

JuIn 1970
ERE 1 Q
EANDC(E) $128^{\circ} 0^{\circ}$
Institut fur Neutronenphysik und Reaktoxtechnic
Projekt Schneller Bruter

Microscopic Neutron Nuclear Data and 5-Group Cross Sections

$$
\begin{aligned}
& \text { for the Actinides }{ }^{231} \mathrm{~Pa}_{2}{ }^{232} \mathrm{U}_{2}{ }^{234} \mathrm{U}_{2},{ }^{236} \mathrm{U}_{2}{ }^{237} \mathrm{U}_{2} \\
& { }^{237} \mathrm{~Np},{ }^{238}{ }_{\mathrm{Np},}{ }^{236} \mathrm{Pu},{ }^{238} \mathrm{Pu},{ }^{241} \mathrm{Am},{ }^{242} \mathrm{Cm}
\end{aligned}
$$

B. Hinkelmann

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Neutronenphysik und Reaktortechnik

Microscopic Neutron Nuclear Data and 5-Group Cross Sections for the Actinides ${ }^{231} \mathrm{Pe},{ }^{232} \mathrm{U},{ }^{234} \mathrm{U},{ }^{236} \mathrm{U},{ }^{237}{ }_{\mathrm{U}}$, ${ }^{237} \mathrm{~Np},{ }^{238} \mathrm{~Np},{ }^{236} \mathrm{Pu},{ }^{238} \mathrm{Pu},{ }^{241} \mathrm{Am},{ }^{242} \mathrm{~cm}$

by
B. Hinkelmann

Gesellschaft für Kernforschung m.b,H., Karlsruhe

Abstract

This report represents a first step in the framework of an accurate systematic evaluation for the following transactinium isotopes: ${ }^{231} \mathrm{~Pa},{ }^{232}{ }_{\mathrm{U}},{ }^{234} \mathrm{U},{ }^{236} \mathrm{U}$, ${ }^{237_{\mathrm{U}}},{ }^{237}{ }_{\mathrm{Np}},{ }^{238} \mathrm{~Np},{ }^{236} \mathrm{Pu},{ }^{238} \mathrm{Pu},{ }^{241} \mathrm{Am},{ }^{242} \mathrm{Cm}$.
Microscopic neutron nuclear data have been evaluated and 5 -group values derived for the radiative capture, the fission, the ($n, 2 n$) cross section and for the mean number of neutrons per fission. These data have been requested for safeguard studies and burnup calculations. In the case of lack of experimental data simple systematic methods have been applied for the determination of the cross sections.

Zusammenfassung

Diese Arbeit stellt einen ersten Schritt im Rahmen einer exakten systematischen Auswertung für die folgenden Transactiniumisotope dar: ${ }^{231} \mathrm{~Pa},{ }^{232} \mathrm{U}_{\mathrm{U}},{ }^{234} \mathrm{U},{ }^{236} \mathrm{U}$, ${ }^{237_{\mathrm{U}}},{ }^{237} \mathrm{~Np},{ }^{238} \mathrm{~Np},{ }^{236} \mathrm{Pu},{ }^{238} \mathrm{Pu},{ }^{241} \mathrm{Am},{ }^{242} \mathrm{~cm}$.

Für den Einfangquerschnitt, den Spaltquerschnitt, den ($n, 2 n$)-Querschnitt und die mittlere Anzahl der Spaltneutronen sind mikroskopische Daten ausgewertet und 5 -Gruppenkonstanten bestimmt worden. Diese Daten sind für Untersuchungen in der Spaltstoffflußkontrolle und für Abbrandrechnungen angefordert worden. Im Falle fehlender experimenteller Dateninformation wurden einfache systematische Methoden zur Bestimmung der Wirkungsquerschnitte angewandt.
Contents Page
Abstract
I. Introduction 1
II. Neutron cross sections at thermal energy (0.025 eV) 3
III. Neutron cross sections in the resonance region 4

1. Thermal reactor 5
A. Resonance parameters 9
B. Resonance integrals 18
2. Fast reactor 21
IV. Neutron cross section in the fast region 23
3. Weighting spectra 23
4. Radiative capture cross section 23
5. Fission cross section 25
6. $(n, 2 n)$ cross section 31
7. Mean number of neutrons per fission 33
V. Final consideration 39
References 43
List of tables 49
Figure captions 65

I. Introduction

For the purpose of safeguard studies and burnup calculations for the analysis of the fuel-cycle the following tyoes of microscopic neutron nuclear data have been evaluated and transformed into 5-group cross sections:
σ_{γ} - radiative caopture cross section
$\sigma_{f}-$ fission cross section
$\sigma_{2 n}$ - cross section for the ($n, 2 n$)-process
$\stackrel{\rightharpoonup}{v}$ - mean number of secondary neutrons per fission
The investigations were carried out for the isotopes

${ }^{237} \quad 93 \mathrm{~Np},{ }^{238} \mathrm{~Np}$
${ }_{94}^{236} \mathrm{Pu}, \quad{ }_{94} \mathrm{Pu}$
241 Am
242
96
The whole energy range extending from 0 to 10 MeV has been subdivided in the following five groups:

As weighting spectra over the whole energy range the spectrum of a typical thermal reactor and that of a typical fast reactor have been used (Figures 1,2,3).

Zum Druck eingereicht am 8. Juli 1970

The thermal group comprises only the energy of 0.025 eV and the values indicated as thermal ones are in general unweighted neutron data at 0.025 eV .

This report represents the results of a first evaluation of the still very sparse experimental data information for the isotopes investigated. For a later time more thorough evaluations covering the full range of microscopic nuclear data types are envisaged. As far as reasonable and practicable use has been made of the existing literature. CINDA 68 [61_7 has been taken as basic source of reference information. Highest priority has been given as far as considered suitable to the most recent references. Whenever possible already existing evaluations have been preferred. A comparison of the present results with later published evaluationswhich could no more be taken into account is given in chapter V.

The large gaps in the basic experimental data necessitated in man cases the use of nuclear systematics for the determination of the desired data. Here rather simple considerations and methods had to be applied because of the limitea space of time which has been available from the side of the Karlsruhe safeguard project for the evaluation of the required data. For each of the various energy ranges ise, the thermal one, the (partly) resolved resonance region, the unresolved resonance region and the fast energy range the derivation of the desired neutron nuclear data is treated in a special chapter including each time all of the isotopes studied.

The tables 11 and 12 give a complete survey about the computed 5-group constant values for the two reactor types. In performing the calculations reported in this paper use was made of the IBM $360 / 65$ and partly of the IBM 7074; too.
II. Meutron cross sections at thermal energy (0.025 eV)

For the thermal values of the radiative capture and fission cross sections of the various isotopes published experimental or evaluated information was available with the exception of the capture cross sections of ${ }^{238}$ IIp and ${ }^{236}$ Pu. These have been calculated according to the formula

$$
\begin{equation*}
\sigma_{\gamma \text { therm }}=\frac{\bar{\Gamma}_{\gamma}}{\bar{\Gamma}_{f}} \sigma_{\gamma \text { therm }} \tag{II.1}
\end{equation*}
$$

Here $\bar{\Gamma}_{\gamma}$ and $\bar{\Gamma}_{f}$ are averages of the partial widths for capture and fission for s-wave resonances.

The above formula is only strictly valid in the Breit-Wigner one-level approximation, where $\bar{\Gamma}_{f}$ and $\widetilde{\Gamma}_{\gamma}$ are the parameters belonging to the first resonance. Because of unknown resonance parameters for the two isotopes the average values from table III. 1.1 in chapter III and the thermal fission cross section from table 1 have been used.

The thermal σ_{f} and $\sigma_{\gamma}-v a l u e s$ for the isotopes considered are listed in table 1 together with the corresponding documentation. The preferred values are given in the tables 11 and 12 .

Values for the mean number of neutrons generated by thermal fission $\bar{v}_{\text {therm }}$ are quoted in table 7. Their determination is described in chapter IV. 5 which deals in general with the energy dependence of \bar{v}.

III. Weutron cross sections in the resonance region

The experimental information in this energy range consists of measured resonance integrals and resolved resonance measurements available for all isotopes except ${ }^{237} \mathrm{U}_{\mathrm{J}},{ }^{238} \mathrm{NP},{ }^{236} \mathrm{Pu}$ and ${ }^{242} \mathrm{Cm}$. The latter information is only for a few isotopes given up to some hundreds of eV . The resonance integrals offer the possibility to determine directly by means of average resonance parameters group averaged cross sections weighted with a 1/E spectrum.

Below 46.5 keV which is the upper limit of group 3 only s- and p-wave neutrons contribute to the radiative capture and fission cross sections. Consecuently one has

$$
\begin{equation*}
\left\langle\sigma_{x}\right\rangle^{i}=\frac{\int_{i E} \sigma_{x}(E) \phi(E) d E}{\int_{\Delta E_{i}} \phi(E) d E}=\left\langle\sigma_{x}^{\ell=0}\right\rangle^{i}+\left\langle\sigma_{x}^{\ell=1}\right\rangle^{i} \tag{III.1}
\end{equation*}
$$

where $x=y$ or $?$

$$
i=4 \text { or } 3
$$

For the isotones studied it can be assumed to a good approximation that they are present in very strong dilution. If one uses the narrow-resonance amprorimation for the collision density, the cross sections of an isotope μ averaged over an energ group i are given in this case by the following relation [9_7

In addition to the above mentioned conditions this formula presupposes that the sum of the total cross sections of all other materials $\mu^{\prime} \neq \mu$ is constant over ΔE_{i}. One has to be aware of the fact that this second condition is only then fulfilled, if the flux is not disturbed by resonences
of the other materials $\mu^{\prime} \neq \mu$, which is actually not the case. The determination of the mean number of neutrons per fission in the resonence region is described in chapter III.5. The results are given in table 7. The values for $\sigma_{f}: \sigma_{\gamma}$ and $\bar{v} \sigma_{f}$ averaged over the energy groups 4 and 3 are quoted in table 11 for a thermal reactor and in table 12 for a fast reactor spectrum.

III. 1 Thermal reactor

For the collision density in the epithermal region the well-known 1/Edependence was assumed which is expected to hold rather well in the whole region of a thermal reactor. This special energy dependence of the collision density enables us to determine the cross section averages over the energy group $4(0.465 \mathrm{eV}-1 \mathrm{keV})$ by means of the measured infinite dilution resonance integral. More explicitly this would mean that the average cross sections over group 4 are obtained as difference between the measured infinite dilution resonance integral and the integral over the resonances above a cutoff energy of lkeve the calculation of the latter one has been performed in principle by Dresner 10.7 and is outlined farther below

$$
\begin{aligned}
& \text { where } x=\gamma \text { or } f
\end{aligned}
$$

That procedure permits the application of average resonance parameters instead of resolved ones in an energy region where the latter ones should be used, but where in general they are known only in a small subrange. This is due to the fact that the resonance parameters have to be inserted only in the second term of equation (III.1.1), and that this term concerns the energy range above 1 keV , i.e. a range where the application of average resonance parameters is appropriate.

For the measured resonance integral $\left(R I_{x}^{\infty}\right)^{e x p}$ the cutoff energy f^{*} is equal to the carmium cutoff energy. It has values between 0.4 and 0.6 eV depending upon the thickness of the Cd-layer covering the considered sample. Te have assumed the cadmium cutoff for 2.11 measured resonance integrals as identical with the lower boundary of group 4. The resulting error is only then significant, if there is a resononce in the neighbourhood of 0.5 eV .
In the recion above 1 kev, however, no resonances are known for any of the isotopes. The contributions of these resonances to the total resonance integral is only a small correction. Ilere the average resonance parameters will be sufficient and the cross sections averaged over the energy group 3 were obtained by computation of the resonance interrels as given by Dresner within the $J i m i t s$ of 1 keV and 46.5 keV .

$$
\begin{equation*}
\left\langle\sigma_{x}\right\rangle_{3}=-\frac{1}{\int_{(3)} \frac{\partial E}{E}}\left(R I_{x}\right)_{1}^{46.5 \mathrm{keV}} \quad \text { where } x=\gamma \text { or } \mathrm{f} \tag{III.1.2}
\end{equation*}
$$

The actual calculation of the resonance integrals proceeds as follows. The contribution of the resonances above some cutoff energy to the total resonance integral can be written in the following form

$$
\begin{equation*}
R I_{X}\left(E^{\text {童 }}\right)=\left.\sum_{J=\left\lvert\, \frac{1}{I} \frac{1}{2}\right.}^{\frac{1}{2}}\right|_{J} I_{X}^{\ell=0}(J)+\sum_{J=\left|\frac{3}{I} \frac{3}{2}\right|_{J}^{2}}^{I_{X}^{\ell=1}(J)} \tag{III.1.3}
\end{equation*}
$$

$$
\text { Where } x=y \text { or } f
$$

The niwn term of this equation represents the contribution of the s-rave resonances; the second that of the p-wave resonances. The calculation of the resonance integrals has been carried out according to Dresner ${ }^{-10} 7$.
The quantities I_{X} are given by the expressions below.

$$
I_{x}^{\ell=0}(J)=\frac{2 \pi^{2}}{D_{J}} \int_{E^{m}}^{\infty} \lambda^{2}(E)\left\langle\frac{\Gamma_{n}^{\Gamma}}{\Gamma}\right\rangle \frac{d E}{E} \quad x=\gamma \text { or } f \quad \text { (III, 1.4) } \quad \text {) }
$$

The bracket denotes an average with respect to the statistical distributions of the reaction widths.
The insertion of the reduced neutron width defined for s-wave resonances by

$$
\begin{equation*}
\Gamma_{n}^{J}=\Gamma_{n}^{(0) J} E^{+\frac{1}{2}} \tag{III.1.5}
\end{equation*}
$$

leads to

$$
\begin{equation*}
I_{x}^{\ell=0}(J)=\frac{2 \pi^{2}}{\bar{D}_{J}} \int_{E^{e r}}^{\infty} \lambda^{2}(E) \sqrt{E}<\frac{\Gamma_{n}^{(0) J} \Gamma_{x}}{\Gamma}>\frac{d E}{E} \tag{III,1,6}
\end{equation*}
$$

