KERNFORSCHUNGSZEN

KARLSRUHE

- DYSYS -
A Dynamic System Sirmulator for Continuous and Discrete

Changes of State

E.G. Schlechtendahl

KERNFORSCHUNGSZENTRUM KARLSRUHE

Juli 1970 KFK 1209

Institut fir Reaktorentwicklung

-DYSYS =

A Dynamic System Simulator for Continuous and Discrete

Changes of State

E. G. Schlechtendshl

Gesellschaft fir Kernforschung mbH., Karlsruhe

Abstract

DYSYS is a digital computer program which allows the simulation
of continuous and discontinuous changes of state of a system
with up to 500 state variables. The program requests that the
dynamic system equations be described by a Fortran IV subroutine.
Other problem specifications (initial conditions, system para-
meters, control- and output specifications) are first submitted
to extensive error checking before the simulation is executed.

Variable deadtime simulation is available.

Acknowledgement

The author gratefully acknowledges the valuable contributions
of Mr.C,Koepp, who implemented the variable deadtime simulation

feature,

Zusanmenfassung

DYSYS ist ein digitales Rechenprogramm, das die Simulation stetiger
und unstetiger Zustandsidnderungen in einem System von bis zu

500 Zustandsvariablen gestattet. Das Programm verlangt, daB die

das System bestimmenden Gleichungen als eine Fortran IV Subroutine
geschrieben werden, Andere Problemspezifikationen (Anfangsbe-
dingungen, Parameter, Genauigkeits- und Ausgabeinformationen)
werden zunidchst ausfithrlich auf Fehler gepriift, bevor die Simu-
lation ausgefiihrt wird. Auch die Simulation variabler Totzeit

ist mdglich,

Table of Content

Abstract

Acknowledgement

Introduction

Problem formulation for DYSYS

2471 Problem equations
2.2 Simple DYNAMC example
2.5 Input data

Input Handling Routines

361 Input reader
562 Input documentation
3.3 Input Processor

343,17 Initialisation

3+ 552 INPP=bloek

36545 DATA-block

3,%.4 INC@-block

3,3.5 PRNT-block

3.3.,6 CHCK=block

3:5.7 ST3T-block

3:%.8 REFV-block

3,3.,9 TIME~block

3,3.10 PLOT-block

34511 MODV-block

3,3%3,12 MODD-block

3+3413 GOON-block

3.%.14 END-block

3¢%.15 Input interpretation
%3.3.16 Input error handling

Seite

(S R

N @ -1~ O O

10
1
11
11
11
12
13
13
13
14
14

4, Problem solution

4.1 Fundamentals

4,2 Steady State Iteration

4o.2.1 Integration

4,2,2 Steady State Convergence Control

4,2.3 Control of acceleration factor a;
4,2,4 Special treatment of abnormal integration variables
4.2,5 Steady State Accuracy Control
4.3 Transient solution
4e3,7 Integration
4,3,2 Accuracy control
4,4 Data buffer for Plot
4e5 Printout control
4.6 Termination control

5. Printout routine

6, Plot output routine

7. Dynamic control

8., Deadtime Simulation

References
Appendix A
Appendix B

Appendix C

15

15
16
16
18

19

21
22
22

24
26
26
27
27
28

28

29

33

35

39

45

1. Introduction

A wide variety of technical problems can be described as initial
value problems of ordinary differential equations., This is the
classical field of application of analog computers. Even many
problems, which originally lead to partial differential equations,
such as transient heat transfer problems, can be solved by a final
difference approximation in the space domain, which reduces the

problem to ordinary differential equations in the time domain,

Analog computers have a number of deficiencese.g., the variable must
be scaled, the treatment of nonlinear algebraic equations is difficult.
Many of these deficiences can be overcome by digital computer appli-
cation, however, at the expense of computer time required. Hybrid
computation is in many cases the optimum approach to the solution

of systems of ordinary differential equations and is not restricted
to initial value problems, The all-digital approach, however, has
the following advantages: There are far more medium and large scale
digital computers than hybrid computers and there are far more
people who know how to use digital computers. The access methods to
digital computers; both batch and intersctive, allow more different
problems to be solved at a time than with the hybrid computers which

require a tight interaction with the hardware 1—1_7.

For these reasons a number of digital computer programs have been
developped which supply with more or less comfort the service of

hybrid computers, Most of these programs are block oriented similar

to the original analog computer approach where each hardware unit
(integrator, summer, function generator etc.) represents a block
of certain type 1_2, 3, 4_7. Block oriented computer codes are
very handy for people who are used to the analog computer formula-

tion of a problem, but they have 4 disadvantages:

- In order to solve the problem, the problem equations

must first be transformed into a block structure

and this block structure must be coded in a second step.

- Differential equations of similar structure - as they
occur in a finite difference formulation of partial
difference equations - must be coded explicitly as

often as they occur,

- When the program is designed, nobody can foresee all

block types which future users would like to have

- Bach block represents only one type of operation throughout
the whole problem solution: special blocks which simulate
the switches and function generators of the analog com=~

puter, offer only a small degree of flexibility.

A completely different approach is used in the Dynamic System Simu-

equation

Tam
EAE~jit

lator DYSYS, Instead of being block oriented this program i

s
rob

Lo
0]

oriented similar to the CSMP / 52/. It requires all the
equations to be formulated in Fortran IV, The disadvantages of block

oriented programs do not arise for the following reasons:

- The problem equations can immediately be written in Fortran

with problem oriented names of the variables.

~ Differential equations of similar structure can easily be

handled by means of DO-loops.

- The full capability of Fortrarn is available to the user,

thus offering an almost unlimited flexibility.

- The structure of the functional relation between variables
may vary during the course of the problem solution, in
particular the same variables may be defined by differen~
tial equations or algebraic eguations in different domains

of the problem variables.

- Any number of discrete (events discontinuous changes of
state)may occur during the course of the continuous

system simulation.

Other features incorporated in DYSYS may be found in other dynamic
simulation codes e.g.
- documentation of the input data

- exbtensive input data testing with the aim to detect all

errors at once
- steady state search before the dynamic problems solution

- built-in output of all extreme values of the integration

values
- automatic stepsize control
- easy-to-read print output
- plot output
- easy input handling for parametric studies

- capacity for up to 500 differential equations

The following desirable features are not yet incorporated in DYSYS
- dynamic storage allocation for an unlimited number of
differential equations
- automatic iteration of boundary value problems

- optimization with restrictions,

2, Problem formulation for DYSYS
In order to solve a dynamic problem with DYSYS a model of the problem

must be set up by coding in Fortran the equations which describe the

problem and by preparing the input data for each particular task.

-3

2.1 Problem egquations

The problem equations must be coded in Fortran IV as a subroutine
named DYNAM@. Therefore the first statement of this subroutine

(except for comment cards) must be
SUBR@UTINE DYNAMZ

The subroutine communicates with DYSYS via 3 labeled Common blocks,

namely

COMM@N/DATA/ for the parameter data
CYMM@N /INTVAR/ for the variables
CYMM@N /DERIV/ for the derivatives

If no parameters are used, i.e.,if no DATA input block exists in the
input to the task, the DATA-Common is not required, The INTVAR-Common
contains first the independent variable, followed by the integration
variables in the same sequence as in the INC¢-input block, followed
by other variables. The DERIV-Common contains the derivatives of the
integration variables in the corresponding sequence. All parameters,
all dependent variables (but not the independent variable) and all

derivatives may be modified by equations in DYNAM¢.

