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Equation (8) should read:
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The relation by Bendershould read:

Bender: €. = 0.01 + v . Re (9b)
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Abstract

A theoretical analysis of the temperature and velocity distribution in
symmetrical and asymmetrical triangular rod clusters is presented.

The analysis is applied to sodium coolant with fully developed turbulent
flow. Coolant mixing is taken into account by correlations for the eddy
diffusivities of momentum and energy. The thermal heat flux at the outer

boundary of the fuel pin is variable in circumferential and axial direction.

Kurzfassung

Es wird eine theoretische Analyse der Temperatur- und Geschwindigkeits-
verteilung in symmetrischen und asymmetrischen Brennstabbilindeln mit Drei-
__ecksanordnung dargestellt. Die Analyse wird_ auf Natrium-als-Kihlmittel -
bei voll turbulenter Stromung angewandt. Die Kihlmittelvermischung wird
durch Beziehungen fiir die turbulenten Impuls- und Energieaustauschgrodfen
beriicksichtigt. Der WarmefluB an der Oberflidche eines Brennstabes ist

variabel in Umfangs- und Lingsrichtung.







INTERNATIONAL ATOMIC ENERGY AGENCY

SYMPOSIUM ON PROGRESS IN SODIUM-COOLED FAST REACTOR ENGINEERING

March 23 - 27, 1970

Monaco

1.

TIAEA-SM-130/40

FLOW AND TEMPERATURE DISTRIBUTION INCLUDING COOLANT MIXING
IN SODIUM COOLED FUEL ELEMENTS WITH ECCENTRIC GECMETRY

F.Hofmann

Institut flr Reaktorentwlcklung

Kernforschungszentrum Karlsruhe

Introduction

One of the important design characteristics of sodium ccoled fast reactors
are tightly packed fuel rod bundles with high rod power and small fuel rod
diameters. As a consequence of these close spacings already small devia-
tions from the design specifications, as they can occur fer instance du-
ring manufacturing of the rod bundle, will cause considerable variations
in the peripheral velocity and temperature distributions around the fuel
rod. The asymmetrical temperature distributions will increase the original
rod bowing. As a result the thermal and mechanical stresses can lead to
fuel rod failure.

A number of theoretical analyses have been published dealing with the
aspects of circumferential temperature and velocity variations for the
symmetrical case :-l 2, 3, 4 /. The present paper is an extension of

an earlier reported work by Flscher/Shlmamune / 5 7 It deals with a theo-
retical analysis of the temperature and veloclty distribution in symmetri-
cal and asymmetrical triangular rod clusters. The analysis is applied to
liquid metal coolants with fully developed turbulent flow. Coolant mixing
is taken into account by correlations for the eddy diffusivities of momen-
tum and energy. The thermal heat flux at the outer boundary of the fuel
pin is variable in circumferential direction. In addition the variation

of the geometrical asymmetry along the axial direction of the rod cluster
is considered. Heat flux distribution in axial direction can be an arbi-
trary function. The analysis is restricted to a rod cluster of bare rods
without spacers.




2. The Mathematical Model

The analysis is applied to an asymmetrical rod cluster shown by fig. 1.
One rod deviates from its nominal position by an angle ®@and a distance f
The cross section of the coolant flow area around the central rod is
divided into twelve elements. These elements are again divided into an
arbitrary number of smaller segments. Each segment is bounded by the rod
wall, two velocity gradient lines and the maximum velocity line. The ana-
lysis implies the following assumptions for the axial cross section

shown in fig.1l:

(i) There is no net current of energy and momentum across the line
of maximum velocity.

(i1) The influence of the fluctuations of the axial coolant velocity
shall be negligibly small in comparison with the mean value.

{iii) The pressure is constant.

(iv) The coolant flow is fully turbulent and steady.
(v) The power density in the fuel is constant.

(vi) The heat flux at the outer boundary of the cladding is a func-
tion of the circumferential directilon.

T The coolant
/ L e

je! e
of the segment-averaged temperatures, and, therefore, are func-
tions of the angle P .

roperties in each segment are treated-as functions

(viii) The coolant is incompressible.

(ix) The mean values of the velocity components in radial and circum-
ferential direction are zero.

