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Abstract—The theory of multiple collision probabilities for one-dimensional problems has been
extended for handling thick zones and strongly anisotropic fluxes. This entails the treatment of
space dependent scattering sources and anisotropic fluxes at the boundaries of sub-zones. For plane
geometry anisotropic scattering sources have been included. A multigroup collision probability code
STOWA based on the extended theory has been written. It may be used in connection with diffusion
calculations or independently and may perform cell calculations or determine flux distributions in
special layers of a reactor, e.g. in the blanket or the shielding. Results are given and compared to
other transport codes and measurements. Different approximations to angular scattering on hydrogen
are evaluated with the code.

1. INTRODUCTION

CoLLISION probabilities are commonly used for reactor cell calculations, but up to
now they have not been applied to the solution of other transport problems such as the
determination of the flux distribution in the outer layers of a reactor. This paper
presents the derivation of generalized multiple collision probabilities suitable for the
solution of a variety of one dimensional problems. With the help of a newly developed
code using these collision probabilities it is tried to estimate the possibilities and the
limits of multiple collision probabilities.

There are two assumptions which are commonly used in connection with muitiple
and first collision probabilities severely hampering the application to problems other
than cell calculations. These are the flat scattering source approximation, which is
valid only in narrow or suitably subdivided layers, and the cosine distribution for
the neutron currents at the boundaries, which is not sufficient in regions far away from
sources. In order to achieve greater flexibility in the application of the technique
these approximations have been discarded in favour of the following ones:

1. The angular distribution of the current at the boundaries in each half
space is approximated by a series in powers of cos «, « being the angle between
neutron direction and the normal on the boundary. This is equivalent to a
DP~approximation.

2. The scattering source distribution is approximated by a polynomial of low degree
in the space variable.

Both generalizations are carried out for plane, cylindrical, and spherical geometry
with a multigroup approximation for the energy dependence. Anequally comprehensive
generalization of multiple collision probabilities has not been undertaken up to now,
though for some special cases extensions of the original formulation are to be found in
literature, e.g. by AMouyaL, BeNoisT and Horowirz (1957); GasT (1962); SAHNI
(1966); Syros (1966) and (1967); KiEr (1966) and (1967) ; MURLEY and KAPLAN (1967);
HORTNER and Putz (1968). The scattering is assumed to be isotropic in cylindrical
and spherical geometry. In plane geometry the angular dependence of the scattering
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338 L. MAYER

cross section can be approximated by a Py-series, but only for neutrons remaining in
the same group after scattering; downscatteringis treated asisotropicin cell geometries.

The derivation of the formulas for multiple collision probabilities with the above
approximations will be presented in the sections 2-5 together with the formalism for
the solution of multigroup, multilayer problems. Section 6 shows the results of various
calculations compared to other transport codes and measurements. In section 7
the Py-approximation to angular scattering is used for an evaluation of different
approximations to the angular dependence of scattering on hydrogen. Section 8
gives a final evaluation of the advantages and disadvantages of the method.

2. TRANSMISSION PROBABILITIES FOR ANISOTROPIC BOUNDARY
FLUXES AND SPACE DEPENDENT ISOTROPIC SCATTERING SOURCES
IN ALL ONE-DIMENSIONAL GEOMETRIES

The theory of multiple collision probabilities, especially its derivation from trans-
port theory, can be found elsewhere (MULLER and LINNARTZ, 1963; MAYER, 1968),
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F16. 1.—Definition of layers and partial currents.

and will not be presented in detail here. If, in the onedimensional case, the region in
which the neutron fluxes shall be determined is subdivided into zones G, according
to Fig. 1, with partial neutron currents j;* and j;~ across the boundaries, the equations
linking the in- and outgoing currents in zone G, are

Jiiy=S&J + Siji + R~
(D
Jit =S 4 SATE, 4+ R

Here, S22, Sy, S;+ and St are the transmission and reflection coefficients of
G;, and R;~ and R, take into account the contribution of a neutron source Q, in G,.
In the multigroup case and/or in the case of an expansion of the partial current, j;+
and j,~ are vectors of the multigroup currents and/or expansion coefficients, S,>etc.
are transmission and reflection matrices, and R,~, R;* are vectors. S2* etc. and
R;*, R will be determined with the multiple collision probability technique. Equa-
tions (1) together with the proper boundary conditions yield a system of equations for
the partial currents which in their turn, by use of a simple neutron balance equation,
serve to determine the mean fluxes in G,. In the following, the index 7 indicating the
different zones will be omitted for simplicity.