2,2 Simple DYNAMO example

The basic rules for coding DYNAM¢ shall be illustrated in a simple
example,
The movement of a ball which is released at a certain height above

an elastic plate is described by the following eguations:

%; (height) = velocity
d
— (velocity) = gravity
at

If the height is equal to 0 a discrete event happers, namely the

ball movement is reversed at reduced velocity. With a damping factor £

the following equation holds for height = O,
(ve1001ty)new = =¢g+(velocity) old
These equations might be coded as follows:
SUBROUTINE DYNAMO

CCMMCN/DATA/GRAVITLEPSIL
CCMMON/ INTVAR/TIMEsHEIGHT, VELDC

CCMMCN/DERIV/ DHEIGH,DVELOC
IF{HEIGHT+6T«0.,)60 TO 1
HE IGHT = 0.
VELCC = -EPSIL*VELGC
1 DHEIGH = VELQOC
DVELOC = GRAVIT
RETURN
END

2.3 Input data

A detailed description of the input data is given in chapter 3.
For a summary see Appendix A.
As an illustration,the input data of the sample problem used in 2.2

will be formulated more completely:

Title of the problem = Sample problem 1
Task 1: Initial conditions = height = 1nm
velocity = O
Printout variables = height, velocity
Parameters = gravity = -9.81 m/8902

= damping factorg= 0.8

Control data = minimum stepsize = 0,00001 sec
initial stepsigze = 0,01 sec
maximum stepsize = 0,05 sec
accuracy = 0,001
end-of~-problem time = 10 sec
max,number of steps = 1000

between printout

max,number of steps = 10000

Plot output variables - velocity from -ZOm/sec to + 20m/sec
~ height from O to 1 m

both versus time from O to 10 sec

The input deck, which together with the DYNAM¢ subroutine of
2.2 represents the complete input for the solution of the sample
problem by DYSYS, is listed in Appendix B,

The complete output of the problem is also shown in Appendix B.

3. JInput Handling Routines

3,1 Input reader

The name of this routine is SHFT 12. The routine is called only

once in each application of DYSYS.

This routine processes all input cards one at a time and prints
their content (80 columns). All cards which do not contain a
$ character in column 1 are copied onto an input copy fiie.(Columns
1 through 71). Cards which contain the $ in column 1 are not copied.
They may be used for whatever comments the user wishes to be documented

as useful information about this particular application of DYSYS,

All cards beginning with the character i are copied as such from
column 2 through 71. Column 1 is made blank. In column 72 through
80 a sequence number is inserted, All other cards are divided into

6 fields of 12 characters each., The information in each of these
fields, if any, is shifted right until it becomes rightjustified.
The cards, thus modified, are copied onto the input copy file with
a sequence number inserted in columnes 72 through 80, Information
contained in columns 72 through 80 of the original input cards drops

out,

This process continues until a card containing only the character

sequence END anywhere in columns 1 through 12 is encountered, This

B

will be the last card to be copied., Any errors occurring will lead

to an immediate stop.

3,2 Input documentation

The name of this routine is XADE. The routine is called only once

for each application of DYSYS.

This routine reads all cards (80-character records) from the input
copy file and prints them as a documentation of all relevant
information supplied to the input processor, This documentation
does not contain the comment cards (cards with $ in column 1).

The sequence number of these cards, as inserted by the input reader,

is printed.

The routine continues until the character sequence END is found
in columns 10 through 12, with columns 1 through 9 being blank., If
any error occurred in this routine, DYSYS is terminated after

completion of the input documentation.

3,3 Input Processor

The name of this routine is INPUT., The routine is called once for

each task of DYSYS,

The input to a task consists of a number of input blocks which may
be in any sequence except for those blocks which modify previous
information.

The routine reads the input blocks from the input copy file until
the next END or G@@N label is encountered. Each input block consists

of a block label and the block information as described below and as

summarized in Appendix A. A thorough checking of the information
is made, If an error was detected in any input block for one task,

this task and all its follow-on-tasks, will not be executed.

%,3.,1 Initialisation

At first,a standard set of default information for all input blocks
is established. (See Appendix 4). If one or more of the input label
types ig not found, this default information will be used for the
execution of the task . If the new task is a follow-on-task, i.e.
if the input to this task does not start with the INPT label, all
input blocks are initialized to the final input information of the
preceding task, In this case, the task sequence number is incremen-
ted by 1 and title and sequence number are printed., Note: if the
INPT label is encountered in the task input but not as the first
label of this task, this task is still considered as a follow-on-
task and the input information established so far is not modified
except for the title.
Following the initialization,the input processor reads one card
from the dinput copy file and'interprefs it as a block label., The
block information is then expected to start in the following card.
If the label cannot be interpreted, theerror handling routine is

initialized,

5.5.,2 INPT - block

The card following the INPT-label is used as title of this task.

If the INPT-block is the first block of a task input, the task

sequence number is set to 1., The titel and sequence number of this

task are printed as headline on the output., If this block is not

the first block of a task, this task will be considered as a follow-on-
task, and all previously specified information will be accepted for

the new task, If this not the first block of a task, a new group of

the task begins and previous information is no longer available,

-8

5.5+5 DATA -~ block

The card following the DATA-label contains an integer in the first
field indicating the number of data to be read starting in field one
of the subsequent card., The data may be of any of the following types:

real, integer or a literal.

The cards containing the data are read one at a time. Each field is
checked for its content and the appropriate format is generated., If
the first non-blank character in the field is numeric or+ or-, the
data is assumed to be numeric, If it is & period and the subseqguent
character is numeric, the data is assumed to be numeric, Numeric data
are assumed to be real, if a period is found in the character string.
If no period is found in a numeric field, integer is assumed. In all
other situations, including a completely blank field, the data is
taken as alphabetic. In this case only the four last characters of the

string are taken as input data of this field.

The card content and the appropriate format are written on an inter-
mediate data file for later processing. The maximum number of data

allowed is 500.

If there is no data block, the programm assumes that no data are

regquired.

%,%,4 INCJ - block

The card following the INC¢ - label contains an integer in the first
field indicating the number of initial conditions 1o be read starting
in field one of the subsequent card, The initial conditions for all
differential equations must be valid real data. The maximum number

of initial conditions allowed is 500, Otherwise the input handling
routine is called,

If there is no INCO-block, the program assumes that there is one

differential equation with an initial condition of O.

3,%,5 PRNT - block

The card following the PRNT-Label contains in the first field the
number of variables to be printed. The following cards contain three
pairs of integer and title information (except for the last card

of this block which may contain 1 through % pairs of print information).
The integer indicates the sequence number of the dependent.variable

in the INTVAR-Common block (see 2.1), sequence number O representing
the independent variable. The sequence numbers are not limited to the
number of differential equations but must not exceed 500, Otherwise

the input errocr handling routine is called, The title is a character
string of up to 4 characters and will be printed as heading to the

variable on the print output.
If there is no PRNT-block, the program assumes that the independent

variable with title X and the first dependent variable with title Y

are to be printed.