First we assume that all the resonances in the energy range from $\mathbb{E}^{\text {h }}$ to infinity have the same partial widths namely $\bar{\Gamma}_{n}^{(0)}, \overline{\bar{\Gamma}}_{\gamma}, \bar{\Gamma}_{f}$, Then one obtains

With transformation to the new variable $y^{2}=\frac{E}{E^{W}}$ it follows

$$
\begin{align*}
& I_{x}^{\ell=0}(J)=\frac{4 \pi^{2} \lambda^{2}\left(E^{\mathrm{E}}\right)}{\bar{D}_{J}} \bar{\Gamma}_{x}^{J} \int_{1 y^{2}(y+B)}^{\infty} \frac{d y}{}= \\
& =\frac{4 \pi^{2} t^{2} 0}{D_{J}} \frac{\bar{S}^{J}}{E^{E}}\left(\frac{B-\ln (1+B)}{B^{2}}\right)_{J} \tag{III.1.8}\\
& \text { with } B(J)=\frac{\bar{\Gamma}_{y}^{J}+\overline{\bar{\Gamma}}_{f}^{J}}{\bar{\Gamma}_{n}^{(0) J} \sqrt{E^{B}}} \\
& \text { and } \quad x=\gamma \text { or } f
\end{align*}
$$

Por p-waves the energy dependence of the neutron width is approximately given by

$$
\begin{equation*}
\bar{\Gamma}_{n}^{J} \cong \bar{\Gamma}_{n}^{(0) J} \frac{3}{E 2} \frac{R^{2}}{t_{0}^{2}} \tag{III.1.9}
\end{equation*}
$$

Thus one obtains analogously as for the s-waves

$$
\begin{equation*}
I_{x}^{\ell=1}(J)=\frac{4 \pi^{2} \lambda^{2}\left(E^{*}\right)}{\bar{D}} \Gamma_{J}^{J} \int_{1}^{\infty} \frac{d y}{y^{3}+B^{\prime}} \tag{III.1.10}
\end{equation*}
$$

$$
=\frac{4 \pi^{2} \hat{N}_{0}^{2}}{\bar{\Gamma}_{J}} \frac{x}{E^{F}} / \frac{1}{B^{\prime 2 / 3} \sqrt{3}}\left\{\frac{\pi}{2}+\arctan \left(\frac{B^{1 / 3}-2}{B^{1 / 3} \sqrt{3}}\right)\right\}-\frac{1}{6 B^{2 / 3}} \quad x
$$

$$
x \ln \left(\frac{\left(B^{1 / 3}+1\right)^{2}}{B^{1 / 3}-B^{1 / 3}+1}\right) 7
$$

for the nuclei considered.

The used symbols have the following meaning:

R	- effective raaius of the nucleus
$\sigma_{\text {not }}$	- potential scattering cross section, assumed to be 116
\star_{0}	- reduced neutron wave length $\begin{aligned} & \lambda_{0}=455 \cdot 18 \frac{A+1}{A} \sqrt{b} \sqrt{e V} \\ & \text { with } A=\text { mass number of the target nucleus } \end{aligned}$
	Eere we have taken $\hbar_{0}^{2}=2.09 \cdot 10^{5} \mathrm{Lb} \mathrm{eV} 7$ for all the nuclei considered
$g_{J}=\frac{2 J+1}{2(2 I+1)}$	```- statistical spin factor with J - total angular momentum of the compound nucleus I - spin of the target nuclens```
\bar{D}_{J}	- average level spacinc
Γ_{X}	- partial width for fission ($x=f$) and capture ($x=\gamma$) respectively

Γ_{n}	- neutron width
$\Gamma_{n}^{(0)}$	- reduced neutron width
Γ_{n}	- total width $=\Gamma_{n}+\Gamma_{\gamma}\left(+\Gamma_{f}\right)$
E^{*}	
	- cutoff energy above which the contribution of
	the resonances to the resonance integral has been
	calculated

The effect of fluctuations in the neutron widths has been taken into account subsequently for nonfissile nuclei by applying according to Dresner a correction factor to the expression for $I_{x}^{\ell}=0$. These factors with values between 1.0 and 0.7 depending on the value of B have been taken from the curve of Kuhn and Dresner I $10, \mathrm{pp} .98 .7 . \Gamma_{\gamma}$ has been chosen as constant. Because of the many exit channels this is a. good assumption for Γ_{γ}. For fissile nuclei the statistical distribution of the fission widths has in a strict sense to be regarded addionally. Because of the large uncertainties in the fission widths, however, the rather extensive calculations were not considered worthwhile at present. This means that for fissile nuclei no correction factors at all have been applied. Doppler broadening of the resonances as well as interference effects between the resonances have not been considered.

A. Resonance parameters

The average resonance parameters used in the calculations are summarized in the tables III. 1.1 and III.1.2. Even and odd isotopes are listed separately. For the p-wave strength function the value $S_{1}=2.0 .10^{-4}$, independent of J, was assumed throughout for all isotopes. Since even nuclei have the spin $I=0$, the quantum numbers j of the total angular momentum may take the values

$$
\begin{array}{ll}
J=\frac{1}{2} & \text { for } \ell=0 \tag{III.1.11}\\
J_{1,2}=\frac{1}{2}, \frac{3}{2} & \text { for } \ell=0
\end{array}
$$

Then it follows for the statistical spin factor of even nuclei for s-waves $g_{J=1 / 2}=1$ and for p-waves $g_{J=1 / 2}=1$ and $g_{J=3 / 2}=2$. The resonance integral consists therefore of one swave resonance series and two p-wave resonance series. For odd nuclei the possible J-values and the statistical factors ξ_{J} have been tabulated in table III.1.2. In addition to the basic swave resonance parameters in the tables are anso given the pwwave neutron widths and the average level spacings for all J-values possible for $\ell=0$ and $\ell=1$. Here the J-dependence of the average level spacing predicted by the Fermi gas model has been used.

$$
\begin{equation*}
\bar{D}_{J}=\frac{\text { const }}{2 J+1} e^{J(J+1) 2 \sigma^{2}} \tag{.1}
\end{equation*}
$$

For the spin cutoff parameter σ the value 4 has been assumed, recommended by Harvey / ${ }^{11} 7$.
Hence it follows

$$
\begin{equation*}
\frac{\bar{D}_{J_{2}}}{\bar{D}_{J_{1}}}=\frac{2 J_{1}+1}{2 J_{2}+1} \cdot \frac{e^{J_{2}\left(J_{2}+1\right) / 2 \sigma^{2}}}{e^{J_{1}\left(J_{1}+1\right) / 2 \sigma^{2}}} \tag{III.1.13}
\end{equation*}
$$

In order to obtain absolute values for the average level spacing \bar{D}_{J} one can malie use of the observed smave level density

This leads to

$$
\begin{equation*}
\bar{D}_{l=0, J_{1}}=\bar{D}_{\text {obs }}\left(1+\frac{2 J_{2}+1}{2 J_{1}+1} \frac{e^{J_{1}\left(J_{1}+1\right) / 2 \sigma^{2}}}{e^{J_{2}\left(J_{2}+1\right) / 2 \sigma^{2}}}\right. \tag{III,1.15}
\end{equation*}
$$

The parity dependence of $\bar{D}_{\ell, \mathrm{J}}$ has been shown by Ericson $[627$ to be very small and has been neglected.

Using the average level spacings calculated in the indicated manner the neutron widths have been obtained by
$\Gamma_{n}^{(0)} \quad l=0, J,=\bar{D}_{J}, S_{0}$ and $\Gamma_{n}(0) \quad, J^{\prime \prime}=\bar{D}_{J} \cdot S_{1}$ respectively
with

$$
\begin{equation*}
\left|I-\frac{1}{2}\right| \leq J^{\prime} \leq I+\frac{1}{2} \quad\left|I-\frac{3}{2}\right| \leq J^{\prime \prime} \leq I+\frac{3}{2} \tag{III.1.16}
\end{equation*}
$$

Here S_{0} and S_{1} are the strength functions for s - and p-wave neutrons respectively.

Tabelle III.1.1: Averafe resonance paraneters for the even nuclei investigated

Table III.1.2: Averaee resonance parameters for the odd nuclei investigated

(a) Using the thermal fission cross section and the s-wave strength function the average fission wiaths has been calculated from the formula

$$
\begin{equation*}
\sigma_{\text {ftherm }}=\frac{\pi \lambda_{0}^{2}}{\sqrt{B_{\text {therm }}}} S_{0} \frac{\bar{\Gamma}_{f}}{m_{m}} \tag{III.1.17}
\end{equation*}
$$

valid for even nuclei with $E_{J}=\frac{2 J+1}{2(2 I+1)}=1$. The meaning of T^{*} is explained below.
The relation can be deduced by considering the fission resonances as isolated and describing them by the one-level formula. Then it is

$$
\begin{equation*}
\sigma_{f}(E)=\sum_{r}^{\pi \lambda_{r}^{2}} \sqrt{\frac{E_{r}}{E}} \frac{\Gamma_{n}^{r} \Gamma_{f}^{r}}{\left(E-E_{r}\right)^{2}+\frac{\Gamma_{r}^{2}}{4}} \tag{III.1.10}
\end{equation*}
$$

Where the index r runs over the various s-wave resonences. $\quad \ell>0$ contributions are completely nerligible because only the case $\mathrm{E} \rightarrow 0$ is of
interest here.
Under the condition that $E \ll F_{r}$ and $\Gamma_{r} \ll F_{r}$ it follows

$$
\begin{equation*}
\sigma_{f}(\mathrm{~B})=\frac{\pi \lambda^{2} 0}{\sqrt{\mathrm{r}}} \sum_{r} \frac{\Gamma_{n}^{(0) r} \Gamma_{f}^{r}}{\mathrm{E}_{r}^{2}} \tag{III.1.19}
\end{equation*}
$$

The enera resion above $\mathrm{E}^{\text {W }}$ is now subdivided into intervals i of the length ΔE_{i}. The resonances in such an interval are designated by r_{i}. Their number in the interval i is consequently viven by $\frac{\Delta E_{i}}{\bar{D}_{i}}$, where \bar{D}_{i} is the averase value of the level snacings in the interval. i. Thus yields

$$
\begin{equation*}
\left.\sigma_{f}(\mathrm{E})=\frac{\pi \lambda_{0}^{2}}{\sqrt{\mathrm{E}}} \sum_{i} \sum_{r_{i}} \frac{\Gamma_{n}^{(0) r_{i}} \Gamma_{i}^{r}}{\Gamma_{i}^{2}}=\frac{\pi \pi_{0}^{2}}{\sqrt{n}} \sum_{i} \frac{\Delta D_{i}}{D_{i}}<\frac{\Gamma^{(0)} r_{i}^{2}}{r_{r}^{2}}\right\rangle_{i} \tag{ITI.1.20}
\end{equation*}
$$

Because no correlations betveen Γ_{f}, Γ_{n} and E_{r} exist, tre can assume for all the resonances in the interval i to have the same partial widths namely the mean values of the partial wiaths in the intervel i
$\bar{T}_{n i}^{(0)}$ and $\bar{\Gamma}_{f i}$. When it follows

$$
\begin{equation*}
\sigma_{p}(E)=\frac{\pi \hbar_{0}^{?}}{\sqrt{E}} \sum_{i} \frac{\bar{\Gamma}_{n i}(0) \bar{\Gamma}_{f i}}{\mathbb{E}_{i}^{2}} \frac{\Delta E_{i}}{\bar{D}_{i}} \tag{ITI.1.21}
\end{equation*}
$$

In order to be allowed to introluce energe indevendent reaction widths one has to malre the assumption that all the resonances above $\mathrm{F}^{\text {th }}$ have the same partial widths and the same level spacing. The mean values of the neutron and fission widths and the mean level snocinf of all these resonances have been arlopted as anpropriate quantities. This yields

$$
\begin{equation*}
\sigma_{f}(X)=\frac{\pi \lambda_{0}^{?}}{\sqrt{D}}-\frac{\bar{\Gamma}_{n}^{(0)} \bar{\Gamma}_{f}}{\bar{D}} \sum_{i} \frac{\Delta X_{i}}{E_{i}^{2}} \tag{III.1.22}
\end{equation*}
$$

In the linitine case $\Delta r_{i} \rightarrow d X_{i}$ this leads to

The specialization on thernal energies permits the detemnination of the ratio $\bar{\Gamma}_{f} / \mathbb{R}^{\text {m }}$ from this formula. $\bar{\Gamma}_{f}$ thus demends on the position of the lowest resonance. The lowest enercy at which resonances of fissionable nuclei are situated is mostly 0.3 eV . We have chosen rather arbitrarily an energy of 0.5 eV which coincides with the cutoff energy s^{*} 。
(b) In these cases the s-wave strencth function was obtained by making use of the infinite dilution fission resoance integral. The contribution of the resonances of the swave series, assumed as isolated, to the resonance interral is givon by

$$
\begin{equation*}
R I_{f \ell=0}^{\infty}=2 \pi^{2} \star_{0}^{2} \sum_{r} \frac{1}{E_{r}^{2}} \frac{\Gamma_{n}^{r} \Gamma_{f}^{r}}{\Gamma^{r}} \tag{IIT.1.24}
\end{equation*}
$$

where " r " runs over all swave resonances.