By following the ingoing neutrons through their successive collisions until they are
either absorbed or scattered out of G, the transmission and reflections coefficients S
and R are reduced to the transmission probabilities—without collision—for ingoing
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Fic. 2.—Transmission probabilities for cylindrical geometry.

currents and for scattering sources. For example in the monoenergetic case

Sz+:P0+(1_PO)ZE‘:S(P1++(1_P1+_P1_)%(P2+---)) &)
with
P, probability for ingoing neutrons from the left boundary to leave G; without
collision;

P,* probability for neutrons scattered s times to leave G; over the right boundary
without further collision;

P;~ same as P,* for the left boundary;
>, scattering cross section;
> total cross section.

Similar formulas hold for S— etc. and Rt, R—.

The exact calculation of P,, P,;*, P, is subject to the difficulties inherent in every
transport calculation. Thus, P, is dependent on the angular distribution of j*, P;*
and P;~ depend on the angular and spatial distribution of the neutrons after their first
collision etc.

In the following, the transmission probabilities (for transmission without collision)
will be denoted by P°~¢, Pe~°, Pe, P*~% and P*~°, with o signifying the outer, i the
inner boundary and » the volume—in connection with volume sources—of G (Fig. 2).
The first step is to calculate the transmission probabilities P°~¢, P*° and P°° for
anisotropic flux densities at the boundaries. The angular distribution of the neutron
currents at the boundaries is approximated by

I
jE@) = S j,Fcos'a
i=1
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where « is the angle between the neutron direction and the normal on the boundary.
The transmission probabilities are calculated separately for each component i, As
the outgoing fluxes must be represented in the same manner as the ingoing ones,
one has to evaluate not only the probabilities but their first I-1 moments as well.

The technique for deriving transmission probabilities may be found in detail in
the works of MULLER and LINNARTZ (1963) or MAYER (1968). Thus, it is sufficient
to give a list of the formulas resulting for different geometries (Appendix 1).

The second step consists of the determination of the transmission probabilities
for the scattering sources Q. They are approximated by

L
00 = S gifi(") (3)
with
filx) = x? for plane geometry
filr) = (2 — k®! for cylindrical and spherical
geometry

r = R/R, is a reduced radius, k = R;/R, the quotient of inner and outer radius.
Note that for k approximately 1 with r =k + x, x <k:

i) = Qkx + %7 ~ 20)'x* ~ fi(). @)

Equation (4) entails a steady transition of the probabilities for spherical and cylindrical
geometry into those for plane geometry with the same /. On the one hand, this makes
possible an interpolation in the k-direction. On the other hand, if one chooses
Jfi(r) = r?, the limit for all values of /is fy(x). This then means a bad description of
the space dependence in the case of faintly curved layers. '

The transmission probabilities P};** and P;;>° are evaluated separately for each /
and each moment j and can be found in Appendix 1 for all geometries.

From these probabilities, the transmission probability for Q(r) given by (3) is

derived by the use of

L
S £GP Z?oﬂ :
Pyiolt =0 (5)
S 86,
1=0
with
1
G, = T (plane geometry)
Y4
G, = 9#1_) (cylindrical geometry)
G, =,)? (spherical geometry; for N, see Appendix 1).

For the application of (5) the space dependence of the scattering source must be
known. As it is represented only approximately, a few data on its exact distribution
are sufficient. For neutrons scattered s times, these data are given by the transmission
probabilities of the s — 1 times scattered neutrons. For example, 1 — P™° — P~*is
proportional to the integrated source, while P~° and P~ are proportional to the
source value at the outer and inner boundary. The exact relations are given in
Appendix 1.
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The Figs. 3 and 4 show transmission probabilities for a cylindrical layer with
k = R,/R, = 0-75 as a function of 4 = Z(R, — R;). The dependence on the angular
current resp. spatial source distribution is obviously quite remarkable.

3. TRANSMISSION PROBABILITIES FOR SPACE DEPENDENT
ANISOTROPIC SCATTERING SOURCES IN PLANE GEOMETRY
For anisotropic scattering the cross section is approximated by a series of Legendre
polynomials
, 1 M
ES(QI’ Q) =-— S sum (COS(Q,s Q))' (6)
47 =g

As a first step the angular distribution of the scattering source after the s'-th collision
will be evaluated. As the anisotropic scattering is treated only for neutrons remaining
in the same energy group, the formulas can be restricted to the monoenergetic case.