30306 CHCK = blOCk

The card following the CHCK-lgbel contains ¥ real dgta fields: the
minimum allowable integration stepszize, the estimated initial inte-
gration stepsize, the maximum allowable integration stepsize, the

accuracy parameter and teh final value of the independent variable,

The next card contains two integer fields: the maximum number of
successful integration steps and the maximum number of steps from

one printout to the next one,
If the data are not meaningful (e.g.negative) ot if the accuracy

parameter is less than ‘lO-7 or greater than 0.1 an error message is

printed and the error handling routine is called.

=10=

This block contains no additional cards, If the ST3T-label is
found, a steady state search will be attempted for this task and
all subsequent tasks until a new group of tasks begins, prior to

the solution of the dynamic problem,

30308 REFV - blOCk

This block allows the arbitrary setting of minimum reference values
for the accuracy control. The cards (any number is allowed) following
the REFV-label should contain three data each, two integers and one
real, The integers specify the range of sequence numbers of dependent

variables for which the real wvalue will be taken as a minimum reference.
If one of the integers is outside the range 1 through 500 or if the

first one is greater than the second one, the block is considered to

be finished and the next card to be a new label.

59 5;9 TINIE - blOCk

The card following the TIME-label contains an integer specifying
the number of additional minutes CPU-time allowed for this task, If
this block is not found in the first task of a task group, no time

control will be performed for all tasks of this group.

5.3,10 PLOT - block

The PLOT-label is followed by a number of card groups each one
specifying a complete plot in Cartesian coordinates, The first

card of the group contains as an integer the number of curves on

—11-

this plot. If this number is not within the range 1 through 30 the
progran assumes the PLOT-block to be finished and the next card to
be a new label, The second card of the group contains two integers.
The first integer corresponds to the format of the hardcopy of the

(*

cates the variable sequence number of the variable 1o be used as

according to the conventions of PLOTA . The second integer indi-

the abscissa, The subsequent card contains 6 real values:

the maximum value of the abscissa
the minimum value of the abscissa

the abscissa increment corresponding to 2 cm on the
hardcopy

the maximum value of the ordinate
the minimum value of the ordinate

the ordinate increment corresponding to 2 cm of the
hardcopy

The subsequent cards contain integers (6 on each card except for
the last one, which may contain up to 6 integers) specifying the

variable sequence numbers of the variables to be plotted.

The next card is read and is assumed to specify the number of curves
on the next plots
If variables are to be plotted, which were not specified for printout,

they are automatically added to the list of printout wvariables,

3.3.11 MODV - block

The subsequent cards specify modifications to the initial conditions
defined previously by the INCO~block (and possibly preceding MODV-

blocks). Bach card contains two pairs of an integer and a real value,
The integer specifies the sequence number of the variable to be modi-

fied, the real specifies the new initial conditien.

*) Special PLOT-subroutine of Kernforschungszentrum Karlsruhe

-]2=

If the first integer is 0, this card is not used for modifications.
If the second integer is 0, only the variable specified by the
first integer will be modified., In either case the program assumes
the next card to be a new label, If an integer is less than O

or greater than the number of initial conditions specified in the

preceding INC¢-block, the error handling routine is called,.

345412 MODD - Dblock

The subsequent cards specify modifications to data previously
defined in a DATA-block or a MODD-block. The conventions for this
block are the same as for the MODV-block, except that the new data
values may be any of the following types: integer, real or a

4 character long literal.

The procedure to determine the format of the new data is identical

to the one described for the DATA-block,
The individual cards of this block and their appropriate format

are written onto the same intermediate file as the cards of the

data block for later processing.

3,3,13 GOON - block

This block has no additional cards. The occurrence of the GOON-label

indicates the end of the input to one task.

2¢5.14 END - block

5’.
This block has no additional cards. The occurrence of the END-label

indicates the end of the input to the last task.

13

%,%,15 Input interpretation

After a GOON -~ or an END-label was found and if no error was detected
during the reading of the task input, the program will prepare a
complete documentation of the task input as interpreted by the program
itself, In order to do so, the program first reads the information
which describes the parameters from the intermediate file with their
appropriate format and stores them into the DATA common. The printout
of the input processor is sellexplanatory and is the exact description
of the task as delegated to the steady state and transient solution

routines.

3,%,16 Input error handling

If an input error is detected by the input processor, the error handling

routine is called.

At first, the error handling routine atitempts to read the next card

and, if successful, will print this card in order to make it easier

to locate the error., The program will then check the following cards,
until one of them contains a block label, If so, the program will reasunme
input reading and input checking at this label, However, no task will

be submitted for steady state or transient solution until & new group

of tasks is found, which is identified by an INPT-label immediately

after the GOON-label. The program is terminated when the END-label is

found.

If the end of the input data set is encountered before the END-label
was found, either during the normal input reading or within the error
handling routine, the program prints an error message and terminates

execution

-14=

4, Problem Solution

The name of this routine is XRUNGE, It consists of two parts: the
steady state iteration and the transient problem solution, After
initialization of the routine, steady state iteration will be

performed if requested in the input of the task,.

4,1 Fundamentals

The program assumes that the problem to be solved is described by

a number of first order ordinary differential equations plus,
possibly, a number of algebraic equations, The maximum number of
variables to be handled is 500, All variables are consecutively
numbered, The first variables are primagrily considered as integra-
tion wvariables, i.,e.it is assumed that they may follow a first order
differential equation at any time or they may be détermined by an
algebraic equation, The remainder of the variables must be described

by algebraic eguations,

The following set of equations is assumed as the basic problem

description.

for at least one i at

i‘lﬂ =/!;/f,}1 /‘%) any t in the range + 0=t =tmax

with 1Fi€n=k=500

_ for all j#1i
7/’ 'é/f’ 77);) with 1= =k =500

where Yqeee¥y are the dependent variables, and t is the independent
variable., In case of a steady state iteration request the validity
of these equations is extended to include negative values of t, The
steady state iteration will be performed on the following set of

equations,

dy.
:(%W‘f'ﬁ/% ''''') (2)

for t =t <0

-15=

The program assumes that these equations are computed by a Fortran -

IV-subroutine named DYNAN{.

4,2 Steady State Iteration

The problem to be solved is given by
for t =+ <0

The solution of this problem is identical to the solution of the

following problem

s dy, -
}Q=:z%?'= a%:fgéi;ﬁ‘“";au) = 0
}/{, = 75'/1‘/:?1 """ ,,,,/‘

where a; is an arbitrary positive factor. This modified problem is

(4)

solved in the steady state iteration routine rather than the original

pfdblem (5). Here the a; are acceleration factors which are genefated

by the program in order to improve the convergence behaviour,

The program cannot determine whether one or more solutions to the
steady state problem exist; nor can it determine whether a steady
state condition once it is found is actually the one desired, However,
if there exists a stationary point in the space of the state variables

¥; the program will converge to this point in most practical cases.