With $r_{f}^{r} \gg \Gamma_{\gamma}^{r}, \Gamma_{n}^{r}$ (which is the case for the isotope studied) it follows $r^{r}=r^{r}$. If one assumes the contributions of the $p-$ and higher l-wave neutrons to the total resonance interral to be small compared to that of the s-wave neutrons - a condition which is generally fulfilled for the heaviest nuclei - one has to a good emproximation

$$
\begin{equation*}
R I_{f}^{\infty} \cong R I_{ \pm l=0}^{\infty}=2 \pi^{2} \lambda_{0}^{2} \sum_{r} \frac{\Gamma_{r}^{(0) r}}{r_{r}^{3 / 2}} \tag{IJT.1.25}
\end{equation*}
$$

Analogously as under (a) the equation (III.1.25) is transformed into

$$
R I_{f}^{\infty} \cong 2 \pi \pi_{0}^{2} \frac{\bar{\Gamma}_{n}^{(0)}}{\bar{D}} \sum_{E^{m}}^{\infty} \frac{d B}{3 / 2}=\frac{4 \pi^{2} \lambda_{0}^{2}}{\sqrt{D^{2}}} 5_{0}
$$

Different from case (a), F^{*} has here the meaning of the cadmium cutoff enerer.
If the fission resonance interral above F^{*} is knom from experiment, this formula rives the possibility to determine the smave strencth function Fo. This has been the case for 230 Th.
(c) The averare fission width hes been caloulated from the ampoximate formula

$$
\begin{equation*}
\frac{T_{T}^{\infty}}{R T_{f}^{m}} \cong \frac{\bar{\Gamma}_{\gamma}}{\bar{\Gamma}_{f}} \tag{TIT.1.27}
\end{equation*}
$$

(1) The indiceted value for $\bar{\Gamma}_{f}$ of U^{232} is the everae of the foviues for the eirht lrown resonences betreen 5.07 eV and 75.1 eV . It wes checked whether this value cen be taken as amromate average also above 75 ev. For this murose the resonance interxal contributions of the known canture and fission resonances un to 75 eV have heen calculeted. Then the fifference between the moasured and these nertial resonance interrals for canture anc fission resncctively rives the contributions of the resonances above 75 ev, The chosen $\bar{\Gamma}_{\gamma}$ and $\bar{\Gamma}_{f}$ velues should fulfill the aprowimate relation:

Whis res found to be actually the case.
(e) For lack of availeble data the average resonance parameters of ${ }^{242} \mathrm{Cm}$ have been assumed to be the sane as for ${ }^{244} \mathrm{Cm}$. This can be justified by their similar fission berriers and bindins energies.
(5) The level consity $\rho_{J}=1 / \bar{J}$ nas been obtained from $\rho_{J}=\rho_{0}(2 J+1)$ Where d is the total angular momentum of the levels considered. In a report mitten by Moore and simpson [15_7 F_{0} is given for nuclei with even Z as a function of the neutron bindine enerf.
(h) If no contrary comment is reported the averare resonance parameters have been obtained as aritnnetic mean values of the resolved resonance parameters given in the quoted reference work.
(i) The values indiceted have been calculated by the author of the cited reference hirself from his own experimental data.

B. Resonance Intecrels

In the following table measured and evaluated data of infinite dilution resonance integrals for canture and fission have been listed.

Table III.1.3: Infinite dilution resonance integrals for canture and fission

Table III. 1.3 continued
Isotope $\mathrm{RI}_{\gamma}^{\infty} \mathrm{L}_{\mathrm{b}} 7$ Reference Comments $\mathrm{RI}_{ \pm}^{\infty} \mathrm{I}_{\mathrm{b}} 7$ Reference Comments

419 ± 70	24	obtained by the U236 and gold cadmium ratios; relative to $\left.\sigma_{\text {them }}^{(\text {u2 }} 36\right)=6 \pm 1 b$
$419+25$	3	experimental value, determined relative to the value of 1550 b for gole

Preferred value:

417 most recent and.
decision measure-

- cla

237	200	3	calculated bu a manner not indi-		unlenow value, assumed to be 0
$237 \mathrm{~m}$			cated in detail in reference / 37		
	870 ± 130	25	experimental value, $1 / \mathrm{v}$ part of the interral not included		
	943	2	adjusted from the non1/v-measurement of 8700 of reference /-25_7		
	500	2	calculated from resolved resonance param meters, extrapolated to high energies		
	850	3	emerimental value 0	3	
	946	$2 ?$	the single measure- 0 ment aveilable or 0700 /25 7 corrected in a manner not indicated in nerticuler; probably for the lackinc $1 / v$ part of the measured interral		the integral over the resonances between 0.5 eV and lket has been estimated to be 0.3 h ; against the capture interrel it may be neclected

Preferred
value:
Q45 aversere of the two velues
for the resonance inteGral which include the $1 / v$-part of the integral

Table TIT. 1.3 continued

Isotope $R T_{\gamma}^{\infty}[]^{\prime} 7$ neference Conments $\mathrm{RI}_{f}^{\infty} L_{-} 7$ Peference Conments					
238	29		$\begin{aligned} & \text { calculated } \quad 1500 \pm 500 \\ & \text { from (s) } \end{aligned}$	3	sincle measurement available
${ }^{236}{ }^{\text {iu }}$	197		$\begin{aligned} & \text { calculated } \quad 960 \\ & \text { fron }(t) \end{aligned}$		calculated from (s)
230_{pu}	3260 ± 20	26	completely outside explenation fron resonance parameters		
	150	2	estimated from resonance param meters	2.	measured value
	145.3	7,3	calculated from 23.7 resonance parameters up to 100 keV	7,3	calculated from resonamce paraneters un to 100keV
	Preferred value:		Preferred value:		
$241_{\text {Am }}$	148		averace value of the two calculated resonance interrals		averafe value of the two availallie ones
	1600	2	```colculated from re- 8.5 solved resonence paraneters,extrapo- lated to high energies```	2	calculated from resolved resonance paremeters, extram polated to high enerries
${ }^{242} \mathrm{Cm}$ (u)	650	2	```calculated from re- solved resonance parancters;extram nolated to hig energies```		
	646	7	calculated ron re- 18 sonance parameters up to 100 keV	7	calcuated from resonance parameters up to 100 keV
\cdots	670	8	from the measured absorption interral (700b) with Capt/Abs $=0.96$ (the lower limit value of that ratio as estimated in $/-87$)	8	from the measured absorption integral (700b) with Capt $/$ Abs $=0.96$
	Preferred value:		preferred value:		
	670		preferred because 30 of the experimental. basic data		preferred because it is based on a measurement of the absorption integral

(s) The resonance integral has been colculated from the approximate formula

Where the mean capture and fission widths of Table III. 1.1 have been inserted.
(t) The capture resonence integral of ${ }^{236}$ pu has been obtained using the formulae of Dresner (III.1.3, III.1.8) with the average values of $\Gamma_{\gamma}, \Gamma_{f}$ and $\Gamma_{n}^{(0)}$ as listed in table III.1.1. There only the contribution of the swaves has been taken into account.
(u) For ${ }^{242}$ Cm the same resonance parameters as for ${ }^{244}$ an have been assumed. Then the value of the absorption resonance integral too, may be taken to be the same as for ${ }^{24} \mathrm{~cm}$. All the references and data given concerning the resonance integrals of ${ }^{242} \mathrm{~cm}$ refer to ${ }^{244} \mathrm{Cm}$.

III. 2 Tast reactor

In the resonance recion the weichting of the cross sections was performed
by usinc the TAP-Core spectrum (Fimure 2). For the resolved resonance resion this has an important consequence because the HAP-spectrum gives the greatest weicht to the upper part of the energy range of group 4. In that rance, however, the resonances for the most part are unknown and the know resonances, above all the highest ones, from the first part of the enery roun do not play a freat part in the averarings because of that special form of the weichting spectrum. Therefore the cross sections for the resolved resonance resion have been computed by usine the statistical method of the WARREX-Code [32.7. Onl. in that cese, where cross sections have been alreacy colculated with resolved resonance parameters, these values have been edonted. This concems the follorine isotones:

The cross sections for the unresolved region have been throughout calculated with the MEARREX-Code.

The resulting cross sections have been checked at several energies for 232 U and the four odd nuclei investigated.

The averaring was carried out according to the formula (III.2).

TV. Heutron cross sections in the fast recion

For this enerry range energr-dependent cross sections could be extracted from the Jiterature for a larce part of the isotones considered. For the isotopes for which no cross section data were available simple nuclear systematics have been ampliec to generate the desired data.

The averaging over the two fast energy crouns has been carried out accordine to

$$
\left\langle\sigma_{x_{i}}=\frac{\int_{(i)} \sigma_{x} \phi(I) d E}{\left(\left\{\begin{array}{l}
i
\end{array} \phi(\mathbb{E}) d r\right.\right.}, \begin{array}{rl}
x & =\gamma, f, 2 n \tag{IV.1}\\
i & =2 \text { or } 1
\end{array}\right.
$$

by using a computer progran of Mrs. Krieg [27_7. The tables 11 and 12 give lists of the mean values for capture, fission, ($n, 2 n$) reaction cross sections and for the mean number of neutrons per fission in the fast enersy resion.

IV.1. Weighting spectra

As for a thermal reactor the cross sections were weighted with the flux spectra displayed in figure 1 [63_7.
For the fast reactor the flux spectrum of a 1000 NHe HA1-type plotted in figure 3 was used [64.7. We got it in the form of groun fluxes $\phi_{i}=\int_{\Delta s_{i}} \phi(w) d$.
In order to obtin the group averaged flux densities these have to be divided by the corresponding energy intervals ΔX_{i}. The resulting stepfunction was approxinated by a smooth curve.

IV.2. Radiative capture cross section

Measurements of the capture cross section in the fast energy range for the isotones in regard here have till now only been performed for ${ }^{237}$ Npand ${ }^{236} \mathrm{U}$ at several enerey points. For some other nuclei studied here calculations had been carried out so that radiative canture cross section values for the isotopes ${ }^{231} \mathrm{pa},{ }^{232} \mathrm{U},{ }^{234}{ }_{\mathrm{U}},{ }^{236} \mathrm{U},{ }^{238} \mathrm{Pu}$ have been available point-
wise over the entire energy rance from 46.5 keV up to 10 MeV and for the isotone ${ }^{237} \mathrm{Ho}$ over a subrange from 0.15 MeV up to 1.5 MeV . The references are given in table IV.2.1.

Table IV.2.1: References for canture cross section data in the energy range from 46.5 keV up to 10 MeV

Isotme	References	Coments
${ }^{231} \mathrm{~Pa}$	29	calculated from unresolved resonance parameters with-
232 U	29	out taking into account competing processes; above 0.2 MeV a 1 E-dependence was assumed for $\sigma(\mathbb{B})$
${ }^{23}{ }_{4} \mathrm{U}$	30	the results of calculations with unresolved resonance parameters have been extranolated above 1 keV by assuming a similar shape as that measured for σ of J236 because of the rather similar s-wave resonance parameters
${ }^{236}$	30	$1 \mathrm{keV}=0.3 \mathrm{MeV}$ calculated from unresolved resonance parancters; 0.3-4 HeV smooth curve throurh exnerimental data points; shove 4 HeV $1 /$ s-acmendence asoured
237 Fm	31	measurements with the activation techinue at 8 neutron energies between 0.15 and 1.5 MeV ;
233 Pu	7	helow 2 rev calculated with statistical theory with the besic value $\left\langle T_{Y} / D\right\rangle_{0}=2.54 \cdot 10^{-3}$; anove 2 MeV the σ_{γ}-shane was obtained by commison with บ23:

Tor the isotones ${ }^{237}{ }_{\mathrm{U}},{ }^{233} \mathrm{Tm},{ }^{236} \mathrm{Pu},{ }^{24} 1 \mathrm{Am}$ and ${ }^{242} \mathrm{Cm}$, for which $\sigma_{\gamma}(\mathrm{E})$-values hove not been measured hitherto, the averace values of the cature cross section were obtained by the amroximately valid relation

This formula presupposes a similarity in the resonance structure of 238 U and the isotope concerned.

In the formula $\left\langle\sigma_{\gamma}^{\mathrm{U} 238}>\right.$ means $\sigma_{\gamma}(\mathrm{E})\left({ }^{238} \mathrm{U}\right)$ averaged over the groups 2 and 1 resprectively by use of the weighting spectra in these groups as disnlayed in the figures 1 and 3. Fere use was made of the microscopic canture cross sections of ${ }^{238}$ U as given on the KEDAK-file [65_7. As average canture width for ${ }^{238} \mathrm{U}$ the value $\bar{\Gamma}_{\gamma}^{\mathrm{U} 238}=23 \mathrm{meV}$ was taken which is consistent with the most recent capture cross section measurements of Moxon $[23 \overline{7}$. For 237 inp σ_{γ}-values were available only in the energy range from 152 keV up to 1.5 MeV . An extension of the canture cross section curve beyond these energy limits by assuming the shape of σ_{γ} to be the same as that of similar isotopes did not seen reasonable because of the very few data points given. Therefore the average values over the partial groups 2' mith the energy limits of 152 keV and 800 keV - and $1^{\prime \prime}$-with the energy limits of 800 keV and 1.5 MeV of the Eroups 2 and 1 respectively have been determined for 238 and 237 p. The average capture cross sections over the entire groups 2 and 1 have then been calculated from

The averages are given in the table 11 for all isotopes.

IV.3. Fission cross section

For the isotopes ${ }^{231} \mathrm{~Pa},{ }^{234} \mathrm{U},{ }^{236} \mathrm{U},{ }^{237} \mathrm{Mp},{ }^{233} \mathrm{Pu}$ fission cross section data based on measurements in the energy range from 46.5 keV to 10 MeV have been given in the literature, The references are quoted in table IV.3.1. For the other isotopes no experimental information at all has been available.

Table IV.3.1: References for fission cross section data in the energy range from 46.5 keV un to 10 MeV

Isotope	Peferences	Comments
${ }^{231} \mathrm{~Pa}$	29	up to 3 MeV smooth curve through measured data points; above 3 MeV the authors say that there they have assumed the σ_{f}-shape to be the same as that of similar isotopes
${ }^{234} \mathrm{U}$	33	measured fission ratios of U234/U235 have been given, the revised values [33 _ 7 have been taken.
${ }^{236} \mathrm{U}$	$\begin{aligned} & 33 \\ & 34 \end{aligned}$	Recently measurements of the fission cross section for U236 relative to U235 in the energy range from 1 to 5 MeV have been carried out very carefully by Stein et al. $\mathbf{I}_{3} 34$. Therefore his experimental values are recommended here in that range whereas out of it the values selected by Davey I 337 have been adopted. In figure 4 the preferred values of Davey are plotted as well as the measured values of Stein after multiplication with the U235 fission cross section values recommended by Davey [337.
${ }^{237}{ }_{\text {Ip }}$	33	The same as for U234; most recent exnerimental values of Stein et al. / 347 are in good agreement with the revised data of Davey based in the range from 1.0 to 5.0 MeV on earlier measurenents of Stein et al. Therefore a revision was not necessary.
${ }^{238} \mathrm{Pu}$	7	Based on recent experiments of D. Barton not nore specified.

