
1970

DYSYS -

A Dynarnic System Simulator for Continuous and Discrete

Changes of State

E oGo Schlechtendahl

"A .c..,'U
..'\.~..:., ..:J.Ä

" -e ,,', r-,
1...::,,0··';/

Juli 1970

KERNFORSCEUNGSZENTRUM KARLSRUEE

Institut für Reaktorentwicklung

- D Y S Y S -

KFK 1209

ADynamie System Simulator for Continuous and Discrete

Changes of State

E. G. Schlechtendahl

Gesellschaft für Kernforschung mbE., Karlsruhe

DYSYS is a digital computer program which allowsthe simulation

of continuous and discontinuous changes of state of a system

with up to 500 state variables. The program requests that the

dynamic system equations be described by a Fortran IV subroutine.

Other problem specifications (initial conditions, system para­

meters, contra1- and output specifications) are first submitted

to extensive error checking before the simulation is executed.

Variable deadtime simulation is available.

The author gratefully acknowledges the valuable contributions

of Mr.C.Koepp, who implemented the variable deadtime simulation

feature.

Zusamm~nfassunß:

DYSYS ist ein digitales Rechenprogramm, das die Simulation stetiger

und unstetiger Zustandsänderungen in einem System von bis zu

500 Zustandsvariablen gestattet. Das Programm verlangt, daß die

das System bestimmenden Gleichungen als eine Fortran IV Subroutine

geschrieben werden. Andere Problemspezifikationen (Anfangsbe­

dingungen, Parameter, Genauigkeits- und Ausgabeinformationen)

werden zunächst ausführlich auf Fehler geprüft, bevor die Simu­

lation ausgeführt wird. Auch die Simulation variabler Totzeit

ist möglich.

Table of Content

Abstract

Acknowledgement

1. Introduction

2. Problem formulation for DYSYS

2.1 Problem equations

2.2 Simple DYNAMO example

2.3 Input data

3. Input Handling Routines

3.1 Input reader

3.2 Input documentation

3.3 Input Processor

3.3.1 Ini t.LaLdaa t i on

3-. h-2 INFi1]f-111ock

3.3.3 DATA-block

3.3.4 INC~-block

3.3.5 PRNT-block

3.3.6 CHCK-block

3.3.7 STST-block

3.3.8 REFV-block

3.3.9 TIME-block

3.3.10 PLOT-block

3.3.11 MODV-block

3.3.12 MODD-block

3.3.13 GOON-block

3.3.14 END-block

3.3.15 Input interpretation

3.3.16 Input error handling

Seite

1

3

4

4

5

6

6

7
7
8

8

9

9
10

10

11

11

11

11

12

13
13
13

14

14

4. Problem solution

4.1 Fundamentals

4.2 Steady State Iteration

4.2.1 Integration

4.2.2 Steady State Convergence Contral

4.2.3 Control of acceleration factor a.
~

4.2.4 Special treatment of abnormal integration variables

4.2.5 Steady State Accuracy Control

4.3 Transient solution

4.3.1 Integration

4.3.2 Accuracy control

4$4 Data buffer for Plot

4.5 Printout control

4.6 Termination control

15

1 5
16

16

18

19
20

21
22

22
24
26

26

27

5. Printout routine 27

6. Plot output routine 28

7. Dynamic control 28

8. Deadtime Simulation 29

References

Appendix A

Appendix B

Appendix C

33

35

39

45

1. Introduction

A wide variety of technical problems can be described as initial

value problems of ordinary differential eQuations. This is the

classical field of application of analog computers. Even many

problems, which originally lead to partial differential equations,

such as transient heat transfer problems, can be solved by a final

difference approximation in the space domain, which reduces the

problem to ordinary differential eQuations in the time domain.

Analog computers have a number of deficiences e s g , the v ar-iab Le must

be scaled, the treatment of nonlinear algebraic eQuations is difficult.

Many of these deficiences can be overcome by digital computer appli­

cation, however, at the expense of computer time reQuired. Hybrid

computation is in many cases the optimum approach to the solution

of systems of ordinary differential eQuations and is not restricted

to initial value problems. The all-digital approach, however, has

the following advantages: There are far more medium and large seale

digital computers than hybrid computers and there are far more

people who know how to use digital computers. The access methods to

digita-l computers, both batch and interactive, allow more different

problems to be solved at a time than with the hybrid computers which

reQuire a tight interaction with the hardware ~1-7.

For these reasons a number of digital computer programs have been

developped which supply with more or less comfort the service of

hybrid computers. Most of these programs are block oriented similar

to the original analog computer approach where each hardware unit

(integrator, summar, function generator etc.) represents a block

of certain type ~2, 3, 4-7. Block oriented computer codes are

very handy for people who are used to the analog computer formula­

tion of a problem, but they have 4 disadvantages:

- In order to salve the problem, the problem eQuations

must first be transformed into a block structure

-1-

and this block structure must be coded in a second step.

- Differential equations of similar structure - as they

occur in a finite difference formulation of partial

difference equations - must be coded explicitly as

often as they oceur.

- When the program is designed, nobody ean foresee all

block types which future users would like to have

- Each block represents only one type of operation throughout

the whole problem solution: special blocks which simulate

the switches and function generators of the analog com­

puter, offer only a small degree cf flexibility.

A completely different approach is used in the Dynamic System Simu­

lator DYSYS. Instead of being block oriented this program is eguation

o r-Le n t ed s i m i La.... +'" t he (,QlIH> lr::;o7 T+ r eoui as a Ll +lr.~ ~o b Lem....., ..i.\--.I. UL,.UL .. -l.. ..I- uv V~.J. vu.u• ...L L JLI e .J.. v .'-ilA...L...L -c; ..L..,L Vl.J,C J::I..L lJ-L.V'll1

equations to be formulated in Fortran IV. The disadvantages of block

oriented programs do not arise for the following reasons:

The problem equations can immediately be written in Fortran

with problem oriented names of the variables.

- Differential equations of similar structure can easily be

handled by means of DO-loops.

The full capability of Fortran is available to the user,

thus offering an almost unlimited flexibility.

- The structure of the functional relation between variables

may vary during the course of the problem solution, in

particular the same variables may be defined by differen­

tial equations or algebraic equations in different domains

of the problem variables.

-2-

- Any number of discrete (events discontinuous changes of

state)may occur during the course of the continuous

system simulation.

Other features incorporated in DYSYS may be found in other dynamic

simulation codes e.g.

- doeumentation of the input data

extensive input data testing with the aim to deteet all

errors at onee

- steady state seareh before the dynamie problems solution

- built-in output of all extreme values of the integration

values

- automatie stepsize eontrol

- easy-to-read print output

- plot output

- easy input handling for parametrie studies

- capacity for up to 500 differential equations

The following desirable features are not yet ineorporated in DYSYS

- dynamie storage alloeation for an unlimited number of

differential equations

- automatie iteration of boundary value problems

- optimization with restrictions.

2. Problem formulation for DYSYS

In order to solve adynamie problem with DYSYS a model of the problem

must be set up by eoding in Fortran the equations which describe the

problem and by preparing the input data for each partieular task.

