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Abstraet-i-The theory of multiple eollision probabilities for one-dimensional problems has been
extended for handling thiek zones and strongly anisotropie fluxes. This entails the treatment of
space dependent seattering sources and anisotropie fluxes at the boundaries of sub-zones, For plane
geometry anisotropie seattering sources have been included, A multigroup collision probability eode
STOWA based on the extended theory has been written. It may be used in conneetion with diffusion
caleulations or independently and may perform cell ealculations or determine flux distributions in
speeiallayers of a reaetor, e.g. in the blanket or the shielding. Results are given and eompared to
other transport eodes and measurements. Different approximations to angular seattering on hydrogen
are evaluated with the eode.

1. INTRODUCTION

COLLISION probabilities are commonly used for reactor cell calculations, but up to
now they have not been applied to the solution of other transport problems such as the
determination of the fIux distribution in the outer layers of a reactor. This paper
presents the derivation of generalized multiple collision probabilities suitable for the
solution of a variety ofone dimensional problems. With the help ofa newly developed
code using these collision probabilities it is tried to estimate the possibilities and the
limits of multiple eollision probabilities.

There are two assumptions which are eommonly used in connection with multiple
and first collision probabilities severely hampering the application to problems other
than cell calculations. These are the fIat scattering source approximation, which is
valid only in narrow or suitably subdivided layers, and the eosine distribution for
the neutron currents at the boundaries, which is not sufficientin regions far away from
sourees. In order to achieve greater fIexibility in the application of the teehnique
these approximations have been discarded in favour of the following ones:

1. The angular distribution of the current at the boundaries in eaeh half
spaee is approximated by aseries in powers of cos IX, IX being the angle between
neutron direction and the normal on the boundary. This is equivalent to a
DPN"approximation.

2. The scattering souree distribution is approximated by a polynomial of low degree
in the space variable.

Both generalizations are carried out for plane, cylindrical, and spherical geometry
with a multigroup approximation for the energydependence. An equally eomprehensive
generalization of multiple eollision probabilities has not been undertaken up to now,
though for some special eases extensions of the original formulation are to be found in
literature, e.g. by AMOUYAL, BENOIST and HOROWITZ (1957); GAST (1962); SAHNI
(1966); SYROS (1966)and (1967); KrnR(1966)and(1967); MURLEyandKAPLAN(1967);
HÖRTNER and PUTZ (1968). The scattering is assumed to be isotropie in eylindrical
and spherical geometry. In plane geometry the angular dependence of the scattering
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338 L.MAYER

cross section can be approximated by a Pff"series, but only for neutrons remaining in
the samegroup after scattering; downscattering is treated as isotropic in cellgeometries.

The derivation of the formulas for multiple collision probabilities with the above
approximations will be presented in the sections 2-5 together with the formalism for
the solution of multigroup, multilayer problems. Section 6 shows the results ofvarious
calculations compared to other transport codes and measurements. In section 7
the Pff"approximation to angular scattering is used for an evaluation of different
approximations to the angular dependence of scattering on hydrogen. Section 8
gives a final evaluation of the advantages and disadvantages of the method.

2. TRANSMISSION PROBABILITIES FOR ANISOTROPIC BOUNDARY
FLUXES AND SPACE DEPENDENT ISOTROPIC SCATTERING SOURCES

IN ALL ONE-DIMENSIONAL GEOMETRIES

The theory of multiple collision probabilities, especially its derivation from trans­
port theory, can be found elsewhere (MÜLLER and LINNARTZ, 1963; MAYER, 1968),

Gi-I o, Gj +1

Oj_1 o, 0+1

/,.:, .+- - - Ji - - -
~--I l-

I

Fm. 1.-Definition of layers and partial currents.

and will not be presented in detail here. If, in the onedimensional case, the region in
which the neutron fluxes shall be determined is subdivided into zones G, according
to Fig. 1, with partial neutron currentsu: andt: across the boundaries, the equations
1inking the in- and outgoing currents in zone Gi are

Ji-=-l= Si2-Ji- + S/'--jt-l + Ri:
(1)

J/ = Si-+Ji- + Sl+Jt-l + R/.
Here, Si2- , S/'-, Si-+ and Sl+ are the transmission and reflection coefficients of

Gi' and Ri: and R/ take into account the contribution of a neutron source Qi in Gi'
In the multigroup case andfor in the case of an expansion of the partial current, ji+
and i: are vectors of the multigroup currents andfor expansion coefficients, Sl~etc.
are transmission and reflection matrices, and Ri- , Ri+ are vectors. Si2+ etc. and
R/, Ri- will be determined with the multiple collision probability technique. Equa­
tions (1) together with the proper boundary conditions yield a system of equations for
the partial currents which in their turn, by use of a simple neutron balance equation,
serve to determine the mean fluxes in Gi' In the following, the index i indicating the
different zones will be omitted for simplicity.