4,2.,1 Integration

The program applies a 4th order Runge-Kutta integration method with

an adjustable stepsize h to calculate a new value for all integration

-16=

variables ¥y according to the following algorithm.

=Y. Initial condition

%/.' 5/}. /Z :/'h_)___/’;”)) } computed by

DYNAMY

\
(4/ 7o)
ig' = 4 d(' ¢
) p)
‘.” =}/.")+ﬂ.5—'£0
) L2 ~
LA) e
o _ = ¢to Y
‘ _ /{ /t/ /) J DYNAMY
€z) e (1)
£ = ha Y,
2
_, 2 = w/+ &,),-'720'

¢2) - 2/ /)
}/' =/j¢'/f /}f(-"”}; / 7 oomputed”by ' >

; tz) -.-_-/2" /f, ((2:/. ’(z)) DYNM’L’O
{
y i
£t? = f{-al .

Z’. ’//t/)/' ’“'/* ’) computed b
e (3) () } 7
)/‘. _/‘-/z‘, Fo e Y) DYNAMY

2 p . (3)

ﬁ“ﬂ/ e d‘”/

/,‘. _)/// 2/, zfjé(z) 1;) f'f;(yy

/i'//'“’ =/£'/2‘_/""%”/ } computed by

. % DYNAMP
AR p) Y,

-17=

(5)

(6)

If the convergence control, which is described below, accepts the

i 1
result, the values of y(4) yj(4) and §i(4) are taken as yi(o>,

i b4
yj(o> and ii(o) of the subsequent step.

4,2,2 Steady State Convergence Control

According to [f6_7&i(4) is a good approximation of the new value
of Y5 provided that

(3) (z)
ki -k,

(z) (4) - 0,05 . o . . ° 001 (7)
ki - l?

In this case of a steady state iteration, accuracy requirements

of the transient solution are not important; only the steady state

which is reached asymptotically, must be accurate. It was found that
the criterien
(3) k(z)
K[t < 0.4 (8>
(z) (1)
W,K{, - k%

provides adequate performance with no tendency to instability. A
criterion of the type (7) or (8) is not generally applicable,
According to Zf6_7 in the case of a single differential equation
the following relation holds

K z
T 5'5}"//2‘/}’/ (9)

In a system of differential equations, however, complications

(3) (z)
- K

arise even in very simple cases such as

y. = O (one of the variables is constant)
i

®

.1 ((damped oscillation)

Yo = =¥4~¥y)

-18a

where (8) becomes undefined either always of in some instances.
Therefore, if (8) is not satisfied for a certain variable yq out

of the variables s the following test is performed: If

. (0)

(¥ r)
yoou A <4, (10)

the new value y1(4) will be accepted, Here £s is the accuracy
criterion for steady state iteration and is computed from the

accuracy parameter £ specified in the input according to

& = Min(0.01 «+&) 5 - 10‘6) (11)

YRi is the reference value of variable Vi which is steadily

adapted to the actual value of v according to the following

algorithm:

- (4}
TRi(new) = 9*9'TRri (o14) * MiP (0. 1y 1’ 100:7p5 (014))

. 0 .
Vo ! v is not allowed to exceed 104 or to drop below the mini-
Ri(new)

mum reference value specified for this variable in the input,.

4,2.3 Control of acceleration factor a,

The acceleration factors a. remain constant within the algorithm (6).
They are initiated to unity at the beginning of the task. If neither
(8) nor (10) is satisfied for i = 1, the acceleration factor 2y

of the appropriate wvariable yq is reduced to 50% of its present
value, If the acceleration factor a, would drop below 2_24, it

will be set to 2'-24 and the stepsiz; h will be reduced to 50% of

its value, while all other acceleration factors a, for i & 1 are
doubled, thus effectively reaching the same purpose, If the siepsize
would fall below the minimum stepsize specified in the input, the
task will be abnormally terminated. Otherwise the algorithm (6)

(0)

would be repeated starting from the o0ld values of all v , and

-19=-

doubling of the acceleration factor ay will not be allowed in the
next steps until a doubling request was issued at least n times

(where n = number of differential equations) for this variable.

If a variable y, was accepted according to (8) or (10), a test will be

made whether the acceleration factor a, may be doubled. A doubling

1
reguest for aq will be issued if
either
(3) (2)
K - K
(u, iﬁ < 0.1 (12)
e o &
or
(0) |
|) (6)#£_a'= | = o7&
% 4 e | 5 xe (13)

The doubling request will be acknowledged if there was no reduction
of a; in the preceding steps (see above and if kl(1)’ kl(z) and
k. (3) are not all equal to O,

If the doubled acceleration ay would exceed 224, it will not be

doubled, but rather all other acceleration factors will be halfed

and the stepsize h will be doubled. If, in this case, one of the
24

acceleration factors &y would drop below 27°7, an error message

(TIMECONSTANT OF VARIABLE 1 TOO SMALL) is printed and the task is

terminated.

4.2,4 Special treatment of abnormal integration variables

Whenever an integration variable y, (1<i=n) is outside the validity
range of the corresponding differential equation, the program assumes
that the correct value of Y5 is computed by DYNAMO according to an
equation of the type y; = fi(t,y1...yk). If a new value of y, is
computed in DYNAMO, it will in most cases be different from the one

existing prior to the entry to DYNAMO., In order to detect this after

-20=

each DYNAMO-call the program checks all integration variables Yis
whether they were modified., If a modification is found, this
variable is considered as normal integration variable and is

treated acceording to the following rules:

The modified value is accepted.

The variable is marked as being abnormal in this step of
the Runge-Kutta integration.

The corresponding k; - value (see (6)) is set to O.
If the modification occurred jn the last DYNAMO-call of the algo-
rithm (6),the new value of y. 4) is used to compute a fictitious

derivative §i(0) such that tHe convergence criterion (10) will be
satisfied, according to

.é(o) _ (%.(9)_ }“(o)) /lh-a.)

(14)

(#-1)

If no modification is found between ¥ and yi(r> for a

variable ¥ which had previously been marked abnormal in the sane
Runge-Kutta~-step, the following rules apply:
fs ie s o e (0)
A fictitious derivative Y is computed according to

ys(o) _ (y;r)-},‘(’))//ﬁ'ai) (15)

The varisble is marked normal.

4,2,5 Steady State Accuracy Control

After every accepted Runge-Kutta-step a test is made to check
whether steady state was already reached or not. The program

assumes that steady state was reached if
() (o)
¢
- -t .
YooK /i "7

is satisfied for all integration variables 1= i=n, where

()

A
. 0.5
<550

(16)

A -5
£, = Max (0.05-¢ ,1077) (17)

D1

where & is the accuracy parameter specified in the input, If the test

(4) (0)

for the algorithm (6). However, for more than one differential

- is not satisfied, the ¥ are used as new starting values v

equation steady state will not be assumed immediately. But rather,
the program requests that the steady state test (16) was satisfied

at least n/2 times,where n is the number of differential equations,

If steady state was not reached with 20000 DYNAMO calls, an error

message is printed and the task is terminated.