For ${ }^{232} \mathrm{~T}$, Droke has also performed an evaluation [29_ But above 1 keV experimental values do not exist and thus crude estimates not described in detail have been made. We have therefore preferred to utilize also for ${ }^{232} \mathrm{U}$ the fission systematic appilied to ${ }^{237} \mathrm{U},{ }^{236} \mathrm{Pu},{ }^{242} \mathrm{Cm}$ and ${ }^{230^{2}}$ In . It is based on the follovine considerations of Zamvatnin [357. The fissile isotones may be divided roughly into two grouns: one for the isotones beinc fissionable by thermal neutrons and the other for isotopes with a fission threshold above themal energies.

[^0]The compound nucleus theory of Bohr [66.7 describes the fission cross section above some threshold enerey by

$$
\begin{equation*}
\sigma_{f}=\sigma_{c} \cdot \frac{\Gamma_{f}}{\Gamma} \tag{IV.3.1}
\end{equation*}
$$

Here σ_{c} is the cross section for the formation of the compound nucleus and $\frac{\Gamma_{f}}{\Gamma}$ the branching ratio of the probability for the decay of the compound nucleus by fission. This yields for the relative fission probability f_{0} of the compound nucleus

$$
\begin{equation*}
f_{0}=\frac{{ }_{\sigma_{0}}}{\sigma_{c}}=\frac{\Gamma_{f}}{\Gamma} \tag{IV.3.2}
\end{equation*}
$$

At neatron energies of about, to 7 MeV a new rise of the fission cross section sets for both groups of fissionable isotopes, i.e. for the isotopes fissionable by thermal neutrons as well as for the isotopes with a fission threshold above thermal energies. The excitation energy becones then high enough to permit evaporation of one neutron without reducine the excitation energy of the residual nucleus below its fission threshold. The system then gets a second chance to undergo fission [36_7. The threshold energy for the ($n, n^{\prime} f$) reaction is equal to the fission barrier $E_{f}(A)$ of the orisinal target nucleus A. The fission cross section above this threshold shall be desienated by $\sigma_{f_{1}}$. At neutron energies of about 12 MeV a third chance of undergoing fission appears due to the emission of a second neutron.
Below the threshold for the ($n, n \prime f$) process the fission cross section is equal to that for the compound nucleus of mass number A+1. Above this threshold and below the threshold for the ($n, 2 n \prime f$) reaction the fission of the compound nucleus as well as the fission of the excited target nucleus of mass number A contribute to the total fission cross section. The general form of the function $\sigma_{f}(E)$ is shom in the following figure for the two tymes of fissile isotopes.

Figure IV. 3.1 (from Zamyatnin [-35_7)
a) isotopes fissionable by thermal neutrons
b) isotopes with a fission threshold above thermal

The threshold energy $E_{\text {thr }}$ for the (n, f) process is given by $F_{\text {thr }}^{\Lambda}=E_{f}(A+1)-E_{B}(A+1)$, i.e. the difference between the fission barrier and the neutron binding energy of the compound nucleus of mass number A+1. The fission probability after emission of one neutron is obtained by $\left(1-f_{0}^{A+1}\right) f_{0}^{A}$, where f_{0}^{A} is the probability for fission of the connound nucleus with mass number A. This yields

$$
\begin{equation*}
\frac{\rho_{1}}{\sigma_{c}}=f_{0}^{A+1}+\left(1-f_{0}^{A+1}\right) f_{0}^{A} \tag{IV.3.3}
\end{equation*}
$$

and further

$$
\begin{equation*}
\frac{f_{1}}{\sigma_{f_{0}}}=1+\frac{\left(1-f_{0}^{A+1}\right)}{f_{0}^{A+1}} f_{0}^{A} \tag{IV.3.4}
\end{equation*}
$$

The values of the ratio $\sigma_{f_{1}} / \sigma_{f_{0}}$ calculated in such a way show according to Zamyatnin sufficiently good agreement with known experinental values of this ratio, so that one can estimate unlnown fission cross sections in the region ebove p, if the fission cross scetions for these isotopes are know in the energy region of about 2 to 5 MeV .
If these latter values are unknown -as in the case of the isotopes in study herem there exists a possibility to predict them by using an empirical correlation proposed by Barschall and Henkel [37 . 7 . They plotted the fission cross section for fission induced by 3 feV neutrons against the parameter $Z^{4 / 3} / \mathrm{A}$ of the compound nucleus and found a linear relationshin. The theoretical significance of the parameter $Z^{4 / 3} / A$ in this context is not yet know at present.
The systematic variation of $\sigma_{f}(3 \mathrm{MeV})$ with Z and A is based on older measured σ_{f}-values. It has therefore been checked by plotting more recent values of knom fission cross sections at 3 MeV against $\mathrm{z}^{4 / 3 / \mathrm{A}}$ (figure 5) and table 3).
The isotopes ${ }^{232} \mathrm{U},{ }^{237}{ }_{\mathrm{U}},{ }^{236} \mathrm{Pu},{ }^{242} \mathrm{~cm},{ }^{238} \mathrm{~Np}$, for which this fission systematic has been studied, belong to the first category of fissile nuclei in the above distinction, that is to those which are fissionable by thermal neutrons. As for ${ }^{242} \mathrm{Cm}$ and ${ }^{237} \mathrm{U}$ the magnitude of the thermal fission cross section, however, is very small.
The behaviour of $\sigma_{f}(F)$ has been assumed in the already indicated manner (figure IV.3.1a). The unknown $\sigma_{f_{0}}-$ values for these isotopes were read
from figure 5 with the calculated parameters $z^{4 / 3} / A$ of the target nuclei. In accordance with Zonvatnin we have assumed $\sigma_{c}=3 b$ for all isotopes independent of the neutron energy. Then it was possible to calculate the fission cross section at the second plateau $\sigma_{f_{1}}$. The results are shown in table 4 . The $\sigma_{f_{1}}$-value for ${ }^{242} \mathrm{~cm} \sigma_{f_{1}}=2.99 \mathrm{~b}$ can be compared with the cross section measuremed by Fomushkin [${ }^{41}$ _7 for fission induced by 14.5 MeV neutrons $\sigma_{f}(14.5 \mathrm{MeV})=3.03 \mathrm{~b}$, although at enercies of about 14 HeV the ($n, 2 n^{\prime} \mathrm{f}$) process contributes to the total fission cross section which is not the case at energies of the scond plateau. Otherwise one could have emphasized the good arreement of the two values.
The fission cross section between the plateau values $\sigma_{f_{0}}$ and $\sigma_{f_{1}}$ was assumed to increase emonentially according to the Hill-Wheeler formula derived from chennel-theory [542.7.

$$
\begin{equation*}
\sigma_{f}(\mathbb{E})=\sigma_{f_{0}}+\left(\sigma_{f_{1}}-\sigma_{f_{0}}\right)\left(\frac{1}{1+e \frac{2 \pi}{\hbar \omega}\left(E_{f}-E\right)}\right) \tag{IV.3.5}
\end{equation*}
$$

I_{f} is the fission barrier enerry of the compound nucleus. For the quantity Tiw the value tw $=500 \mathrm{keV}\left[67.7\right.$, which refers to ${ }^{239} \mathrm{Pu}$, has been taten. The functions $\sigma_{f}(\mathbb{B})$ for the isotones considered are plotted in figure 6 and are listed in table 5. The average fission cross section over the energy group 2 can be inferred directly from the figures as the value of the first plateau.
In our investigation of fission cross sections it is only ${ }^{241}$ Am which now still remains to be treated. For ${ }^{241}$ An a few measurements of the fission cross section are available. They are quoted in the following table.

Table IV.3.2: Tission cross section measurements for ${ }^{241} \mathrm{Am}$

Authors	Energy Range	σ_{f}-values [$\mathrm{P}_{\text {- }}$ - 7
Seeger, Fenmendinger, Diven 144	$20 \mathrm{eV}-1 \mathrm{MeV}$	listed data points and plots
Bowman et a]. [43_7	$550 \mathrm{keV}-6 \mathrm{MeV}$	preliminary curve
Protopopov et al. [457	14.6 MeV	(2.35 ± 0.15)
Kezarinove et al. [46_7	$\begin{array}{r} 2.5 \mathrm{MeV} \\ 14.6 \mathrm{MeV} \end{array}$	$\begin{aligned} & 1.95 \pm 0.2 \\ & 2.95 \pm 0.1 .5 \end{aligned}$
Fomushkin et al. [/41_7	14.5 MeV	$\begin{array}{r} 2.30 \pm 0.15 \\ 2.53 \pm 0.12 \\ \hline \end{array}$

In the energy range from 30 keV up to 500 keV the average σ_{f}-values determined by Seeger et al. for selected intervals have been used. From 600 keV up to 3 MeV the fission cross sections have been read from the curve of Bowman et al. In the range from 600 keV up to 1 MeV covered by both measurements, those of Bowmen et al. and the Petrel measurements, the agreement between them is very good. The experimental data points of Bowman above 3 MeV have not been adopted because they do not show the theoretically expected behaviour: The threshold energy for the ($n, n^{\prime} f$) process on ${ }^{241} \mathrm{Am}$ is $6 \mathrm{MeV} / 40 _$, that means the σ_{f}-value corresponding to 6 MeV should be located on the rising branch of the $\sigma_{f}(E)$-curve of ${ }^{241} \mathrm{Am}$. But the measurements of Bowman et al. do not show this behaviour.
Above 3 MeV the shape of the fission cross section has been adapted to that given in reference [59_7 and adjusted to pass through a $\sigma_{f}-$ value of 2.53 b on the second pleteau. This value has been selected among the four measurements at about 14.5 MeV . The value of $\sigma_{f}=2.30 b$ obtained by Fomushkin by detecting the fission fragments with ionization chambers shows a good agreement with the value of Protopopov, who has performed his measurements with a gas scintillation counter filled with Xenon. His other value of $\sigma_{f}(14.5 \mathrm{MeV})=2.53 \mathrm{~b}$ has been determined by using glass-plate fragment detectors insensitive to a-radiation. This experimental method has to be preferred because of the high α-activity of ${ }^{241} \mathrm{Am}$. In the case of ionization chambers the high background has to be taken into account and this will often be difficult. Thus one has only to come to a decision between the two values of 2.53 b and 2.95b. From the formula of Zamyatnin (IV.3.4) one can infer the fission cross section of the first plateau by inserting the know value of the second plateau. The fission probability for ${ }^{241} \mathrm{Am}$ and ${ }^{242} \mathrm{Am}$ has been determined by using figure 5 and with $\sigma_{c}=3 b$. The resulting $\sigma_{f_{0}}$-values are $\sigma_{f_{0}}=1.8 \mathrm{~b}$ following from the $\sigma_{f_{1}}$-value of Fomushkin and $\sigma_{f_{0}}=2.1 \mathrm{~b}$ following from the $\sigma_{f_{1}}$ value of Kazarinova. The value of $1.8 b$ is in good agreement with the plateau value measured by Dowman et al. and in moderate agreement with the value measured by Kazarinova. Therefore the value of $\sigma_{f}(14.5 \mathrm{MeV})=2.53 \mathrm{~b}$ given by Fonushkin has been assumed to be appropriate for the second plateau. The preferred $\sigma_{f}(E)$-curve for ${ }^{24}{ }^{2} \mathrm{Am}$ is show in figure 7 .

IV.4. ($n, 2 n$) cross section

The ($n, 2 n$) process competes with the other processes only in the energy group 1, because the threshold energ for this reaction is between about 6 and 7 MeV for the isotones studied. Measurements are completely lacking for 211 isotopes in regard here except for ${ }^{237}$ ITy at a single energy noint. Calculations of the ($n, 2 n$) cross section have already been performed for the isotopes ${ }^{231} \mathrm{~Pa},{ }^{232} \mathrm{U},{ }^{234} \mathrm{U},{ }^{236}{ }_{\mathrm{U}},{ }^{238} \mathrm{Pu}$. Authors and methods are given in the following toble.

Table TV.4.1: References for ($n, 2 n$) cross section data

Isotone	Threshold	Author	Comment
$\begin{aligned} & 231 \mathrm{~Pa} \\ & 23 \mathrm{e}_{\mathrm{U}} \end{aligned}$	$\begin{aligned} & 6.64 \mathrm{MeV} \\ & 7.32 \mathrm{MeV} \end{aligned}$	Drake, Nichols ≤ 297	statistical method, described by Pearlstein [36.7
$\begin{aligned} & 234 \\ & 236 \mathrm{U} \end{aligned}$	$\begin{aligned} & 6.80 \mathrm{meV} \\ & 6.43 \mathrm{meV} \end{aligned}$	Drake, Jichols $130-7$	evaluation by Parker / 37.7 based on cross sections for similar nuclides and ontical model cal-
${ }^{230^{P u}}$	6.93 MeV	Dunford, Alter $17-7$	culations statistical method [36 _7; curves given

For the remaining isotones ${ }^{237} \mathrm{U},{ }^{237} \mathrm{NP},{ }^{233_{\mathrm{NP}}},{ }^{236} \mathrm{Pu},{ }^{241} \mathrm{Am}$ and ${ }^{242} \mathrm{Cm}$ ($n, 2 n$) cross section data have not been available and have been calculated with the method indicated by Pearlstein [47 7. For ${ }^{237}$ Ip , contrary to the other isotopes mentioned, exists a single measurement of the ($n, 2 n$) cross section at 14.5 MeV which has served to fit the ($\mathrm{n}, 2 \mathrm{n}$) shape from Pearlstein.