By following the ingoing neutrons through their successivecollisions until they are
either absorbed or scattered out of G, the transmission and reflections coefficients S
and Rare reduced to the transmission probabilities-without collision-for ingoing
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Fm. 2.-Transmission probabilities for cylindrical geometry.

currents and for scattering sources. For example in the monoenergetic case

5'2+ = Po + (1 - Po)~8 (P1+ + (1 - P1+- P1- ) ~ (P2 + ...)) (2)

with

Po probability for ingoing neutrons from the left boundary to leave Gi without
collision;

p.+ probability for neutrons scattered s times to leave Gi over the right boundary
without further collision;

p.- same as Ps+ for the left boundary;

Ls scattering cross section;

L total cross section.

Similar formulas hold for S-+ etc. and R+, R-.
The exact caIculation of Po, P/, Ps- is subject to the difficulties inherent in every

transport caIculation. Thus, Po is dependent on the angular distribution oi j», P1+
and P1- depend on the angular and spatial distribution of the neutrons after their first
collision etc.

In the following, the transmission probabilities (for transmission without collision)
will be denoted by r:», r:», rr», P":" and rr:», with 0 signifying the outer, i the
inner boundary and 'jJ the volume-in connection with volume sources-s-of G (Fig. 2).
The first step is to calculate the transmission probabilities rr:', pi->-o and P"?" for
anisotropic fIux densities at the boundaries. The angular distribution of the neutron
currents at the boundaries is approximated by

I

j±(rx)- S j/ cos' rx
i=1
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where o: is the angle between the neutron direction and the normal on the boundary.
The transmission probabilities are calculated separately for each component i. As
the outgoing fluxes must be represented in the same manner as the ingoing ones,
one has to evaluate not only the probabilities but their first I-I moments as weil.

The technique for deriving transmission probabilities may be found in detail in
the works of MÜLLER and LINNARTZ (1963) or MAYER (1968). Thus, it is sufficient
to give a list of the formulas resulting for different geometries (Appendix 1).

The second step consists of the determination of the transmission probabilities
for the scattering sources Q. They are approximated by

with

L

Q(r) = S gdzCr)
1=0

(3)

(4}

for plane geometry
for cylindrical and spherical
geometry

r = R/Ro is a reduced radius, k = Ri/Ro the quotient of inner and outer radius.
Note that for k approximately I with r = k + x, x <{ k:

fl(r) = (2kx + X2)1 f:::::J (2k)IX I
f"'oo,,/ fl(x).

Equation (4) entails a steady transition ofthe probabilities for spherical and cylindrical
geometry into those for plane geometry with the same 1. On the one hand, this makes
possible an interpolation in the k-direction. On the other hand, if one chooses
fl(r) = r21, the limit for all values of 1ishex). This then means a bad description of
the space dependence in the case of faintly curved layers.

The transmission probabilities p1j- i and P1j- O are evaluated separately for each I
and each moment j and can be found in Appendix I for all geometries.

From these probabilities, the transmission probability for Q(r) given by (3) is
derived by the use of

with

L
S g G pv-:,o/i

I I I,)

Pv~oli _ ,-I=...::O~~__
Q,j - - L

S glGI
1=0

(5)

1
GI = 1+ I (plane geometry)

(1 + k2)1
GI = 1+ 1 (cylindrical geometry)

GI = (Nl)-l (spherical geometry; for NI see Appendix I).

For the application of (5) the space dependence of the scattering source must be
known. As it is represented only approximately, a few data on its exact distribution
are sufficient. For neutrons scattered s times, these data are given by the transmission
probabilities of the s - 1 times scattered neutrons. For example, 1 - P?" - Pr" is
proportional to the integrated source, while P--?{} and p~i are proportional to the
source value at the outer and inner boundary. The exact relations are given in
Appendix 1.
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(8)

(6)

(9)

The Figs. 3 and 4 show transmission probabilities for a cylindrical layer with
k = RdRo = 0·75 as a function of A = '1:.(Ro - R i ) . The dependence on the angular
current resp. spatial source distribution is obviously quite remarkable.

3. TRANSMISSION PROBABILITIES FOR SPACE DEPENDENT
ANISOTROPIC SCATTERING SOURCES IN PLANE GEOMETRY

For anisotropie scattering the cross section is approximated by aseries of Legendre
polynomials

Z.(O', 0) = 2- SsJm (cos(O', 0».
47T m=O

As a fust step the angular distribution of the scattering source after the s'-th collision
will be evaluated. As the anisotropie scattering is treated only for neutrons remaining
in the same energy group, the formulas can be restricted to the monoenergetic case.

o». 0) = f dO' Z. (0', O)lJ!"_l(r, 0') (7)

where 1fJ.-l(r, 0') is the fIux density of s - I times scattered neutrons. For S= I,
1fJ0 is the density ofthe unscattered neutrons, which is a function ofthe ingoing current
ji(oc) = coSi oc. In plane geometry

