energy. The thermal heat flux at the outer boundary of the fuel
pin is variable in circurnferential direction. In addition the variation
of the geometrical asymmetry along the axial direction of the rod cluster
is considered. Heat flux distribution in axial direction can be an arbi­
trary function. The analysis is restricted to a rod cluster of bare rods
without spacers.
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2. The Mathematical Model

The analysis is applied to an asymmetrical rod cluster shown by fig. 1.
One rod deviates from its nominal position by an angle ~and a distance f.
The cross section of the coolant flow area around the central rod is
divided into twelve elements. These elements are again divided into an
arbitrary number of smaller segments. Each segment is bounded by the rod
wall, two velocity gradient lines and the maximum velocity line. The ana­
lysis implies the following assumptions for the axial cross section
shown in fig.1:

(i)

(ii)

,... )
\~~~

(iv)

(v)

(vi)

There is no net current of energy and momentum across the line
of maximum velocity.

The influence of the fluctuations of the axial coolant velocity
shall be negligibly small in comparison with the mean value.

The pressure is constant.

The coolarlt flow 15 fully turbulent arld steady.

Tne power density in the fuel i5 constant.

The heat flux at the outer boundary of the cladding is a func­
tion of the circumferential direction.

- (vii) The ceo1:ant properties ineach segment are treatedas functions
of the segment-averaged temperatures, and, therefore, are func­
tions of the angle f.

(viii) The coolant 1s incompressible.

(ix) The mean values of the velocity components in radial and circum­
ferential direction are zero.

2.1 The Velocity Distribution

The coolant velocity distribution is determined by the Navier-Stokes
equation.

= (l)

and the continuity equation

div 1: = o (2)

With the assumption u
requation:

we obtain the following

1~
g C)x
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Introdueing the relations

(4a)

(4b)

for the loeal shear stresses in radial and eireumferential direetion,
it then follows from equation (3):

C) (r T r) + rJ l"1f = r C) p

or vif Dx
(5)

In the above relations (4a,b) the shear stresses are composed of the
laminar and the turbulent momentum transfer terms according to the
laT.inar viscosity wid turbulent eddy diffusivities.

(5a)

~ ~-- f-r:::... V,..JU }

The numerieal solution of the above equation (5) in three dimensions
using reasonable relations for the eddy diffusivities seems to be too
expensive in term of ealeulation effort. Therefore, we have to intro­
duee further simplifying assumptions to find a solution:

(i) To reduee the three-dimensional to a two-dimensional problem we
use the following equation for the dimensionless radial veloci­
ty distribution:

+y =

+ +u = A + B In y

+ +where u and y are defined as

t"" 1/2
u+ = u/ ( t )

(r-r
o

) Cr-v/S )1/2

'I'

(7)

(7a)

(7b)

(ii) The eddy diffusivity in eireumferential direetion is a funetion
of the radius only in the vieinity of the wall L-6_7. Therefore
it is here assumed to be independent of the radial direetion.
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With these assumptions for one segment eq.(5) is reduced to:

r 0 ü*.2
0,)

dp 1 A (d + "y)
dx 2"Y (8)

Introducing different relations for the peripheral eddy diffusivity
it is possible to solve eq.(8) numerically now. Then the velocity di­
stribution in the rod cluster is obtained for constant dp/dx.

2.1.1 Eddy Diffusivity in Circumferential Direction

To study the influence of different formulas for the eddy diffusivity
in circumferential direction equation (8) has been solved using
relations given by Nijsing, Bender and Rapier ~-1, 2, 3_7:

Nijsing: CM
7/8

= 0.0115 v: Re
u

u De
(9a)

Bender: CM = 0.02 • V' Re

X A
U Y

-----
10

(9b)

The obtained peripheral dimensionless velocity distributions have
been compared with experimental results for water reported by
Nijsing /-1 7. As can be seen by fig.2 the semi-empirical formula
by Nijsing shows the best agreement with the experimental data,
especially for small P/D ratlos. Consequently the relation by
Nijsing will be used further on. In addition it has been shown that
theeddy diffusivities in the radial direction are one order of
magnitude smaller than those in the circumferehtial direction ~-4_7.

3. The Temperature Field in the Coolant

For a differential fluid element the following heat bal~~ce equation
in cylindrical coordinates can be derived as folIows:

-Ir t(ld 5cp EHr) i~ r 1- lJ'dr {<u gCp EHf ) :9~ 1

+ ~ (u r 3cp T) = 0

(10)



- 5 -

If we assume constant fluid properties A, g,cp' eHr and 'Hf for each

channel segment and then integrate equation (10) in radial direction,
it hoIds:

q = ~ tJ: {u S cp T (d + y) y? - ;0 ~cp l(A + gcp (Hf) ~~

-ln (1 + ~ l]
(11 )

where the temperature T and u are mean values in each channel segment.