Pearlstein uses the following relation for $\sigma_{n, 2 n}$

$$
\begin{equation*}
\sigma_{n, 2 n}=\sigma_{n, e} \cdot \frac{\sigma_{n_{2} M}}{\sigma_{n, e}} \cdot \frac{\sigma_{n, 2 n}}{\sigma_{n, M}} \tag{IV.4.1}
\end{equation*}
$$

Here is $\sigma_{n, e}$ the total non-elastic cross section and $\sigma_{n, M}$ the sum of the cross sections of all the processes, in which the only nucleons released are neutrons

$$
\begin{equation*}
\sigma_{n, M}=\sigma_{n, n},+\sigma_{n, 2 n}+\sigma_{n, 3 n}+\cdots \tag{IV.4.2}
\end{equation*}
$$

The contribution of these reactions, in which more than one neutron is emitted (below 10 MeV this concerns only the ($\mathrm{n}, 2 \mathrm{n}$) reaction), to the total neutron-producing reactions is given by the ratio $\frac{\sigma_{n}, 2 n}{\sigma_{n}, M_{E}}$.
The ratio can be obtained as a function of the quantity $S=\frac{E_{B}}{E_{n}}$ (where E_{B} - binding energy per nucleon in the target nucleus, E_{n} - incident neutron energy) from a curve in dependence upon the parameter $p=4 a E_{B}$ (where a is the level density parameter). This parameter determines the increase of $\sigma_{n, 2 n}$ above the threshold.
The ration $\frac{\sigma_{n, M}}{\sigma_{n, e}}$ indicating the competition between neutron producine reactions and ${ }^{n}$ all other non-elastic processes can be read from the figure 3 in reference [$\mathbf{4 7}_{7} 7$ using the neutron excess factor (N-Z)/A (N - number of neutrons, Z - number of protons, A - mass number). For heavy nuclei like those considered here the ratio of $\sigma_{n, M}$ to $\sigma_{n, e}$ is almost equal to unity, because the cross sections of the charged particle reactions are very small and the fast neutron capture cross section can also be neglected. Then it follows

$$
\sigma_{n, e}=\sigma_{n, M}+\sigma_{n, f}
$$

Thus above the fission threshold except $\sigma_{n, M}$ only the fission cross section contributes essentially to the non-elastic cross section. The non-elastic cross section $\sigma_{n, e}$ at 14 MeV is given by Pearlstein as a function of the mass number A. We have assumed for $\sigma_{n, e}$, analogously as for the calculation of unknown fission cross sections, a value of 36 . With the fission cross section from chapter IV. 3 it then follows for $\sigma_{n, M}$

$$
\begin{equation*}
\sigma_{n, M}=\sigma_{n, e}-\sigma_{n, f}(E) \tag{IV.4.4}
\end{equation*}
$$

Now the $(n, 2 n)$ cross sections could be determined from the ratio $\frac{\sigma_{n}, 2 n}{\sigma_{n}, M}$ obtained with the calculated parameters p and s from the curves of ${ }^{n}$, Pearlstein.

For ${ }^{237}$ IIp the ($n, 2 n$)-cross section values from threshold up to 10 MeV have first also been calculated like for the other isotopes regarded here according to the systematic given by Pearlstein with $\sigma_{c}=3 b$ and taking into account $\sigma_{f}(\mathbb{E})$ in the manner described above. Then $\sigma_{n, 2 n}$ at 14.5 MeV was determined according to Pearlstein by taking into account the competition of the ($n, 3 n$) process, the threshold of which is at about 12.5 MeV . The measurement of the $(\mathrm{n}, 2 \mathrm{n})$ cross section at 14.5 MeV gives: $\sigma_{n, 2 n}(14.5 \mathrm{MeV})=(0.39 \pm 0.07) \mathrm{b}[49$ _7
For the adjustment to this value all the ($n, 2 n$) cross section values have been multiplied by the ratio
$\frac{\sigma_{n, 2 n} \text { exper. }(14.5 \mathrm{MeV})}{\sigma_{n, 2 n} \text { caic. }(14.5 \mathrm{MeV})}=\frac{0.39}{0.264}=1.477$
The ($n, 2 n$) cross section values for the various isotopes are given in table 6 and displayed in figure 8 a and 8 b .

IV.5. Mean number of neutrons ner fission

The averages of the nean number of neutrons per fission \bar{v} over the five energy grouns are here given as the average values of the quantity $\bar{V} \cdot \sigma_{f}$. At low energies up to the upper limit of group $3, \bar{v}$ does not chance with neutron energy. Thus yields

$$
\begin{equation*}
\left\langle\bar{v} \sigma_{f^{\prime}}\right\rangle_{i}=\bar{v}_{i}\left\langle\sigma_{f}\right\rangle_{i}, \quad \text { where } i=3,4,5 \tag{IV.5.1}
\end{equation*}
$$

Over the energy range of group $2 \bar{v}$ is still aimost constant and the average has been determined as arithmetic mean value of the \bar{v}-values at the two energy limits of the group

$$
\begin{equation*}
\left.\left\langle\bar{v}_{\sigma_{f}}\right\rangle_{2}=\frac{\bar{\nu}\left(E_{2}\right)+\bar{\nu}\left(E_{3}\right)}{2}<\sigma_{f}\right\rangle 2 \tag{IV.5.2}
\end{equation*}
$$

The mean numbers of fission neutrons in the range of the energy groups 2,3,4 and 5 are given in table 7 for all the isotopes in regard. As for group 1 first of all the products $\bar{v}(E) \sigma_{f}(E)$ have been calculated and then the average values have been determined from equation (IV.1) setting $\sigma_{x}(E)=\bar{v}(\mathbb{E}) \sigma_{f}(E)$.

The 5-group values of $\overline{\mathrm{v}}_{\mathrm{f}}$ are summarized in the tables 11 and 12 -
With regard to the isotopes studied here the mean number of neutrons per fission \bar{v} has hitherto been measured only for ${ }^{234} \mathrm{U}$ and ${ }^{237}$ IVp at single energy points.
For ${ }^{231} \mathrm{~Pa}$ and ${ }^{232} \mathrm{y}$ Drake [-29_7 has investigated the variation in \bar{v} as a function of the neutron energy. The procedure, according to which $\bar{v}(\mathbb{E})$ has been determined, is not described in the report. As for ${ }^{232} \mathrm{U}$ the values have not been adopted for the same reason as indicated studying the fission cross section. For ${ }^{231} \mathrm{~Pa}$ we have taken the values given by Drake as a basis for averaging. Amone the U-isotopes it was ${ }^{234}{ }_{U}$ for which Fillmore [50_7 has given a review of available experimental data for \bar{v}, the mean number of prompt neutrons. The measured data points obtained by Mather et a.l. [51_7 covering the energy range up to about 4 MeV have been fitted in that evaluation by

$$
\begin{equation*}
\bar{v}_{p}(\mathbb{E})=2.371+0.1353 \mathrm{E}(\mathrm{KeV}) \tag{IV.5.3}
\end{equation*}
$$

with normalization to the \bar{v}_{p} for spontaneous fission of ${ }^{252} \mathrm{Cf} \bar{v}_{p}\left({ }^{252} \mathrm{Cf}\right)$ $=3.732$. This relationship for the dependence of \bar{v} on the energy of the neutrons inducing fission was used for the determination of $\bar{v}(E)$ for 234 tJ in the whole energy range above the fission threshold. To the other U-isotopes and the Pu-isotopes the systematics of Schuster and Howerton ${ }^{-52} 7$ were applied, as the calculated results of these authors for ${ }^{235} \mathrm{U},{ }^{238_{\mathrm{U}}^{-}}$and ${ }^{-7} 233_{\mathrm{U}}$ compare favourably with experimental data. The variation in \bar{v} as a function of the energ of the neutrons causine fission has been described by Leachman [53] in the following manner:

$$
\begin{equation*}
\bar{v}(E)=v_{0}+v_{1}(E) \tag{IV.5.4}
\end{equation*}
$$

where ν_{0} and v_{1} depend upon the fissioning isotope concerned. Schuster and Fowerton have modified this equation by taking into account the various fission modes, that is the standard (n, f) process, the ($n, n \prime f$) fission above about 6 MeV and the ($n, 2 \mathrm{n} f$) fission above about 12 MeV .

Instead of v_{0}, the \bar{v}-value at thermal neutron energy, they have introduced $\nu_{\text {tir }}$, the \bar{v}-value at the fission threshold energy. For $v_{\text {thr }}$ Schuster and Fowerton have deduced the following systematic for U-isotopes.

$$
\begin{equation*}
v_{\text {thr }}(A)=\alpha+\beta(A-235)+\delta(-1)^{A} \tag{IV.5.5}
\end{equation*}
$$

where $\alpha=2.39, \beta=0.02$ and $\delta=0.06$.
The constents have been obtained by fits to the ${ }^{235}$ U-data. If one ignores the oddeeven effect, then α is identical with the value of \bar{v} for ${ }^{235} U$ at threshold. The second term gives the change in $v_{\text {thr }}$ with mass number A of the uranium isotope. The third term takes account of the fact that a nucleus with an aven number of neutrons tends to split into two fracments with also even numbers of neutrons.
For the determination of the slope v_{1} of the linear relation for $\bar{v}(\mathrm{~N})$ a second systenatic equation has been given by Schuster and Howerton for u-isotopes.

$$
\nu_{1}(A)=\gamma+\lambda(A-235)
$$

(IV.5.6)
where $\gamma=0.130$ and $\lambda=0.006$.
λ takes into account that the slope ν_{1} increases by 4.5 per additional nucleon in the U-isotope studied in comparison to ${ }^{235} \mathrm{~J}$, a, fact which has been inferred by Schuster and Howerton from the measurements of $\bar{V}(\mathbb{E})$ for $238{ }_{\mathrm{U}}, 233_{\mathrm{U}}$ and ${ }^{235} \mathrm{U}$. According to schuster and Eowerton this behaviour has to be expected because ν_{1} varies inversely with the neutron binding energy and this decreases by about 3% for each additional nucleon. Above the threshold of the ($n, n^{\prime} f$) and ($n, 2 n \prime f$) reaction the branching ratios between pure (n, f) and the other fission modes have to be estimated at each energy point. At energies up to 10 MeV only the (n, n 'f) process competes with the standard fission mode. Then the general equation for $\bar{v}(A, E)$ deduced by Schuster and Howerton obtains the following form:

$$
\begin{align*}
\bar{v}(A, E) & =R(n, f) \underline{V}_{\text {thr }}(A)+v_{1}(A)\left(E-E_{\operatorname{thr}}(n, f)-7+\right. \tag{IV.5.7}\\
& +R\left(n, n^{\prime} f\right) \underline{L}^{1+v_{t h r}(A-1)+v_{1}(A-1)\left(E-E_{t h r}\left(n, n^{\prime} f\right)-7\right.}
\end{align*}
$$

$R(n, f)$ and $R(n, n!f)$ give the contribution of the two fission modes, being considered here, to the total fission.
The calculations for the Pu-isotopes have been performed by using also the above formula with the only difference that the equations for v_{1} and $v_{t h r}$ found by Schuster and Fowerton are the following ones:

$$
\begin{align*}
& v_{\operatorname{thr}}(A)=2.77+0.02(A-239)+0.06(-1)^{A} \\
& v_{1}(A)=0.124+0.006(A-239)
\end{align*}
$$

The magnitudesof $R(n, f)$ and $R\left(n, n^{\prime} f\right)$ have been obtained except for ${ }^{238} \mathrm{Pu}$ from the σ-nlots in figures 4 and 6 , where the dashed curves are the assumed extensions for the various fission modes. For ${ }^{238}$ Fu these values have been taken from the corresponding plot in the evaluation of Dunford and Alter [32.7 with the assumption that the first plateau is fixed at 1 MeV . They are sumarized in table 9 for all the uranium and plutonium isotones investigated.
Whe threshold energies for (n, f) and (n, n ' f) fission according to chanter III. 3 have the following meaning:
$E_{\operatorname{thr}(n, f)}=E_{f}(A+1)-E_{B}(A+1)$
$E_{\operatorname{thr}\left(n, n^{\prime} f\right)}=E_{f}(A)$
where A is the mass number of the target nucleus.
The threshold energies for the two fission modes as well as the values $\nu_{\text {thr }}$ and v_{1} for the uranium and plutonium isotopes are given in table 8 .
The conange of \bar{v} with neutron energy is show for these isotopes in table 10 and in figure 2.

For the Hn , Arn- and Cr-isotopes it was impossible to derive similar systematics because of the lack of data. Therefore the linear energy dependence of $\bar{\nu}$ given in equation (IV.5.4) has been assumed to be valid for ${ }^{237} 7_{\mathrm{Np}},{ }^{238} \mathrm{~Np}$, ${ }^{241} \mathrm{Am}$ and ${ }^{242} \mathrm{~cm}$. The constants v_{0} and v_{1} for the four isotopes have been determined as follows.
v_{0} is the average number of neutrons for thernal neutron-induced inssion. A general correlation for these values is given by Gordeeva and Smirenkin [54_7 for the isotopes with $Z \geq 90$

$$
\begin{equation*}
\bar{v}_{\text {thermal }}=0.1894 \mathrm{Z}+0.007 \mathrm{~A}-16.60+\delta_{v} \tag{IV.5.10}
\end{equation*}
$$

whre $\delta_{\nu}=0.09 \xi$ with $\xi=\left\{\begin{array}{ll}+1 & \text { for odd-odd } \\ -1 & \text { for even-even } \\ 0 & \text { for odd }-A\end{array} \quad\right.$ target nuclei
The formula may be applied only to those nuclei far removed from the range of closed shells and sub-shells. It is based on the representation of the number \bar{V} of prompt neutrons emitted per fission by linear functions of Z and A, that is for a fixed neutron energy
$\bar{v}_{p}=C_{1} Z+C_{2} A+C_{3}$
${ }_{3}$ takes account of the oddeven effect. The coefficients $C i$ have been determincd by least-square fits to experimental data, on themal fission of the six target nuclei ${ }^{229} \mathrm{Th},{ }^{233} \mathrm{U},{ }^{235} \mathrm{U},{ }^{239} \mathrm{Pu},{ }^{241} \mathrm{Pu},{ }^{24}$ Am. For the fit these experimental values have been renormalized by the authors to $\bar{v}_{\text {thermal }}(235 t j)=2.43$. The formula predicts the values of \bar{v}_{p} for neutroninduced fission for nuclei with $Z \geq 00$ and $I T 152$ to within about 3%. The contribution of the delayed neutrons, however, to the total number of neutrons emitted is less than 1%, merefore it has not been considered worthwile to take their number into account here especially also because of the lack of information about it. The above formula (IV.5.10) vields the quantities v_{0} siven in table $T Y .5 .2$ for the four isotopes being considered. The quantity v_{1} in equation (IV.5. 4) indicates the increase of \bar{v} with in creasing energy.
Almost all of the excitation of the fissioning nucleus, increasing with increasing incident neutron energy, appears as excitation of the fragments. This leads to

$$
\begin{equation*}
\frac{d \bar{v}}{d E} \approx 1 / E_{0} \tag{IV.5.11}
\end{equation*}
$$

where F is the incident neutron energy and E_{0} the average energy required to release a neutron. Terrell has quoted a value of 6.7 MeV for F_{0} and with that it follows $v_{1} \approx 0.15 \mathrm{MeV}^{-1} \leq 55 _$. This value has been adopted for the isotopes except for ${ }^{237}$ Np, for which the existence of measurements has offered another way for the determination of ν_{1}.