-3-

2.1 Problem equations

The problem equations must be coded in Fortran IV as a subroutine

named DYNMl~. Therefore the first statement of this subroutine

(except for comment cards) must be

SUBR~UTINE DYNAM~

The subroutine communicates with DYSYS via 3 labeled Common blocks,

namely

CO~~pN/DATA/ for the parameter data

C~W~~N/INTVAR/ for the variables

C~N~~N/DERIV/ for the derivatives

If no parameters are used, i.e.if no DATA input block exists in the

input to the task, the DATA-Common is not required. The INTVAR-Common

contains first the independent variable, followed by the integration

variables in the same sequence as in the INC~-input block, followed

by other variables. The DERIV-Common contains the derivatives of the

integration variables in the corresponding sequence. All parameters,

all dependent variables (but not the independent variable) and all

derivatives may be modified by equations in DYN~~~.

2.2 Simple DYNM~O example

The basic rules for coding DYNAM~ shall be illustrated in a simple

example.

The movement of a ball which is released at a certain height above

an elastic plate is described by the following equations:

~
~

(height) velocity
dt

d
(velocity)...... = gravity

dt

If the height is equal to 0 a discrete event happers, namely the

ball movement is reversed at reduced velocity. With a damping factor&

-4-

the following equation holds for height O.

(velocity) new = -c·(velocity) old

These equations might be coded as folIows:

SUBROUTINE DYNAMO
CCMMCNIOATA/GRAVIT,EPSIL
CGMMON/INTVAR/TIME,HEIGHT,VElOC
CCMMCN/DERIV/ DHEIGH,DVELOC
IF(HEIGHT.GT.O.)GO TO 1
HEIGHT .:: O.
VElOC = -EPSIl*VELOC

1 DHEIGH- VELOC
DVELOC = GRAV IT
RETURN
END

A detailed description of the input data is given in chapter 3.
Für a summary see Appendix A.

As an illustration/the input data of the sampIe problem used in 2.2

will be formulated more completely:

= 10000

10 sec

1000

0.00001 sec

0.01 sec

0.05 sec

= 0.001accuracy

end-of-problem time

max.number of steps
between printout

max.number of steps

SampIe problem 1

= height = 1m

velocity = 0

height, velocity

gravity -9.81 m/sec
2

=
damping factor e = 0.8

= minimum stepsize

initial stepsize

maximum stepsize =

Control data

Printout variables

Parameters

Title of the problem

Task 1: Initial conditions

-5-

Plot output variables - velocity from -20m/sec to + 20m/sec

- height from 0 to 1 m

both versus time from 0 to 10 sec

The input deck, which together with the DYNAM~ subroutine of

2.2 represents the complete input for the solution of the sampIe

problem by DYSYS, is listed in Appendix B.

The complete output of the problem is also shown in Appendix B.

3. Input Handling Routines

3.1 Input reader

The name of this routine is SHFT 12. The routine is called only

enee in each applicatien cf DYSYS.

This routine processes all input cards one at a time and prints

their content (80 columns). All cards which da not contain a

$ character in column 1 are copied onto an input copy file.(Columns

1 through 71). Cards which contain the $ in column 1 are not copied.

They may be used ~or whatever comments the userwishes to be documented

as useful information about this particular application of DYSYS.

*All cards beginning with the character are copied as such from

column 2 through 71. Column 1 is made blank. In column 72 through

80 a sequence number is inserted. All other cards are divided into

6 fields of 12 characters each. The information in each of these

fields, if any, is shifted right until it becomes rightjustified.

The cards, thus modified, are copied onto the input copy file with

a sequence number inserted in columnes 72 through 80. Information

contained in columns 72 through 80 of the original input cards drops

out.

This process continues until a card containing only the character

sequence END anywhere in columns 1 through 12 is encountered. This

-6-

will be the last card to be copied. Any errors occurring will lead

to an immediate stop.

3.2 Input documentation

The name of this routine is XADE. The routine is called only onee

fOT eaeh applieation of]Y8Y8.

This routine reads all cards (SO-character records) from the input

copy file and prints them as a documentation of all relevant

information supplied to the input processor. This documentation

does not eontain the comment cards (cards with $ in column 1).

The sequence number of these cards, as inserted by the input reader,

is printed.

The routine continues until the character sequence END is faund

in eolumns 10 through 12, with columns 1 through 9 being blank. If

any error accurred in this routine, DY8Y8 is terminated after

completion of the input documentation.

3.3 Input Processor

The name of this routine is INPUT. The routine is ealled once for

each task of DY8Y8.

The input to a task eonsists of a number of input blocks which may

be in any sequenee except for those blocks which modify previous

information.

The routine reads the input blocks from the input copy file until

the next END or G~~N label is encountered. Each input block eonsists

of a block label and the block information as described below and as

-7-

summarized in Appendix A. A thorough checking of the information

is made. If an error was detected in any input block for one task,

this task and all its follow-on-tasks, will not be executed.

3.3.1 Initialisation

At first,a standard set of default infor~ation for all input blocks

is established. (See Appendix A). If one or more of the input label

types is not found, this default information will be used for the

execution of the task • If the new task is a follow-on-task, i.e.

if the input to this task does not start with the INPT label, all

input blocks are initialized to the final input information o~ the

preceding task. In this case, the task sequence number is incremen­

ted by 1 and title and sequence number are printed. Note: if the

INPT label is encountered in the task input but not as the first

label of this task, this task is still considered as a follow-on­

task and the input information established so far is not modified

except far the title.

Following the initialization,the input processor reads one card

fromthe -input copy file· arrd irrterpretsit asahlock label. Th-e

block information is then expected to start in the following card.

If the label cannot be interpreted, the~ror handling routine is

initialized.

3.3.2 INPT - block

The card following the INPT-label is used as title of this task.

If the INPT-block is the first block of a task input, the task

sequence number is set to 1. The titel and sequence number of this

task are printed as headline on the output. If this block is not

the first block of a task, this task will be considered as a follow-on­

task, arid all. previously specified information will be accepted for

the new task. If this not the first block of a task, a new group of

the task begins and previous information is no longer available.

-8-

3.3.3 DATA - block

The card following the DATA-label contains an integer in the first

field indicating the number of data to be read starting in field one

of the subsequent card. The data may be of any of the following types:

real, integer or a literal.

The cards containing the data are read one at a time. Each field is

checked for its content and the appropriate format is generated. If

the first non-blank character in the field is numeric or+ or-, the

data is assumed to be numeric. If it is aperiod and the subsequent

character is numeric, the data is assumed to be numeric. Numeric data

are assumed to be real, if aperiod is found in the character string.

If no period is found in a numeric field, integer is assumed. In all

other situations, including a completely blank field, the data is

taken as alphabetic. In this case only the four last characters of the

string are taken as input data of this field.

The card content and the appropriate format are written on an inter­

mediate data file for later processing. The maximum number of data

allowed is 500.

If there is no data block, the programm assumes that no data are

required.

3.3.4 INC~ - block

The card following the INC~ - label contains an integer in the first

field indicating the number of initial conditions to be read starting

in field one of the subsequent card. The initial conditions for all

differential equations must be valid ~eal data. The maximum number

of initial conditions allowed is 500. otherwise the input handling

routine is called.