0.(r, Q) = f 43, (@, D4, Q) ™

where p,_,(r, Q) is the flux density of s — 1 times scattered neutrons. For s = 1,
1, is the density of the unscattered neutrons, which is a function of the ingoing current
Ji{®) = cos® a. In plane geometry

po(r, &) = cos o exp (— cfsxoc) ®)

with 4 =X . AR and x = r/AR, AR being the thickness of the layer and r the co-
ordinate normal to the boundary. Combining equations (6)~-(8) one finds

A ’
O1(x, Q) = Jr P, (cos (', £2)) cos* o’ sin & exp ( cosoc) de
M
= gow(x, . ©)
Using

cos (', Q) = cos o’ cos « + sin o sin « cos (¢ — ¢') (10)

one finds
0. (x, Q) = P,,(c0s &) . B () an

with B,,(4x) given in Appendix 2. Similar to the treatment of the isotropic sources
in plane geometry, the space dependent part will be approximated by a polynomial
in x, while the angular dependence is treated rigorously. Thus

0™ (x, Q) = mP (cos «). z a;"xt (12)

is used for the determination of the transmission probabilities. The flux density in
x" due to the neutron source Q,(x, Q) is

AQ — x)).

COS o

. (x’, Q) —f— O.(x', Q) exp ( 13)

From (12) and (7) the source of twice scattered neutrons can be found. It turns out
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to be separable in space and angle similar to Q;(x, Q):

M
QZ(xa Q= fo sz(xs Q)
with
0,™(x, ) = P (cos a) S S —_ aum()mm (). (149

1=0m'=0

Formulas for Q7™ can be found in Appendix 2. As equation (14) shows the source
0,™(x, ) to be separable in space and angle, an approximation according to (12) is
possible for this source and all subsequent scattering sources Qsm(x Q) as well.

The coefficients a,,™ are found with the help of 0,”(0,), Q,™(1,€2) and f dx Q. (x,Q)
as resulting from (11) for s = 1 and (14) for s > 1.

The remaining task is to calculate the transmission probablhtles and their higher
moments for the sources defined by (9) and (12). They are given by

fdQP (cos oc)J dx exp (

1
4ar f dx S a;0x?

0 =0

X 3
) cos? o S a;,"™xt

o =0

o Som
y—>i __ om
PQs.? - E So

. M o5 .
=P+ S 2Pt 15)
m=1 Sp

Similar relations hold for Py_7. The definition of P;2% arising from (15) must not be
confused with that for P;;™* given in section 2; there, / refers to the spatial source
component, while here m refers to the angular component, and the spatial distribution
is treated as a whole. For m > 0, the resulting P;’* should not be interpreted as
probabilities, but rather as corrections to P;*. Formulas for the probabilities are
listed in Appendix 2.

4. TRANSMISSION AND REFLECTION MATRICES

The remaining task is to determine the transmission and reflection matrices S
(equation (1)) from the transmission probabilities P. § depends on the definition of
the current f, which will be taken to be the vector of the amplitudes of all group currents.
Each component of j gives rise to one column of S.

In a first step the transmission and reflection probabilities and their moments are
determined. It is assumed that after the s'th collision the spatial scattering source
distribution has reached an asymptotic value which may be either space dependent or
isotropic; the asymptotic angular source distribution is assumed to be isotropic.
In this case, the contribution of all subsequent collisions can be summarized.

The transmission resp. reflection probabilities will be denoted by P;2+(m, n),
Pyt (m, n) etc., where i and m are the component and the group number of the in-
going current, j is the moment, » the group number of the outgoing current, and the
4 and — signs refer to the direction of in- and outgoing current similar to the defini-
tion of S in (1). Further, RS*(m, n) is the probability for ingoing neutrons belonging
to component i of group m to be in group n after the s'th collision with + or —
referring to the direction of the ingoing current. R, is a function of the transmission
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probabilities for the O to s — 1 times scattered neutrons. With these definitions
P2 (m, n) = P5(M)0 0 + S R (m, MPL20 n (16)
8=1

For the introduction of the asymptotic source all P,;2+(m, n) with equal z have to be
collected into a vector P,;2"(m) of order G. It can be written as

P = S Vijiom) b

where each V refers to one term in (16). In keeping these symbols V for the first § — 1
collisions and summarizing the rest, (17) becomes:

827

P2 (m) = S VEL(m) -+ PI(E — N,y R+ (m. (18)
$=0

Here, Ryt (m) is the vector of all Rg**(m, n), E is the unitary matrix, and P 7 and N
are matrices of order G:
P,? = diag (P 0.5

Zm—m i
Mo = (S5 0 = Piztno — Piziono)-
0., (m) is the asymptotic source distribution in group m, which may depend on com-
ponent, group, and direction of the ingoing current. Similar formulas hold for
P —(m, n) etc.

The second step consists of a normalization of P such that the results of a multi-
plication with the components of the ingoing current are the components of the
outgoing current. The normalization must take into account
(a) that the inner and outer surface of cylindrical and spherical layers are not equal
(b) that the functions cos® « are not normalized
(c) that the moments of the probabilities have to be transformed so as to give the

contributions to the different components.