4.3 Transient solution

4,3%3,1 Integration

The initial values of the integration values for t=0 are taken either
from the input specification, or if a steady state iteration was
performed successfully, they are taken from the result of the steady
state iteration., The same method of integration is applied as for

the steady state iteration,; the accuracy control, however, is different.

The 4th order Runge-XKutta-algorithm appliec is as folilows:

/)l‘ 3

;y /f) initial condition
for p = 0
ﬂv l/?//ﬂy) /ﬂ)
computed by

. ﬂv w 19 ﬂd} DYNANO ‘}
///? 4 4‘~"

\c

7 (18)

722 , 70} M
't (474 = f + 0 5— ﬁ

€+) _ s o)
;€{ =4 /7;

) ta) ()

;& =-;ﬁ ,L6l53£;
=/) ﬂ‘”} M____%ﬁ)) computed by

o) (e)) DYNAMO

A

T — - —n w— - — — — e e— Gwn

-2l

t(z)= z‘(())_".05_£
i.(z) - % /'(4)

%m=}')05£
/ / /zJ {2})
‘A' ;-- (2) computed by
% / (¢ Yy) DYNANO
tP 7+ A)
. (2)
27 - 4. %.fz

[

(3) Q/ (3) ﬁ?} computed by
%”') {;[L DYNAMO

9tV
{7 XL
£ A Y, "

ty) 0 4/ , 1) /3) a5 4

FARD A I CE TR SR

(¥ Ah:)
7 computed by

o (9) w_) ——
;‘.! :/;, /f //4 i 4 / DYNAMO/

If the accuracy control, which is described below, accepts these

values, the Runge-Kutta-step number p is completed with:

(4) ,
tp+1 t (20)
(4)
vi(bpn) =7y
and the values of t(4), yl(4) yJ(4> () will be taken
as the new values of t(OZ s (O) () and v () of the next step.

-23%a

4.3.2 Accuracy control

(4) 5 (4)

yj(4> a second numerical integration method is applied. The results

of the two methods are compared for each Vs If the difference is

In order to check the accuracy of the new values 1t

small for all integration variables, the values of the Runge-Kutta-
method will be accepted, The second meithod, which is used as a check,
is based upon a Hermite extrapolation Zf7_7. The extrapolation starts
with a first order extrapolation from the values ¥y at time tp (the
beginning of step p) and the derivatives v at this time, If this

test is not satisfied, the values yi(tp-1)’ yi(tp_z) and yi(tp-B) are
succesively included until the order of extrapolation matcher the order
of the Runge-Kutta integration (namely 4), If y.H’q

i,p+1
of y.(% evaluated by Hermite extrapolation of order g, the value
it "p+1

is the wvalue

will be accepted if for g = 1 or 2 or 3 or 4:
H’q (4>]
Ti,p+1 ~ ¥4 <& Ipi (21)

where . is the reference value of variable y. which is steadily
Ri v

adapted to the actual value of v according to:

(4)

YRi(new) = 0+9'Vpji(o1q) * Min(0.1 '}yi |» 100p;(01a0)) (22)

Vo is not allowed to exceed 1040 or to drop below the minimum
Ri(new)

reference value specified for this wvariable in the input.

If criterion (21) is violated by one of the integration variables,

the integration step is not accepted, if the following additional

test fails, This test is made in order to avoid unnecessary stepsize
reductions caused by a variable which remains practically constant but

does not satisfy the criterion, If

¥, l0)

¢) (v}l . (y)
‘y‘. -y |< 07 f-/% 7)

o (0)

2nt 7 (3.7-30)= p~ ¥ (24)
and I%(ﬂ/_ %./o}/ > 4.7}0) (25)

then (26)

)

and step repetition at reduced stepsize is not requested, An

increase of stepsize. which might be requested from the control

of other variables will not be allowed. If (21) and any one of the con-
ditions (23), (24) or (25) is violated, the program requests repetition
of the integration step at half stepsize. The step repetition will be
accounted to the particular variable and a summary of this account
will be printed at the end of the dynamic problem solution.

After completion of the repeated step, variables which had accept-
able accuracy at a larger stepsize will not be tested again, If

the accuracy control requestsreduction of the stepsize to a wvalue
below the minimum stepsize specified in the input, this request

will not be acknowledged and the step will not be repeated., However,

if in a series of consecutive steps the number of such requests
exceeds 1/5 of the number of accepted steps (in particular: if 3

such requests are issued in a sequence), the program will print an

error message (STEPSIZE CONTROL STOP) and the task will be terminated.

At the beginning of the accuracy control phase the program assumes
that the stepsize may be doubled in the subseguent step. If this
assumption still holds, each integration variable after having been
successfully tested according to (21), will be tested whether step-

size doubling would be allowed for this particular variable. The test

criterion is similar to (21). The assumption that the stepsize may
be doubled,will be gccepted if for any extrapolation order g=1 or 2

or %3 or 4:

e () .

. . a.
Vi, p+1 ~ Y1 £°0.8:0.5%yp;

(27)

Otherwise the assumption that stepsize doubling is allowed, will be
negated, If, after having tested all integration variables, the
assumption is still valid, the stepsize will be doubled for the
next step, unless the doubled stepsize would exceed the maximum

stepsize value specified in the input.

Besides this automatic stepsize control the user
may request repetition of the step at half stepsize

at any time by means of a CALL REPET statement in DYNAMO,

25

4,4 Data buffer for Plot

If the input to the task specifies some variables to be plotted, the
most recent values of these variables will be stored in a 500 Word
buffer after completion of a successful step. If the buffer is
filled to such an extent that an additional set of plot variables
would cause it to overflow, the buffer is written on an intermadiate

file and cleared.

4,5 Printout control

Those variables which were specified in the input for printout and

the step sequence number will be submitted to the printout routine

- as initial conditions of the problem
~ upon termination, of the task
and whenever

-~ more than the maximum allowable number of

steps is passed between two printouts
T~ printout is Teguested iw DYNAMO by means
of a CALL PRINT statement

- a "noticeable" extremum occured in one of
those integration variables, which are to

be printed.

The last one of these criteria is specified in detail as follow, A

printout request is issued if

7 (1o Je o) # 20505 55) (20

and '%./f“)'ﬁ/ﬁ)l"/%/ﬁ)'}/?-f)/>‘;r' RP: (29)

where
Sr

e

Min (0.2, 10%g) (30)
win (66| LGl 3: o)) (51)

-26=

i

4,6, Termination control

The task is normally terminated, if

- the maximum number of successful steps (as specified in

the input) is reached

- the maximum value of the independent variable (as
specified in the input) is reached, In this case the
maximum value of the independent variable is exactly

reached,

- termination is requested in DYNAMO by means of a CALL

TERM statement

Before conclusion of the dynamic problem solution the program

requests printout of all data which might be stored internally in

the printout routine, and the plot buffer is cleared on the inter-
mediate file for later treatment., A summary of the step size reduction
account and the total number of DYNAMO calls during the dynamic

problem solution is printed.

- 5--Printout routine - .- Ce e

The name of this routine is OUTPUT.