If there is no INCO-block, the program assumes that there is one

differential equation with an initial condition of O.

-9-

3.3.5 PRNT - block

The card following the PRNT-Label contains in the first field the

number of variables to be printed. The following cards contain three

pairs of integer and title information (except for the last card

of this block which may contain 1 through 3 pairs of print information).

The integer indicates the sequence number of the dependent variable

in the INTVAR-Common block (see 2.1), sequence number 0 representing

the independent variable. The sequence numbers are not limited to the

number of differential equations but must not exceed 500. Otherwise

the input error handling routine is called. The title is a character

string of up to 4 characters and will be printed as heading to the

variable on the print output.

If there is no PRNT-block, the program assumes that the independent

variable with title X and the first dependent variable with title Y

are to be printed.

3.3.6 CHCK = block

Tue card following the CHCK~label con~ainE 5 real data fields: the

minimum allowable integration stepszize, the estimated initial inte­

gration stepsize, the maximum allowable integration stepsize, the

accuracy parameter and teh final value of the independent variable.

The next card contains two integer fields: the maximum number of

successful integration steps and the maximum number of steps from

one printout to the next one.

If the data are not meaningful (e.g.negative) ot if the accuracy

parameter is less than 10-7 or greater than 0.1 an error message is

printed and the error handling routine is called.

-10=

3.3.7 STST - block

This block contains no additional cards. If the STST-label is

found, a steady state search will be attempted for this task and

all subsequent tasks until a new group of tasks begins, prior to

the solution of the dynamic problem.

2.3.8 REFV - block

This block allows the arbitrary setting of minimum reference values

for the accuracy control. The cards (any number is allowed) following

the REFV-label should contain three data each, two integers and one

real. The integers specify the range of sequence numbers of dependent

variables for which the real value will be taken as a minimum reference.

If one of the integers is outside the range 1 through 500 or if the

first one is greater than the second one, the block is considered to

be finished and the next card to be a new label.

3.3.9 TIME - block

The card following the TIME-label contains an integer specifying

the number of additional minutes CPU-time allowed for this task. If

this block is not found in the first task of a task group, no time

control will be performed for all tasks of this group.

3.3.10 PLOT - block

The PLOT-label is followed by a number of card groups each one

specifying a complete plot in Cartesian coordinates. The first

card of the group contains as an integer the number of curves on

-11-

this plot. If this number is not within the range 1 through 30 the

program assumes the PLOT-block to be finished and the next card to

be a new label. The second card of the group contains two integers.

The first integer corresponds to the format of the hardcopy of the

according to the conventions of PLOTA(*). The second integer indi­

cates the variable sequence number of the variable to be used as

the abscissa. The subsequent card contains 6 real values:

the maximum value of the abscissa

the minimum value of the abscissa

the abscissa increment corresponding to 2 cm on the
hardcopy

the maximum value of the ordinate

the minimum value of the ordinate

the ordinate increment corresponding to 2 cm of the
hardcopy

The subsequent cards contain integers (6 on each card except for

the last one, which may contain up to 6 integers) specifying the

variable sequence numbers of the variables to be plotted.

The next card is read and is assumed to specify the number of curves

on the nextplot..

If variables are to be plotted, which were not specified for printout,

they are automatically added to the list of printout variables.

3.3.11 MODV - block

The subsequent cards specify modifications to the initial conditions

defined previously by the INCO-block (and possibly preceding MODV­

blocks). Bach card contains two pairs of an integer and areal value.

The integer specifies the sequence number of the variable to be modi­

fied, the real specifies the new initial condition.

*) Special PLOT-subroutine of Kernforschungszentrum Karlsruhe

-12-

If the first integer is 0, this card is not used for modifications.

If the second integer is 0, only the variable specified by the

first integer will be modified. In either case the program assurnes

the next card to be a new label. If an integer is less than 0

or greater than the number of initial conditions specified in the

preceding INC~-block, the error handling routine is called.

~.3.12 MODD - block

The subsequent cards specify modifications to data previously

defined in a DATA-block or a MODD-block. The conventions for this

block are the same aS for the MODV-block, except that the new data

values may be any of the following types: integer, real or a

4 character long literal.

The procedure to determine the format of the new data is identical

to the one described for the DATA-block.

The individual cards of this block and their appropriate format

are written onto the same intermediate file aS the carde of the

data block for later processing.

2-3.13 GOON - block

This block has no additional cards. The occurrence of the GOON-label

indicates the end of the input to one task.

2.3.14 END - block

This block has no additional cards. The occurrence of the END-label

indicates the end of the input to the last task.

-13-

3.3.15 Input interpretation

After a GOON - or an END-label was found and if no error was detected

during the reading of the task input, the program will prepare a

complete documentation of the task input as interpreted by the program

itself. In order to do so, the program first reads the information

which describes the parameters from the intermediate file with their

appropriate format and stores them into the DATA common. The printout

of the input processor is sellexplanatory and is the exact description

of the task as delegated to the steady state and transient solution

routines.

3.3.16 Input error handling

If an input error is detected by the input processor, the error handling

routine is called.

At first, the error handling routine attempts to read the next card

and, if successful, will print this card in order to make it easier

to locate the error. The program will then check the following cards,

uIltilQne Qf them corrtat.ns a blQck la.bfÜ. Ir _8_Q, the ;prQgra:rn willreasume

input reading and input checking at this label. However, no task will

be submitted for steady state or transient solution until a new group

of tasks is found, which is identified by an INPT-label immediately

after the GOON-label. The program is terminated when the END-label is

found.

If the end of the input data set is encountered before the END-label

was found, either during the normal input reading or within the error

handling routine, the program prints an error message and terminates

execution

-14-

4. Problem Solution

The name of this routine is XRUNGE. It consists of two parts: the

steady state iteration and the transient problem solution. After

initialization of the routine, steady state iteration will be

performed if requested in the input of the task.

4.1 Fundamentals

The program assumes that the problem to be solved is described by

a number of first order ordinary differential equations plus,

possibly, a number of algebraic equations. The maximum number of

variables to be handled is 500. All variables are consecutively

numbered. The first variables are primarily considered as integra­

tion variables, i.e.it is assumed that they may follow a first order

differential equation at any time or they may be determined by an

algebraic equation. The remainder of the variables must be described

by algebraic equations.

The following set of equations is assumed as the basic problem

description.

for at least one i at

any t in the range + 0 ~ t :I€ tmax

with 1:;fi~n~k~500

for all j =#= i

with 1~j~k;f500

where Y1 •.• Yk are the dependent variables, and t is the independent

variable. In case of a steady state iteration request the validity

of these equations is extended to include negative values of t. The

steady state iteration will be performed on the following set of

equations.