. (AX )1fJo(r, oc) = cos'-loc exp ---
cos oc

with A = '1:. • ß.R and x = r/ß.R, ß.R being the thickness of the layer and r the co­
ordinate normal to the boundary. Combining equations (6)-(8) one finds

Ql(X, 0)- SSm Jf p m(COs (0', Q» COSi-1OC' sin oc' exp (_ Ax ,) doc'
m-02 cosoc

M
= S Q1m(x, 0).

m-O
Using

one finds
cos (0', 0)= cos oc' cos oc + sin oc' sin oc cos (4) - 4>') (10)

(11)

with Bm(Ax) given in Appendix 2. Similar to the treatment of the isotropie sources
in plane geometry, the space dependent part will be approximated by a polynomial
in x, while the angular dependence is treated rigorously. Thus

s L
Q1m(x, 0)= -!!':. Pm (cos oc). Z anmx! (12)

2 1=0

is used for the determination of the transmission probabilities. The flux density in
x' due to the neutron source Ql(X, 0) is

(,") f dx ( , ") (A(X' - X»)'IJll x ,I.~= -- Ql X ,I.~ exp - .
cos a: cos oc

(13)

From (12) and (7) the source of twice scattered neutrons can be found. It turns out
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to be separable in spaee and angle similar to Ql(X, Q):

M

Q2(X, Q = S Q2m(X, Q)
m=O

with

(14)

M 8
pv~.i = S ....:::!: ----------;;-:;--""T""-----------Qs,) c

m~O "0

L M 8
Q2m(x, Q) = 8m Pm (eos a) S S 2m' anm'Oim'(x).

2A l=Om'=O

Formulas for Qim' ean be found in Appendix 2. As equation (14) shows the souree
Q2m(X, Q) to be separable in spaee and angle, an approximation aeeording to (12) is
possible for this source and all subsequent scattering sourees Qsm(x, Q) as weIl.

The eoefficients azsmare found with the help of Qsm(O,Q) , Qsm(1, Q) andrdx Qsm(x,Q)
as resulting from (11) for 8 - 1 and (14) for 8> 1. °

The remaining task is to ealculate the transmission probabilities and their higher
moments for the sources defined by (9) and (12). They are given by

f i l (- AX) LdQ Pm (eos «) dx exp -- cos' oe S azsmXl
o eos", l~O

11 L
41T dx S azsOxl

o l~O

(15)

Similar relations hold for P'Q:J'. The definition of r:",ji arising from (15) must not be
eonfused with that for PU~i given in seetion 2; there, I refers to the spatial source
eomponent, while here m refers to the angular eomponent, and the spatial distribution
is treated as a whole, For m > 0, the resulting r:",ji should not be interpreted as
probabilities, but rather as corrections to P~;i. Formulas for the probabilities are
listed in Appendix 2.

4. TRANSMISSION AND REFLECTION MATRICES

The remaining task is to determine the transmission and reflection matrices S
(equation (1» from the transmission probabilities P. S depends on the definition of
the eurrentj, whieh willbe taken to be the veetor of the amplitudes ofall group currents.
Eaeh eomponent of j gives rise to one eolumn of S.

In a first step the transmission and refleetion probabilities and their moments are
determined, It is assumed that after the s'th eollision the spatial seattering source
distribution has reached an asymptotie value whieh may be either spaee dependent or
isotropie; the asymptotie angular source distribution is assumed to be isotropie.
In this ease, the contribution of all subsequent eollisions ean be summarized.

The transmission resp. reflection probabilities will be denoted by Pil+(m, n),
Pij+-(m, n) ete., where i and mare the eomponent and the group number of the in­
going current, j is the moment, n the group number of the outgoing eurrent, and the
+ and ~ signs refer to the direction of in- and outgoing current similar to the defini­
tion of S in (1). Further, Rsi±(m, n) is the probability for ingoing neutronsbelonging
to eomponent i of group m to be in group n after the s'th collision with + or ­
referring to the direction of the ingoing current. R, is a funetion of the transmission
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probabilities for the 0 to s - 1 times scattered neutrons. With these definitions

00

P 2+( ) _ n:« ).Il + S R i+( )PV-70ii m, n - ij n u mn s m, n Q,'+(m,n)'
s~1

(16)

For the introduetion of the asymptotie souree all Pij2+(m, n) with equa1 n have to be
eolleeted into a veetor Pij2+(m) of order G. It ean be written as

00

p ..2+(m) = S y 2t. (m)
1,3 . 8,~J

8~0

(17)

where eaeh Y refers to one term in (16). In keeping these symbols Y for the first S - 1
eollisions and summarizing the rest, (17) beeomes:

8-1
Pij2+(m) = S V;.t(m) + Pooi(E - N oo)- 1Rs

i+(m). (18)
8=0

Here, Rsi+(m) is the veetor of all Rsi+(m, n), Eis the unitary matrix, and P 00 i and N
are matriees of order G:

P00; = diag (PQ;,Cn),j)

N (~;,-n (1 PV-O PV-i»)
00 = ~m - Qoo(m),O - Qoo(m),O •

Qoo(m) is the asymptotie souree distribution in group m, whieh may depend on eom­
ponent, group, and direction of the ingoing current. Similar formulas hold for
Pij+-(m, n) etc.