Prior to the steady state and dynamic problem solution the printout
routine is initialized, If less than 9 variables (plus the step
sequence number) are to be printed, the printout routine stores the

variables in a 500 word buffer corresponding to one page. Whenever

50 lines of printout are available, or when the task is to be terminated,

the contents of the buffer will be printed.

If more than 9 variables are requested for printout, they would not
fit on one page at 133 characters per line, In this case the buffer
is written on an intermediate file before buffer overflow occurs.
Whenever 50 lines are ready or when the task is to be terminated,

the buffer content is written on file and all records are reread from

file in the order required to fill the buffer with one page of printout

-27=

The first page will show the step sequence number and 9 variables,

the second page will show variable 10 through 19, etc.

6, Plot output routine

The name of this routine is XPLOT.
In this routine the variables which had been written on file during
the dynamic problem solution, are sorted and supplied to the PLCOTA
routine which is special Assembler routine for plotting at the com-
puter center of the Gesellschaft fiir Kernforschung, Karlsruhe, If
more than 500 Steps were computed the program skips as many steps
as are required to limit the total number of points to be plotted
to less or equal 500, If NTOT is the number of steps and

NP = 1 + (NTOT-1)/500
every NPth step will be used as a point of the plot.

Besides the control of accuracy and printout which is available in
the CHCX input block, the user can dynamically control the execution
of his problem by issuing appropriate requests in the DYNAMO routine.

The following operations are available

CALL TERM-execution of the dynamic problem
solution will be terminated after
successful completion of the present
integration step.

CALL REPET~the present integration step will be

repeated at half stepsize unless th

CALL PRINT-the state of the problem as of the beginning
of the present integration step will be
submitted to the printout routine.

“28m

8, Deadtime Simulation

As additional feature an exact variable deadtime simulation
facility was incorporated into DYSYS by C.Koepp¥*. A detailed
description of the technigues applied is given in Zf8_7. The
user has the possibility to specify up fo 20 equations of the
type

_ -8 vy [t-2(t) -z (¢
4= fEFOLNET, . g 5 (52)

provided that t-Zi(t) is an always increasing function of %,

If there is a wvalue tm such that

tm"?/z;")7t —z;,/t) /07‘- 0§fm§_t (55)

the variable deadtime facility will always supply the most

recent value, namely

%[f/ "‘é/f'm /% {z{"‘)ﬁv' /((?‘7")) rather than (34)

/; ' / 1)
PN G s TS 1))

The basic procedure is as follows: Affter each successful Runge-

Kutta-step the value of flﬁt,y{(t)t,Liyk(t))mig,§tgrgdwinmanﬁincore
memory which is dumped onto a direct access storage device upon
overflow. When reitrieval of a deadtime variable is requested, a
search is started for the appropriate value first in the incore
memory and then on the external device. If the deadtime variable
sequested lies between two Runge-Kutta-steps~which is the general
case,~a first order interpolation is carried out between these
steps and the result is returned to DYNAMO,

In order to use the variable deadtime facility the user must

obey the following conventions:

1) In order to retrieve a deadtime variable DYNAMO must issue

a Fortran function call of the type

DEADTM (nl,fl,'t’l)

*) C.Koepp, Institut fuer Reaktorentwicklung, Kernforschungszentrum
Karlsruhe, delegated from Furatom

-29-

where nl is an identification or block number for this

particular deadtime relation, This is an integer.

fl is the real variable expression the value of which

is to bl retriered at a later time

?1 is the real expression which determines the present

value of the deadtime.

Example:

Let
Q) = @ = a slowly vorying coolant mass flow
(¢) = =&uY = the collant density
(A) = AREA = the cross section of a pipe
(1) = XL = the length of the pipe
(3) = T¢UT = the outlet temperature of the coolant
(J&) = TI = the inlet temperature of the coolant
103 = the (arbitrary) identification number of

the coolant transportequation

In order to obtain the outlet temperature according to
=4 (t-tg-A/Q)
o

the following statement should appear in DYNAMP: __

TOUT = DEADTM(103,TI,XL*RHP*AREA/Q)

As a matter of fact, relation (55) is only on approximate solution
of the coolant transport problem described and is applicable only
for slow coolant velocity changes. A precise formulation would

have to solve the integﬁﬁl equation?
-7

r
Q &
a/,a—dt—- }‘Z“'G[Z‘ =/
° (36)

and then "/Z = 7/9¢ [ZL—Z-) (37)

However, for moderate changes of the coolant velocity in the
time period from t-2" to t equation (35) is a practical appro-

ximation,

-30=

2) One identification number n, must not occur more than once,

%) The user must make sure, that all DEADTM function calls in
DYNAMJ are executed exactly once during the first execution
of DYNAM@,

4) Sufficient space must be allocated on a direct access device,
See Files of DYSYS,

-31=

-ag..

Files of DYSYS

Purpose

Type of records

length of records

Remark

Reservation of complete input unformatted: variable, up to required
1 ' information of task input for 4589 words
future use
5 terminal output of transient formatted variable, up to required only for TCP-terminal output,
problem solution 116 characters blank carriage control character
included
3 input copy right justified formatted constant, card reguired
image
4 Print output buffer unformatted constant, required only if more than 9 variables
501 words are requested for printout
5 standard input formatted constant, card reguired
image d
6 standard output formatted variable, up to required, carriage control characters
133% characters included
7 plot output,written by PLOTA- non- constant, card required only if plot output is
routine(Assembler) Fortran image requested
Plot buffer unformatted| constant,
and 501 words
10 copy of DATA and MODD- formatted variable,up %o

information together with
appropriate formats

80 characters

required, because of the double purpose
variable records of up to 501 words
length must be accomodated

11

Deadtime simulation

direct access
unformatted’

1815 words

Space for 1600 records must be allo-
cated on direct access device only
if this feature is used

References

[37

L[4

[57

W, Frisch, G, Wilhelmi, Dynamische Simulatoren in der
Reaktorentwicklung, Ein Vergleich, Ext.Rep.8/69-1
Gesellschaft fiir Kernforschung, Karlsruhe (1969)

H. Trauboth, Programmsystem zur Simulierung allgemeiner
Regelsysteme auf einem Digitalrechner, Regelungstechnik 14,
1, p. 22,(1966)

W.M.Syn, R.N.Lineberger, DSL/9O . A Digital Simulation
Program for Continuous System Modeling, Proc.AFIPS Conf,28,
P.165, Spartan Books, Washington D.C.,(1966)

J.C.Strauss, D.C.Augustin, k,S.Fineberg, B.B. Johnson,
R.N,Lineberger, F.J.Sansom, The SCi Continuous System

Simulation Language (CSSL), Simulation 9, 6, p.281,(1967)

CSMP-Continuous System Modeling Program, Appl.Prog.
Unser's Manual, H20-03%367, IBM Techn.Publ,Dep.,New-York

R. Zurmiihl, Praktische Mathematik fiir Ingenieure und
Physiker, 4.,Aufl.,p.413, Springer, Berlin-Gottingen-
Heidelberg, (1963)

A.,Ralston, A First Course in Numerical Analysis,p.60,
McGraw Hill, New-York (1965)