For ${ }^{237}$ ITp the following experimental data information for $\bar{v}(\mathbb{E})$ has been availeble.

Table IV.5.1

Average neutron energy	\bar{v}	Reference	Comment	Renormalized value \bar{v}
1.40 MeV	2.81 ± 0.09	[56]	indirect method on "Topsy" and "Jezebel" critical assemblies	
1.67 MeV	2.90 ± 0.04	[56.7	relative to U235, but standard value not given	
1.8 MeV	2.96 ± 0.05	[57.	$\begin{aligned} & \text { normalized } \\ & \text { to } \bar{v}\left(\frac{1}{2} 235\right)^{2} \\ & =2.47 \end{aligned}$	$\begin{aligned} & 2.91 \\ & \bar{v}_{\text {therm }}(\mathrm{U} 235)=2.43 \end{aligned}$
2.5 MeV	2.72 ± 0.15	$\left[58^{58}\right.$	$\begin{aligned} & \text { prompt neu= } \\ & \text { trons; nor- } \\ & \text { malized to } \\ & \bar{v}_{\text {therm }} \text { (U235) } \\ & =2.47 \end{aligned}$	$\begin{aligned} & 2.67 \\ & \text { renormalized to } \bar{v}_{\text {therm }}(\mathrm{U} 35) \\ & =2.43 \end{aligned}$

The experimental value of Kuz'minov [58 7 has been excluded, because after renormalization it has become equal to the thermal value obtained by formula (III.5.10). The other three experimental data points and the calculated thermal value of \bar{v} have proven as appropriate to a linear fit with slope $v_{1}=0.13$.
The following table gives a survey on the used values for v_{1} and v_{0}.

Isotope	v_{0}	v_{1}	$\bar{v}(\mathrm{E})$
2378	2.67	$0.13 \mathrm{Mev}^{-1}$	$\bar{v}(E)=2.67+0.13 \mathrm{E}$
${ }^{238} \mathrm{mp}$	2.77	$0.15 \mathrm{MeV}^{-1}$	$\bar{v}(E)=2.77+0.15 E$
${ }^{24}{ }_{\text {An }}$	3.08	$0.15 \mathrm{Mev}^{-1}$	$\bar{\nu}(E)=3.08+0.15 \mathrm{E}$
$2^{42} \mathrm{Cm}$	3.19	$0.15 \mathrm{MeV}^{-1}$	$\bar{v}(E)=3.19+0.25 \mathrm{E}$

The change in \bar{v} with neutron energy is show in the plots of figure 10 for the above isotopes.

V. Final consideration

In the final phase of the investigations reported here an evaluation of cross section data for ${ }^{237}$ Mp carried out by the Iadho Nuclear Corporation has been published [$60-7$ which has not been regarded. In the resolved and unresolved resonance region the computation of cross sections in this report is based completely on the resonance data of D. Paya. The Idaho evaluation uses a great part of the Faya data, but also older ones. They intend, however, to incorporate fully the Paya data in their next major remevaluation of the 237 Np file. In the fast region for the capture cross section the measurements of Stuperia et al. [31_7 have been taken as a basis in the Idaho report as well as in this vork. As for the fission cross section of 237 Ny the Idaho evaluation is based on the results of Perkin and White at low energies, and in the fast recion the greatest weight is given to the cata of white. The same basis have the recommended fission data of Davey used in this report. The ($n, 2 n$) cross section values have been determined in the two reports according to the procedure given by Pearlstein. In the Idaho evaluation, however, the shape of $\sigma_{n, 2 n}$ has not been fitted to the experimental value at $14.5 \mathrm{MeV}[49.7$. If the adjustment of the curve would be performed, one would obtain $\sigma_{n, 2 n}$ values larger by a factor of about 2.6 and these would be in better a.greement with our results than the original values reported in the Idaho evaluation. Strictly the same values would yield only with identical σ_{n}, e^{-} and $\frac{\sigma_{n, M}}{\sigma_{n, e}}$ - values (we have assumed $\sigma_{n_{s} \text { e }}$ to be $3 b$ in accordance with the value used in the fission systematics and $\frac{n_{n}, M}{\sigma_{n}, e}=1$, whereas the Idaho evaluation uses $\sigma_{n, e}=2.85 b$ and $\frac{\sigma_{n, M}}{\sigma_{n, e}}=0.98$; both values derived from the corresponding Pearlstein curves):
For the mean number of neutrons per fission of ${ }^{237}$ Np the Idaho evaluation gives

$$
\bar{v}(E)=2.61+0.16 \mathrm{E}
$$

This energy dependence has been determined by assuming a slope of $0.16 \mathrm{MeV}^{-1}$ and passing through the average of the two measurements of Hansen [56_7. In this report the two measurements of Hansen have been used tocether with
a Russian measurement to fix the slope of the straight-line function $\bar{v}(E)$, whilst the thermal \bar{v}-value has been taken from a systematic formula (see chapter IV.5.). The last procedure for the deduction of $\bar{\nu}(E)$ hes to be preferred, because the slope for $\bar{v}(\mathbb{E})$ as assumed in the Idaho evaluation for ${ }^{237}$ Ip is not characteristical for this isotope (the assumed slope has been derived in [687 for a universal curve $\bar{v}(E)$ for neutron energies above 1.6 MeV for ${ }^{232} \mathrm{U}^{2},{ }^{235} \mathrm{U},{ }^{239} \mathrm{Pu}$ by adaing a constant energy to the incident neutron enersy for each nuclide). Both functions $\vec{v}(\underline{i})$ have been displayea in figure 10.

It would be just as well mentioned here that C.L. Dunford and H. Alter [7_7 have given for ${ }^{238}$ Pu a straight-line function for $\bar{v}(\mathbb{F})$

$$
\bar{v}(\mathrm{R})=2.75+0.118 \mathrm{E}(\mathrm{MeV})
$$

which has not been adopted in this report. In this formula the multiplicities of fission modes have not been taken into account as postulated by Schuster and Howerton and carried out in this work. Both functions $\bar{v}(\mathrm{I})$, that of Dunford and Alter and that one derived here, are displayed in figure 2. The differences in \bar{v} are of about 4% at maximum.

Concerning ${ }^{236} U$ the average resonance paraneters used in this report have been based on preliminary results of Carlson (referenced in CIIDA 68) obtained from 17 positive resonances between 5.45 eV and 272.8 eV . Iis finallu published results $\left[{ }^{14}\right.$, not referenced in CIIDDA 697 based on resonance measurements for a single negative resonance at -2.7 eV and 28 mositive resonances up to an energy of 415 eV have not been taken into account. These results show that we have assumed too large values for S_{0} and $\bar{D}_{0 b s}$ and too small values for $\bar{\Gamma}_{\gamma}$ and s_{1}. In a later reevaluation this defoct has to be corrected. A comparison of the paraneters is given in table V .1 below.

Table V.1: Average resonance parameters for ${ }^{236}{ }_{U}$

Pesonance parameter	Values mreferred in this report	$\begin{aligned} & \text { Values given by A.D. Carlson et al. } \\ & \text { (GA9057) } \end{aligned}$
$S_{0} \times 10^{+4}$	1.3	1.35 ± 0.3 calculated from measured average $1.02+0.4$ capture cross sections -0.2 calculated from resonance parameters
$5_{1} \times 10^{+4}$	2.0	2.3 ± 0.6
$\Gamma_{\gamma}[\mathrm{meV} 7$	23	23.9 ± 1
$\overline{\mathrm{D}} \mathrm{CeV}^{\text {c }}$]	17.3	$15.4_{-1}^{+2.2}$
$\Gamma_{\mathrm{n}}^{(0)}[\mathrm{meV}]$	2.25	$1.6 \begin{array}{r}\text {-0.6 } \\ -0.3\end{array}$

Certainly these resonance measurements of Carlson can give a decision concerning the thermal capture cross section determined by McCallum [69_7 by subtraction of a calculated scattering cross section value from a measured $\sigma_{\text {total }}$. This value differs wy a large mount from the σ_{y}-values resuiting from activation measurements. It may be that this discrepancy is due to a wrong scattering cross section value which has been obtained by McCallum from parameters of the two lowest resonances at -8 eV and +5.48 eV . Therefore it would be important to calculate again this value with the recent parameters of Carlson.

Acknowledgements

I wish to express my greatest appreciation to Dr. JbJ. Schmidt for his close collaboration during the entire course of this work and for the critical readings of the manuscript.

Dr: A. Sauer and Dr. K.E. Schroeter deserve thanks for makinc available the thermal and fast reactor weighting spectra.

Beferences

[1] J.R. Stehn, M.D. Goldberg et al. "TVeutron Cross Sections", Vol. III, BNIm325, 2nd edition, Suppl. No. 2, 1965
[2_7 S. Pearlstein, "Cross Sections for Transuranium Jlement Production", BHI-982, pp. 22, 1966
[-3. F.J. Fennelly, T.R. Cormmen, I.P. Baumann, Proc. of Conf. Washington, Weutron Cross Sections and Technology ed. D.T. Goldberg, March 1968, Vol. II, pp. 1271, Pu. 238 Production Predictions from Available Neutron Cross Sections
[4. 7 E.K. Hulet, R.W. Hoff, E.R. Bowman, M. C. Mochel, Phys. Rev. 107, 1294, 1957

F57 E.K. Hulet, H.I. West, M.S. Coops, "Thermal Neutron Fission Cross Sections of U232, Pu237 and Am241", Vash-1033, 28, 1961
[67 D.J. Hughes and R.B. Schwartz. "Neutron Cross Sections", BMI-325, 2nd ed, 1958
[7.7 C.I. Dunford, H. Alter, "Neutron Cross Sections for Pu238, Pu242 and Cn244", TAA-SR-12271, 13, 1967
[87 R.I. Folger et al., Proc, Conf. Washington, March 1963, Neutron Cross Sections and Technology ed. by. D.T. Goldman, Vol. II, 1279, "Foil Measurements of Integral Cross Sections of Higher Mass Actinides"
[97 H. Huschke, "Gmppenkonstanten für dampfo und natriumgekühlte schnelle Reaktoren in einer 26-Gruppendarstellung", KFK-770, 1968
[107 I. Dresner, "Resonance Absorption in Nuclear Reactors", Internat. Series of Monographs on Wucl. Energy, Pergamon Press, 1960

IT1 J.A. Harvey, EAMDC Conf on Neutron-Timewof-Flight Methods, Saclay, 1961, Proc. pp. 23
[12.7 G.D. James, Nucl. Phys. 55, 517, 1964
[13_7 V.E. Pilcher, D.J. Hughes, J.A. Harvey, Bull. Am. Phys. Soc. 1, 187, 1956
[14.7. A.D. Carlson et al., WASE 1093, 54. 1968, to be published in CA 9057, 1968
[15_7 M.S. Moore, O.D. Simpson, "Fission Cross Sections", pp. 29, unpublished
[16_7 T.E. Young, F.B. Simpson, J.R. Berreth, M.S. Coons, Nucl. Sci, Eng. 30, 335 , 1967
[17. 7 W.F. Stubbins, C.D. Bowman, G.F. Auchampaugh, M.S. Coops, Phys. Rev. 154, 1111, 1967

T18.7 R.E. Coté, R.F. Barnes, II, Diamona, Phys. Rev. 134, B, 1281, 1964
[197 S.A. Bananov et al., Sov, Journ, of Nucl. Phys, 1, 397, 1965
[20 7 D. Paya, J. Blons, H. Derrien. A. Fubini, A. Michaudon, P. Ribon, Journal de physique 29, suppl. No. 1, pp. 159, 1968
[21_7 C.C. Elaughter, J.A. Harvey, R.C. Block, "High resolution totaj. cross section measurements on Wh237 and Am241", ORNL 3085, 42, 1961
[22.7. M.K. Drake, Hucleonics 24, pp. 108, August 1966
[23_7 J. Ealperin, R.W. Stoughton, "Some cross sections of heavy nuclides important to reactor operation", 2nd Int. Conf. on the Peaceful Uses of At. In., Ceneva, Vol. 16, pp. 64, 1058 and Hucl. Sc. Eng. 6, 100, 1959
[24.7 N.P. Baumann, J.D. Halford, D.J. Pellarin, Nucl.Sci.Engng. 32, p. 265, 1968

$1-25$	R.B. Tattersall, H. Rose, S.K. Pattenden, D. Jowitt, Journ. Nucl.En. A12, 32, 1960
$\underline{126}$	J.P. Butler, M. Lounsbury, J.S. Merritt, Can. Journ, of Phys. 35, 147, 1957
≤ 27.7	B. Krieg, internal report
$\underline{1} 28.7$	E.R. Rae, M.C. Moxon, private communication with J.J. Schmidt, 1969
[29 7	M.K. Drake, P.F. Nichols, "Neutron Cross Sections for Pa231, Pa233 and U232", GA-7462, Sept. 1967
± 307	M.K. Drake, P.F. Nichols; "Neutron Cross Sections for U234 and U236", GA-8135, Sept. 1967
$\leq 31]$	D.C. Stupegia, M. Schmidt, C.R. Keedy, Nucl, Sci.Eng, 29, 218,1967