The second step consists of a normalization of P such that the results of a multi­
plication with the components of the ingoing current are the components of the
outgoing current. The normalization must take into account
(a) that the inner and outer surface of cylindrical and sphericallayers are not equal
(b) that the functions coSi IX are not normalized
(e) that the moments of the probabilities have to be transformed so as to give the

eontributions to the different eomponents.
The results of the normalization are the matriees S of equation (1).

Exhmeous sourees, whieh will be denoted by E, are treated similarly to scattering
sourees. The results are the components rL(n), Pii,j(n) of two vectors of the escape
probabilities for the source, and their moments. The normalization consists of
(a) multiplication with the total source (integrated over the layer);
(b) multiplication with a factor effecting the transformation from a volume source to

a current;
(c) the same operation as in (c) above.
The results are the source vectors R+ and R- of equation (1). Details on the normal­
izations may be found in the work of MAYER (1968).

5. SOLUTION OF MULTI-LAYER PROBLEMS AND COMBINATION
WITH DIFFUSION THEORY

After the determination of Sand R, equations (1) can be solved together with the
proper boundary conditions. These depend on the nature of the problem and will be
given below for some common cases. Subscripts refer to the number of the layer.
(a) Spherical or cylindrical cell. Here, the inner boundary is non-existent and
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equation (1) for the innermost layer reduees to

jl+ = Sl-+jl- + R1+· (19)

At the outer boundary, one may impose a boundary eondition of the form

jN- = AiN+' (20)

If A is a unitary matrix, this is a reflecting boundary eondition, but A ean be
defined so as to give the "white" boundary eondition or any other type of
reflection.

(b) Plane cell. Here one has to distinguish between symmetrie and non-symmetrie
eells. An example of the first ease is the sequence of layers abebabeba . . ..
It is suffieient to treat the layers a12, b, el2 and the boundary eonditions are

io+ - io- = 0
(21)

An example for the non-symmetrie case is the sequenee abeabe ... , for whieh one
has to treat the layers a, b, e with the boundary conditions

jN+= io+
(22)

This gives rise to a special system of equations whieh has to be solved with a
special teehnique.

(e) Whole assemblies are formally treatedas eells. In this ease, the ingoing eurrent
at the outer boundary is often required to be zero, whieh means putting A = 0
in (20).

(d) Flux distributions in layers with a souree at the left boundary. The boundary
eondition at the left boundary is normally

but might be

.+ ._-Jo - Jo - go

• +Jo = go·

(23)

(24)

The seeond ease refers to vaeuum to the left of the layer and a souree at the
boundary, while in the first case flux and flux gradient at the left boundary are
known. For the right boundary (20) applies,

(e) Combination with diffusion theory. In this ease, the results offoregoing diffusion
ealculations for the whole geometry are used to provide the veetor go for (23)
and/or gN for a similar eondition for the outer boundary. If one boundary of the
seetion to be reealculated with transport theory eoineides with the inner or outer
boundary of the wholesystem, the proper boundary eondition, e.g. (19) or (20),
is applied. The "eoupling" points, at whieh (23) is used, have to be chosen in a
region where diffusion theory is valid; there

0/ 3
'1jJ(Q) = - - - D grad 0/ eos ()(.

41T 41T
(25)
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is used for the determination of g. A deviation of diffusion and transport calcu­
lation results at the coupling point indicates that (25) is not valid there.

The system of matrix equations arising from (1) and the boundary conditions except
(28) is tridiagonal and can be solved without iteration. An estimate of computing
times for different numerical techniques has indicated that this method is indeed the
least time consuming one. Nevertheless the normalline inversion had to be slightly
modified for numerical purposes. The following recursive relations are used in this
modification:

ii-=-l = Fi- + Gi-i i­

i/= Fi+ + G/ii-

From equation (1)

(normally ii=-l = Fi- + Gi - ii+ with, of course,

other relations for F, and Gi).

Gi- = (E - si+-Gi_l)-lSi2-

Fi- = (E - S/-Gt..l)-1(Ri- + Si+-Ft..1)

G/= Si-+ + Sl+Gi_1Gi-

F/ = R/ + Sl+(Ft..l + Gt..1Fi-)

where Eis the unitary matrix. Go+ and Fo+ are derived from the left boundary
condition, iN- from the right one.

In the case of the non-symmetric plane cell the system of the matrix equations is
nearly tri diagonal with a few non-zero elements in the upper right corner of the
matrix. The line inversion technique can be modified so as to handle this problem
too. One applies the recursion relations

j/ = G/jly- + H/jN+ + F/
ii- = Gi-iN- + Hi-iN+ + F,".