The results of the normalization are the matrices S of equation (1).

Ex#-aneous sources, which will be denoted by E, are treated similarly to scattering
sources. The results are the components Pz ;(n), Pz ;(n) of two vectors of the escape
probabilities for the source, and their moments. The normalization consists of
(a) multiplication with the total source (integrated over the layer);

(b) multiplication with a factor effecting the transformation from a volume source to

a current;

(c) the same operation as in (c) above.
The results are the source vectors Rt and R~ of equation (1). Details on the normal-
izations may be found in the work of MAYER (1968).

5. SOLUTION OF MULTI-LAYER PROBLEMS AND COMBINATION
WITH DIFFUSION THEORY
After the determination of S and R, equations (1) can be solved together with the
proper boundary conditions. These depend on the nature of the problem and will be
given below for some common cases. Subscripts refer to the number of the layer.
(a) Spherical or cylindrical cell. Here, the inner boundary is non-existent and



Calculation of flux. distributions 345

equation (1) for the innermost layer reduces to

it = S1_+jl— + Ry* (19)
At the outer boundary, one may impose a boundary condition of the form
v~ = Ajy*. (20)

If 4 is a unitary matrix, this is a reflecting boundary condition, but 4 can be
defined so as to give the “white” boundary condition or any other type of
reflection.

(b) Plane cell. Here one has to distinguish between symmetric and non-symmetric
cells. An example of the first case is the sequence of layers abcbabcba . . ..
It is sufficient to treat the layers a/2, b, ¢/2 and the boundary conditions are

jot —iom =0
1)
vt —jy =0
An example for the non-symmetric case is the sequence abcabe . . . , for which one
has to treat the layers a, b, ¢ with the boundary conditions
ivt=1Jo"
22
v =1l

This gives rise to a special system of equations which has to be solved with a
special technique.

(c) Whole assemblies are formally treated as cells. In this case, the ingoing current
at the outer boundary is often required to be zero, which means putting 4 = 0
in (20).

(d) Flux distributions in layers with a source at the left boundary. The boundary
condition at the left boundary is normally

o= =2 (23)

ot = go 2%

The second case refers to vacuum to the left of the layer and a source at the
boundary, while in the first case flux and flux gradient at the left boundary are
known. For the right boundary (20) applies.

(e) Combination with diffusion theory. In this case, the results of foregoing diffusion
calculations for the whole geometry are used to provide the vector g, for (23)
and/or gy for a similar condition for the outer boundary. If one boundary of the
section to be recalculated with transport theory coincides with the inner or outer
boundary of the whole system, the proper boundary condition, e.g. (19) or (20),
is applied. The “coupling” points, at which (23) is used, have to be chosen in a
region where diffusion theory is valid; there

i _3 D grad ¢ cos a (25)
4o 4ar

but might be

Q) =
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is used for the determination of g. A deviation of diffusion and transport calcu-

lation results at the coupling point indicates that (25) is not valid there.
The system of matrix equations arising from (1) and the boundary conditions except
(28) is tridiagonal and can be solved without iteration. An estimate of computing
times for different numerical techniques has indicated that this method is indeed the
least time consuming one. Nevertheless the normal line inversion had to be slightly
modified for numerical purposes. The following recursive relations are used.in this
modification:

o =F~+G/i~ (normally j—; = F,~ -+ G, j; & with, of course,
it =F+r4+Gri~ other relations for F,; and G,).
From equation (1)
G = (E— S;iG{ )82
F, = (E— S+ G )R+ Si+FL))
Gt =S+ Si2+G;——-1Gi~
F;t =Rt 4 S2(F, + G Fy)

where E is the unitary matrix. G,™ and F,* are derived from the left boundary
condition, j,~ from the right one.

In the case of the non-symmetric plane cell the system of the matrix equations is
nearly tridiagonal with a few non-zero elements in the upper right corner of the
matrix. The line inversion technique can be modified so as to handle this problem
too. One applies the recursion relations

It =Gty + Hiiyt + F;+

=G iy + Hjy" +F;.

Forl <i<N
G = —(SH)Si™ G — Gy
Hi = —(S&)Y(S;7H;", — Hi_y)
Fi=—(SH) 'R + SHF", —F)

Gt = SG, + S7+G~
Ht = SAH;" | + Sq~H;~
Fit=R;" + SAF + SiF
with, fori=1
Git=Hy=E Gy =Hy =F; =F,;+=
jx~ and ju+ are the solutions of the system
Ajn* + Biy~=U; Cijy* + Djy =F
with
A4=Gy_, — Syt Gf_1; B=Hy_; — S§TiHy | — Sy*
C=E— Sy*Gf_y; D= —Sy*"Hy_; — Sy+
U=Ry —Fy_; + Sy"Fy_;; V=Ry"+ Sp*Fy ;.