C. Koepp, DAS-2-Ein dynamischer Simulator mit TOTZEIT-
Gliedern fiir Digitalrechner, XKFK 1142, BUR 3695 d.Ges.
fiir Kernforschung, Karlsruhe (1970)

-33=

Zf9_7 H,d'Hoop, R.Monterosso, SAHYB-2: A Programme for the
Scolution of Differential Equations using an Analogue-

Oriented Longuage, EUR 3622 e, Ispra, 1967

-34-

Appendix A

‘Summary of Input Specification

The input consists "comment cards" and of a number of "blocks",
each one consisting of one or more "cards" (records of 80 charac-
ters length), 6 "fields" of the length 12 (e.g.12 columns or 12
character)positions followed by a field of length 8,

The "comment cards" have the following format:

in column 1,

79 columns of arbitrary literal content
Example:

$ THIS IS A COMMENT CARD

The "blocks" have all similar structure. They begin with a "label" card,
which in most cases, is followed by "information" cards. All of these
cards (except one)contain 6 "fields" of length 12 plus one field of
length 8, This latter field may contain any information e.g. sequence
number; it has no effect upon DYSYS. For some of the blocks default

options are provided, when they are completely missing

-35n

g&efault

block card | field type content option
title 1 1 literal INPT not
o 1-6 " *In column 1, title in columns ao0licab
2 through 72,columns 2 through pplicable
40 will appear on plot output
para- 1 1 literal DATA no
meters 2 1 integer Total number of parameters in
the following cards.The parameters parameters
3 1 integer, are stored in the DATA-labeled common
2 real or in the same sequence as listed
) literal in these cards, For literal
6 parameters only the 4 last
4 1 ’ characters will be accepted.
; . Literals are not to be
. . enclosed in ' Yy
6 . e.g.TEXT is valid, while!TEXT!'
. . . is invalid
initial 1 1 {literal INCg one initial
con - 2 1 integer Total number of initial condition condition
dition values value
3 1 real The initial condition values are value = 0O
: : stored in the INTVAR-labeled
6 common in the same segquence as
listed in these cards
4 1
check 11 1 iliteral CHCK 1,.107%2
2 1 real Minimum stepsize 1. 20
2 real Proposed initial stepsize 1.,°10
3 real Maximum stepsize
4 real Accuracy parameter 0.00140
5 ireal Pinal value of independent variables { 1,+10
6 -
3 1 integer not used Maximum number of inte= 100
gration steps
2 integer Maximum number of unprinted 1
steps between printouts
? not used
6
Print 1 1 literal PRNT
2 1 integer Total number printout varigbles 2
specified in the following
cards
3 1 integer Sequence number of the variable
in the INTVAR-labeled common 0

-36-

default

block card ; fild type content option
}
|
Print 2 literal Heading, e.g.Y(1), not to be §
enclosed in ! ! D ¢
3 integer Sequence number : 1
! 4 literal Heading Py
i 5 integer Sequence number :
: 6 literal Heading
4 1 intgger - - =~
Plot o1 1 literal PLOT no plot
g 2 1 integer Number of curves to be plotted
r3 1 integer Ratio of diagram extension in
§ x-direction to-Y-direciion may
: be 1,2,3 or 4
‘ 2 integer Sequence number of variable to
be taken as abscissa
’ 2
not used
6 (
4 1 real maximum abscissa value
2 real minimum " "
3 real abscissa increment equivalent
to 2 cm on the plot
4 real maximum ordinate value
5 real minimum ordinate value
6 real ordinate increment equivalent
to 2 cm on the plot !
5 1 integer sequence n numbers of the |
: variables to be plotted
6 plotted
6 11
More! diagrams may be specified by repeating the card
sequence starting at card 2
Last! 1 integer an integer lesg than 1 or
] greater than 30
steady no steady
state 1 1 literal STST state
Modify 1 1 literal MODV
initial 2 1 integer sequence number of the variable not
condition to be modified applicable
2 real new value
3 integer sequence number of the variable
to be modified
4 real new value
Repeat card 2 until field 1 or 3 contains O
i

default

block | card ;| field type content g option
Modify 1 1 literal MODD
para- 2 1 integer sequence number of parameter ‘ not
meter to0 be modified . applicable
2 integer new value of the parameter :
real ;
or :
literal ;
3 integer sequence number of parameter :
to be modified :
4 integer new value of the parameter §
real !
or)
literal
Repeat card 2 until field 1 or % contains O
time 1 1 literal TIME
2 i1 integer time(processor time) allowed ;' no limit
for execution of next task :
in minutes .
end
of 1 -1 literal GOON, except for last task, not
task where applicable
input

END is required

-38=-

-6£-

CCCcooeonnn Yy

CCCoConnop Yy
on oD Yy
cC oC Y
oD 0D

o0 nn

20 0D

Db 0o

co oD

co b}
BCOODDHNLD

poBpDoNnn

DATE = C8405.70

Yy

yvy

Y vy
YYvyy
Yy
Yy
vy
Yy
Yy

vy

S$SSSSS5SSS
S$SS585S5S85SSS
SS SS
SsS
$SS

$SSS555SS

5SSSS5SSS
$SS

SS

SS SS
SSS5555555SS
SSSSS5SSSSS

Yy
Yy
vy
Yy
YYY
Yy
Yv
Yy
yvY
Yy
Yy
vy

A4
Yy

YY
Y

TIMF

$858588¢88¢
S$55SS555SS5SSS
SS ss
<S
SSS
$SSSS5SSS
S$S55SSS5S5sSS
SSS
SS
<SS SS
§SSSSSSSSSSS
$8555558S¢

120440 2°

3nding wefqoxg oTdurg

X Tpusddy

-OV'

INPUT CARC IMAGE
! H H] 1 1 !

INPT 000004290
* SAMFLE PRCELEM 1 0N0dNe3n
INCO noIN044D
2 003000450
1C. [*19 nannnsen
CATA 0NN0N& TN
2 NNNONGEN
-$.81 Ce8 00000499
CHCK nNaNnNnNs00
GeCCCCL CeCl CeCS 0, 001 10, QNINNSLN
1CCCC 1Coo 0n0N0529
REFV nGonns39H
é 2 Cel N0000540
C C c 00000545
PRNT NODNNEEN
2 alataleDr LY N}
C TIME 1 HGHT 2 VELQ [alaleloTe Lor d)]
FLLT 00000580
1 00000520
1 c annone6no
1Ce Ce 2eC 2Ce =20 Be 00000610
2 onNo00629
1 ananNose3n
1 C 20009640
1C. Co ZeC 1Ce Oe 2e 00nN006SN
1 QOO0N6AN
G noo00nNe70

ENC 000023680

1-60F 01+ Plot of velocity
B-00F 004
AN
2L00F 00, 4-00F 00, B400F %0 B-BiE ob\ji-\qﬁ: 01
-B-00E 00+ ’
-1-60F 01+
ABB-00001 SAMPLE PROBLEM { 0B-05-70 / 12-44.29