L32 7 P.A. Moldauer, CoA. Engelbrecht, Got, Duffy, "NEARREX, a Computer Code for Nuclear Reaction Calculations", ANI-6978 (1964)

L33.7 W.G. Devey, Nucl.Sci.Eng. 26, 149, 1966 and Nucl.Sci.Eng. 32. 35. 1968

L34.7 W.E. Stein, R.K. Smith, H.I. Smith, "Relative Fission Cross Sections of U236, U238, Np237 and U235", Proc. of a Conf. Washington, March 1968, Vol. I, pp. 627
[35.7 Yu. S. Zamyatnin, Sov, Journ, of At. En., Suppl. I, 26, 1957
[36.7 N. Bohr, Phys. Rev. 58, 864, 1940
[-37. 7 H.H. Barschall, R.I. Henkel. unpublished Los Alamos report, 1954 (see reference 38)

L" 38 R.I. Henkel, "Fission by Fast Neutrons", to be published in "Fast Neutron Physics", ed. by J.B. Marion and J.I. Fowler, part II, 1960

1-39 7	R.J. Howerton, D. Braft, W.J. Cahill, N. Chazon, "Threshold of Nuclear Reactions", UCRI-16000, 1964
$14^{40} 7$	A. Prince, "Estimated fission properties of transradium isotopes", private communication to J.J. Schmidt
$1{ }^{-41} 7$	E.F. Fomushkin et al., Sov. Journ. of Nucl. Phys. 5, 689, 1967
1427	D.L. Hill, J.A. Wheeler, Phys. Rev. 89, 1102, 1953
143.7	```C.D. Bowman, R.W. Hoff, G.F. Auchampaugh, S.C. Fultz, Wash-1071, 84, 1966```
$\underline{1}^{-44} 7$	P.A. Seeger, A. Hemmendinger, B.C. Diven, LA 3586, 86, 1966
$1{ }^{45} .7$	A.N. Protopopov, Yu. A. Selitskii, S.M. Solov'ev, Sov. Journ. of At. En. 6. 36. 1959
1467	M.I. Kazarinova, Yu. S. Zamyatnin, V.M. Gorbachev, Sov, Journ, of At. En. 8, 125, 1967
147	S. Pearlstein, "Analysis of ($n, 2 n$) Cross Sections for Nuclei of Mass $\mathrm{A}>30^{\prime \prime}$, BNL 897, 1964 and NucI. Sc. and Eng. 23, 238, 1965
148	K. Parker, "Neutron Cross Sections of U234 in the Energy Range $1 \mathrm{keV}-15 \mathrm{MeV}$ ", AWRE-0-37/64; 1964
1497	J.L. Perkin, R.F. Coleman, Journ, of Nucl. Energy A\&B Reactor Science 14, 69, 1961
[50.7	F.L. Fillmore, Journ of Nucl. En, 22, 79, 1968
15517	D.S. Mather, P. Fieldhouse, A. Moat, Mucl. Phys. 66, 149, 1965
$\underline{-52}$	S.H. Schuster, R.J. Howerton, Journ. of Nucl. En. Parts A/B 18, 125, 1964

R.B. Leachman, Phys, Rev, 101, 1005, 1956
L.D. Gordeeva, G.N. Smirenkin, Sov, Journ, of At. En, 14, 562, 1963

「69. 7 G.J. McCailum, J. Nucl. Energy 6, 181, 1958
[70_7 W.C. Davey, Nucl. Sci, Ene. $36,434,1969$

Inst of the tebles

Table 1: Themal neutron crose sections at 0.025 eV
Wable 2: Preferrea microsconic values of σ_{f} for ${ }^{236} U$
Meble 3: Correlation of $\sigma_{f}(3 \mathrm{MeV})$ with $\pi^{4 / 3} / \mathrm{A}$
Table 4: Platean values of σ_{f} for ${ }^{232} \mathrm{H}, 237 \mathrm{U},{ }^{238} \mathrm{No}, \quad 236 \mathrm{Pu}, \quad{ }^{242} \mathrm{Cm}$
Teble 5: $\sigma_{\text {f }}$-values for ${ }^{232} \mathrm{U},{ }^{237} \mathrm{U},{ }^{238} \mathrm{Iv},{ }^{236} \mathrm{Fu},{ }^{242} \mathrm{~cm}$ in the fast energy region

Teble 7: Averace velues of the meen number of neutrons per fission for the four lower enercy crouns

Tehle 8: The variation of \bar{v} as a function of the neutron enerer for the isotopes $232,{ }^{236},{ }^{237},{ }^{2}, 236_{P_{u}},{ }^{239_{P u}}$
Table 9: Branchinc ratios for the calculation of $\bar{v}(\mathrm{E})$ for 232,230 , $237 \mathrm{U}, \quad{ }^{236} \mathrm{Pu}, \quad 238 \mathrm{Pu}$
Mable 10: $\bar{V}-v a l u e s$ as a finction of the neutron energ for ${ }^{232}{ }_{U},{ }^{236} U$, $237 \mathrm{U}, \quad 236 \mathrm{Pu}, \quad{ }^{238_{\mathrm{Pu}}}$

Table 11: 5-croun averaged values of $\sigma(n, f), \sigma(n, \gamma), \sigma(n, 2 n)$ and $\bar{v} \sigma(n, f)$ for the case of a thermal reactor spectrum

Table 12: 5-कroup averaged values of $\sigma(n, f), \sigma(n, \gamma), \sigma(n, 2 n)$ and $\bar{v} \sigma(n, f)$ for the case of a fast reactor spectrum

Table 1: Thermal neutron cross sections at 0.025 eV

Table 1: continued

preferred:
1700

38 Np	43	calcu- 93	2200 ± 200	3
${ }_{36}{ }^{36} \mathrm{Pu}$	33	lated from (II.1) 38 94 94 Pu	500 ± 100	1

preferred:
547
41
$95^{\mathrm{Am}} 582$
preferred:
582
preferred:
calcu- $\quad 2200 \pm 200$
3

5

3
preferred: 16
$1 \quad 3.13 \pm 0.15 \quad 4$
preferred:
3
the small subthreshold fission neglected
σ_{f}-value at 0.025 eV from measurement σ_{f} measured in the thermal column of the $\frac{M P R}{1 n}[1.7$ recommended value at 0.025 eV , based on measurements
values at 0.025 eV calculated from singlelevel resonance parameters
preferred values at 0.025 eV ; σ_{γ} from $\sigma_{A b s}=$ 563b
values at $0.025 \mathrm{eV} ; \sigma_{\gamma}$ from a measured $\sigma_{\text {Abs }}{ }^{-}$ values with $\sigma_{f}=3 b$;
σ_{f} measured in the thermal column of the MTR relative to $\sigma_{f}($ Pu239 $)=806 \mathrm{~b}$; renormalized to $\sigma_{f}(\operatorname{Pu} 239)=740.6 \mathrm{~b}[1 / 7$ it follows $\sigma_{f}(\operatorname{Am241)}=2.88 b$

Table 1: continued

Isotope $\sigma_{\gamma}\left[{ }^{[} b_{-} 7\right.$ Reference $\sigma_{f}\left[\sigma_{-} 7\right.$ Reference Comments

$\begin{array}{r} 242 \\ 96 \\ \end{array}$	20 ± 10	6	0.8	8	σ_{γ} measured for pile neutrons; σ_{f} calculated from $\sigma_{\gamma \text { therm }}$ under the assumption that the value estimated in [8_7 for the ratio $\sigma_{\gamma} / \sigma_{\mathrm{Abs}}=0.96$ for Cm 244 can be taken also for Cm242

Table 2: Preferred microscopic values of the fission cross section of ${ }^{236} U$

Neutron energy [${ }^{\text {MeV }} 7$	$\sigma(n, f)[]_{-} 7$
0.550	0.0
0.608	0.0
0.672	0.017
0.743	0.048
0.821	0.142
0.907	0.290
1.00	0.331
1.25	0.567
1.50	0.649
2.00	0.782
2.25	0.837
2.50	0.840
2.75	0.806
3.00	0.790
3.25	0.797
3.50	0.810
3.75	0.816
4.00	0.806
4.25	0.802
4.50	0.807
4.75	0.786
5.00	0.779
5.49	0.80
6.07	0.93
6.70	1.27
7.41	1.55
8.19	1.72
9.05	1.73
10.00	1.64

Table 3: Variation of the fission cross section (see figure5) at 3 MeV with $\mathrm{z}^{4 / 3} / \mathrm{A}$
(A mass number of the target nucleus)

Target nucleus	$z^{4 / 3 / A}$	$\begin{gathered} \sigma_{f}(3 \mathrm{MeV}) \\ {\left[b_{-} 7\right.} \end{gathered}$	Reference
${ }_{88}^{226} \mathrm{Ra}$	1.732	0.	
$\begin{gathered} 232 \mathrm{Th} \\ 90^{\mathrm{Th}} \end{gathered}$	1.738	0.130	Davey [-33_7
${ }_{91}^{231} \mathrm{~Pa}$	1.772	1.30	Drake, Nichols [29_7
${ }_{92}^{233} \mathrm{U}$	1.782	1.71	Davey [${ }^{33} \mathbf{7}$
${ }_{92}^{234} \mathrm{u}$	1.775	1.40	Davey [${ }^{33} 7$
${ }_{92}^{235} \mathrm{U}$	1.767	1.18	Davey [-33_7
${ }_{92}^{236}$	1.760	0.790	Stein et al. 5347
$\begin{gathered} 238 \\ 92 \end{gathered}$	1.745	0.500	
$\begin{gathered} 237_{\mathrm{Np}} \\ \\ \hline 1 \end{gathered}$	1.778	1.59	
${ }_{94}^{239} \mathrm{Pu}$	1.788	1.82	$\int^{\text {Davey }}$
$\begin{gathered} 240^{\prime} \\ 94^{\mathrm{Pu}} \end{gathered}$	1.781	1.57	

Table 4: Plateau values of the fission cross section for the isotopes ${ }^{232}{ }_{U},{ }^{237}{ }_{U},{ }^{238} \mathrm{~Np},{ }^{236} \mathrm{Pu},{ }^{242} \mathrm{~cm}$

Target nucleus A	$\begin{gathered} \text { Fission barrier } \\ \int_{\mathrm{E}}^{40} 7 \\ \hline \mathrm{MeV} 7 \end{gathered}$	$\begin{aligned} & E_{B}(A+1) \\ & I_{\mathrm{MeV}} 7 \end{aligned}$		fo	$\begin{aligned} & \text { second plateau } \\ & \sigma_{f_{1}} \quad \underline{b}_{-} 7 \end{aligned}$
$\left\lvert\, \begin{aligned} & 232_{\mathrm{U}} \\ & 231_{\mathrm{U}} \end{aligned}\right.$	5.49 experimental 4.966 (a)	5.93	$\begin{aligned} & 1.86 \\ & 2.13 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.62 \\ & 0.71 \end{aligned}\right.$	2.67
$\begin{aligned} & 237_{\mathrm{U}} \\ & 236_{\mathrm{U}} \end{aligned}$	5.80 exp. 6.40 exp .	6.07	$\begin{aligned} & 0.67 \\ & 0.844 \end{aligned}$	$\begin{aligned} & 0.223 \\ & 0.281 \end{aligned}$	1.325
$\begin{aligned} & 238_{\mathrm{Np}} \\ & 237_{\mathrm{Np}} \end{aligned}$	$\begin{aligned} & 5.427(a) \\ & 6.04 \text { exp. } \end{aligned}$	6.23	$\begin{aligned} & 1.24 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 0.413 \\ & 0.500 \end{aligned}$	2.12
${ }^{236}{ }_{P u}$	5.078 (a)	6.05	2.54	0.846	2.96
${ }^{235}{ }^{\text {Pu }}$	4.70 exp.		2.79	0.93	
$\begin{aligned} & 242 \mathrm{~cm} \\ & 241 \mathrm{~cm} \end{aligned}$	4.847 (a) 4.40 exp.	5.69	$\begin{aligned} & 2.70 \\ & 2.96 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0.90 \\ & 0.986 \end{aligned}\right.$	2.99

Among the fission barriers reported by Prince [$40-7$ those which have been determined by experiment or, if nonexistent, which have been calculated from (a), were selected.
(a) $\mathrm{E}_{\mathrm{f}}(\mathrm{MeV})=\left(19.0-0.36 \mathrm{Z}^{2} / \mathrm{A}+\varepsilon\right) \quad \varepsilon= \begin{cases}0 & \text { even-even } \\ 0.4 & \text { odd } \\ 0.7 & \text { odà ooà }\end{cases}$
R.Vandenbosch, G.T. Seaborg, Phys. Rev. 110 (1958) 507

Table 5: Fission cross section data in the fast region for the isotopes ${ }^{232} \mathrm{U},{ }^{237} \mathrm{U}_{\mathrm{U}},{ }^{238} \mathrm{~Np},{ }^{236} \mathrm{Pu},{ }^{242} \mathrm{Cm}$ (see also figure 6)

1. Average fission cross section values over group 2 from 46.5 keV to 800 keV

Isotopes	U232	U237	Np238	Pu236	Cm242
so $\left._{\mathrm{f}}\right\rangle_{2}$ $\boldsymbol{I}_{\mathrm{b}} 7$	1.86	0.67	1.24	2.54	2.70