After the determination of the currents, the fluxes at the boundary are determined
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from the currents via p(Q) = j(€).cos « and the mean fluxes in the layer by using a
balance equation.

It should be mentioned that the collision probability code STOWA, which has
been written for the application of the techmiques developed herein, is coupled to
the Karlsruhe nuclear code system NUSYS. This enables the user to run a problem
fully automated, beginning with the determination of group cross sections and, if
necessary, the foregoing diffusion calculation and then starting the collision pro-
bability code. Because of the small computer memory of the IBM 7074 the following
restrictions have to be observed:

M<3;,I<4;, G<12; 1.G<16; I.G.(N-+1) <1536,

6. RESULTS

1. Cell calculations. The first example is a relatively crude seven-group calcu-
lation of the flux distribution in a cylindrical thermal reactor cell; it serves to deter-
mine the effects of the generalizations. The geometry is that of the Wigner—Seitz-cell
of the FR2, which originally consists of a cluster of seven fuel pins. For our purpose
the six outer pins have been cylindricized so as to obtain cylindrical geometry. The
successive layers may be derived from Figs. 5 or 6.

Figure 5 shows the effects of the detailed source and flux treatment on the flux
distribution in the thermal group. While there is a Jarge difference in the flux distri-
butions for the constant source approximation and the space dependent source, the
DPy-approximation has no large effect in this case. The last effect gets bigger in
the high energy groups as might be expected but does not alter the fast fission factor
¢ appreciably. ¢ and the disadvantage factor d are given for different approximations
in Tables 1 and 2.

Further calculations with this example have been done in order to determine the
allowable zone width and the necessary number of source approximations for the
successive collisions. The zone width may be up to one mean free path for materials
with scattering out-weighing absorptions and bigger for materials with absorption
exceeding the scattering. The space dependence of the source should be determined
for up to the third collision for these zone widths. The accuracy of calculations with
zone widths of one mean free path is comparable to that of S,- and P,-calculations
with meshes of 0:3 mean free paths; for collision probability calculations with the
constant source approximations this value is even less.

As the code handles different boundary conditions, the results for a reflecting and
a white boundary have been compared. In the thermal group the flux varies by about
4 per cent at the outer boundary, but the disadvantage factor is only changed to 1-66
for the white boundary as compared to 1:67 from Table 1 for the reflecting boundary.
A one group calculation for the thermal group only has been done as well using an
idealized source of downscattered neutrons: @ = 1 in the moderator and coolant
and Q = O elsewhere. This is a widely used assumption for thermal cell calculations.
A comparison of the resulting thermal flux with that from the 7-group-calculation
shows no differences.

As an example for adjoint calculations which can be handled as well, Fig. 6 shows
the adjoint fluxes in some groups for the foregoing cell problem.

Heterogeneity calculations for fast reactors have been performed too, but the
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TABLE 1.—DISADVANTAGE FACTOR FOR THE

DIFFERENT APPROXIMATIONS

source
flux Q = const

am)
DpPy, T 156 170
DP; 1-52 1-67

349

TABLE 2.—FAST FISSION FACTOR FOR
DIFFERENT FLUX APPROXIMATIONS

flux g

DP, 10104
Dp, 10108
DP, 1-0113
DP, 1-0116

effects of self-shielding have to be included in the group constants before the calcu-
lation starts. If average self-shielding factors for the layers are used, this leads to
rather good results for flux distributions and average reaction rates, but does not
yield information on the distribution of the reaction rates in individual layers in the

resonance groups.

A, %

Groupl 4-0-10'5 MeV
2 1'4~4-0MeV
3 04- 14 MeV

25+

201 ~ 5 2.15-4-865 keV

6 10 eV-215 keV

"4 4-65keV-0-4 MeV

. . Bldnket

Sodium - Iron—sle core-subsl

! Depleted

I assembliel

F16. 7.—Relative flux difference 4 for diffusion and collision probability calculation.

2. Blanket calculations. As an example for the coupling between diffusion and
transport calculations, Fig. 7 shows the relative differences of the flux distributions in
the blanket of a sodium-cooled fast reactor according to diffusion theory and collision
probabilities. The coupling point is 5:15 cm to the left of the blanket. The largest
effects occur in the fast groups, and one can easily classify the different transport

effects contributing to Fig. 7:

1. Diffusion theory underestimates the flux gradient at boundaries between mate-
rials with different fission cross sections. This results in an underestimate by
diffusion theory of the fluxes on the side with the bigger fission cross section

and an overestimate on the other side.