(2)
for t = t- <: 0

-15-

The program assumes that these equations are computed by a Fortran -

IV-subroutine named DYNAM0 •

.1.J2 Ste~ State Iteration

The problem to be solved is given by

!fit -= !i{t'l"'"' ..~) = 0

Yt" =I)(t'71".- ..h)

= 0

The solution of this problem is identical to the solution of the

following problem

j,=~ == ar!c·rt/l"-... 'I;,)

v- ~ ~·(t;Y1······1j)'I " , /11'.

where a. is an arbitrary positive factor. This modified problem is
1

solved in the steady state iteration routine rather than the original

problem (3). Here the a, are aeeeleration factors whieh are generated
1

by the program in order to improve the eonvergenee behaviour.

The program cannot determine whether one or more solutions to the

steady state problem exist; nor ean it determine whether a steady

state condition onee it is found is actually the one desired. However,

if there exists a stationary point in the spaee of the state variables

y. the program will converge to this point in most praetical eases.
1

The program applies a 4th order Runge-Kutta integration method with

an adjustable stepsize h to caleulate a new value for all integration

-16-

variables y. according to the following algorithm.
a

}
Initial condition

computed by

DYNAM0

(5)

-17-

computed by

:OYNAM0

computed by

DYNAMO

computed by

DYNAM0

computed by

DYNAM0

(6)

If the convergence control, which

result, the values of y~4), y.(4)

y.(O) and ;. (0) of the ~Ubseq~ent
J 1

is described below, accepts the

and ;.(4) are taken as y. (0),
1 1

step.

5~!2 Stead~ State Convergence Control

According to ~6-7y. (4) is a good approximation of the new value
1

of y. provided that1 .

(:3.)
/<. ­

4

(2.) \J(.

J</~)
0,05 ••••• 0.1 (7)

In this case of a steady state iteration, accuracy requirements

of the transient solution are not important; only the steady state

which is reached asymptotically, must be accurate. It was found that

the criterien

J<~j) - k~2)

\
0.4 (8)I <

/(-.(2.) _ k,c-tj
I I

/V kt;/ft1)
v

kfZ) - K t«)

provides adequate performance with no tendency to instability. A

criterion of the type (7) or (8) is not generally applicable.

According to ~6-7 in the case of a single differential equation

the following relation holds

0) (:z.)
k -k

In a system of differential equations, however, complications

arise even in very simple cases such as

• (one constant)Yi = 0 of the variables is

• (or Y1 Y2
• ((damped oscillation)
Y2 = -Y1-Y2)

-18-

where (8) becomes undefined either always of in same instances.

Therefore, if (8) is not satisfied for a certain variable Yl out

of the variables y. the following test is performed: If
l

I ('I) (()) ~ • I()) I E. .JI - lt - .~.)t < S J,.t
the new value Yl(4) will be accepted. Here es is the accuracy

criterion for steady state iteration and is computed from the

accuracy parameter c specified in the input according to

Y
Ri

is the reference value of variable Yi' which is steadily

adapted to the actual value of y. according to the following
l

algorithm:

(10)

(11)

YR"r ') is not al10wed to exceed 1040 or to drop below the mini­
l,new

mum reference value specified for this variable in the input.

4.2.3 Control of acceleration factor a.
l

The acceleration factors a. remain constant within the algorithm (6).
l

They are initiated to unity at the beginning of the task. If neither

(8) nor (10) is satisfied for i = 1, the acceleration factor a
1

of the appropriate variable Y
l

is reduced to 50% of its present

value. If the acceleration factor a, would drop below 2- 24, it

will be set to 2- 24 and the stepsiZ; h will be reduced to 50% of

its value, while all other acceleration factors a. for i =F 1 are
l

doubled, thus effectively reaching the same purpose. If the stepsize

would fall below the minimum stepsize specified in the input, the

task will be abnormally terminated. Otherwise the algorithm (6)

would be repeated starting from the old values of all y. (0), and
l

-19-

doubling of the acceleration factor a
l

will not be allowed in the

next steps until a doubling request was issued at least n times

(where n = number of differential equations) far this variable.

If a variable Y
l

was accepted accarding ta (e) or (10), a test will be

made whether the acceleration factor a l may be doubled. A doubling

request for a
l

will be issued if

either

k{2} _

l \
< 0.1 (12)

or

I eil) (~) IJ • fo) 1
1I 1e -;; - ~'~'Ye I ~

The doubling request will be acknowledged if there was no reduction

of al in the preceding steps (see above and if k
l(1),

k
l(2)

and

k,(3) are not all equal to O•
.L

If the doubled acceleration a
l

would exceed 22 4, it will not be

doub.Led., but ratherall otheraccelerat.ion factors :will be hali'ed

and the stepsize h will be doubled. If, in this case, one of the
-24acceleration factors a

l
would drop below 2 ,an error message

(TIMECONSTANT 0]<' VARIABLE 1 TOO SMALL) is printed and the task is

terminated.

4.2.4 Special_ treatment of abnormal integration yariables

Whenever an integration variable y. (1~i~n) is outside the validity
J.

range of the corresponding differential equation, the program assumes

that the correct value of y. is computed by DYNAMO according to an
J.

equation of the type Yi = f i(t'Y1"'Yk)' If a neW value of Yi is

computed in DYNMaO, it will in most cases be different from the one

existing prior to the entry to DYNAMO. In order to detect this after

-20-

each DYNAMO-call the program checks all integration variables y.,-- ~

whether they were modified. If a modification is found, this

variable is considered as normal integration variable and is

treated according to the following rules:

The modified value is accepted.

The variable is marked as being abnormal in this step of
the Runge-Kutta integration.

The corresponding k. - value (see (6)) is set to o.
~

If the modification occurred }n the last DYNAMO-call of the algo­
rithm (6),the new value of y.l4) is used to compute a fictitious
derivative y.(O) such that t~e convergence criterion (10) will be
satisfied, a6cording to

.,; (0) = (1/.('/)- 1I.r~)) IrIt. .Q..)
/ i /C /" (14)

('t-1) (1")
If no modification is found between y. and y. for a

J. ~

variable y. which had previously been marked abnormal in the same
~

Runge-Kutta-step, the following rules apply:

A fictitious derivative y. (0) is computed according to
~

The variable is marked normal.

After every accepted Runge-Kutta-step a test is made to check

whether steady state was already reached or not. The program

assumes that steady state was reached if

-"\ (v) (0)

C . O.S'· l' 'f V.
S {/, (16)

is satisfied for all integration variables 1~ i~n, where

? = Max (0. 05· C ,1 0- 5)s

-21-

(17)

where E is the accuracy parameter specified in the input. If the test

is not satisfied, the y. (4) are used as new starting values y. (0)
~ ~

for the algorithm (6). However, for more than one differential

equation steady state will not be assumed immediately. nut rather,

the program requests that the steady state test (16) was satisfied

at least n/2 times,where n is the number of differential equations.

If steady state was not reached with 20000 DYNAMO calls, an error

message is printed and the task is terminated.

4.3 Transient solution

4.3.1 Integration

The initial values of the integration values for t=O are taken either

from the input specification, or if a steady state iteration was

performed successfully, they are taken from the result of the steady

state iteration. The same method of integration is applied as for

the steady state iteration, the accuracy control, however, is different.