Equation (11) describes the circumferential temperature distribution
in a cross section at fixed axial coordinate of thetriangular rod
cluster. To take into account the axial dependency of the values of
g, T and u, equation (10) has to be integrated over discrete elements
in axial direction, too. By this procedure the following system of
difference equations for a two-dimensional x,~ -mesh, such as shown
in fig.3, 15 obtained. '

= 1
C (lb) - C (11»

p vr n+1 p r r n (u(t).S(p)' T(er) )n+1/2+
L\x

(12)

1
r

o

A

• In (1 + L ) I
r o j

Equation (11) can be solved numerically applying an iterative calcula­
tion scheme which accounts for the velocity distribution described by
equation (8). Th1s 1s possible because eq.(8) and eq.(12) are coupled
only by the variation ofthe material properties of the fluid.

The thermal eddy diffusivity in peripheral direction can be calculated
for sodiurn as coolant by the following relation ~-7_7:

1 -
(0.2/Pr) - 2

( E~~)0.9
r

(13)
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The heat flux distribution at the outer boundary of the fuel rod can
be calculated by applying an iterative method which incorporates dif­
ference schemes for the asymmetrical two-dimensional temperature field
in the fuel, gap and clad. An attempt to avoid the exact calculation of
the temperature field in the fuel rod has been reported earlier by
Fischer/Shimamune /-5 7. This method uses an expression composed of
cosine-functions and ä trial parameter E.

=
t.-1 ( 1 1) 7- E cos y; + 2' cos 2 Cf - 2' _

1 + E/2

where ° f: E < 1

(14)

The trial parameter E has to oe chosen always in such a way that both
the heat flux distribution at the surface of the fuel rod as weIl as
the temperature distribution of the C001&lt are consistent. The later
methad is used for the present investigation. This approximation will
be only valid for deviations along the line 01 - 01 (fig.l).

It has to be mentioned, however, that the method described in this
section can only be appliedto problems where the radial and peripheral
net mass flow will be negligibly small~ This will or~y be realistic
--ees-i:d-e:s:-:--t...1q;e:- :~s:~~nl'{e:trrc:al~---c-ase:~.1--~-f-or-:-e-c:c~ent:ri:c--rou- ----c-lust:e-rs---'--V'!i:th---:-~a"'{i.-ai:l:y-

constant deviations of fuel rods along the total height of the cluster
and for sufficiently small bowing of the rod.

3.1 Simplified Method of Solution

A first approximation for the solution of the temperature and velocity
field in an asymmetrical rod cluster can be obtained by introducing
the following simplifying assumptions:

In a first iteration step for one axial cross section of the cluster
theaxial gradient of the temperature distribution is considered to be
constant in circumferential direction.

With this assumption then equations (11) and (8) are solved to obtain
the solution of the temperature and velocity profiles as a function of
the angle I.f'
This procedure is repeated for each axial row of the two-dimensional
netgiven by fig.3. The results of these calculations can then be used
to introduce the angle dependent axial gradients for the temperature
and velocity. Then a new iteration step has to be started. This proce­
dure has to be followed until the difference between two subsequent
steps will be sufficiently small.
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4. Discussion of Numerical Results

First numerical results were obtained for a rod cluster with the fol­
lowing specifications:

D = 0.47 cm

1.12

H = 80 cmc

rod diameter

CP/D)
axial length of' the cluster

max. heat flux

shape factor for the axial heat
flux distribution

inlet temperature

averaged outlet temperature

= 526 W/cm

= 0.82

= 200
0C

= 535°C

The simplified method of solution, described above, was applied using
fui approximation for ~he peripheral dependency of (d~dx). The symme­
trical rod cluster configuration Cf = 0) as weIl as two asymrnetrical
cases were investigated. For both asymrnetrical cases the fuel rod was
deviated along the line d - 0 as shown in fig.l. The deviation was
constant along the axial length of the rod cluster and was varied fromt: = 0.1 mm to f ~ 0.2 mm, For f= 0.2 ~ t~is. mean~ a reduction of
~O % far the w~dth of the minimum eOOian~ enanne~ segment in compa-

--- --_ ...- - ._-

The peripheral distributions for the temperature, the coolant velocity,
the friction velocity and the axial temperature gradients were calcula­
ted for different axial heights. In all the following figures,however,
results are only shohn for axial segments at position x = 8 cm and
x = 40 cm and angle variation frorn lfJ = 0 to lfJ = TT. The angle distribu­
tions from Cf = 17" to r= 277 are symmetrie to the distribution frorn
if = Ti to f = O.

Fig.4a shows the eoolant velocity distribution normalised to the mefui
velocity for the axial zone at x = 8 crn. Due to the hexagonal geo­
metry of the coolant channel the normalised velocity distribution for
the syrnmetrical case is sinusoidal with a 9 % differenee between the
maximum and minimum values. For both the symmetrical and the asyffimetri­
cal ease Cf = 0.2 mm) the period of the oscillatory velocity distribu­
tion is ~73. However, for the asymmetrical case an additional sinusoi­
dal distribution having aperiod of 2~ is superposed which results in
a 24 % difference between the maximum and minimum value. From fig.4b
it can be seen that for the symmetrical ease variations of the rela­
tive peripheral velocity distribution are negligibly small in axial
direction, whereas for the asymmetrieal case Cf= 0.2 mm) the diffe­
rence between maximum and minimum values now inereases up to 30 0/0

at axial position x = 40 cm.

Fig.5a and 5b show the peripheral distributions of the normalised frietion
velocity at axial positions x = 8 and x = 40 cm for~ = 0 and/ = 0.2 mm.
The results give a behaviour similar to that already describe for the
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velocity distributions. At position x = 8 cm the difference between
maximum and minimum values for f = 0 mm is 5 0/0, for f= 0.2 mm 16 0/0.
For the sYmmetrical case no variation is observed in axial direction.
For E = 0.2 mm the maximum difference of the relative friction velocity
inc~eases to 19 0/0.

Fig. 6a and 6b represent the peripheral variation of the coolant tem­
perature. For the sYmmetrical case and x = 8 cm the peripheral tempera­
ture distribution is again sinusoidal with a maximum coolant temperature
difference of 3,5 0c. At x = 40 cm this difference increases to 6°c. In
addition also the coolant temperature distributions for f = 0.1 mm and
E= 0.2 mm are shown. For f = 0.1 mm the maximum coolanttemperature
aifference in peripheral Jirection is now 38°C at x = 8 cm and it in­
creases to 63°Cat x = 40 cm. If f is increased to 0.2 mm the maximum
coolant temperature difference changes to 73°C at x = 8 cm and 1200C

at x = 40 cm. This temperature difference in circumferential direction
seems to be very high, but it has to be taken into account that for
j= 0.2 mm a reduction of the smallest coolant channel width of 20 0/0
occurs.

With the results of this first iteration step now improved values for
the peripheral variation of the axf.a.l gradient of the coolant tempera­
ture are available and shown in fig.7. As can be seen there are no
significant variations around the mean value for x = 8 cm and I: 0 mm,
For x = 40 cm there exists nearly no variation of the axial coolant
temperature gradient in peripheral direetion. For the asymmetrieal ease
C.f=··.o .2····mm)-thedif'f'evenc€-between·max.:Lmum-andm:LnJmurn-value-ofdT·/ctx(w)
i~ 2.10C/c~ at x = 8 cm and only 1.5 °C/cm at x = 40 cm. This show~ '7'

that the influence of the circumferential variation of (dT/dx) will be
of negligible significance for the coolant temperature around the rod.
Further iteration steps, therefore, will hardly improve these results.

5. Conclusions

It has been shown that already small deviations of the fuel rod in a
tightly packed rod bundle can result in considerable coolant tempera­
ture variations around the rod in sodium cooled fuel elements,too. The
circumferential temperature variations increase along the axial height
of the bundle. Although coolant mixing in theform of turbulent eddy
diffusivities was accounged for, these temperature variations can be
in the order of 80 - 100 C for the cases considered here. The results
obtained are restricted to the oase where the rod has a constant de­
viation over the total height of the bundle. This assumption is an
extremely conservative approach in simulating realistic axial depen­
dent deviations of the rod as they can be caused by thermal bowing.
In addition theturbulences caused by spacers would also decrease the
circumferential temperature variations. Further developmentsof the
calculational procedure used in this paper will include the numerical
treatment of the differential equations for the temperature field in
the fuel, the gap and the canning.
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Nomenclature

A Constant, normally taken to be 5.5
B Constant, normally taken to be 2.5
c Specific heat of fluid at constant pressure

p
d,D Guter diameter of clad

De Equivalent hydraulic diameter of subchannel

E Parameter of heat flux distribution

~ Velooity vector

P Pitch of fuel rod

p Static pressure .

Pr Prandtl number = (Cp~d)/~

q Heat flux of fuel rod

Average heat flux of fuel rod

Reynolds number in symmetrical subcha~el

r Radial distance in cylindrical coordinate

T

Radius of fuel rod

Coolfult temperature

Clad temperature

d/2

u
+u

-l­
u

.*
U

"'""*U

x

y

+y

Local flow velocity

Average flow velocity in a~ axial zone

Generalized flow velocity = u/u'*
- .*Average generalized flow velocity = u/u

Friction velocity = VL~9f

Mean value of u'* around the circumference of the wall

Axial ccordinate

Perpendicular distance from rod wall

Generalized distance from rod wall

Radial distance from wall to maximum-velocity-line

Generalized radial distance from wall to maximum-velocity-line

Equivalent hydraulic diameter of segment

Eddy diffusivity of momentum

Fddy diffusivity of heat

Angular coordinate of deviations, degree

Thermal conductivity of coolant

Coefficient of shear stress

Dynamic viscosity

Kinematic viscosity
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$ Length of deviation

9 Coolant density

r Fluid shear stress on circumferential plane
r

~L ~ Fluid shear stress on radial plane

T T at rod wallw r
~ Angular coordinate

Subscripts

n Number of the axial zone

r Radial direction

f Circuw~erential direction
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