2. Diffusion theory cannot predict the flux distribution near the outer boundary.
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3. Diffusion theory underestimates the high energy neutron flux far away from
sources. This error is due to the high forward peaking of the fast neutrons;
it increases with increasing distance from the core and, at greater distances,
effects the low energy flux as well by the downscattering.

The calculations have shown that the code is easily applicable to blanket problems,
but that transport effects are too small to have an appreciable effect on the blanket
Dz0 |FE D,0; FE-BM:CH, FE 1 Concrete
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Fic. 8. —Intermediate flux distribution in a shielding model; 0:6eV < E < 1 MeV.

economics. Nevertheless, as shown by Fig. 7, transport effects evidently influence
fluxes and flux gradients in the outer layers. Thus, such calculations are very impor-
tant as input for shielding calculations.

A study of the flux distributions as a function of the angular flux approximation
shows that for a blanket at least aDP; approximation has to be applied, while DPg
is not necessary.

3. Shielding calculations. The accuracy of the code, especially for thick layers,
has been tested against an experiment and a Monte Carlo calculation. The experiment
is a measurement on the model of a reactor shield, which has been performed by
SCHULTZ et al. (1967) at the experimental reactor in Geesthacht. The horizontal and
vertical flux distributions have been determined in plane layers of different materials
(e.g. Fig. 8) for different neutron energies. As the code can handle only one dimen-
sional geometries, the transverse flux distributions have been used to determine
transverse bucklings which account for the leakage. The results of the measurements,
a removal-diffusion calculation and the collision probability code are given in Figs. 8
and 9 for the epithermal and the highest energies. There is an excellent agreement
between measurement and calculations. It should be stressed that no removal-
diffusion concept has been employed in the collision probability code; the cross
sections were condensed from the 26-group set by ABAGIAN et al. (1964) with, for
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the transport cross sectjon in group g -
it =Dl — ,u”z,;”g " (see section 7).

As for the removal-diffusion calculations reported by SCHULTZ et al. (1967),
they were done for the whole geometry including the core and there gave too high
fluxes in the high energy region; this gives rise to the generally too high results in
Fig. 9. ' -

The second example is the determination of the flux distribution due to an infinite
plane source of high energy neutrons in the middle of a carbon layer of 7 m thickness.
The Monte Carlo calculations were done by BeNpALL and McCRrRACKEN (1967).
The results for the thermal flux (Fig. 10) show an excellent agreement of STOWA and
Monte Carlo results. Flux distributions for higher energies were not available.

7. EVALUATION OF DIFFERENT SCATTERING
MODELS FOR LIGHT NUCLEI

As the code is able to handle a Py-approximation for the angular dependence of
the scattering (in one group), it has been used to evaluate the different approximations
to angular scattering. The application of the transport approximation in transport
theory offers some problems for the lightest nuclei because it leads to negative
scattering cross sections for scattering in one group, if the group is sufficiently small.
For hydrogen, “sufficiently small” groups really include quite broad groups; for
example for a 1/E-flux the scattering cross section becomes negative for Au < 2,8.
For an illustration see Fig. 11 which depicts the true angular dependence of neutrons
scattered on hydrogen in an energy group with Au = 1-39 and the different approxi-
mations. Clearly, the transport approximation is very far off the mark.

For a quantitative comparison the neutron flux in a layer of 70 cm thickness
containing only hydrogen with a density of 16 . 10?2 cm— and with a plane infinite
source of high energy neutrons on one side has been calculated using the different
approximations. Six energy groups were used, taking very coarse groups in the low
and intermediate energy region and three high energy groups. Taking the P results
as a standard, the deviations of the fluxes at the outer boundary of the layer are

0-0-19; for the P; and P, approximation,

5% for the isotropic approximation,

409  for the transport approximation,

1-29%  for the modified transport approximation.

These calculations show surprisingly good results for the modified transport approxi-
mation, which leaves the mean cosine for scattering in one group, u*~%, unaltered:

b= Sl — S S = 3 (1 — )
Thus in multigroup transport calculations with light nuclei, this approximation
should be preferred to the normal transport approximation, if one does not wish to
use a Py-approximation. This is of special significance for transport calculations in
weakly or non-multiplying media, in which the normal transport approximation
gives very poor results. For example, the shielding calculations have been done with

the modified transport approximation; with the normal transport approximation
the fast flux distribution (Fig. 9) is much flatter.



W(/J.)