The 4t h order Runge-Kutta-algorithm appliec is as follows:

(0/ t
t == r
XID) =}'co ftp)

.(0) .:=.L .(zl()} /o) (()))

~ 1/ I;');
• t'O) _ L (z ftJJ (f)) (0))h' -/ i t I j") J(

}
}

-22-

initial condition
for p = 0

computed by
DYNAMO

computed by

DYNAMO

(18)

1,computed by

) DYNAMO

}computed by

DYNAMO

If the accuracy control, which is described below, accepts these

values, the Runge-Kutta-step number p is completed with:

t
p+1 = (20)

and the values of

as the new values

-23-

and y.(4) will be taken

and y~(O) of the next step.
1

In order to check the accuracy of the new values t(4), y. (4),

y.(4) a second numerical integration method is applied. ~he results
J

of the two methods are compared for ,each Yi' If the difference is

small for all integration variables, the values of the Runge-Kutta­

method will be accepted. The second method, which is used as acheck,

is based upon a Hermite extrapolation ~7-7. The extrapolation starts

with a first order extrapolation from the values y. at time t (the
l p

beginning of step p) and the derivatives y. at this time. If this
l

test is not satisfied, the values y.(t 1)' y.(t 2) and y.(t 3) are
l p- l p- l p-

succesively included until the order of extrapolation matcher the order

of the Runge-Kutta integration (namely 4). If y.H,Q1 is the va.luel,P+
of y.(t 1) evaluated by Hermite extrapolation of order q, the value

1. P+,
will be accepted if for q = 1 or 2 or 3 or 4:

where YRi i8 the reference value of variable Yi which 1s stead11y

adapted to the actual value of y. according to:
l

YR:i.(rlew) = 0.9·YR:i(QJ.Q) + Min(0.1 ·lY:i.(4)1, 100·YR:i.(QJ.d)) (22)

yR.()is not allowed to exceed 10 40 or to drop below the minimum
l new

reference value specified for this variable in the input.

If criterion (21) is violated by one of the integration variables,

the integration step is not accepted, if the following additional

test fails. This test is made in order to avoid unnecessary stepsize

reductions caused by a variable which remains practically constant but

does not satisfy the criterion. If

and

and

then

-24-

(26)

and step repetition at reduced stepsize is not requested. Än

increase of stepsize. which might be requested from the control

of other variables will not be allowed. If (21) and any one of the con­

ditions (23), (24) or (25) is violated, the program requests repetition

of the integration step at half stepsize. The step repetition will be

accounted to the particular variable and a summary of this account

will be printed at the end of the dynamic problem solution.

After completion of the repeated step, variables which had accept­

able accuracy at a larger stepsize will not be tested again. If

the accuracy control reques~reduction of the stepsize to a value

below the minimum stepsize specified in the input, this request

will not be acknowledged and the step will not be repeated. However,

if in aseries of consecutive steps the number of such requests

exceeds 1/3 of the number of accepted steps (in particular: if 3

such requests are issued in a sequence), the program will print an

error message (STEPSIZE CONTROL STOP) and the task will be terminated.

At the beginning of the aeeuracy control phase the program assumes

that the stepsize may be doubled in the subsequent step. If this

assumption still holds, each integration variable after having been

successfully tested aceording to (21), will be tested whether step­

si~e d_()'t;t~:LiJ:lg..vv.Q.~:l.Ci.P~ §,:Llo1['L~(LJ·9_r:thi_s_-I1.a.r_tLG1J,lar vaxi_able. The test

criterion is similar to (21). The assumption that the stepsize may

be doubled,will be accepted if for any extrapolation order q=1 or 2

or 3 or 4:

Otherwise the assumption that stepsize doubling is allowed, will be

negated. If, after having tested all integration variables, the

assumption is still valid, the stepsize will be doubled for the

next step, unless the doubled stepsize would exceed the maximum

stepsize value specified in the input.

Besides this automatie stepsize control the user

may request repetition of the step at half stepsize

at any time by means of a CAL1 REPET statement in DYNM~O.

-25-

~~JlDaja buffer for Plot

If the input to the task specifies some variables to be plotted, the

most recent values of these variables will be stored in a 500 word

buffer after completion of a successful step. If the buffer is

filled to such an extent that an additional set of plot variables

would cause it to overflow, the buffer is written on an intermadiate

file and cleared.

4.5 Printout control

Those variables which were specified in the input for printout and

the step sequence number will be submitted to the printout routine

- as initial conditions of the problem

- upon termination, of the task

and wheneve r

more than the maximum allowable number of

steps is passed between two printouts

prin-tntrt lsreqUt:ls-te-d-in-llYl''t.A:JYlOby- m-e~ns­

of a CALL PRINT statement

a I1noticeable" extremum occured in one of

those integration variables, which are to

be printed.

The last one of these criteria is specified in detail as follow. A

printout request is issued if

and

(28)

where Min (0. 2, 1O*c)

Min (Jl,l$u)I/Jf·(tp)~ll&· (tf _I)!)

-26-

(30)

(31)

4.6. Termination eontrol

The task is normally terminated, if

the maximum number of sueeessful steps (as speeified in

the input) is reached

- the maximum value of the independent variable (as

specified in the input) is reached. In this case the

maximum value of the independent variable is exactlz

reached,

termination is requested in DYNAMO by means of a CALL

TERM statement

Before conelusion of the dynamic problem solution the program

requestsprintout of all data which might be stored internally in

the printout routine, and the plot buffer is oleared on the inter=

mediate file for later treatment. A summary of the step size reduction

aecount and the total number of DYNAMO oalls during the dynamio

problem solution is printed.

~.. -P-rlcnteu-t J?ou.tine

The name of this routine is OUTPUT.

Prior to the steady state and dynamio problem solution the printout

routine is initialized. Ir less than 9 variables (plus the step

sequence number) are to be printed, the printout routine stores the

variables in a 500 word buffer oorresponding to one page. Whenever

50 lines of printout are available, or when the task is to be terminated,

the contents of the buffer will be printed.

If more than 9 variables are requested for printout, they would not

fit on one page at 133 eharaoters per line. In this oase the buffer

is written on an intermediate file before buffer overflow ooeurs.

Whenever 50 lines are ready or when the task is to be terminated,

the buffer content is written on file and all reeords are reread from

file in the order required to fill the buffer with one page of printout

-27-

The first page will show the step sequence number and 9 variables,

the second page will show variable 10 through 19, etc.

6. Plot output routine

The name of this routine is XPLOT.

In this routine the variables which had been written on file during

the dynamic problem solution, are sorted and supplied to the PLOTA

routine which is special Assembler routine for plotting at the com~

puter center of the Gesellschaft für Kernforschung, Karlsruhe. If

more than 500 Steps were computed the program skips as many steps

as are required to limit the total number of points to be plotted

to less or equal 500. If NTOT is the number of steps and

NP = 1 + (NTOT-1)/SOO
every NPth step will be used as a point of the plot.

1. Dynamic control

Besides the control of accuracy and printout which is available in

the_ CBf:K input blQck, the uaar can dYltaIlli~ally c~:mtr_ol _the_8xec_ujäon

of his problem by issuing appropriate requests in the DYNill~O routine.