For 1 ::;: i < N
Gi - = -(Sl-)-l(Si+-Gi-+:"'l - Gi=-l)

Hi- = -(Si2-)-1(Si+-Ht..1 - Hi=-l)

F .- = - (S .2-)-1(R.- + S .2+F;!- - F;- )• • • • .-1 ,-1

Gi+ = Si2+Gt..1 + Si-+-Gi-

H/ = Sl+Hi-+:"'1 + Si-+-Hi­

Fi+= R/ + Si2+Ft..1 + Si-+Fi-
with, for i= 1

iN- and iN+ are the solutions of the system

with
A= G"N-1 - SN+-G"t--1; B = H"N-1 - S"t-=1Ht-1 - SN2­

C= E - SN2+G"t-_1; D = -SN2+Ht_1 - SN-+-

U = RN- - F"N-1 + SN+-F"t--1; V = RN+ + SN2+F"t-_1'

After the determination of the currents, the fluxes at the boundary are determined
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from the currents via 'ljJ(O) = j(O).cos IX and the mean fiuxes in the layer by using a
balance equation.

It should be mentioned that the collision probability code STOWA, which has
been written for the application of the techniques developed herein, is coupled to
the Karlsruhe nuclear code system NUSYS. This enables the user to run a problem
fully automated, beginning with the determination of group cross sections and, if
necessary, the foregoing diffusion calculation and then starting the collision pro­
bability code. Because of the small computer memory of the IBM 7074 the following
restrictions have to be observed:

M::::;; 3; I::::;; 4; G ::::;; 12; I. G s; 16; I. G. (N+ 1) ::::;; 1536.

6. RESULTS

1. Cell calculations. The first example is a relatively crude seven-group calcu­
lation of the fiux distribution in a cylindrical thermal reactor cell; it serves to deter­
mine the effects of the generalizations. The geometry is that of the Wigner-Seitz-cell
of the FR2, which originally consists of a cluster of seven fuel pins. For our purpose
the six outer pins have been cylindricized so as to obtain cylindrical geometry. The
successive layers may be derived from Figs. 5 or 6.

Figure 5 shows the effects of the detailed source and fiux treatment on the fiux
distribution in the thermal group. While there is a large difference in the fiux distri­
butions for the constant source approximation and the space dependent source, the
DPN""approximation has no large effect in this case. The last effect gets bigger in
the high energy groups as might be expected but does not alter the fast fission factor
e appreciably. e and the disadvantage factor d are given for different approximations
in Tables 1 and 2.

Further calculations with this example have been done in order to determine the
allowable zone width and the necessary number of source approximations for the
successive collisions. The zone width may be up to one mean free path for materials
with scattering out-weighing absorptions and bigger for materials with absorption
exceeding the scattering. The space dependence of the source should be determined
for up to the third collision for these zone widths. The accuracy of calculations with
zone widths of one mean free path is comparable to that of Sn- and Pn-calculations
with meshes of 0'3 mean free paths; for collision probability calculations with the
constant source approximations this value is even less.

As the code handles different boundary conditions, the results for a refiecting and
a white boundary have been compared. In the thermal group the fiux varies by about
4 per cent at the outer boundary, but the disadvantage factor is only changed to 1·66
for the white boundary as compared to 1·67 from Table 1 for the refiecting boundary.
A one group calculation for the thermal group only has been done as well using an
idealized source of downscattered neutrons: Q= 1 in the moderator and coolant
and Q = 0 elsewhere. This is a widely used assumption for thermal cell calculations.
A comparison of the resulting thermal fiux with that from the 7-group-calculation
shows no differences.

As an example for adjoint calculations which can be handled as well, Fig. 6 shows
the adjoint fiuxes in some groups for the foregoing cell problem.

Heterogeneity calculations for fast reactors have been performed too, but the
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TADLE l.-DISADVANTAGE FACTOR FOR THE

DIFFERENT APPROXIMATIONS

" source
flux " Q = const Q(r)

DPo 1'56 1·70
DP s 1·52 1·67

TADLE 2.-FAST FISSION FACTOR FOR
DIFFERENT FLUX APPROXIMATIONS

flux e

DPo 1-0104
DP1 1·0108
DPs 1·0113
DP s 1'0116

effects of self-shielding have to be inc1uded in the group constants before the calcu­
lation starts. If average se1f-shielding factors for the layers are used, this leads to
rather good results for flux distributions and average reaction rates, but does not
yield information on the distribution of the reaction rates in individuallayers in the
resonance groups.
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3 004- 104 MeV

. 4 4·65 keV-004 MeV
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I
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I
I
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L.o------,---Blcinket ---'--------oJ''-'-'-Sedium-Iren-J.. cere-sub.}
I I essernblies

Fm. 7.-Relative flux difference A for diffusion and coIlision probabiIity caIculation.