2.1 The Velocity Distribution

The coolant velocity distribution is determined by the Navier-Stokes

equation.
Q_¢’+( Ve = -geadp+LOL (1)
ot 8 g
and the continuity equation
diveg = 0 (2)
With the assumption u, = 0O, u ¢ = 0 and gt QO we obtain the following

equation:

Sir;@ﬁr:(r'ug—‘-l—)+l o au)

2 (3)




Introducing the relations

T, = b9 (4a)
u
T - uMLW (4b)

for the local shear stresses in radial and circumferential direction,
it then follows from equation (3):

@(rrr)+ o%p _ rop
Or Dy Ox

(5)

In the above relations (4a,b) the shear stresses are composed of the

et

Tr = (it g6y ) 50 (53)
S rp = (Hg +35M7")% (50

The numerical solution of the above equation (5) in three dimensions
using reasonable relations for the eddy diffusivities seems to be too
expensive in term of calculation effort. Therefore, we have to intro-
duce further simplifying assumptions to find a solution:

(1) To reduce the three-dimensional to a two-dimensional problem we
use the following equation for the dimensionless radial veloci-
ty distribution:

W= a+BIn y+ (7)

+ + R
where u and y are defined as

1/2
u =/ (Egy' (72)
(r-r ) (T /5)M2
v o= 2 > 4 (7o)

(ii) The eddy diffusivity in circumferential direction is a function
of the radius only in the vicinity of the wall [ 6_7. Therefore
it is here assumed to be independent of the radial direction.




T

With these assumptions for one segment eq.(5) is reduced to:

* A
roS,HX2 = D—% [g[mrt_f + g‘—;— . -(21:%_7 - %:' %_;'9 (@ +%) (8)

Introducing different relations for the peripheral eddy diffusivity
it is possible to solve eq.(8) numerically now. Then the veloeity di-
stribution in the rod cluster is obtained for constant dp/dx.

2.1.1 Eddy Diffusivity in Circumferential Direction

To study the influence of different formulas for the eddy diffusivity
in circumferential direction equation (8) has been solved using
relations given by Nijsing, Bender and Rapier Z 1, 2, 3_7:

Cu
Nijsing: £y =0.0115 v Re!/® — . (9a)
’ u De
Bender: by = 0.02 « v -Re (9b)
¥ A
u ¥
Rapier: EM s — {9¢)
10

The obtained peripheral dimensionless velocity distributions have
been compared with experimental results for water reported by
Nijsing /"1 7. As can be seen by fig.2 the semi-empirical formula
by Nijsing shows the best agreement with the experimental data,
especially for small P/D ratios. Consequently the relation by
Nijsing will be used further on. In addition it has been shown that
* the eddy diffusivities in the radial direction are one order of
magnitude smaller than those in the circumferential direction [—4_7.

3. The Temperature Field in the Coolant
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If we assume constant fluid properties X\, S’cp’ EHr and £y for each

channel segment and then integrate equation (10) in radial direction,
it holds:

1 9 Ay oA 19 T
Q=5 5= {ugcpT(d+Y)yz AT g(%-*-gcp ZH‘f)%—sP

where the temperature T and u are mean values in each channel segment.

Equation (11) describes the circumferential temperature distribution
in a cross section at fixed axial coordinate of the triangular rod
cluster. To take into account the axial dependency of the values of
g, T and u, equation (10) has to be integrated over discrete elements
in axial direction, toc. By this procedure the following system of
difference equations for a two-dimensional x,y -mesh, such as shown
in fig.3, is cbtained. )

c (p)..; = c () ,
Q(Y)n+1/2 = g p‘¥/n+l1 - p Y/n (u(?)' g(P). T(T) )n+1/2 +
e e N T RN “(”&"""4")"'4 . -
Hp) - T(y) +y) Yy
+ (u(y)- 8(?)° cp(?) )n+1/2 i n+]:A - Yy : . N
‘ i2
1 g ' OT(p)_ ., /o
To @’%AW“‘“V 2+ €S Pnnrye SWhnii /2 % Phni1 /o) —"551—_ .

A

« In (1 + %— )g
o

Equation (11) can be solved numerically applying an iterative calcula-
tion scheme which accounts for the velocity distribution described by
equation {8). This is possible because eq.(8) and eq.{12) are coupled
only by the variation of the material properties of the fluid.

The thermal eddy diffusivity in peripheral direction_can be calculated
for sodium as coolant by the following relation Z 7_7:

O.2/P ) -2
2 1-( T (13)

0.9
¢ M, ( fM{,,V)
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The heat flux distribution at the outer boundary of the fuel rod can
be calculated by applying an iterative method which incorporates dif-
ference schemes for the asymmetrical two~dimensional temperature field
in the fuel, gap and clad. An attempt to avoid the exact calculation of
the temperature field in the fuel rod has been reported earlier by
Fischer/Shimamune / 5 /. This method uses an expression composed of
cosine-functions and a trial parameter E.

/1 - E (cos + % cos 2 --1-)7
alp) = aq,, - col f E/i f 2. (14)
+

where 0 & E <1

The trial parameter E has to pe chosen always in such a way that both
the heat flux distribution at the surface of the fuel rod as well as
the temperature distribution of the cooclant are consistent. The later
method is used for the present investigation. This approximation will
be only valid for deviations along the line 0! - 01 (fig.1).

It has to be mentioned, however, that the method descrlbed in thls
tion can only be applled to proolems where th

low will ¥y
e symmetrical fe} s 1y
constant deviations of fuel rods alo the total height of the cluster
and for sufficiently small bowing of the rod.

3.1 Simplified Method of Solution

A first approximation for the solution of the temperature and velocity
field in an asymmetrical rod cluster can be obtained by introducing
the following simplifying assumptions:

In a first iteration step for one axial cross section of the cluster
the axial gradient of the temperature distribution is considered to be
constant in circumferential direction.

With this assumption then equations (11) and (8) are solved to obtain
the solution of the temperature and velocity profiles as a function of
the angle*p

This procedure is repeated for each axial row of the two-dimensional
net .given by fig.3. The results of these calculations can then be used
to introduce the angle dependent axial gradients for the temperature
and velocity. Then a new iteration step has to be started. This proce-
dure has to be followed until the difference between two subsequent
steps will be sufficiently small.



4. Discussion of Numerical Results

First numerical results were obtained for a rod cluster with the fol-
lowing specifications:

rod diameter D = 0.47 cm
(F/D) 1.12

axial length of the cluster H, = 80 em

max. heat flux Do = 526 W/em
shape factor for the axial heat Qax = 0.82
flux distribution

inlet temperature Tin = QOOOC
averaged outlet temperature Tout = 53500

The simplified method of solution, described above, was applied using
an approximation for the peripheral dependency of {dT/dx). The symme-
trical rod cluster configuration (f = 0) as well as two asymmetrical
cases were investigated. For both asymmetrical cases the fuel rod was
deviated along the line ¢ - 0, as shown in fig.l. The deviation was
constant along the axial leng%h of the rod cluster and was varied from
For ‘f 0.2 mm this means a reduction of

C Y/o for the width of the minimum cooxant cnanneL segment 1n compa-
——rison-te the symmetrical case. -

The peripheral distributions for the temperature, the coolant velocity,
the friction velocity and the axial temperature gradients were calcula-
ted for different axial heights. In all the following figures,however,
results are only shown for axial segments at position x = 8 cm and

= 40 em and angle variation from ¥¢= 0 to Y= 17. The angle distribu-
tions from ¢ =1 to 7'_ 217 are symmetric to the distribution from
y Ii to = 0.

Fig.l4a shows the coolant velocity distribution normalised to the mean
velocity for the axial zone at x = 8 em. Due to the hexagonal geo-
metry of the coolant channel the normalised velocity distribution for
the symmetrical case is sinusoidal with a 9 ©/o difference between the
maximum and minimum values. For both the symmetrical and the asymmetri-
cal case (£ = 0.2 mm) the period of the oscillatory velocity distribu-
tion is 7/3. However, for the asymmetrical case an additional sinusoi-
dal distribution having a period of 2 is superposed which results in
a 24 0/o difference between the maximum and minimum value. From fig.4b
it can be seen that for the symmetrical case variations of the rela-
tive peripheral velocity distribution are negligibly small in axial
direction, whereas for the asymmetrical case (;~ 0.2 mm) the diffe-
rence between maximum and minimum values now increases up to 30 °/0

at axial position x = 40 cm.

Fig.5a and 5b show the peripheral distributions of the normalised friction
velocity at axial positions x = 8 and x = 40 cm for = 0 anddf = 0.2 mm.
The results give a behaviour s1milar to that already described for the
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velocity distributions. At position x = 8 cm the difference between
maximum and minimum values forjf =0 mm is 5 ©/o, for f‘: 0.2 mm 16 °/o.
Por the symmetrical case no variation is observed in axial direction.
Forgf = 0.2 mm the maximum difference of the relative friection velocity
increases to 19 ©/0.

Fig. 6a and 6b represent the peripheral variation of the coolant tem-
perature. For the symmetrical case and x = 8 cm the peripheral tempera-
ture distribution is again sinusoidal with a maximum coolant temperature
difference of 3,5 ©C. At x = 40 em this difference increases to 600. In

addition also the coolant temperature distributions for = 0.1 mm and
§7= 0.2 mm are shown. For = 0,1 mm the max%mum coolant temperature
ifference in peripheral direction is now 38 °C at x = 8 ¢m and it in-

creases to 63 C at x = 40 em. If is increased to 0.2 mm the maximum
coolant temperature difference changes to 7300 at x = 8 cm and 120°C
at x = 40 cm. This temperature difference in circumferential direction
seems to be very high, but it has to be taken into account that for

= 0.2 mm a reduction of the smallest coolant chamnel width of 20 /o
occurs.

With the results of this first iteration step now improved values for
the peripheral variation of the axial gradient of the coolant tempera-
ture are available and shown in fig.7. As can be seen there are no
significant variations around the mean value for x = 8 cm and = O mm.
For x = 40 cm there exists nearly no variation of the axial cdolant
temperature gradient in peripheral direction. For the asymmetrical case
~(f = 0.2 mm) the difference between maximum-and -minimum value of-dT/dx{¢)
i$ 2.1 °C/cm at x = 8 em and only 1.5 °C/ecm at x = 40 cm. This shows
that the influence of the circumferential variation of (dT/dx) will be
of negligible significance for the coolant temperature around the rod.
Further iteration steps, therefore, will hardly improve these results.

5. Conclusions

It has been shown that already small deviations of the fuel rod in a
tightly packed rod bundle can result in considerable cocolant tempera-
ture variations around the rod in sodium cooled fuel elements,too. The
circumferential temperature variations increase along the axial height
of the bundle. Although coolant mixing in the form of turbulent eddy
diffusivities was accounged for, these temperature variations can be
in the order of 80 - 100°C for the cases considered here. The results
obtained are restricted to the case where the rod has a constant de-
viation over the total height of the bundle. This assumption is an
extremely conservative approach in simulating realistic axial depen-~
dent deviations of the rod as they can be caused by thermal bowing.

In addition the turbulences caused by spacers would also decrease the
circumferential temperature variations. Further developments of the
calculational procedure used in this paper will include the numerical
treatment of the differential equations for the temperature field in
the fuel, the gap and the canning.
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Nomenclature

A Constant, normally taken to be 5.5

B Constant, normally taken to be 2.5

I Specific heat of fluid at constant pressure

d,D Outer diameter of clad

De Equivalent hydraulic diameter of subchannel

E Parameter of heat flux distribution

< Velocity vector

P Pitch of fuel rod

ho} Static pressure

Pr Prandtl number = (cnu d)/h

o] Heat flux of fuel rod

- Average heat flux of fuel rod

Re Reynolds number in symmetrical subchannel = (Dwuog)/p
r Radial distance in cylindrical coordinate

Ty Radius of fuel rod = 4/2

T Coclant temperature

Tw bléd temleraﬁure

u Local flow velocity

u Average flow veloclity in an axial zone

ut Generalized flow velocity = u/uX

o Average generalized flow velocity = E/ﬁx

< Friction velocity = Tw/g

T Mean value of u" around the circumference of the wall
X Axial ccordinate

y Perpendicular distance from rod wall

y+ Generalized distance from rod wall

§ Radial distance from wall to maximum-veloclty-line
§+ Generalized radial distance from wall to maximum=velocity=line
ée Equivalent hydraulic diameter of segment

EM Fddy diffusivity of momentum

EH Eddy diffusivity of heat

e Angular coordinate of deviations, degree

A Thermal conductivity of coolant

p Coefficient of shear siress

g Dynamic viscosity

v Kinematic viscosity
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§ Length of deviation

Q Coolant density

T; Pluid shear stress on circumferential plane
T%f Fluild shear stress on radial plane

'Tw T} at rod wall

Angular coordinate

._6

Subscripts

n Number of the axial zone
r Radial direction

f Circumferential direction
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