The following operations are available

CALL TERM-execution of the dynamic problem
solution will be terminated after
successful completion of the present
integration step.

CALL REPET-the present integration step will be
repeated at half stepsize unless the
minimum allowable stepsize is reached.

CALL PRINT-the state of the problem as of the beginning
of the present integration step will be
submitted to the printout routine.

-28-

As additional feature an exact variable deadtime simulation

facility was incorporated into DYSYS by C.Koepp*. A detailed

description of the techniques applied is given in ~8-7. The

user has the possibility to specify up to 20 equations of the

type

provided that t-tI(t) is an always increasing function of t.

If there is a value t such thatm

rather than

the variable deadtime facility will always supply the most

recent value, namely

Je(t) = h(tm ,I, (t~J."~k(tm))

~(f) =/t (t-Z;{t~r(t--lj(f)), .. .,),;/t-te (t-)))

The basic procedure is as foliows: After each successful Runge-

l\:lJ,t t§-_<> t~IJ .tll~ ya.lll.E3_Q:f_f1 Ct_, y,(tl..._.ykCt»_ÜL _strtTB_d_inBuinc_ore

memory which is dumped onto a direct access storage device upon

overflow. When retrieval of a deadtime variable is requested, a

search is started for the appropriate value first in the incore

memory and then on the external device. If the deadtime variable

sequested lies between two Runge-Kutta-steps-which is the general

case ,- a first order interpolation is carried out between these

steps and the result is returned to DYNAMO.

In order to use the variable deadtime facility the user must

obey the following conventions:

1) In order to retrieve a deadtime variable DYNAMO must issue

a Fortran function call of the type

*) C.Koepp, Institut fuer Reaktorentwicklung, Kernforschungszentrum
Karlsruhe, delegated from Euratom

-29-

(36)

where n
l

is an identification or block number for this

particular deadtime relation. This is an integer.

f
l

is the real variable expression the value of which

is to bl retriered at a later time

~ is the real expression which determines the present
1

value of the deadtime.

Example:

Let

(Q) Q = a slowly vorying coolant mass flow

(~) = RH~ = the collant density

(A) = ARE! = the cross section of a pipe

(1) = XL = the length of the pipe

(~) T~UT = the outlet temperature of the coolant

(.J~) TI = the inlet temperature of the coolant

103 = the (arbitrary) identification number of

the coolant transportequation

In order to obtain the outlet temperature according to

TOUT = DEADTM(103,TI,XL*RH~*AREA/Q)

As a matter of fact, relation (35) is only on approximate solution

of the coolant transport problem described and is applicable only

for slow coolant velocity changes. Apreeise formulation would

have to solve the integral equation:
t t-t"

/..E-dt -/ A
Q

dt == f
"JA 0 J

and then

However, for moderate changes of the coolant velocity in the

time period from t-~to t equation (35) is a praetieal appro-

ximation.

-30-

2) One identification number n l must not oceur more than onee.

3) The user must make sure, that all DEADTM function calls in

DYNAM~ are executed exactly once during the first execution

of DYNAM~.

4) Sufficient spaee must be alloeated on a direet aecess deviee.

See Files of DYSYS.

-31-

Files of DYSYS

~

1

2

3

4

5

Purpose

Reservation of complete input
information of task input for
future use

terminal output of transient
problem solution

input copy right

Print output buffer

standard input

Type of recq)rds .t.h of

variable, up to I required only for TCP-terminal output,
116 characters 1 blank carriage control character

I included
I
T
! required

constant, card
image

constant,
501 words

variable,up to
80 characters

6

7

10

11

standard output

plot output,written by PLOTA­
routine(Assembler)

Plot buffer
and

copy of DATA and IVlODD­
information together with
appropriate formats

Deadtime simulation

I
I formatted variable, up to
1 133 characters
t .-
!
I non- constant, card
1 Fortran image
I
I unformatted I
1 '
rI formatted

I
! .Ir-- .~--~ ,-------.,.
1 direct access I 1815 words
1 unformatted t

required, because of the double purpose
variable records of up to 501 words
length must beaccomodated

Space for 1600 records must be allo­
cated on direct access device only
if this feature is used

References

~1-7 W. Frisch, G. Wilhelmi, Dynamische Simulatoren in der

Reaktorentwicklung. Ein Vergleich. Ext.Rep.8/69-1

Gesellschaft für Kernforschung, Karlsruhe (1969)

L-2-7 H. Trauboth, Programmsystem zur Simulierung allgemeiner

Regelsysteme auf einem Digitalrechner, Regelungstechnik 14,

1, p. 22,(1966)

D-7

W.M.Syn, R.N.Lineberger, DSL/90 • A Digital Simulation

Program for Continuous System Modeling, Proc.AFIPS Conf.28,

p.165, Spartan Books, Washington D.C.,(1966)

J.C.Strauss, D.C.Augustin, M.S.Fineberg, B.B. Johnson,

R.N.Lineberger, F.J.Sansom, The SCi Continuous System

Simulation Language (CSSL), Simulation 9, 6, p.281,(1967)

~5-7 CSMP-Coriiinuous System Moaeling Program, Appl.Prog.

Unser's Manual, H20-0367, IBM Techn.Publ.Dep.,New-York

~6-7 R. Zurmühl, Praktische Mathematik für Ingenieure und

Physiker, 4.Aufl.,p.413, Springer, Berlin-Göttingen­

Heidelberg,(1963)

~7-7 A.Ralston, A First Course in Numerical Analysis,p.60,

McGraw HilI, New-York (1965)

~8-7 C. Koepp, DAS-2-Ein dynamischer Simulator mit TOTZEIT­

Gliedern für Digitalrechner, KFK 1142, EUR 3695 d.Ges.

für Kernforschung, Karlsruhe (1970)

-33-

H.d'Hoop, R.Monterosso, SAHYB-2: A Programme for the

Solution of Differential Equations using an Analogue­

Oriented Longuage, EUR 3622 e, Ispra, 1967

-34-

Appendix A

Summary of Input Specification

The input consists "comment cards" and of a number of "blocks",

each one consisting of one or more "cards" (records of 80 charac­

ters length). 6 "fields" of the length 12 (e.g.12 columns or 12

character)positions followed by a field of length 8.

The "comment cards" have the following format:

$ in column 1,

79 columns of arbitrary literal content

Example:

$ TH1S 1S A COMMENT CARD

The "blocks" have all similar structure. They begin with a "label" card,

whj.c:l1 in most ca.ses,is folLowed by "information" cand.s., All of these

cards (except one)contain 6 "fields" of length 12 plus one field of

length 8. This latter field may contain any information e.g. sequence

number; it has no effect upon DYSYS. For some of the blocks default

options are provided, when they are completely mis~ing

-35-

ldefault

block card Ifield j type content option

I ~

Ii

I
[

title 1 1 !literal I INPT not

I
j *In column 1 , ti tle in columns

2 1-6 11 I applicable
I 2 through 72, columns 2 through
I 40 will appear on plot outputl II

! ~ Ipara- 1 1 ll"t 1 DATA
,

1 g 1 era I
1

no
meters 2

,
1 linteger

1

Total number of parameters inI
i the following cards ,The parameters I parameters
~

3 1 hnteger, i are stored in the DATA-labeled common
2 ' 1 I in the listed

I
lrea er same sequence as
lliteral I in these cards. For literal

6

I I parameters only the 4 last
4 1

I
characters will be accepted.
Literals are not to be I,
enclosed in , I. I I

,
6 e.g.TEXT is valid, while'TEXT' I

I I

I
I I, is invalidj !I I !