2. Blanket calculations. As an example for the coupling between diffusion and
transport calculations, Fig. 7 shows the relative differences ofthe flux distributions in
the blanket ofa sodium-cooled fast reactor according to diffusion.theory and collision
probabilities. The coupling point is 5·15 cm to the left of the blanket. The largest
effects occur in the fast groups, and one can easily c1assify the different transport
effects contributing to Fig. 7:

1. Diffusion theory underestimates the flux gradient at boundaries between mate­
rials with different fission cross sections. This results in an underestimate by
diffusion theory of the fluxes on the side with the bigger fission cross section
and an overestimate on the other side.

2. Diffusion theory cannot predict the flux distribution near the outer boundary.
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3. Diffusion theory underestimates the high energy neutron flux far away from
sources. This error is due to the high forward peaking of the fast neutrons;
it increases with increasing distance from the core and, at greater distances,
effects the low energy flux as weIl by the downscattering.

The calculations have shown that the code is easily applicable to blanket problems,
but that transport effects are too small to have an appreciable effect on the blanket

I,
1

10'3,
I

10'

10 20 30 40 50
R,cm

60 70

Concrete

Measurement
Removal- diffusion
Collisicn probability

FIG. 8.-Intermediate flux distribution in a shielding model; 0·6 eV ::::; E::::; 1 MeV.

economics, Nevertheless, as shown by Fig. 7, transport effects evidently influence
fluxes and flux gradients in the outer layers. Thus, such calculations are very impor­
tant as input for shielding calculations,

A study of the flux distributions as a function of the angular flux approximation
shows that for ablanket at least aDP1 approximation has to be appIied, while DPa
is not necessary.

3. Shielding calcuIations. The accuracy of the code, especially for thick layers,
has been tested against an experiment and a Monte Carlo calculation. The experiment
is a measurement on the model of a reactor shield, which has been performed by
SCHULTZ et al. (1967) at the experimental reactor in Geesthacht. The horizontal and
vertical flux distributions have been determined in plane layers of different materials
(e.g. Fig. 8) for different neutron energies. As the code can handle only one dimen­
sional geometries, the transverse flux distributions have been used to determine
transverse bucklings which account for the leakage. The resuIts ofthe measurements,
a removal-diffusion calculation and the collision probability code are given in Figs. 8
and 9 for the epithermal and the highest energies, There is an excellent agreement
between measurement and calculations. It should be stressed that no removal­
diffusion concept has been employed in the collision probability code; the cross
sections were condensed from the 26-group set by ABAGJAN et al. (1964) with, for
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the transport cross section in.group g

Lt/ = Lfot -:-" P,ggLi
gg· (see section 7).

As for the removal-diffusion calculationsreported by SCHULTZ et al. (1967),
they were done for the whole geometryincluding the core and there gave too high
fiuxes in the high energy region; this gives rise to the generallytoo high results in
Fig.9.

The second example is the determination of the flux distribution due to an infinite
plane source of high energy neutrons in the middle of a carbon layer of 7 m thickness.
The Monte Carlo calculations were done by BENDALL and MCCRACKEN (1967).
The results for the thermal fiux (Fig. 10) show an excellent agreement ofSTOWA and
Monte Carlo results. FIux distributions for higher energies were not available.

7. EVALUATION OF DIFFERENT SCATTERING
MODELS FOR LIGHT NUCLEI

As the code is able to handle a Py-approximation for the angular dependence of
the scattering (in one group), it has been used to evaluate the different approximations
to angular scattering. The application of the transport approximation in transport
theory offers some problems for the lightest nuclei because it leads to negative
scattering cross sections for scattering in one group, if the group is sufficiently smalI.
For hydrogen, "sufficiently smalI" groups really include quite broad groups; for
example for a IjE-fiux the scattering cross section becomes negative for tlu ::::;; 2,8.
For an illustration see Fig. 11 which depicts the true angular dependence of neutrons
scattered on hydrogen in an energy group with tlu = 1'39 and the different approxi­
mations. Clearly, the transport approximation is very far off the mark.

For a quantitative comparison the neutron fiux in a layer of 70 cm thickness
containing only hydrogen with a density of 1·6 . 1022 cm-3 and with a plane infinite
source of high energy neutrons on one side has been calculated using the different
approximations. Six energy groups were used, taking very coarse groups in the low
and intermediate energy region and three high energy groups. Taking the P3 results
as a standard, the deviations of the fiuxes at the outer boundary of the layer are

0-0'1 % for the PI and P2 approximation,

5% for the isotropie approximation,

40 % for the transport approximation,

1-2 % for the modified transport approximation.

These calculations show surprisingly good results for the modified transport approxi­
mation, which leaves the mean eosine for scattering in one group, p,hi, unaltered:

"i--+i = ""i _ ""i--+i lJi--->i. ""i--+i= ""i--->i (1 _ ui--->i)
"'-'tr "'-'tot "'-'8 r ''''-'s,tr "'-'8 r:

Thus in multigroup transport calculations with light nuclei, this approximation
should be preferred to the normal transport approximation, if one does not wish to
use a Py-approximation. This is of special significance for transport calculations in
weakly or non-multiplying media, in which the normal transport approximation
gives very poor results. For example, the shielding calculations have been done with
the modified transport approximation; with the normal transport approximation
the fast fiux distribution (Fig. 9) is much fiatter.
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It should be stressed, that the results of this investigation are valid only for relatively
broad energy groups for whieh the angular downseattering is approximately isotropie,
as the angular dependenee of downseattering has not been treated.

8. CONCLUSIONS

The extension of the multiple eollisions method to spaee dependent seattering
sourees and a DPN"approximation for fluxes in the multigroup approximation has
proven to yield extremely aeeurate results for a mueh eoarser mesh than that neeessary
for other transport methods with equal aeeuraey. For plane geometry, the formalism
has been extended to inelude anisotropie scattering. These extensions seem to be
the limit ofwhat can be aehieved with multiple eollision probabilities as the numerical
work ls formidable and beeomes even more so for any further extension.

The effeet of the extensions on the different types of ealculations are as follows:
1. Cell ealculations: The isotropie flux approximation proves to be satisfaetory

while the spaee dependent souree approximation shows a considerable effeet on
flux distributions. Naturally, with a constant souree and finer mesh this effeet
may be taken into aeeount, but there is a limit to the fineness of the mesh
imposed by growing numerieal errors.

2. Blanket ealculations: Transport effeets in the layers near the eore ean be
handled very easily by eombining the method with a diffusion code. The use of
spaee dependent sourees in this ease is vital in order to avoid big numbers of
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mesh points. The results are valuable as boundary conditions for shielding
calculations while there are no appreciable effects on blanket economies.

3. Shielding calculations: Comparison with measurements and Monte Carlo
calculations show excellent agreement with collision probability calculations
for thicker layers (about 50 mean free paths) without making use ofthe removal
diffusion concept.
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APPENDIX 1

Transmission probabilitiesJor anisotropie jluxes and spaee dependent scattering sources

The transmission probabilities for surface and volume source neutrons will be
listed below for the different geometries using the following abbreviations:

R; inner, Ro outer radius of G;

A
A' .= --k (k =!= 1);

1-

k = 1: plane geometry.

At first, the transmission probabilities r:", pi-o and P":" for surface sourees, i.e.
ingoing currents from the in- and outside of G will be given. Subscripts i (i = 1 ... I)
andj (j =0 ... 1- 1) denote the fIux component and the moment ofthe probability.
Plane geometry:

with
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Cylindrical geometry:

PiJo = 2(i + 1) [1dYVI _ y2i+J-1 . Kii+J+2(2A'V1 y2)
11 Jk

2(" + 1) [1 J-2i
-
1

pfjO = 1
11

Jk dyV1 y2; 1 - ~2 • KiHJ+2(A'(Vl y2 - Vk2 - y2)

Po--+i i + 1kpi~o
ij= j + 2 Hl,i-l

with Ki m denoting the Bickley-function (BICKLEY et al., 1935)

1
00 dt

Kim(x)= e:" .
1 t mV 1 - t 2

Spherical geometry:

PiJO= (i + 1)Mi+J

. i + I rk
• / i-L /--. ,(, ,r;---;;

PijO = ki+l Jo dy. yv k2 - y2 y 1 - y2J exp (-A 'v l - y2 - vk2 .,- y2))

. i + 1 .
P'r.'"t = -_. k2P~+--+lO' 1

t) j + 2 ) ,t-

with

Mo = 2~' (1 - exp (-2A'VI k 2
) )

1 ./-- ./--
M m = 2A' (mMm_1-'y 1 - k2m exp (-2A'(Y 1 - k2)).

The integrals for cylindrical and spherical geometry have to be evaluated numerically.
For the volume sourees, the transmission probabilities p H Oand pv~i will be given

with I denoting the space dependent .term in the source approximation and j the
moment of the probability.
Plane geometry:

P'lji = (l + 1) f dXX1Eii+2(Ax)

Pv--+o _ pv--+i
Oj - Oj

Pv--+o _ 2p,'--+i _ pv~i
Ij- Oj Ij

Pz;" _ pv~.+ 3(pv~i _ Pv~)
2j-2j Oj Ij'

The integral can be evaluated analytically.
Cylindrical geometry:

PV--+O_ n:» + pv--+o2
Ij- Ij Ij

I + 1 rV2 r- rPlju_ 11(1 _ k2)1+l JVl
dy Jo d« sin;+l oe Xl dxf(y) . (x2 + y2 - k2)'

exp (- -:!- .z(x, y))
sin o:



356 L.MAYER

where Yl> Y2' Xl' fand z assume the following values for the different u's:

u Y1 12 Xl f(y) z(x, y)