Calculation of flux distributions

R L) S-function ; W (1) | 8~function |
/ F=0667 ' F0386
/ | l l
b : !
14 True disiribution // '1 Transport approximation { 1{Modified transport |
; { | epproximation [
i
/ l i
° I / nd | | g R SO
N 0 -« [ To- 0
wiw) wip)
14 A {Isotropic) 14 R
- - g
-
- —
i T Tk ] H
-1 0 -/l P o] t
W I
(1) W) ,
/
/ !
1
1 P, // 1 P /
/
// 7
7/
N ) s s ST /. 2
-1 ~_—-10 i -t} / O~~~ t

Fi1G. 11.—True angular distribution of neutrons scattered on hydrogen in a group
with Au = 1-39 and different approximations.

353

It should be stressed, that the results of this investigation are valid only for relatively

8. CONCLUSIONS

The extension of the multiple collisions method to space dependent scattering

broad energy groups for which the angular downscattering is approximately isotropic,
as the angular dependence of downscattering has not been treated.

sources and a DPy-approximation for fluxes in the multigroup approximation has
proven to yield extremely accurate results for a much coarser mesh than that necessary
for other transport methods with equal accuracy. For plane geometry, the formalism
has been extended to include anisotropic scattering. These extensions seem to be
the limit of what can be achieved with multiple collision probabilities as the numerical
work is formidable and becomes even more so for any further extension.

The effect of the extensions on the different types of calculations are as follows:

1. Cell calculations: The isotropic flux approximation proves to be satisfactory
while the space dependent source approximation shows a considerable effect on
flux distributions. Naturally, with a constant source and finer mesh this effect
may be taken into account, but there is a limit to the fineness of the mesh
imposed by growing numerical errors.

. Blanket calculations: Transport effects in the layers near the core can be

handled very easily by combining the method with a diffusion code. The use of
space dependent sources in this case is vital in order to avoid big numbers of
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mesh points. The results are valuable as boundary conditions for shielding
calculations while there are no appreciable effects on blanket economics.

3. Shielding calculations: Comparison with measurements and Monte Carlo
calculations show excellent agreement with collision probability calculations
for thicker layers (about 50 mean free paths) without making use of the removal
diffusion concept.
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APPENDIX 1

Transmission probabilities for anisotropic fluxes and space dependent scattering sources

The transmission probabilities for surface and volume source neutrons will be
listed below for the different geometries using the following abbreviations:

R; inner, R, outer radius of G;
, A
A=2(Ry— R); 4 ‘=m(k* D;

k = R;/Ry; k = 1: plane geometry.

At first, the transmission probabilities P*~%, P*~° and P°° for surface sources, i.e.
ingoing currents from the in- and outside of G will be given. Subscriptsi(i=1...1)
andj(j=0...I — 1)denote the flux component and the moment of the probability.
Plane geometry:

P =0

Pt = P70 = (i + DEiy,5(4)
with .
@ de
Eip(x) = f et =
1 ™
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Cylindrical geometry:

i+1) 1 —
P = 2(1: ) J;c dyV1 — 2 Kipy 1,24V — 5P

. 2D [, ——y [ AT
P70 = s )J;cdy 1"‘}’2]\/1_%2 Kig (A (V1 — 32 — VR — 33

00— + 1 T—>0
g iF ) ——5 kP Piiti1
with Ki,, denoting the Bickley-function (BICKLEY ef al., 1935)
® dr
Kim X =f e
~ =] ™1 — g2

Spherical geometry:
Py = (z + DM,

Py = e f dy. yVIE — V1 — p¥ exp (—4' (V1 — 32 — V&R — 7))

. i+ o
%—’Z =j T2 ksz—lrl,i—l
with
i
M, = T (I —exp (—24"V1 — k%)
M, =— @M, _; — V1 — k¥ exp (—24'(V1 — k?)).

2A'

The integrals for cylindrical and spherical geometry have to be evaluated numerically.
For the volume sources, the transmission probabilities P*~? and P*~* will be given

with / denoting the space dependent term in the source approximation and j the

moment of the probability.

Plane geometry:

1
Pt=(1+1) f dxx'Ei; 5(Ax)
. [
Pg?o J— SJT)'L
Py = 2P(’,';-"i — P{f’
Py = P54 3(Pg — Py,

The integral can be evaluated analytically.
Cylindrical geometry:

y—>0 __. Py—ol 7—02
Plj — Plj + Plj

I+1 LES I vimo 2 2 ¢
(1 — kB ), dy d“ sin’* s dxf(y) . (x® + y2 — k¥

AI
exp (— prat z(x, y))

P u' =
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where y;, ¥5, X1, f and z assume the following values for the different u's:

u N Ve Xy » z(x, y)
»— ol 0 k VIiE—p  AV1T—p VT —p—x
vy — 02 k 1 VI VT—3¥ AT —x
v—>1i 0 k VIE—3 VT k¥  x— k2 — 2

The integrals over x and « can be evaluated analytically and by introducing the
Bickley functions. The resulting single integrals, which must be solved numerically,
are quite lengthy and may be found in detail in the work by MAYER (1968).
Spherical geometry:

Y2 Vi—y? ,
P,*= N, dyyf dx(x® +y2 — k%) . f(p) exp (—4 . z(x, y))
Y1 z1

with the same definitions as for cylindrical geometry and with

Ny = Q1 — k™R

Fo=3(+k+k; F1=%(3+6k+4k2+2k3)

1
As for cylindrical geometry, the integration is performed analytically over x and
numerically over y, and the single integral can be found in the work of MAYER
(1968).