I

II
,,

I Iinitial 1
1

1 lliteral I INC~ one initial
i integer

I ,
con 2 1 I Total number of initial condition , condition

I Idition 1 I values i value
1 I !

j I3 I 1 lreal The initial condition values are Ivalue 0
I

I
. i 1 stored in the INTVAR-labeledI ,

I
,

1 I I6
I I

cemmon in the same sequence as I

I listed in these cards I
I 1

,
4 ... ,

I
I s I I~. ,

II I .L _mmI I I
I I tI hiteral

• .15
check 1 1

I
CECK 11.'10- ,

I .
l~::i

2 I 1 Minimum stepsize j 1 •
!

I
11 '10

20
! 2 Proposed initial stepsize

1 I
I •

3 lreal Maximum stepsize I
4 !real Accuracy parameter ! 0.001

40I

I 5 lreal Final value of independent variables I L' 10
6 I ! -

3 i 1 I integer not used Maximum number of inte- 1100

I j gration steps
,

I I12 j. t Maximum number of unprinted
l

Iln eger, steps between printouts I

I 3 not used i,
1 ~

j 6
!
I

Print 1
2

3

1
1

1

literal
integer

integer

PRNT
Total number printout variables
specified in the following
cards
Sequence number of the variable
in the INTVAR-labeled common

-36-

X
1
Y

default
optionfild type content

2 literal Heading, e.g.Y(1), not to be
enclosed in I I

3 integer Sequence number
4 literal Heading
5 integer Sequence number
6 literal Heading
1 int.eger

, I
! !

I
4 I: ~

4 ~

Icar-d Iblock

Print

no steady

state

no plot

not
applicable

the card

of the variable

of the variable

PLOT
Number of curves to be plot ted
Ratio of diagram extension in
x-direction to-Y-direction may
be 1,2,3 or 4
Sequence number of variable to
be taken as abscissa

~ not used
(
maximum abscissa value
minimum 11 11

abscissa increment equivalent
to 2 cm on the plot
maximum ordinate value
minimum ordinate value
ordinate increment equivalent
to 2 cm on the plot
sequence n numbers of the
variables to be plotted
plotted

an integer less than 1 or
greater than 30

1

!
~

I

I
j

I
J

I
I
(

I STST

Il,\~ IvIODV
sequence number
to be modified
new value
sequence number
to be modified
new value

real
real
real

real
real
real

integer

integer

literal

Repeat card 2 until field 1 or 3 contains 0

I I

1 li teral
1 integer
1 integer

2 integer

3

4
5
6

6
1
2
3

1

~ literalI

1 Ln t eger

2 real
3 integer

4 real

4

1
2
3

1

i
l
I
I
I
J
!
I 1I 5 1.

J i
I I 6

r~~;~~~,dagr:ms may be specHied by repeating
~ sequence starting at card 2

{ Last}
\ ~

Plot

steady

state

i410dify 1 1
ini t LaI I 2
condition 1

I

I
_1

-37-

block card field type content
default
option

Modify 1 1 literal MODD
para- 2 1 integer sequence number of parameter not
meter to be modified applicable

2 integer new value of the parameter
real
or

~ literal
~ 3 integer sequence number of parameter
l to be modifiedg

i 4 integer new value of the parameter, realt
~ ori literal,
i
.~

Repeat card 2 until field 1 or 3 contains 0
j I

I
1 I

I i !
time 1 ~

'" ! literal TIME

I

? I

!2 I 1 integer time(processor time) allowed no limit
~ ,
I ! ! for execution of next task!

i I
I in minutes
I

I
!

i 1! I
i I,

I i I I
end I 1 !

of
I

1 1 i literal I GOON, for task,,
I except last noti ! Itask ! I where applicable

I 1 ;

input I I.~

I END is requiredt i :j

I • I I
,

f !l

I§ , i ;
--t-

, t --1-·

-38-

I
\.>l
\.0
I

CCCOOCDDD
CeCOCDDDDO
00 00
ce oe
00 00
DD on
JD 00
CO 00
00 DO
CD DD
OCODDOOODD
oonODnDon

yy yy
yy yy

yy 'YV
'YY yy

yyyy
YV
yy
yy
V'Y
'YY
yy
Vy

ssssssss«:;s
SSSSSSSSSSSS
SS SS
SS
555

SSSSSSSSS
SSSSSSSSS

SSS
SS

SS 55
SSSSSSSSS5SS

SSSSSSSSSS

yy vv
yv YV

vY YV
YV YV

yyvv
Vy
yv
yv

YV
VY
yy
YY

S5SSSSSSSS
SSSSSSSSSSSS
5S S5
SS
55S

SSSSSSSS«:;
SSSSSSSSS

SSS
SS

'\5 SC:;
SSSSSSS5SSSS

5SSS«:;SSSS<;

Cf)

Pl
:t>

S
I-d

I-d

I-'
CD

I-d

I-LJ
CD

Ii
0

::s
0'
I-'

p.,

CD
S

1-'-

0
~

~
c+

I-d 1b:J
~
c+

DATE = C8.05.70 TIMF 12.4li·.2°

INPUT CA~C I~AGE

1 11 11 11 11 11 I
INPT OOno0420
• SA~FlE p~CelE~ 1 (11)001)4s o
INCO OO;)r:l0440

2 00000450
10. o. I)(H10046 0
CATA Ofll)01410

2 0()1)0c\4IH)
-C;.81 0.8 00000490
CHK 0001V)501)
G.CCCCl C.Cl c.e5 c, (JOI 10.. 0(l':')(H'l'510

1eeoe 1000 o')o!)osn
IlEF" Il(iOO0530
~ 2 C.1 00000540
0 C C 0000054')
PAt<>l OO'J!)('tC;r; I)

.3 !)('tI'tOO5t>O
0 TIME 1 HGHr 2 VEL('l 0('100057!)
FlO 0000058'1
1 00000590
1 C ooconsoo