')/~ol 0 k Vk2 _ y2 VI y2
j VI - y2 - X

'V~o2 k 1 VI y2 VI y2j Vl y2 - X

'V~ i 0 k Vk2 _ y2 VI - y2/k2
j X - Vk2 _ y2

The integrals over X and Cl. can be evaluated analytically and by introducing the
Bickley functions. The resulting single integrals, which must be solved numerically,
are quite lengthy and may be found in detail in the work by MAYER (1968).
Spherical geometry:

IV2 iVI=ij2
PZiu = N, dyy dx(x2 + y2 - k2) .f(y) exp (-A' . z(x, y))

VI Xl

with the same definitions as for cylindrical geometry and with

N z= (2(1 - k)Z+lPz)-1

1
Po = i (1 + k + k 2); PI = - (3 + 6k + 4k2+ 2k3

)
3·5

P2 = _1_ (15 + 45k + 48k2 + 24k3 + 8k4).
3.5'7

As for cylindrical geometry, the integration is performed analytically over X and
numerically over y, and the single integral can be found in the work of MAYER

(1968).
The informations on the space distribution of the scattering sources provided by

the transmission probabilities will be given with Q referring to the total source,
Q(Ri ) and Q(Ro) to the source at the inner and outer boundary, and s denoting the
number of collisions and i the component of the ingoing current:

Current from interior

QI(Ro) f"OooJ k" . pf=:-f.o
i 1 .

QI f"OooJ i + 1 A (1 ~ Pi;O)

Current from exterior

1 .
QI(Ri ) f"OooJ kPPt::;,o

QI(R o) f"OooJ 1 + Pt:t,o
i 1 .

QI f"OooJ -.- - (1 - P'}->o' - P9-0 0)
l + 1 A " "

1 .
Q.(Ri ) f"OooJ k P PQ:~,-l

Q.(Ro) f"OooJ PQ:~,-l

2 . .Q f"OooJ- (1 _ pV-' - Pt;" )• A Q8_l,0 Q8_1o°

s>1

with P = 0 for plane, p = 1 for cylindrical, and p = 2 for spherical geometry.
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APPENDIX 2

Spatial souree distributions and transmission probabilities jor anisotropic seattering in
plane geometry

According to (11) the exact source distribution after one scattering is given by

QIm(x, Q) = s; Pm (cos oc) . Bm(Ax).

An evaluation of (9) resuIts in

Bo(Ax) = Eii+1(Ax)

BICAx) = Eii+2(Ax)

B2(Ax) = tEii+3(Ax) - tEii+l(Ax)

B3(Ax) = tEii+iAx) - t Eii+2(Ax)

where i is the component of the ingoing current. For all subsequent coIIisions the
source is given by (14) with the following functions Orm'(x):

0tOO(x) = Ft+(2, x)

OtOI(x) = OlO(x) = Ft- (3 , x)

Ot02(x) = 0t20(x)- tF/(4, x) - tF/(2, x)
Ot03(x) = Ot30(x) = tFt-(S, x) - tFt-(3, x)

Oll(X) = F/(4, x)
Ol2(X) = OI21(X) = tFt-(S, x) - tF1-(3, x)

OP(x) = 0t31(X)= tFt+(6, x) - tF/(4, x)

Ot22(X) = ~F/(6, x) - tF/(4, x) + tF/(2, x)

o123(x) = OI32(X) = l.j-F1- (7, x) - tFt-(S, x) + !F1-(3, x)

Ol3(X) - _~5F/(8, x) - -\!!.F/(6, x) + tFI+(4, x)
and with

2
Fo+(i, x) = -.-1 - EiiAx) - EiiA(1 - x»

1-

F1+Ci, x) = . 2X
I

- EiiA(I - x) + -.!. (Eii+I(Ax) - Ei i+1(A(l - x»)
1- A

. 2x2 4 2
F2+(1, x) = i-I + A2(i + 1) - Eii(A(I - x) - A: Eii+1(A(1 - x»

2
- A2 (Eii+2(Ax) + Eii+2(A(l - x»)

Fo-Ci, x) = EilA(1 - x) - Eii(Ax)

2 1
FI-Ci, x) = - Ai + Eii(A(l - x» + A: (Eii+l(Ax) + Eii+l(A(l - x»)

4x 2
F2-Ci, x) = - Ai + Eii(A(l - x) + A: Eii+1(A (I - x)

2 .
+ A2 (Eii+2(A(1 - x) - Ei i+2(Ax».
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When these sources have been approximated by (12), the transmission probabilities
are given by (15):

M

Pv->i pv-+i S Sm pll-+i
Q '0 = 0'0 + - ·0

"J J m=lSo
0 mJ

with

P v-->ilo _ 1 SL a 0G 'F
Oj - - 1 jl

Q 1=0

1 L
P'l7i1o = - S a/G:F+11

J Q 1=0 J,

p~jilo =..!:.. S a12(~-Glt-2,1 -iGjl'F)
Q1~0

P v-->ilo _ 1 SL 3(5 G'F 3 G'F )
Sj - - a1 2' j+S,l - 2' j+l,l

Q1~0