OO _ 1ot of height

8-00F 00+

6-00F 00+

\
4-00E 00+
2-00F 00+

T T T T T
2-00E 00 4-00E 00 6&-00E 00 B-00E 00 1-00F 04

ABB-00002 SAMPLE PROBLEM 1 08-05-70 / 12-44.79
-d=

_ZJV—

DYSYS RELEASE CATE = €2409.69 CATE = 08.05,70
IAFLT CCNTRCL
SAMFLE PRCBLEM 1

NG ERRCR HAS EEEN FOOND. THIS TASK MWILL BE EXECUTED

INPUT CATA FCR CYNAMC

1 -S.81CCC Q. 800000
INITIAL CONDITION
1 1C.CCCOC 0.0
MINIMUM REFERENCE VALUES
1 CeC 0.9595996E-01
NMAX= 1CC00 NSCHRP= 10¢¢ DX = 0.$999698F—02 NXMAX=
EPS = 0.995959SSE-C3 XEND= 0,1COCNO0E 02
PRINT
1 C TIME 1 HGHT 2 VELO
PLCT
KUGELSCHREIBER AUSFUEHRUNG
1 XMIN= Ge 0 XMAX = 041C000COE C2 SX=
YMIN= -~0,200C0CCE C2 YMAX= 0420000008 02 Sy=
x= C Y= 2
2 XMIN= CeC XMAX= 0+1CO00GCE C2 SX=
YMIN= 0.0C YMAX= 01000000 02 Sy=

r= C Y= 1
STEACY STATE NOT REQUESTED

TINF = 12,44,2"7

2

0 MIN 1,14 SFC
TASK NR, 1

0.5000000F-01 DXMTIN= N,1N000NNF-NG

0.2000000F 01
Ne 8000DNOE 01

0. 2000000F 01
0. 2000000E 01

FORMAT vY/X=1/ 1

FORMAY Y/X=1/ 1

0 MIN 1.96 SEC

-Q-V-

SAMFLE PRCELEM 1

LINE STEP
1 C.C
g Ce4S(CE
2 Co46CCE
4 GCl.l118CE
5 CellSCE
€ Cel7S5CE
7 C.18CCE
8 C.233CE
9 CeZ34CE
16 C.z27SCE
11 (C.z8CCE
1¢ Co.202CE
12 Ce22(CCE
14 Cl.221CE
15 Ce34CCE
16 C.2¢éCCE
17 C.2¢€1CE
18 QCe374CE
16 C.375CE

c2
2
€3
Cc3
c2
(3
c3
€3
c3
3
3
3
(3
3
3
3
<3
3

TIME
CeC
Cel428E
Cel428E
Ce3712E
Ce3712E
Ce SE4CE
C.S5%4CE
C.7CC2¢E
CeT7C02E
C.E172E
L.8172E
Ce8651F
CeS1C7E
C.51C7E
CeG4CTE
{eG856E
CeSESLE
eSS T6E
Ce1GCOE

NUMBER OF OYNAMC-CALLS=
NUMBER OF STEFSIZE REDUCTIONS/VARIABLE

* 1287 1 %

PLOT TERMINATED

ci
Cl
cl
1
1
Cl
cl
(1
C1
Cl
Cl
C1
21
(1
‘1
Cl
£2

(4

HGHT
C.1000€ 02
€C.1846E~C3
Ce3648E-04
Ge1483E~-(3
C.2918F=C4
Ce3002E-04
C.7C03E~C4
C.1321€-03
CelB67E-04
Col165TE=~C4
C.8564€-C4
Cel1C73E C1
C.8252E~-C4
C.1195E-C4
C.6860E 00
Ce3736E~C4
C.5561E-C5
C.2818E 2C
Ce3218E 00

1506

VELC
0.0

-C.1401E
Oell21E
~041121E !
0.3564F
~0e 3964F |
C.7171E
~-C.7171E !
0eST3TE |

~0e5737E

0.4589E !

-061193E

~0e458GE |
D.3671E
Ce14COE
~0e3671E !
0e.2937F
0o 1760E

0.1521E

SETTF

1 ¥4 1

N MIN 6,37 SEC

0 MIN 7.15 SFC

-V-’V_

0 MIN 0.78 SEC
INFUT DATA RIGHT JUSTIFIEC,FIELD LENGTH=12

INPT 1
SANFLE PROPLEM 1 2
INCC 3

é 4

10. Ce 5
DATA 6

2 7

_9081 C.E‘ 8
CHCK i 9
CsCCOC1 Co01 0.05 0.001 i 10. 10
10C€CC 1CG0 ‘ 11
REFV 1 12

2 2 0.1 13

CC 0 14

PRNT 15

3 3 16

C TIME 1 HGHT ! 2 VELQ 17

PLOT | 18

1 . f 19

1 0 i 20

10. O 240 20, H -20. 8o 21

2 i 22

1 23

1 24

1C. Qe 2.C 10. Oe 2. 25

1 26

¢ 27

Appendix C

DYSYS calls for a few routines which are not included in the

source deck., These routines are described in the following.

1) Subroutine DATUM
The call is CALL DATUM (DDAT, DZEIT)
with REAL*8 DDAT, DZEIT

As a result of this subroutine call DDAT will contain the

date and DZEIT will contain the time of the run as 8 characters

which are printed each with format A8 on the first pages of

the output.

2) Subroutine FSPIR
The call is CALL FSPIE

This routine merely improves the error diagnostic printout

in case of a severe error occurring during program execution.

5) Function ZEIT
The call is € = ZEIT(O.)
B = ZEIT(C)
with REAL*4 A,B,C

As a result of the first function call the time accounting

It

it

routine is initialized. Subsequent calls supply (in B) the

computing time elapsed since time C in seconds.

4) Subroutine PLOTA
The call is CALL PLOTA(XWERT,YWERT,N,3,NP,1,1,LP,INDZ,XMAX,
XMIN,SX,YMAX,YMIN,SY,KOMENT ,KBILD,0,0,0)

5)

The arguments have the following meoning:

AWERT = array containing the abscissa values

YWERT = array containing the ordinate values

N = number of points

NP = integer, characterizing the symbol (point, circle etc)

which will be used to mark every LPth point of the
curve on the plot

LP = integer (LP=(N+4)/5) computed such that each curve
will be marked with % points

INDZ = integer, which indicates the format of the plot for
the first curve and is set equal to O for each sub=-

sequent curve on the same plot

KMAX = maximum value of the abscissa X

XMIN = minimum value of the abscissa X

SX = dncrement in X corresponding to 1/100 inch

YMAX = maximum value of the ordinate Y

YMIN = minimum value of the ordinate Y

Y = increment in Y corresponding to 1/100 inch

KOMENT = Title of the plot, consisting of the first 40 characters
of the title card of this task followed by data and time

KBILD = figure number within this task

Subroutine ERRSET

The call is CALL ERRSET (a1, 8oy 835 8,5 a5)

The effect of the two ERRSET calls in the subroutine OUTPUT is
the following:

Before an attempt is made to write a record on file 2 (which may
be directed to the TCP-Terminal) the standard error handling

routines are modified by the first ERRSET call in a manner, that
a missing DD-card for file 2 does not lead to a program inter-
rupt, The second ERRSET call restores the standard setting of the
error handling routines. This feature eliminates the need for
specification of file 2 for users who do not want to use DYSYS

from one of the terminals,

—46=