I lC. C. 2.e 20 .. -20. B. 00000610
..j:>. 2 (\llOO0620
0 1 OM) OOb3 0I

1 C 00000640
10. c. 2.C i c, o. 2. 01'1''100650

1 MOMbA!)
Ci 00000670
END OOO(Klb80
1 I1 11 " " 11 1

i-50E Oi

8-00E 00

-B·OOE 00

-i·bOE 01

Plot of velocity

AS8.. 0000i SAMPLE PROBLEM i

i-ODE Oi

8·0OE 00

5-00E 00

4..00[00

2·00E 00

2·00E 00 4..00E 00 5·00E 00 8·00E 00 1·0DE 01

ASS ..00002 SAMPLE PROBLEM i
-41-

08..05 ..70 / 12.. 44..29

OYSVS RELEISE [ATE C2.09.69 CAH 08.05.70 TlMf 12.44.2 n

UFlT CCNTflCl

S~MflE PRCBlEM 1
NO ER~C~ HAS fEEN FQUND. lHIS lASK WIll BE EXECUTED

2 TASK NR.
o MTN 1014 Sr-C

XM.I\X= o, d:OOO(OE C2 SX" 0.2000000F 01
C2 '(MAX= O.20000COE 02 SV= O.AOOOIJI'IOE 01 FORMAT v/X=11

)(r,,,x= o, UOOOCCE C2 SX= ü.2000000F 01
VMAX= O.l(1)OOO('lO[02 sv= 0.20000001" 01 fORMAT V/X=II

o MTN 1.96 SEC

0.800000

0.0

0.9S99996E-Ol
1000 DX = O.99S9G9RF-02 nXMAX­

0.100CQOOE 02 '
O.1000M10f'-"I40.5000000[-01 n~MTN=

VEl.O2... GHT

INPUl CAlA FCR CVNAMC
1 -s.eleoc

INITIAL CONDlllON
1 lc.eccoe

~INIMUM REFERENCE ~AlUES

1 c;c
NMAX~ lceoo ~SCHRP-

EPS • O.qS~S9SSE-C3 XENn=
PRINl

1 C TIME
FLCl
KUGElSCH~EIeER AUSF~EHRUNG

1 XMIN- 0.0
VMIN- -0.200COCC[
~- C V= 2

2 >c"IN= 0.0
VMIN- o.c
)- C V= 1

SlEACY STATE NOl REQUESTEC

I
..j:::>.
I\)
I

SElTF 1.1

5~"FLE PRCeLEM 1 2

UNE STEP TI ME HGHT V(:LO
1 C.C 0.0 C.I000E Ol 0.0
2 C.45CCE C2 C.l~128E Cl C.1846E-C3 -C.1401E 02
3 C.46CCE C2 C.l~t28E 01 Ce3648E-04 O.1l2lE :02
4 C.llSCE C3 C.31'12E Cl C.1483E-C3 -O.112lE02
5 C.1l9CE 03 0.31'12E ci c .2'H8F:-04 O.3964E 01
6 (.179CE C; c. 5~:4CE Cl c.aa02E-04 -O.l3964E :01
7 (.18eCE C3 c, 5~:4CE Cl C.1C03E-C4 C.71llEOl
8 C.2330E C3 C.7C:C2E Cl C.1321E-C3 -C. 7111 EOI
9 O.234CE C3 t;.7C:02E Cl C.1867E-C4 0.5737E ,01

10 C.27föCE C3 C.S172E Cl C.1651E-C4 -O.5731E 01
11 C.2SCCE C3 e.SI72E Cl C.8964E-04 O.4589E 'JH
12 C.302CE C3 C.eE:Sl!: Cl C.I013E 01 -0.1193E 00
13 C.32CCE C3 C.'il07E Cl C.8252E-C4 -O.4589E 01
14 C.3nCE C3 C.9lC7E Cl C.1l95E-C4 O.3671E 01
15 C.34CCE C3 C.9461E Cl C.6i160E cc C.1400E 00
16 C.3l:COE C3 C.9S56E Cl C.3736E-C4 -0.36 HE ,01
17 C.361CE C3 C.9S56E Cl C.956IE-CS O.2931FOl
18 0.374CE C3 C.9<;76E Cl C.?818E OC O.1160E 01
!Ci C.375CE C3 C.1GCOE C2 C.3218E oe O.1521E 01

• n .MIN 6.37 SEC
-+::-
\.N

•
NUM6E~ OF OYN~MG-C~LlS= 1906
NUMBER QF STEFSIZE REDUCTIONS/VARIAßlE

• 12EI 1 ...

PLOT TERMINlITED

o .M.IN 1.15 SFC

o M.1.1'{ 0.78 SEC
INFUT O~T~ RIGHT JUSTJFIEC,FIElD LENGTH=12

INPT 1
SMlflE PPOfI EM 1 2

INca '3
a 4

10. c. 5
OAH 6

2 7
-(j. tl c, S' 8

etieK 9
cvccocr C.Ol 0.05 0.001 10. 10

10eee 1COO 11
REf'J 12

2 2 0.1 13
ce o 14

PRNT 15
~ 16
C TIME 1 HGHT 2 "EI. 0 17

PUJT 18
1 19
1 0 20

I 10. o. 2.0 20. -20. 8. 21
-~ 2 22
-P> 1 23
I 1 0 24

1e. o. 2.e 10. o. 2. 25
1 26
C 27

ENI: 28

A p p end i x C

DYSYS ealls for a few routines whieh are not ineluded in the

souree deck. These routines are deseribed in the following.

1) Subroutine DATUM

The call is CALL DATm~ (DDAT, DZEIT)

with REAL*8 DDAT, DZEIT

As a result of this subroutine eall DDAT will eontain the

date and DZEIT will contain the time of the run as 8 characters

which are printed eaeh with format A8 on the first pages of

the output.

2) Subroutine FSPIE

The call is CALL FSPIE

This routine merely improves the error diagnastic printout

in case of a severe error occurring during program execution.

3) Function ZEIT

The call is C ZEIT(~)

B = ZEIT(C)

with REAL*4 A,B,C

As a result of the first function call the time aecounting

routine is initialized. Subsequent ealls supply (in B) the

computing time elapsed since time C in seconds.

4) Subroutine PLOTA

The call is CALL PLOTA(XVffiRT,nVERT,N,3,NP,1,1,LP,INDZ,M~AX,

XMIN,SX,YMAX,YMIN,SY,KOMENT,KBILD,O,O,O)

-45-

The arguments have the following meoning:

XWERT = array containing the abscissa values

YWERT array containing the ordinate values

N = number of points

NP = integer, characterizing the symbol (point, circle etc)

which will be used to mark every LPth point of the

curve on the plot

LP

nmz

integer (LP=(N+4)/5) computed such that each curve

will be marked with 5 points

= integer, which indicates the format of the plot for

the first curve and is set equal to 0 for each sub-

X1v1AX

XMIN =

SX

YJVIAX

YlvIIN =

SY

KOMENT

KBILD =

sequent curve on the same plot

maximum value of the abscissa X

minimum value of the abscissa X

increment in X corresponding to 1/100 inch

maximum value of the ordinate Y

minimum value of the ordinate Y

increment in Y corresponding to 1/100 inch

Title of the plot, consisting of the first 40 characters

of the title card of this task follawed by data and time

figure number vd thin this task

5) Subroutine ERRSET

The call is CAI,L ERRSET (a1, a 2, a
3

, a
4

, a
5)

The effect of the two ERRSET calls in the subroutine OUTPUT is

the following:

Befare an attempt is made to write arecord on file 2 (which may

routines are modified by the first ERRSET call in a manner, that

a missing DD-card for file 2 does not lead ta a program inter­

rupt. The second ERRSET call res tores the standard setting of the

error handling routines. This feature eliminates the need for

specification of file 2 for users wha do nat want to use DYSYS

from one of the terminals.

-46-