The informations on the space distribution of the scattering sources provided by
the transmission probabilities will be given with Q referring to the total source,
O(R,) and Q(R,) to the source at the inner and outer boundary, and s denoting the
number of collisions and 7 the component of the ingoing current:

Current from interior Current from exterior
. 1 A
Ql(Rz') ~1 Ql(Ri) ~ ];; Pf:f,o
O1(Ry) ~k*. g:?,o Ql(Ro) ~1+ nglo.o
i 1 . i 1 3
QlNi_%_IZ(l’“Pz?,oo Q1~i+12(1—P§5’7‘—P{B’°
|
O(R) ~ ];, Qo_1,~1
0,(R) ~ P57, s> 1

2 . .
0.~ (L= FiTio = P5Tho)

with p = 0 for plane, p = 1 for cylindrical, and p = 2 for spherical geometry.
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APPENDIX 2
Spatial source distributions and transmission probabilities for anisotropic scattering in
plane geometry
According to (11) the exact source distribution after one scattering is given by

0,™(x, Q) = %"Pm (cos &) . B,,(4x).

An evaluation of (9) results in
By(Ax) = Ei,1(4Ax)
B, (Ax) = Ei; (Ax)
By(dx) = §Ei;3(Ax) — $Ei;1(4x)
By(Ax) = §Fi, (Ax) — 3Ei, o(4Ax)
where 7 is the component of the ingoing current. For all subsequent collisions the
source is given by (14) with the following functions 07" (x):
O(x) = F*(2, x)
0 (x) = 0°(x) = F;~(3, x)
0,%(x) = O(x) = $F,"(4, x) — 1F*(2, x)
O0%(x) = 0 (x) = 3F,~(5, x) — 3F (3, x)
OM(x) = Fir(4, x)
02(x) = O (x) = §F; (5, x) — $F, (3, %)
0,%(x) = O\ (x) = §F,*(6, x) — $F (4, x)
O2(x) = $Fi*(6, x) — 3F,7(4, %) + $FiF (2, %)
02(x) = O2(x) = 43+F;~(7, x) — 3F (5, x) + §F;(3, %)
0,3(x) = 42F;+(8, x) — -RFH(6, x) + 3F;+(4, %)
and with

Fot(i, x) = —i——— — Eij(4dx) — Ei,(A(1 — x))

EG %) = sy — Ei(A(L — %)+  (Biya(A3) — Bia(ACL — )

, 2x? 4 . 2 .
Fyt(l, ) = = [ gy P — ) — S B4 — )

- 32 (Eigy5(Ax) + Eiy (A1 — x)))
Fy=(i, x) = Ei, (A(I — x)) — Ei,(4x)

Fi, %) = — -+ Bi(A( — 9) + Bl (4) + Bia(4(L — )
Fir(i, %) = — Aij - EL(A(L = ) + 5 Bion(A(1 — )

2y (Bl A1 — %)) ~ Bieyg(42)).
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When these sources have been approximated by (12), the transmission probabilities
are given by (15):

with

M
Pé:jo =P+ S
m

Sm P>t
— *
01 mj ©

) 1 L
Pg]‘_’zlo = 'é l—So aG;; ™
) 1 &
Pl = 0 Z=SO a'G1g
) i L
P;j-n/o = é l:S’O al2(%Gja':i'2,l _%G:i‘l:F)
) 1 &
ng—n/o - é l§0 a’zg(%G]fl-&l - %GJ':E}-I,Z)
L g0
=24 S
Q 1—ol 41
1 o
G~ = J—l-—i — Ei; 5(A) = Gyt
. (1 .
Gy~ = —Ei;3(4) + 7 (}jl_“é — El:i+4(A)>

1 1( 1
= —_—— — . a
Gn j+2 4 (j +3 Eiya4) )

2 1 1
Gjy~ = —Ei;5(4) + i (—Eii+4(A) -+ 1 (m — Ei,-+5(A)))

1 2 1 1 1
L+ _ =z — i — _Ei .
Cn' =523 4 (j+ 374 (j—}- 4 E”+5(A)))