2. Fission cross section values in the energy range of group 1 from 800 keV up to 10 MeV

$\mathrm{E})^{-} \mathrm{MeV}$	$\begin{aligned} & 232 \\ & \sigma_{\mathrm{n}, f}, \\ & \underline{b}{ }^{2} 7 \end{aligned}$			$\mathrm{E} / \mathrm{MeV}-7 \left\lvert\, \begin{aligned} & \mathrm{Tp} \\ & -\mathrm{n}, \mathrm{f} \\ & \underline{b}^{238} \\ & \hline \end{aligned}\right.$		$\text { E/MeV_7\|[\|} \begin{aligned} & \sigma_{n}, f \\ & \underline{b}_{b} 7 \end{aligned}$			
0.80	1.86	0.80	0.67	0.80	1.24	0.80	2.54	0.80	2.70
4.5	1.86	5.9	0.67	5.5	1.24	4.2	2.54	3.9	2.70
4.75	1.90	6.15	0.69	5.75	1.28	4.45	2.56	4.15	2.71
4.9	2.04	6.3	0.81	5.9	1.44	4.6	2.63	4.3	2.76
5.0	2.27	6.4	1.0	6.0	1.68	4.7	2.75	4.4	2.85
5.1	2.50	6.5	1.18	6.1	1.92	4.8	2.87	4.5	2.93
5.25	2.64	6.65	1.30	6.25	2.08	4.95	2.94	4.65	2.98
5.50	2.67	6.9	1.325	6.5	2.12	5.20	2.96	4.9	2.99
10.0	2.67	10.0	1.325	10.0	2.12	10.0	2.96	10.0	2.99

Table 6: $(n, 2 n)$ cross sections for the isotopes ${ }^{237}{ }_{U},{ }^{237}{ }_{\mathrm{Np}}$, ${ }^{238} \mathrm{~Np},{ }^{236} \mathrm{Pu},{ }^{241}{ }_{\mathrm{Am}},{ }^{242} \mathrm{Cm}$
(the underlined energies indicate the threshold of the ($n, 2 n$) process for the nucleus considered)

Table 7: Average values of the mean number of neutrons per fission for the energy groups: 5: 0.025 eV

4: $0.5 \mathrm{eV}-1 \mathrm{keV}$
3: $1 \mathrm{keV}-46.5 \mathrm{keV}$
2: $\quad 46.5 \mathrm{keV}-800 \mathrm{keV}$

Isotope	$\bar{\nu}_{4}=\bar{v}_{5}=\bar{v}_{3}$	\bar{v}_{2}
231_{Pa}	-	2.55
232_{U}	2.44	2.49
234_{U}	-	2.43
236_{U}	-	2.40
237_{U}	-	2.465
237_{Np}	-	2.73
238_{Np}	2.77	2.83
236_{Pu}	2.87	2.92
238_{Pu}	2.83	2.88
241_{Am}	3.09	3.15
242_{Cm}	3.19	3.25

Table 8: Mean number of neutrons per fission for the isotopes $232_{U},{ }^{236_{U}},{ }^{237_{U}},{ }^{236_{P u}},{ }^{238} \mathrm{Pu}$

${ }^{232} \mathrm{U}$
$\bar{v}(E)=R_{n, f}(2.39+0.112(E+0.44))+R_{n, n^{\prime} f}(1+2.25+0.106(E-4.966))$ ${ }^{236}$ U
$\bar{v}(E)=R_{n, f}(2.47+0.136(E-0.96)) \div R_{n, n^{\prime} f}(1+2.33+0.130(E-5.80))$ ${ }^{237}{ }_{\mathrm{U}}$
$\bar{v}(E)=R_{n, f}(2.37+0.142(E+0.27))+R_{n, n^{\prime} f}(1+2.47+0.136(E-6.40))$ ${ }^{236}$ Pu
$\bar{v}(E)=R_{n, f}(2.77+0.106(E+0.97))+R_{n, n} f(1+2.63+0.100(E-4.70))$ ${ }^{238} \mathrm{Pu}$
$\bar{v}(E)=R_{n, f}(2.81+0.118(E+0.16))+R_{n, n^{\prime} f}(1+2.67+0.112(E-4.90))$

Table 9: Branching ratios for \bar{v}

Table 10: \bar{v}-values as a function of the neutron energy für several U- and Pu-isotopes

$\begin{array}{r} \mathrm{U} 23 \mathrm{O} \\ \mathrm{E} /-\mathrm{MeV} 7 \\ \hline \end{array}$	V	$\begin{array}{r} \mathrm{U} 236 \\ \mathrm{E} / \mathrm{MeV}^{\mathrm{Me}} 7 \mathrm{~V} \\ \hline \end{array}$		$\begin{array}{r} \mathrm{U} 237 \\ \mathrm{E} / \mathrm{MeV}_{-} 7 \mathrm{~V} \\ \hline \end{array}$		$\begin{array}{r} \mathrm{Pu} 236 \\ \mathrm{E}\left[\mathrm{MeV}_{-} 7 \mathrm{~V}\right. \end{array}$		$\begin{gathered} \mathrm{Pu} 238 \\ \mathrm{E} / \mathrm{CMV}_{-} \mathrm{M} \\ \hline \end{gathered}$	
0.8	2.53	0.8	2.45	0.8	2.52	0.8	2.96	0.8	2.92
4.5	2.94	1.0	2.46	1.0	2.55	1.0	2.98	1.0	2.95
4.75	2.98	2.0	2.61	2.0	2.69	2.0	3.08	1.2	2.98
5.0	3.05	3.0	2.75	3.0	2.83	3.0	3.19	1.5	3.04
5.1	3.08	4.0	2.88	4.0	2.98	4.2	3.32	2.0	3.10
5.25	3.11	5.0	3.02	5.9	3.246	4.45	3.34	3.0	3.23
5.50	3.14	5.7	3.11	6.15	3.31	4.6	3.37	4.0	3.36
6.0	3.19	6.07	3.19	6.3	3.33	4.7	3.39	6.0	3.60
7.0	3.30	6.70	3.32	6.4	3.36	4.8	3.41	8.0	3.83
8.0	3.41	7.41	3.45	6.5	3.39	4.95	3.43	10.0	4.07
9.0	3.52	8.19	3.55	6.65	3.43	5.2	3.46		
10.0	3.63	9.05	3.67	6.9	3.46	6.0	3.55		
		10.0	3.79	8.0	3.62	7.0	3.64		
				9.0	3.75	8.0	3.75		
				10.0	3.89	9.0	3.86		
						10.0	3.96		

Table 11: 5-group averaged values of $\sigma(n, f), \sigma(n, \gamma), \sigma(n, 2 n)$ and $\bar{\nu} \sigma(n, f)$ for the case of a thermal reactor spectrum (cross sections in barn)

Energy Groun	thermal groun			$\begin{gathered} 4 \\ 0.5 \mathrm{eV}^{4}-1 \mathrm{keV} \end{gathered}$			$1 \mathrm{kev}^{3}-46.5 \mathrm{keV}$			$\stackrel{2}{46.5 \mathrm{keV}}-300 \mathrm{keV}$			$\begin{gathered} 1 \\ 800 \mathrm{keV}-10 \mathrm{MeV} \end{gathered}$			
Isotope	< $\left.\sigma_{\gamma}\right\rangle$		$\left\langle\bar{\nu} \sigma_{f}>\right.$	$<\sigma_{\gamma}>$	$<\sigma_{f}>$	$\xrightarrow{\left\langle\nu \sigma_{f}\right\rangle}$	$<\sigma_{\gamma}>$	$<\sigma_{f}>$			$<\sigma_{f}>$	$\left\langle\bar{\nu} \sigma_{f}\right\rangle$	${ }^{<\sigma_{\gamma}>}$			$<\sigma_{2 n}{ }^{2}$
Pa231	200	0		61	0		3.5	0	-	0.43	0.18	0.46	0.05	1.2	4.2	2.9610^{-2}
U232	78	77	188	20	39		0.7	5.0		0.16	1.9	4.6	0.06	1.9	7.3	1.49510^{-3}
U234	95	0	-	21	0		1.4	0	-	0.31	0.29	0.70	0.14	1.3	4.9	8.87510^{-4}
U236	5.6	0	-	54	0	-	1.4	0	-	0.31	0.004	0.01	0.14	0.69	3.5	6.0110^{-3}
U237	480	2	4.8	37	0	-	2.2	0	-	0.18	0.67	1.7	0.07	0.68	3.1	2.8510^{-2}
Np237	170	0	-	122	0	-	4.6	0	-	0.96	0.28	0.76	0.17	1.57	6.2	4.7910^{-3}
Np238	43	2200	6094	3.7	191		0.14	8.1	22	0.30	1.2	3.5	0.12	1.3	6.0	1.5810^{-2}
Pu236	33	162	465	25	123	353	1.0	4.8	14	0.30	2.5	7.4	0.12	2.6	9.7	6.6610^{-5}
Pu238	547	16	45	18	2.8	7.9	2.4	0.64		0.14	1.1	3.0	0.03	2.3	9.0	3.4810^{-4}
Am241	582	3	9.3	208	1.1		4.5	0.02	0.07	0.30	0.07	0.22	0.12	1.5	8.1	5.8110^{-3}
Cm242	20	0.8	2.6	87	3.9	12.4	2.9	0.13	0.41	0.30	2.7	8.8	0.12	2.7	11.6	3.2110^{-4}

Table 12: 5 -croup averaged values of $\sigma(n, f), \sigma(n, \gamma), \sigma(n, 2 n)$ and $\bar{v} \sigma(n, f)$ for the case of a fast reactor spectrum (cross sections in barn)

Energy Group	5 thermal groun			$\begin{gathered} \frac{1}{4} \\ 0.465 \mathrm{eV}-1 \mathrm{keV} \end{gathered}$			$1 \mathrm{kev}{ }^{3} 46.5 \mathrm{keV}$			$\begin{gathered} 2 \\ 46: 5 \mathrm{keV}-800 \mathrm{keV} \end{gathered}$			$\stackrel{1}{800 \mathrm{eV}}-10 \mathrm{MeV}$			
Isotope	$\left\langle\sigma_{\gamma}\right\rangle$	$<\sigma_{f}>$	$\left\langle{ }^{\sim} \sigma_{f}\right\rangle$	$<\sigma_{\gamma}>$	$<\sigma_{f}>$	$<\bar{v} \sigma_{f}>$	$<\sigma_{\gamma}>$	$<_{4}{ }_{4}{ }^{\text {c }}$		< $\sigma_{\gamma}>$	$\left.<\sigma_{f}\right\rangle$	$\left\langle\stackrel{\nu}{\nu} \sigma_{p}>\right.$	< $0_{\gamma}>$	$<\sigma_{f}>$	$\left\langle\bar{v} \sigma_{f}>\right.$	$<\sigma_{2 n}>$
Pa231	200	0		10.6	0		3.0	0	-	0.53	0.11	0.28	0.07	1.1	4.2	9.40100^{-4}
U232	78	77	188	3.7	10.3		0.8	2.2	5.3	0.18	1.9	4.7	0.07	1.9	7.3	4.6410^{-4}
U234	95	0	-	5.8	0	-	0.9	0	-	0.33	0.19	0.46	0.18	1.3	4.9	2.8410^{-4}
U236	5.6	0	-	4.9	0	-	0.9	0	-	0.33	0.0015	0.0036	0.18	0.62	3.5	1.9510^{-3}
U237	480	2	4.8	16	0	-	3.9	0	\cdots	0.07	0.67	1.7	0.18	0.68	3.1	9.9110^{-3}
Inp237	170	0	-	15.3	0	-	3.3	0	-	1.14	0.18	0.49	0.22	1.5	6.2	1.5410^{-3}
Np238	43	2200	6094	2.1	18.3	51	0.54	7.8		0.12	1.2	3.4	0.30	1.3	6.0	5.5110^{-3}
Pu236	33	162	465	4.7	8.8		1.0	2.0	5.8	0.12	2.5	7.3	0.30	2.6	9.7	2.0810^{-5}
Pu238	547	16	45	6.9	1.6		1.2	0.28	0.78	0.16	0.88	2.5	0.03	2.2	9.0	1.1010^{-4}
Am24 1	582	3	9.3	15.7	1.4	4.4	3.1	0.59	1.8	0.12	0.05	0.16	0.30	1.4	8.1	1.9710^{-3}
Cm242	20	0.8	2.6	7.5	0.32	1.0	1.6	0.066	0.21	0.12	2.7	8.8	0.30	2.7	11.6	1.0210^{-5}

Figure captions

Fig. 1 Flux spectrum of a thermal reactor

Fig. 2 NAP-core spectrum

Fig. 3 Flux spectrum of a fast reactor
Fig. 4 The fission cross section for ${ }^{236} U$
Fig. $5 \quad$ Correlation of $\sigma_{f}(3 \mathrm{MeV})$ with $\mathrm{z}^{4 / 3} / \mathrm{A}$

Fig. 6 The fission cross section in the fast region for ${ }^{232} \mathrm{U},{ }^{237} \mathrm{U},{ }^{236} \mathrm{Pu},{ }^{238} \mathrm{Tp},{ }^{242} \mathrm{Cm}$

Fig. 7 Preferred shape of $\sigma_{f}(R)$ for ${ }^{241} \mathrm{Am}$
Fi.g. 8a The energy dependence of $\sigma(n, 2 n)$ for ${ }^{237},{ }^{236} \mathrm{Pu},{ }^{2414} \mathrm{Am}$,
Fi.E. $8 \mathrm{~b} \quad{ }^{233_{\mathrm{Mp}}},{ }^{237_{\mathrm{Mp}}},{ }^{242 \mathrm{~cm}}$
Hig. $9 \quad \bar{v}$ as a function of the neutron energy for ${ }^{232}{ }_{U},{ }^{236}{ }_{U}$. ${ }^{237} 7_{\mathrm{UJ}},{ }^{236} \mathrm{Pu},{ }^{238}{ }_{\mathrm{Pu}}$

Beide Achsen logar.geteilt 5 Jomm

Beide Achsen logar.geteilt von!m

Fig. 5 Variation of the fission cross section for fission induced by 3 MeV neutrons with $z / 3 / \mathrm{A}$
(A mass number of the target nucleus)

Fig. 6 Fission cross section in the fast region (see also table 5)

[^1]

Fig. 9 as a funciion of the neutron energy for the isotopes
U 232, U 236, U 237, Pu 236, Pu238.

Fig. $10 \overline{\mathrm{y}}$ as a function of the neutron energy for the isotopes
Np 237, Np 238, Am 24, Cm 242

[^0]: * In the meantime Davey himself has revised the fission cross section values for U236 recommended in 1968. His now preferred values $\overline{7} 7$ are also based on the experimental data of Stein et al. in the energy range $1-5 \mathrm{MeV}$.

[^1]:

