KERNFORSCHUNGSZENTRUM

KARLSRUHE

Institut für Angewandte Reaktorphysik Institut für Neutronenphysik und Reaktortechnik

Projekt Schneller Brüter

A Three-dimensional Synthesis Method Tested and Applied in Fast Breeders
S. Pilate, G. Buckel, M. Billaux, A. Charlier, P. Mc Grath, F. Plum

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Angewandte Reaktorphysik
Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Bruiter

A three-dimensional Synthesis Method tested and applied in fast breeders
by
S. Pilate ${ }^{+}$, G. Buckel, M. Billaux ${ }^{+}$, A. Charlier ${ }^{+}$,
P. Mc Grath, F. Plum

+ S.A. Belgonucleaire, Brüssel

Gesellschaft für Kernforschung mbH., Karlsruhe

Zusammenfassung

Das Computerprogramm KASY, das in Karlsruhe fir die Rechenanlage IBM $360 / 50$ geschrieben wurde, löst die dreidimensionale Diffusionsgleichung mit einer Synthesemethode, die in voraus erstellte zweidimensionale Versuchsfunktionen benifzt.

Der erste Teil dieses Berichts beschreibt den Test der in KASY verwendeten Fluss-Synthesemethode durch einen Vergleich mit einem dreidimensionalen, totalnumerischen Program. Verglichen werden Grössen wie $k_{\text {eff }}$, Kontrollstabreaktivitäten, sowie Fluss- und Reaktionsraten.

Im zweiten Teil wird die Synthesemethode auf die Auswertung einer Reihe von Kontrollstabexperimenten angewandt. Diese ufassen Einzelstabmessungen sowie Abschattungseffekte mehrerer Stãbe in einem schnelien Brütercore.

Summaxy.

The computer program KASY, written at Karlsruhe for the I.B.M. 360/65, solves the three-dimensional diffusion equation by means of a synthesis method using availeble two-dimensional trial functions.

The first part of this report is devoted to the test of the flux synthesis method used in KASY with respect to results obtained by a direct three-dimensional program. The results considered are : kefo control rod reactivities, flux and reaction rate maps.

In the second part the KASY synthesis is applied to the evaluation of a diversified series of control rod experiments in a fast breeder core containing one or more control rods.

```
Sommaire.
```

Le programe KASY, écrit ̀̀ Karlsruhe pour l'ordinateur I.Fif. $360 / 65$, résout I'équation de diffusion à trois dimensions au moyen d'une né thode de symthèse employant des fonctions d'essai à deux dimensions prédéterminées.

La première partie de ce rapport est consacrée au test de la méthode de synthèse des flux, employée dans KASY, par rapport aux résultats obtenus par un programe à trois dimensions. Les résultats considérés sont : kef" les réactivités de barres de contrôle et les cartes de flux et de taux de réaction.

Dans la seconde partie, la synthèse KASY est appliquée à l'interprétation d'un vaste programe d'expériences de barres de contrôle, dans un coeur de réacteur rapide contenant une ou plusieurs barres de contrôle placées en différentes positions.

Table of contents.

Summary
Zusammenfassung
Sommaire
0. Introduction 5

1. Comparison with direct three-dimensional results 7
1.1. Problems considered 7
1.2. $k_{e f f}$ and reactivity changes with a central control rod 9
1.3. Flux and fission rate maps with a central control rod 10
1.4. $k_{\text {eff }}$ and reactivity changes with an off-center control rod 13
1.5. Flux and fission rate maps with an off-centex control rod 16
2. Application to an experimental evaluation 20
2.1. Description of the problem 20
2.2. Case one : reactivity changes with one control rod 22
2.3. Case two : reactivities and traverses with three control rods 24
2.4. Case three characteristic curve of a control row 26
3. Conclusions 28
References 29
Appendix 1 - Nunerical data (composition, geometry, preparation) 32
Appendix 2 - Tables. 39
Figures 54

0. Introduction.

Written at Karlsruhe for the I.B.M. $360 / 65$, the computer program KASY [1] solves the three-dimensional diffusion equation by means of a synthesis method using available two-dimensional trial functions. The method of solution Is based on the variational process due to Kantorowitch and developed by Kaplan [2].

KASY determines k mixing functions Z_{k} of the third variable Z and constructs the three-dimensional flux functions $\Phi(X Y Z)$ by means of the following linear combination :
$\Phi(X Y Z)=\sum_{k} Z_{k}(Z) \cdot H_{k}(X Y)$
where the k functions H_{k} are linearly independent trial functions of the two variables X and Y.

The mixing functions are determined as solutions of a system of equations analogous to the classical diffusion equation, in which the coefficients are averaged over the plane of the two variables XY.

These coefficients may be averaged with the adjoint flux H_{k}^{*} or the direct flux H_{k} as weighting function. The second function has been preferred here because of the associated computer time savings (this is referred to as Galerkin's method).

The complete details of the KASY program are given in the report [1]; it includes basic theory, method of solution, possible options, input data and comments on the use of the program.

The three possible geometries in the KASY program are XY/Z, R θ / Z and RZ/ θ. Only the $X Y / Z$ geometry is utilized in this report.

In principle, the trial functions H_{k} may be any mathematical functions of X and Y which obey the boundary conditions of the problem. In practice, however, such a function is a flux distribution; it is the solution of the diffusion equation in two dimensions obtained by a. 2-D diffusion program.

The neutron energy group index has been omitted for simplicity. In this report a 4 - or 5 - energy group scheme is used.

The first chapter of this report presents comparisons of KASY results with those from a direct three-dimensional diffusion program, TRITON [3]. The computational results taken for comparison are keff, reactivity differences Δk and maps of the fluxes and the fission rates. Cases with and without control rods, fully or partially inserted, in a central or offcenter position are considered.

In the second chapter, a typical case of application of KASY is described : the evaluation of a series of control rod experiments performed in the fast critical assembly SNEAK at Karlsruhe [4].

1. Comparison with direct three-dimensional results,
1.1. Problems considered.
1.1.1. The 3-D synthesis performed by means of the KASY program is tested by comparing its results with those obtained by a direct 3-D diffusion program IRITON [3], in its version used at BELGONUCIEAIRE .
1.1.2. The geometrical model represented is $X Y Z$.
1.1.3. Two different cases of application have been selected for consideration. These are the following :
A) insertion of a $B_{4} C$ control rod (with a sodium-steel follower) at the center of ZPR-III-48, a 370 liter UC - Puc core [6] ;
B) insertion of a tantalum control rod at an off-center position in SNEAK-2C, a 880 liter $\mathrm{VO}_{2}-\mathrm{PuO}_{2}$ core [4].
1.1.4. The following results of calculation are compared : multiplication coefficients $k_{\text {eff }}$ with a control rod full in, full out and half inserted, the reactivity changes Δk associated with the insertion of the control rod and the three-dimensional maps of fluxes and fission rates with and without the control rod presence in the core.
1.1.5. In the practical application of a synthesis method the problem arises as to choosing adequately the number and the nature of the trial functions. All trial functions used here are $2-D(X Y)$ flux distributions, in 5 or 4 energy groups, generated by the 2-D diffusion program DIXY of Karlsruhe [5]. The trial functions considered in these tests may be grouped in three distinct categories : core functions, blanket functions and auxiliary functions.
1.1.6. The core functions are the solutions of normal 2-D(XY) problems, that is, flux distributions in a horizontal plane which characterizes one axial slice of the reactor. A core containing a control rod partially inserted may be divided in two axial slices : core containing absorber, core containing follower. These 2-D calculations are performed using transverse buckling values, which vere selected as constant (region and energy independent).
1.1.7. The blanket functions are also relative to axial slices, but in the axial blanket section. The transverse buckling is set equal to zero. It is of course possible to improve the blanket trial functions by using space and energy dependent B_{Z}^{2} values extracted from previous (RZ) calculations. It is also possible to do the seme for the core trial functions. However the main goal in these comparisons is to find convenient, quick, and systematical means of synthesis which give easily reproducible results practically independent of any assumption on auxiliary data such as the bucklings.
1.1.8. The auxiliary functions are generated by two-dimensional calculations in which fuel is placed in a particular radial region of the reactor, with the remaining space filled with an absorber. The idea is to generate a quasi step function, which when combined with a reference core function, would allow one to improve the synthesis in the region of interest.
1.1.9. In the first application (ZPR-III-48), core and blanket functions are used, while in the second application the three types of trial functions are used and tested.
[^0]The second application represents a rather severe test of the synthesis method because of the off-center position of the control rod and also of the low ratio of core height-to-diameter (< 0.5).
1.2. Kefi and reactivity changes with a central control rod.
1.2.1. Table I below gives the $\mathrm{k}_{\text {eff }}$ calculated by TRITON and KASY for the three cases relative to the insertion of a central control rod in 2PR-III-48. These are full insertion ("rod in"), half insertion ("rod half in") and non insertion ("rod out" or "follower in"). The reactivity changes corresponding to the half and full insertion of the rod are also compared.

Four different trial functions have been used in the symthesis :
1°) core with follower, $\mathrm{B}^{2}=8.810^{-4} \mathrm{~cm}^{-2}$;
2°) core with absorber rod, $\mathrm{B}^{2}=8.810^{-4} \mathrm{~cm}^{-2}$;
3°) blanket with follower, $B^{2}=0$;
4°) blanket with absorber rod, $B^{2}=0$.
The synthesis results are distinguished according to the combinations of trial functions. KASY (core functions)
means that the core functions only were used (combinations : (1), (1,2), (2)) and KASY (core and blanket functions) means the combinations $(1,3),(1,2,3),(2,4)$.

Table I. ZPR-III-48, comparison KASY-TRITOM, $k_{\text {eff }}$ and $\triangle k$.

Cases	TRITON	(DIXY) ${ }^{\text {A }}$	KASY (core functions)	KASY (core \& blanket functions)
$\begin{aligned} & \frac{k_{\text {eff }}}{\text { rod out }} \\ & \text { rod half in } \\ & \text { rod in } \end{aligned}$	$\begin{aligned} & .9889 \\ & .9782 \\ & .9683 \end{aligned}$	$\begin{aligned} & (.9959) \\ & (.9754) \end{aligned}$	$\begin{array}{ll}(1) & .9883 \\ (1,2) & .9776 \\ (2) & .9677\end{array}$	$\begin{array}{ll} (1,3) & .9886 \\ (1,2,3) & .9779 \\ (2,4) & .9680 \end{array}$
$\Delta k\left(10^{-4}\right)$ rod out-rod half in rod helf in - rod in rod out - rod in	$\begin{array}{r} 107 \\ 99 \\ 206 \end{array}$	(205)	$\begin{gathered} 107 \\ 99 \\ 206 \end{gathered}$	$\begin{array}{r} 107 \\ 99 \\ 206 \end{array}$

${ }_{2-D}$ results obtained with an estimated B^{2}.
1.2.2. The computer times needed for the three problems on the I.B.M. $360 / 65$ were the following (the preparation of the cross-sections was not taken into account, common time $\left\langle 1^{\prime}\right.$):

IRITON : 79'
KASY (including the DIXY calculations) :
core functions : 5:30"
core and blanket functions : $7^{140^{\prime \prime}}$
1.2.3. As far as $k_{e f f}$ is concerned, the synthesis using respectiveIy core functions or core and blanket functions reproduce the TRITON resuits witin systematic deviaiions :

- 610^{-4} (core functions) ;
- 310^{-4} (core and blanket functions).
1.2.4. As far as reactivity changes Δk are concerned, the KASY results are identical to the TRITON results within the convergence accuracy, but with a factor of 14 (core functions) or 10 (core and blanket functions) in computer time savings.
1.3. Flux and fission rate maps with a central control rod.
1.3.1. Table A.2. in the Appendix 2 gives as an example a general flux map for the ZPR-III-48 "rod out" case. The most typical mesh points have been considered, including points inside of homogeneous zones as well as points on the boundaries. The boundaries between the core, blanket and control rod have been doublelined.

The flux map is normalized to 1000 at its maximum value (group 2 at point (1,1,1)).

One may observe that the spectrum is very hard. In all the regions, groups 1, 2 and 3 ($\mathrm{E}>10 \mathrm{keV}$) represent more than 90% of the total flux. Spetially, the flux is rapidly decreasing through the blanket, roughly one magnitude for each 25 cm distance.
1.3.2. The Plux maps obtained by TRITON and KASY are compared for the case "rod half in" in Tables A.3., A.4. and A.5. of the Appendix 2.

The same normalization as mentioned above was applied to both sets of results. The maximum flux occurs here in group 2 at the point $(4,1,11)$, at the boundary between the core and the follower rod, slightly below the core midplane.

The Tables A.3., A.4. and A.5. give directly the relative deviations, $\frac{\Phi_{\text {KASY }}-\Phi_{\text {TRIMON }}}{\Phi_{\text {IRIMON }}}$, in percert.
1.3.3. Table A.6. gives in the core and blanket regions, the relam tive deviations in the total fission rate. The total fission rate is considered the most interesting reaction rate as far as power reactor design is concerned. The values in Table A.6. are renomalized to the integral of the fission rate over the core volume.

In the control rod, the total capture rate is considered. This capture rate, mostly due to B^{10} in the absorber part, is related to the reactivity value of the control rod.
1.3.4. The examination of the deviations in rates is enhanced when one considers separately the different zones of the reactor, and the boundaries of the zones. It is clear for example, that the plane $Z=5$, which contains the boundary core-axial blanket, is likely to represent a major difficulty for the synthesis process.

Nine zones or boundaries have been distinguished for this purpose :
1°) core, inner part;
2°) core, inner and outer radial boundaries;
3°) core, upper and lower planes ($Z=5$ and 15) ;
4°) core, "corner points" (13,1,5 and 15) ;
5°) radial blanket, surrounding the core (height of the core) ;
6°) axial blanket, surrounding the core (radius of the core) ;
7°) "corners" of the blanket;
8°) control rod (absorber or follower) in the core ;
9°) control rod (absorber or followex) in the blanket.
1.3.5. Table II below summarizes the largest deviations for the nine zones or subzones mentioned for the core and blanket regions (zones 1 to 7), deviations in the fission rate are presented; for the control rod (zones 8 and 9), deviations in the capture rate.

Table II. ZPR-III-48 - Rod half in. Largest deviations in the fission and capture rate : $\frac{\mathbf{F}_{\text {KASY }}-\boldsymbol{F}_{\text {TRITON }}}{\mathbf{F}_{\text {TRITON }}}$ (in \%)

Zones or boundaries	Largest deviations (in $\%$)
1. Core, inner part	In the fission rate
2. Core, inner and outer radial boundaries	0.9
3. Core, upper and lower planes $(\mathrm{Z}=5$ and 15)	2.4
4. Core, "corner points" (13,1,5 and 15)	1.6
5. Radial blanket, surrounding the core	7
6. Axial blanket, surrounding the core	6
7. Blanket corners	10
	66
8. Control rod in the core	In the capture rate
9. Control rod in the blanket	1

1.3.6. In the considered case, the synthesis gives relatively bad results in the blanket corners and at the corner point of the core. If one excludes these zones, the comparison gives satisfactory results for KASY.
1.4. k eff and reactivity changes with an off-center control rod.
1.4.1. In this second test (SNEAK-2C), many different trial functions have been utilized in the synthesis. These are :
1°) core with a tantalum rod, $B^{2}=1.1610^{-3} \mathrm{~cm}^{-2}$
2°) a reference core (without control rods), $B_{1}^{2}=1.1610^{-3} \mathrm{~cm}^{-2}$
3°) blanket with a tantalum rod, $B^{2}=0$
4°) reference blanket, $B^{2}=0$
$\left.\left.\left.5^{\circ}\right), 6^{\circ}\right), 7^{\circ}\right), 8^{\circ}$) auxiliary trial functions, $B^{2}=0$
The auxiliary trial functions correspond to the presence of :
5°) core zone Z_{1} (SNEAK) in the rod position;
6°) core zone Z_{1} (SNEAK) in core zone 1 ;
7°) core zone Z_{2} (SNEAK) in core zone 2 ;
8°) blanket material in radial blanket;
surrounded each time by an absorber (tantalun) elsewhere. The purpose of these functions is, as outlined in paragraph 1.1.8., to emphasize in the synthesis a particular region of the horizontal cross-section of the core. These trial functions are also used as weighting functions of the diffusion parameters D and Σ in the synthesis. The coefficients weighted by such functions (and leading to a particular det of mixing functions Z_{k}) are approximately representative of the region of interest.

Different syntheses have been performed, combining one, two or three trial functions among those available.
1.4.2. Table III below gives the $k_{e f f}$ calculated by IRITON and KASY, for the two considered cases : reference and control rod full inserted. The reactivity changes corresponding to the replacement of fuel by absorber (tantalum) are also compared.

The synthesis results are distinguished according to the combinations of trial functions which were used.

Table III. SNEAK-2C, comparison KASY-TRITONY $k_{\text {eff }}$ and Δk.

Methods	keff reference		keff Rod in		$\Delta k\left(10^{-4}\right)$
TRITON	.9770		. 9600		170
(DIXY) ${ }_{\text {t }}$	(.9813)		(.9639)		(174)
KASY ${ }^{\text {find }}$					
1 trial function	(2)	.9764	(1)	.9594	170
2 trial functions	$(2,4)$.9768	$(1,3)$. 9598	170
	$(2,6)$.9768	$(1,6)$. 9598	170
	$(2,7)$.9767			
	$(2,8)$.9766	$(1,5)$.9595	
3 trial functions	$(2,4,6)$.9769	$(1,3,6)$. 9599	170
	$(2,4,8)$.9768	$(1,3,8)$. 9598	170
			$(1,2,3)$. 9598	

2-D results obtained with an estimated B^{2}.
The numbers of the trial function used are indicated in brackets.
1.4.3. One observes from table III that in spite of the approximate B^{2} values used in the DIXY 2-D calculations, which give a 0.4 of too high $k_{\text {eff }}$, the $k_{\text {eff }}$ obtained by synthesis are very good.

As an additional test the constant B^{2} of $1.1610^{-3} \mathrm{~cm}^{-2}$ was modified to $1.1310^{-3} \mathrm{~cm}^{-2}$ in the DIXY calculations. With these DIXY fluxes, the synthesis was repeated with one and two trial fuctions (2,4 and 1,3).

The influence of the 3% difference in B^{2} on the $k_{\text {eff }}$ given by synthesis was found to be smaller than $10^{-5} \Delta \mathrm{k}$. This confirms a similar conclusion already obtained in [1] for other core configurations.

It is an advantage of the synthesis technique that approximate B^{2} values in the 2-D calculations are sufficient.
1.4.4. As far as $k_{\text {eff }}$ is concerned, the synthesis using, respectively 1,2 or 3 trial functions reproduce the TRITON results with systematic deviations :
-610^{-4} (one trial function);
-210^{-4} (two trial functions, with the best combination) ;

- 110^{-4} (three trial functions, with the best combination).
1.4.5. The best single T.F. is unambiguously fixed. It is the core function which corresponds to the considered case (reference or rodin).

The best 2 T.F. combination associates the core function with either the appropriate blanket function (3 or 4), or the auxiliary T.F. Nr 6, which emphasizes the central core zone Z_{1}. Maphasizing other zones, namely the control rod instead of the central zone, does not give as good results.

[^1]The best 3 T.F. combination is the appropriate core and blanket functions and the auxiliary function typical of the central core zone. Substituting the latter by other T.F. gives slightly worse results.
1.4.6. As far as reactivity changes $\Delta \mathrm{k}$ are concerned, KASY reproduces the TRITON results within the convergence accuracy.
1.4.7. Such remarkable results correspond to the following running times :

TRITON (reference and rod in, respectively 8 and 16 iterations) : 90^{\prime}
KASY (reference and rod in, including the DIXY calculations ${ }^{\text {math }}$)
one T.F. $5^{\prime} 30^{\prime \prime}$
two T.F. $8 \cdot 30^{\prime \prime}$
three T.F. 9^{\prime}
1.5. Flux and fission rate maps with an off-center control rod.
1.5.1. Table A.7. in Appendix gives a general flux map for the SNEAK-2C "rod in" case. The most interesting mesh points are considered. The boundaries between core, blanket and control rod are doublelined.

The flux values axe normalized to 1000 at the maximum (group 3 at point 1,22,13).

```
*Netail of the DIXY times : T.F. 1 (18 iterations): 2'20"
    T.F. 2 (14 iterations): 1'50"
    T.F. 3+4 (8 iterations):1'
    T.F. 5+6+7+8(11 iterations) : 1. }2\mp@subsup{0}{}{\prime\prime
Detail of the KASY times : one T.F. (13 iterations) : 40'
    two T.F. (19 iterations) : 1'
    Three T.F.(22 iterations): 1'20"
```

Which respect to the first test (ZPR-III-48) a larger number of points in the blanket are considered, and namely points placed on the most outer boundaries of the system, where the fluxes are relatively small (about a factor 50 smaller than on the outer core boumdary).

The neutron spectrum in the core and blanket is approximately as hard as in the preceding test. The groups 1, 2 and 3 ($\mathrm{E}>21.5 \mathrm{keV}$) comprise about 90% or more of the total flux.
1.5.2. The flux maps obtained by TRITON and KASY are compared for the case "rod in" for all the groups (1 to 4) in Tables A.8., A.9., A.10. and A.11. of the Appendix. The values in the tables are the relative deviations $\frac{\Phi \text { KASY }-\Phi \text { TRITON }}{\Phi_{\text {TRITON }}}$, in percent.
1.5.3. Table A.12. of the Appendix gives the relative deviations in the fission rate in core and blanket regions after renormalisation to the integral of the fission rate over the core volume. In the control rod the capture rate is examined.
1.5.4. Three different KASY syntheses are compared with TRITON using respectively, one, two and three trial functions. These are the best combinations of trial functions found as far as $k_{\text {eff }}$ and Δk are concerned, that is :
one trial function : (1)
two trial functions : $(1,3)$
three trial functions : $(1,3,6)$
1.5.5. As for the first test, the deviations have been examined by subdividing the system into zones and boundaries. The same nine zones or boundaries (see paragraph 1.3.4.) have been distinguished ord, in addition, the upper and lower boundaries of the axial blanket (not examined for ZPR), which are outer boundaries for the system itself.

[^2]1.5.6. Table IV below sumarizes the largest deviations in each subzone. In the core and blanket regions deviations in the fission rate are presented. In the control rod, deviations in the capture rate are given.

Table IV. SNEAK-2C, rod in, Largest deviations in the fission or capture rate : $\frac{\mathrm{F}_{\text {KASY }}-\mathrm{F}_{\text {TRITON }}}{\mathrm{F}_{\text {TRITON }}}$ (in $\%$).

Zones	Largest deviations (in \%)		
	1 trial function	2 trial functions	3 trial functions
	On the fission rate		
1. Core, inner part	2.5	2.4	1.0
2. Core, inner and outer radial boundaries	2.9	2.9	1.2
3. Core, upper plane ($z=6$)	4.5	4.6	4.3
4. Core, "corner point" $(21 ; 22,6)$	6.4	9.4	7.8
5. Radial blanket, surrounding the core	4	8	3
6. Axial blanket, surrounding the core	10	10	11
6. bis. Axial blanket, upper plane	53	59	55
7. Blanket corners	60	68	94
	On the capture rate		
8. Control rod, core section	1.4	1.5	0.8
9. Control rod, blanket section	12	12	14

1.5.7. Here again the synthesis gives relatively bad results in the blanket corners and at the corner point of the core. This is also the case for the upper plane of the axial blanket. Excluding these zones the results are generally satisfactory, as illustrated in Figure 6 which represents, superimposed on the geometrical reactor model, the lines of constant $1 \%, 5 \%$, 20% and 50% deviations for the synthesis using three trial functions.
1.5.8. With the combinations of trial functions formed, the use of several trial functions does not result in any substantial improvement in the crucial zones mentioned.

In the core regions, and to a lesser extent in the blanket regions (inner part), one observes, in the considered cases, no real change when passing from one to two trial functions, but a significant improvement with three functions.

2. Application to an experimental evaluation.

2.1. Description of the problem.
2.1.1. The series of SNEAK-2 experiments [4], performed from June to November 1969, was the first simulation in SNEAK of a sodium-cooled two-zone core of the $S N R^{\text {A }}$ type. In a portion of this program, SNEAK-2C, reactivity changes and fission rate traverses were measured in the core with various configurations of absorber rods ($\mathrm{B}_{4} \mathrm{C}, \mathrm{Ta}$) and/or followers (Na, Al). The traverses were measured in the radial, axial and azimuthal directions. The control rods were located either at the center or near the boundary between two core zones. In the other positions, three rods were present simultaneously in order to study the shielding effects.

The SNEAK-2C core configuration resulted from the substitution of a sector zone, containing plutonium, into a uranium fuelled core (SNEAK-2A) : see Figure 3 for a typical representation. Throughout the SNEAK-2C experiments, 5 different core configurations, differing by the radial size of the core, were loaded. The larger radial core size was necessary in order to compensate for the relatively high negative reactivity of the absorbers used (up to $3 \% \Delta k$).

The report [4] describes in detail the principles and purposes of these control rod experiments; it gives the sequence of the measurements and reports on the complete evaluation.
2.1.2. A portion of the measured quantities could be calculated using a two-dimensional geometrical model. However, the adequate representation of partially inserted control rods requires the three dimensional capabilities of KASY.

[^3]The synthesis method was applied to the entire sexies of experiments in SNBAK-2C (see [4]). In this report only three particular cases of application are selected and considered in detail. They are :

- reactivity changes associated with a single Al-Ta control rod in outer position 1 ;
- reactivity changes and fission rate traverses associated with three half inserted $\mathrm{B}_{4} \mathrm{C}$ control rods, placed on outer positions 1, 2, 3 ;
- characteristic curve of reactivity versus insertion depth for a single $B_{4} C$ control rod, in inner (but not central) - position 4, when the three positions 1, 2, 3 are occupied by full inserted $B_{4} C$.
2.1.3. As mentioned in Chapter 1, all the reactivity changes are calculated to an eccuracy of 10^{-4} or greater. The accuracy of the fission traverses as calculated with KASY is given in Chapter 1.

In the following applications, the simplest means of synthesis was chosen : one trial function (full or no insertion of the control rod) or two trial functions (partial insertion of the control rod.).

With respect to a direct three-dimensional calculation, the calculation by KASY of a radial fission rate traverse in the core midplane is accurate to within :

1 of in the centrel core zone;
1 of in the outer core zone;
4% in the radial blanket.
if the traverse is normalized to a unit core average value. The capture rate in an off-center control rod is reproduced within 1% in the core section.

An axial traverse in a core zone 2 (see Fig. 2) close to an off-center control rod is calculated to within the same accuracy, if one excludes the boundaries, and to within 4% on the core-blanket boundary.

An azimuthal traverse, between of i-center control rods, is calculated as accurately as a radial traverse. For all points of the fission traverses located within the core or the control rod, if one renormalizes the axial traverses to their core average value ${ }^{\text {kit }}$, the maximun deviation due to the synthesis approximation is 1%.
2.1.4. Ho reference to the corresponding results of measurements will be made here. The aim of this report is to assess the applicability of a mathematical tool used to solve control rod design problems in complex geometries.

Clearly the synthesis calculations reported here are limited by the diffusion approximation on one side, and are affected by the errors of the basic cross-sections on the other side. A full comparison between calculation and experiment for the SNEAK-2C control rod series may be found in Chapter 7 of the report [4].

2.2. Case one : reactivity changes with one control rod.

2.2.1. In the core of 494 elements, represented in Figures 3 and 4, one single control rod of 4 SNEAK elements ($10.88 \times 10.88 \mathrm{~cm}$) is inserted in outer position 1. This is near the boundary between the two radial zones z_{1} and Z_{2} of different enrichment.

[^4]The absorber consists of tantalum and the follower of aluminium; see exact corapositions in Table A.1. of the Appendix.

The cases calculated are :
1°) 2-dimensions (XY) :
a) core with Ta in position 1 ;
b) core with Al in position 1 ;
2°) 3-dimensions (XY/Z) : Ta full inserted, helf inserted (designated $\mathrm{Al}-\mathrm{Ta}$) and not inserted (designated AI) in position 1.
2.2.2. Table V below gives the $k_{e f f}$ and Δk obtained. The simple difference $\Delta k=k_{1}-k_{2}$ is retained as the reactivity corresponding to the insertion of the absorber.

Table V. SNEAK-2C, first case, $k_{\text {eff }}$ and Δk.

$k_{\text {eff }}$			$\Delta \mathrm{k}\left(10^{-5}\right)$		
Cases	$2-D(X Y)$	$3-D(X Y / Z)$	Cases	2-D(XY)	$3-D(X Y / Z)$
A1.	.98393	. 97908	$\mathrm{Al} \rightarrow \mathrm{Al}-\mathrm{Ta}$	-	203
Al - Ta		.97705	$\mathrm{Al}-\mathrm{Ta} \rightarrow \mathrm{Ta}$	-	172
Ta	.98015	. 97533	$\mathrm{Al} \rightarrow \mathrm{Ta}$	378	375

2.2.3. From the $k_{\text {eff }}$ given in Table v one observes a systematical discrepancy $2-D / 3-D$ of $0.5 \% \Delta k$ which is due to the $10 \mathrm{~W} B_{Z}^{2}$ used in the 2-D calculations. The $3-D k_{\text {eff }}$ values have been checked for a reference case without control rod with a $2-D(R Z)$ calculation with a correction for cylindrisation, and found to be correct. This confirms the lack of influence of the B_{Z}^{2} value used in the 2-D calculations on the final synthesis result (paragraph 1.4.3.).
2.2.4. The reactivity value Δx calculated by KASY for the half insertion of the absorber is 8% larger than half the full insertion value. Such a departure from symmetry for the characteristic curve (explainable by the change of spectrum induced by the absorber at its lower end) may not be evidenced of course by simple 2-D(XY) resuits.
2.2.5. The three-dimensional flux maps from the KASY calculations have been used to evaluate the fission rate traverse measurements. A typical example of such an evaluation is shown in paragraph 2.3.
2.2.6. The running times were the following on the I.B.M. 360/65: preparation of cross-sections (with condensation) : 1^{\prime} two DIXY runs 12^{\prime} three KASY runs one using two trial functions $2^{\prime} 20^{\prime \prime}$ two using one trial function 2^{120}

The synthesis calculation represents here only one third of the time used for the preparation of cross-sections and for the two-dimensional calculations.

2.3. Case two : reactivities and traverses with three control rods.

2.3.1. In the core of 539 elements represented in Figure 5, three control rods of 4 SNEAK elements each, are placed in outer positions 1, 2 and 3 , near the boundary between the two radial core zones Z_{1} / Z_{2}. The positions have a distance of 30 cm from each other (center-to-center).

The absorber consists of $\mathrm{B}_{4} \mathrm{C}$ and the follower of Na ; see exact compositions in the Appendix, Table A.1.

The control rods in positions 2 and 3 are half inserted ($\mathrm{Na}-\mathrm{B}_{4} \mathrm{C}$) while the central one is, respectively, not-, half- and full-inserted ($\mathrm{Na}, \mathrm{Na}-\mathrm{B}_{4} \mathrm{C}$ and $\mathrm{B}_{4} \mathrm{C}$). The corresponding reactivity changes are calculated as well as the map of fission rates for the entire rod bank helf inserted.
2.3.2. The necessary 2-D calculations are therefore :
1°) core with $\mathrm{B}_{4} \mathrm{C}$ in positions 2 and 3, with alternately :
a) Na in position 1 ;
b) $\mathrm{B}_{4} \mathrm{C}$ in position 1 ;
2°) core with Na in positions 2 and 3, with alternately :
a) Na in position 1 ;
b) $\mathrm{B}_{4} \mathrm{C}$ in position 1.
2.3.3. Table VI below gives the reactivity changes Δk calculated by KASY (no corresponding results obtainable by DIXY).

Table VI. SNEAK-2C, case $2, \Delta \mathrm{k}\left(10^{-5}\right)$.

Rods in positions 2,3	Changes in position 1	$\Delta k\left(10^{-5}\right)$ $2-D(X Y)$	$\Delta k\left(10^{-5}\right)$ $3-D(X Y / Z)$
$\mathrm{Na}-\mathrm{B}_{4} \mathrm{C}$	$\mathrm{Na} \rightarrow \mathrm{Na}-\mathrm{B}_{4} \mathrm{C}$ $\mathrm{Na}-\mathrm{B}_{4} \mathrm{C} \rightarrow \mathrm{B}_{4} \mathrm{C}$	-	234
	$\mathrm{Na}-\mathrm{B}_{4} \mathrm{C}$		

2.3.4. One observes again from Table VI the same departure from symmetry of the reactivity versus insertion depth as already found in paragraph 2.2.

The use of a simple $2-D(X Y)$ model is not able to answer such problens.
2.3.5. Fission rate traverses in the radial, azimutal and axial directions were also measured. The evaluation of these measurements with the synthesis method is illustrated in Figure $7 \cdot$ One sees on this figure the radial distributions of the total fission rate, as calculated for the core midplane (transition plane between the three absorbers and their followers) by KASY, compared with the corresponding distributions through, respectively, the upper and lower core halves (core with $\mathrm{B}_{4} \mathrm{C}$ and core with Na in positions 1,2,3) obteined in two-dimensional calculations.
2.4. Case three : characteristic curve of a control rod.
2.4.1. In the core of 539 elements of Figure 5, a complete $B_{4} C$ characteristic curve of reactivity, $8 \mathrm{k}(\mathrm{h})$, is measured in position 4 an off-center position in the inner core zone Z_{1}.

The control rod is of the type $\mathrm{Na}-\mathrm{B}_{4} \mathrm{C}$, and occupies only one SNEAK element ($5.44 \times 5.44 \mathrm{~cm}$). The core also contains three $\mathrm{B}_{4} \mathrm{C}$ rods fully inserted in positions 1, 2 and 3.
2.4.2. This is a case requiring a three-dimensional geometrical model, and moreover, best suited to a synthesis solution. Only two 2-D calculations are performed with, respectively $\mathrm{B}_{4} \mathrm{C}$ and Na in position 4. The two trial functions so obtained are then combined in KASY with the axial position of the interface $\mathrm{Na}-\mathrm{B}_{4} \mathrm{C}$ as a variable parameter. The total computer time per point of the curve is small.
2.4.3. Table VII gives the reactivity changes calculated by KASY. The zero of the reactivity scale has been fixed at the core midplane which is in the linear portion of the characteristic curve. The curve obtained is shown in Figure 8.

On Figure 8, the measurements are also drawn. The reactivity changes are converted from Δk in ϕ using a β eff value of $51010-5[4]$.
2.4.4. One interesting synthesis problem is raised here concerning two extreme cases (full $B_{4} C$ or full Na). It seems consistent to always combine the two trial functions, but the extreme cases require only one trial function $\left(B_{4} C\right.$ or Na$)$. The results obtained for the extreme cases with one or two trial functions are not identical; but the difference, fortunately is small. The use of two functions throughout produces a smoother curve.

Toble VII. SNEAK-2C, case three : characteristic curve.

2.4.5. The consistency of the results is noticeable in spite of their small magnitude. They represent very close values of $k_{\text {eff }}$. The accuracy of 10^{-5} has been attained with a limited computer time.
3. Conclusions.
3.1. The first chapter of this report has been devoted to the test of the $3-D$ flux synthesis method of the KASY program with respect to results obtained by a direct 3-D program IRITON. Both tests considered were representative of fast breeders.

The $k_{\text {eff }}$ values obtained by KASY are quite satisfactory. They differ from the TRITON $k_{\text {eff }}$ values by less then 10^{-3}, but with an appropriate choice of three trial functions in the synthesis method the difference is reduced to 10^{-4}.

Concerning the reactivity differences due to the insertion, partial or full, of a control rod in a center or off-center position, the Δk obtained by KASY are remarkably identical with the TRITON results within the convergence accuracy of 10^{-4}.

The results of comparison of flux and reaction rate maps indicate that, if one excludes blanket corners, the outer boundary of the axial blanket, or corner points of the core, the agreement is generally satisfactory.
3.2. In the second chapter, it has been shown how readily applicabie the KASY synthesis is in the evaluation of a diversiried series of control rod experiments, and particularly to reactivity changes and spatial rate traverses in a fast breeder core containing one or several control rods in various positions.

The reactivity changes are calculated very accurately. The portion of the fission traverses located within the core has an error not larger than 1% due to the synthesis approximation.

The numen of mesi points used in the KASY calculations was 7 times too large for the TRITON program in its present version.

KASY proves therefore to be a very flexible tool, requiring a quite acceptable computer time for the nature of the problems involved.

```
References
```

1. G. BUCKEL.

Approximation der stationären dreidimensionalen Mehrgruppen-Neutronen-Diffusionsgleichung durch ein Syntheseverfahren mit dem Karlsruher Synthese-Programm KASY. KFK-1349, Juni 1971.
2. S. KAPLAN.

Some New Methods of Flux Synthesis.
Nuc1. Sci. and Eng. 13, 22-31 (1962).
3. A. DANERI, G. MAGGIONI \& E. SALINA.

TRITON - A Multigroup Diffusion Depletion Program in three-dimensions
for I.BM. -360 .
Fiat Report FN-E-97 (Research Contract Euratom Fiat
ARS n° 089-66-2 TEEI), May 1968.
4. F. HELM \& al.

Physics Investigations of Sodiun Cooled Fast Reactors, SNEAK -
Assembly 2.
KFK-1399, Juni 1971.
5. W. HOEBEL \& H. BACHMAN .

Two-Dimensional Multigroup Diffusion Progrem DIXX.
(KFK Report in Preparation).
6. ANL Monthly Reports :

ANL 7267 (October 1966).
ANL 7249 (p. 20) (August 1966).
7. L.P. ABAGYAN, N.O. BAZAZYANTS, I.I. BONDARENKO \& M.N. NIKOIAEV.

Group Constants for Nuclear Reactor Calculations
(translation from the Russian).
Consultants Bureau, New York, 1964.
8. H. HUSCHKE.

Gruppenkonstanten fuir dampf- und natriumgekinite schnelle
Reaktoren in einer 26-Gruppendarstellung.
KFK-770, EUR. 3953 d., April 1968.
9. L. BINDLER, A. CHARLIER \& J. QUENON.

Control Rod Worth Calculations (BN 309.11/141/n/375).
Tripartite Meeting on Fast Reactor Physics, Melekess
(U.R.S.S.), February 1970.
10. L. BINDLER, A. CHARLIER \& J. QUENON.

Neutronic Methods for Fast Breeder Physics Analysis (BN 309.11/141/n/384).
Tripartite Meeting on Fast Reactor Fhysics, Melekess
(U.R.S.S.), February 1970.

- APPGNDIX1.

NUMERICAL DATA (COMPOSITION, GEOMETRY, PREPARATION) .
A.1. The geometrical models used for the comperison KASY-TRITON (Chapter 1) are described in Table I below and represented in Figure 1 (ZPR-III-48) and Figure 2 (SNEAK-2C).
A.2. The model corresponding to ZPR-III-assembly 48 [6] is a quarter of atransversal section of the core. The entire core height is represented for the case of the control rod half in, and half the height (with a symmetry condition) is represented for the cases rod in and rod out.

The control rod, placed at the center, is relatively small. It occupies 0.18% of the core section. The core has a volume of 370 liters and is surrounded by a. $30-33 \mathrm{~cm}$ thick blanket in the radial and axial directions. A $10-15 \mathrm{~cm}$ stainless steel reflector was added around the system (with the flux equal to zero at the external boundary) in order to improve the boundary condition in the blanket.

The atom densities are given in table A.1. of the Appendix 2. The core contains UC-PuC fuel, with an enrichment of about 18 \% (fissile to total $U+P u$), mixed with Na and stainless steel. The blanket is depleted uraniun and steel. The control rod contains 90 of enriched $B_{4} C$, mixed with Na and steel, with a Na and steel follower.
A.3. The SNEAK-2C model used for the comparison KASY-TRITON (Chapter 1) is a quarter of the core horizontal section. Half the height of the system is represented with a symatry condition.

Two cases are calculated : a reference case, without control rods and a "rod in" case, with a tantalum control rod placed in an offcenter position at the boundary of the two radial core zones of different enrichements. Such a rod, $10.88 \mathrm{~cm} \times 10.88 \mathrm{~cm}$, occupies 0.81% of the core section. The core has a volume of 880 liter. In the simplified model used here, 60% of the core are plutonium fuelled and 40% uranium fuelled. There are two radial zones Z_{1} and Z_{2} in the plutoniun zone, with respective enrichments of about 18% and 25% (fissile on total $U+P u$). Moreover both plutonium zones consist each of two batches, made, respectively, of rodlets (MASURCA) $^{\text {r }}$ and platelets (SNEAK), but the homogenized compositions are approximately the same.

These compositions are given in Table A.1. of the Appendix 2. The core contains $\mathrm{UO}_{2}-\mathrm{PuO}_{2}$, steel and sodium, the blanket contains only depleted uraniun. There is no outer reflector (outer boundary condition : extrapolated flux equal to zero). The absorber rod contains tantalum, mixed with aluminium and steel.

[^5]Table I. Geometrical models
used for the comparison KASY-IRITON (Chapter 1).

A.4. The preceding SNEAK-2C model was a simplified one, only used for the sake of the comparison KASY-TRITON in Chapter 1 . In Chapter 2 one is concerned with two different core configurations effectively reelized in the SHEAK-2C series. They consist of, respectively, 494 and 539 SNEAK core elements with equivalent radii of 68.1 and 71.1 cm . These configurations are represented in Figures 3 and 5 . For the sake of the calculations, the exact core conflgurations are replaced by calculation models symetrical with respect to the North-South axis. Figure 4 shows the 180° model used to represent the actual configuration of the core with 494 elements as shown in Figure 3. Such a. simplification and some other slight departures from reality have a negligible influence on the results of the calculations.

The comments on composition already made for the simplified model apply also to the exact models, except that the latter comprise a 150° plutoninm sector in a uranium core, and that a portion of the radial blanket, referred to as a breeder blanket, is constructed of a mixture of 40 (depleted), sodium and steel. All control rods worths and traverses are measured in the plutonium sector and the traverses extend through the breeder blanket. The compositions of the control rods ($\mathrm{B}_{4} \mathrm{C}, \mathrm{Ta}$) and their respective followers (Na, A) are given with the core and blanket compositions in Table A.1. of the Appendix 2. The rods simulate safety or shim rods as currently envisaged for fast breeders.

The SNEAK-2C core is 60.3 cm high. The lower and upper axial blankets are 30.5 an thick. The axial blanket is constructed of normal SNEAK blanket platelets (depleted uranium) except in the positions of the control rods. The absorber or follower portion of the control rods extends out of the core through the upper axial blanket.

Table II below describes the geometrical model used in the SHEAK evaluation, core with 494 elements (Chapter 2). The total number of mesh points used in KASY ($50 \times 32 \times 33=52,800$) greatiy exceeds the meximum allovable number in the present version of IRITON (8000).

Table II. Geometricel model
used in the SNEAK evaluation (Chapter 2)
Core with 494 elements (Figure 3).

X direction			Y direction			z direction		
Designation	Outer mesh point	Outer dimension (cm)	Designation	$\left\|\begin{array}{c} \text { Outer } \\ \text { mesh } \\ \text { point } \end{array}\right\|$	Outer dimension (cm)	Designation	Outer mesh point	Outer dimension (cm)
SNEAK blanket R_{2} R_{1} Z_{1} MASURCA Z_{1} SNEAR z_{1} STRAK Around control rod Control rod Z_{2} SNEAK around control rod Z_{2} SHEAK Breeder blanket	42 44 50	$\begin{array}{r} 27.20 \\ 48.76 \\ 65.28 \\ 81.60 \\ 130.56 \\ \\ 136.00 \\ 146.88 \\ \\ 152.39 \\ 157.76 \\ 184.96 \end{array}$	STEAK Blanket SNEAK blanket R_{2} R_{1} z_{1} MASURCA Z_{1} SHEAK	$\begin{array}{r} 4 \\ 8 \\ 16 \\ 22 \\ 28 \\ 32 \end{array}$	15.32 27.20 40.96 65.28 81.60 92.48	SNEAK blanket Core SUEAK bianket	$\begin{array}{r} 7 \\ 27 \\ 33 \end{array}$	$\begin{array}{r} 30.5 \\ 90.8 \\ 121.3 \end{array}$

A.5. In the ZPR-III case, the cross-sections used are 5 group condensed cross-sections, obtained by weighting ABBN [7] 26-group sections with one-dimensional fluxes. The 5 broad groups comprise the following fine groups :

Fine groups	Energy structure		
1 to 5	$10.5 \mathrm{MeV}-0.8 \mathrm{MeV}$		
6 to 8	800		
9 to 11	100		
$\mathrm{keV}-100$	$\mathrm{keV}-10$		
12 to 14	10 keV		
15 to 26	1		

In the SNEAK-2C case, the cross-sections used are 4 group condensed cross-sections, obtained by weighting NAP-MB [8] 26-group crosssections with one-dimensional fluxes. The 4 broad groups comprise the following fine groups :

Fine groups Energy structure

1 to 4	$10.5 \mathrm{MeV}-1.4 \mathrm{MeV}$
5 to 6	$1.4 \mathrm{MeV}-0.4 \mathrm{MeV}$
7 to 10	$0.4 \mathrm{MeV}-21.5 \mathrm{keV}$
11 to 26	$21.5 \mathrm{keV}-0$

A.6. According to recommendations originating from the control rod study reported in $[9,10]$, the control rod (absorber and follower part) was each time surrounded by a fuel zone of influence, of normal core composition but having few group cross-sections condensed using as weighting spectrum that of the considered subzone. Such crestion of two different few group section sets for the core, respectively unperturbed and perturbed by the control rod, allows one to minimize the errors due to the group condensation.

[^6]Another recomendation of [9,10] has been followed but only for the comparison KASY-IRITON (Chapter 1) : the mesh spacing has been refined in the control rod and in its close vicinity.
A.7. In the two-dimensional calculations for the synthesis, the transverse bucklings, energy and region independent, (see paragraph 1.1.7.) were :

ZPR-III-48 (76.36 cm core height) : $8.810^{-4} \mathrm{~cm}^{-2}$ SNEAK-2C (60.3 cm core height) : $1.1610^{-3} \mathrm{~cm}^{-2}$
A.8. The convergence criterion used in all the calculations was 10^{-3} on half the difference between the maximum and minimum $k_{\text {eff }}$ values. This corresponds to a higher accuracy in $k_{\text {eff }}$, which was the following :
3-D TRITON : $<10^{-4}$
2-D DIXY : $<10^{-4}$ (preparation of EASY)
3-D synthesis KASY : < 10^{-5}

TABLES.

List of the Tables of Appendix 2.
A.1. Atomic Compositions.
A. 2.

ZPR-III-48, "Rod Out", Flux Map.
A.3. ZPR-III-48, "Rod Half In^{n}, Flux of Group 1, Deviations KASY-TRITON.
A.4. ZPR-III-48, "Rod Half In", Flux of Group 2, Deviations KASY-TRITON.
A.5. ZPR-III-48, "Rod Half In", Flux of Group 3, Deviations KASY-TRITON.
A.6.

ZPR-III-48, "Rod Half In", Fission Rate (in Core and Blanket Regions), Capture rate (in Control Rod Region). Deviations KASY-TRITON.

A 7.
SNEAK-2C, "Rod In", Flux Map.
A.8. SNEAK-2C, "Rod In", Flux of Group 1, Deviations KASY-TRITON.
A.9. SNEAK-2C, "Rod In", Flux of Group 2, Deviations KASY-TRITON.
A.10. SNEAK-2C, "Rod In", Flux of Group 3, Deviations KASY-TRITON.
A.11. SNEAK-2C, "Rod In", Flux of Group 4, Deviations KASY-TRITON.
A.12. SNEAK-2C, "Rod In", Fission Rate (in Core and Blanket Regions), Capture Rate (in Control Rod Region). Deviations KASY-TRITON.

TABLE A. ${ }^{1}$

Atomic compositions (10^{22} at/cm ${ }^{3}$)

TABLE A. 1.

Part B : SNEAK-2C						
	1	2	3	4	5	6
Elements	$\begin{aligned} & \mathrm{Z}_{1} \text { SNEAK } \\ & \text { (Typ 12) } \end{aligned}$	$\begin{aligned} & 22 \text { SNEAK } \\ & (\text { Typ 13 }) \end{aligned}$	$\begin{gathered} z_{1} \\ \text { MASURCA } \end{gathered}$	$\frac{z_{2}}{\text { MASURCA }}$	$\begin{gathered} R_{1} \\ (\text { Iyp 10) } \end{gathered}$	$\begin{gathered} \mathrm{Be} \\ (\text { Typ 11) } \end{gathered}$
v^{235}	.0044	. 0037	. 0019	. 0012	.1876	. 2533
v^{238}	. 6022	. 5083	. 6469	. 5277	. 6511	. 5850
Pu^{239}	.1276	. 1684	. 1210	. 1614	-	-
$\mathrm{Pu}{ }^{240}$. 0115	. 0151	.0112	. 01.49	-	-
Fu^{241}	. 0010	.0014	.0011	. 0014	-	-
Pu^{242}	. 00005	. 00007	. 00013	. 00018	-	-
Cr ${ }^{1)}$. 3234	.3970	. 3442	. 3485	. 3581	. 3181
Fe	1.1960	1.3098	1.2548	1.2786	1.2164	1.2082
Ni^{2})	. 2281	. 1997	. 1749	. 1699	. 1867	. 2360
0	1.2598	1.3949	1.1597	1.1597	. 9082	1.0051
C	. 0051	. 0061	-	-	. 3050	. 2529
Na	. 8975	. 7109	. 8856	. 8856	. 8733	. 9518
$\mathrm{Al}^{3)}$. 0006	. 2419	-	-	-	-
Si	. 0153	.0198	-	-	. 0164	. 0147
Ti	. 0008	.0021	-	-	. 0026	. 0016
H	-	-	-	-	. 0022	. 0018
B^{10}	-	-	-	-	-	-
B^{11}	-	-	-	-	-	-
Ta	-	-	-	-	-	-

1) Mn has been assimilated to Cr ${ }^{2)}$ Co has been assimilated to Mi ${ }^{3)} \mathrm{Mg}$ has been assimilated to Al
table A. 1.

Part B : SNEAK-2C (continued)						
	7	8	9	10	11	12
Elements	$\mathrm{B}_{4} \mathrm{C} \mathrm{rod}$	$\begin{gathered} \mathrm{Na} \\ \text { follower } \end{gathered}$	Ta rod	$\begin{gathered} \text { Al } \\ \text { follower } \end{gathered}$	SNEAK blanket	$\begin{gathered} \text { Breeder } \\ \text { blanket } \\ \text { (Typ 17-2) } \end{gathered}$
v^{235}	-	-	-	-	. 0176	. 0075
0^{238}	-	-	-	-	4.1840	1.0297
Pu^{239}	-	-	-	-	-	-
Pu^{240}	-	-	-	-	-	-
241						
Pu.	-	-	-	-	-	-
Pu	-	-	-	-	-	-
$\mathrm{Cr}^{1 \text {) }}$. 2552	. 3170	. 3505	. 3505	. 1063	. 1824
Fe	. 8893	1.0728	1.1789	1.1789	. 3957	. 6290
$\mathrm{Ni}{ }^{2)}$. 1176	. 1845	. 1633	. 1633	. 1717	. 1040
0	-	-	-	-	-	2.0911
c	1.2096	. 0043	. 0029	.0089	-	. 0045
Ha	-	1.6611	-	-	-	. 6644
$A 13^{3)}$. 0504	-	2.5868	4.3865	-	. 5200
Si	. 0172	. 0173	. 0365	. 0505	-	. 0108
Ti	-	-	. 0177	. 0167	-	. 0005
H	-	-	$=$	-	$=$.0009
B^{10}	. 9449	-	-	-	-	-
B^{11}	3.8762	-	-	-	-	-
Ta	-	-	1.6537	-	-	-

1) Mn has been assimilated to Cr
2) Co has been assimilated to Mi
${ }^{3)} \mathrm{Mg}$ has been assimilated to Al

TABLE A.2.
2FR-III-48, rod out, flux map
(For eachmesh-point, 5 group fluxes, 1 to 5)

$2 x$	1	4	7	10	12	13	15	17
1	$\begin{array}{r} 477 \\ 1000 \\ 539 \\ 147 \\ 35 \end{array}$	$\begin{array}{r} 481 \\ 1000 \\ 539 \\ 145 \\ 36 \end{array}$	$\begin{array}{r} 474 \\ 960 \\ 519 \\ 136 \\ 30 \end{array}$	$\begin{array}{r} 363 \\ 755 \\ 410 \\ 106 \\ 22 \end{array}$	$\begin{array}{r} 215 \\ 526 \\ 280 \\ 64 \\ 12 \end{array}$	129 416 207 37 6.5	$\begin{array}{r} 20 \\ 158 \\ 68 \\ 6.4 \\ 0.9 \end{array}$	$\begin{gathered} 2.9 \\ 45 \\ 19 \\ 1.3 \\ 0.1 \end{gathered}$
2	$\begin{array}{r} 464 \\ 973 \\ 525 \\ 143 \\ 35 \end{array}$	$\begin{array}{r} 468 \\ 973 \\ 395 \\ 142 \\ 34 \end{array}$	$\begin{array}{r} 461 \\ 935 \\ 505 \\ 132 \\ 28 \end{array}$	$\begin{array}{r} 353 \\ 734 \\ 399 \\ 104 \\ 21 \end{array}$	$\begin{array}{r} 209 \\ 510 \\ 273 \\ 62 \\ 12 . \end{array}$	125 404 202 35 6.3	$\begin{array}{r} 19 \\ 153 \\ 66 \\ 6.2 \\ .8 \end{array}$	$\begin{gathered} 2.8 \\ 43 \\ 18 \\ 1.3 \\ .1 \end{gathered}$
3	$\begin{gathered} 424 \\ 89 \\ 485 \\ 132 \\ 32 \end{gathered}$	$\begin{array}{r} 427 \\ 897 \\ 485 \\ 130 \\ 31 \end{array}$	$\begin{array}{r} 421 \\ 861 \\ 466 \\ 122 \\ 27 \end{array}$	$\begin{array}{r} 322 \\ 676 \\ 368 \\ 96 \\ 20 \end{array}$	$\begin{gathered} 191 \\ 469 \\ 251 \\ 57 \\ 1.1 \end{gathered}$	$\begin{gathered} 114 \\ 331 \\ 185 \\ 33 \\ 5.8 \end{gathered}$	$\begin{array}{r} 17 \\ 141 \\ 61 \\ 5.7 \\ .8 \end{array}$	$\begin{gathered} 2.5 \\ 39 \\ 17 \\ 3.2 \\ .1 \end{gathered}$
4	$\begin{array}{r} 357 \\ 778 \\ 421 \\ 113 \\ 27 \end{array}$	$\begin{array}{r} 360 \\ 778 \\ 421 \\ 112 \\ 27 \end{array}$	$\begin{array}{r} 356 \\ 745 \\ 409 \\ 104 \\ 22 \end{array}$	$\begin{array}{r} 272 \\ 584 \\ 319 \\ 81 \\ 17 \end{array}$	161 404 . 217 49 9.	$\begin{gathered} 96 \\ 319 \\ 160 \\ 28 \\ 4.9 \end{gathered}$	$\begin{array}{r} 15 \\ 120 \\ 52 \\ 4.9 \\ .7 \end{array}$	$\begin{gathered} 2.1 \\ 34 \\ 15 \\ 1.0 \\ .1 \end{gathered}$
5	$\begin{gathered} 264 \\ 630 \\ 338 \\ 86 \\ 20 \end{gathered}$	$\begin{array}{r} 267 \\ 632 \\ 337 \\ 65 \\ 20 \end{array}$	$\begin{array}{r} 264 \\ 603 \\ 304 \\ 79 \\ 16 \end{array}$	$\begin{array}{r} 201 \\ 471 \\ 254 \\ 61 \\ 12 \end{array}$	$\begin{array}{r} 118 \\ 302 \\ 173 \\ 37 \\ 7 . \end{array}$	$\begin{array}{r} 70 \\ 251 \\ 125 \\ 21 \\ 3.6 \end{array}$	11 94 41 3.8 $.5$	$\begin{array}{r} 1.6 \\ 27 \\ 12 \\ .8 \\ .1 \end{array}$
6	$\begin{aligned} & 147 \\ & 483 \\ & 241 \\ & 48 \\ & 10.1 \end{aligned}$	147 484 241 47 9.6	$\begin{gathered} 140 \\ 466 \\ 228 \\ 41 \\ 7.3 \end{gathered}$	$\begin{gathered} 106 \\ 361 \\ 177 \\ 31 \\ 5.5 \end{gathered}$	$\begin{array}{r} 61 \\ 239 \\ 115 \\ 18 \\ 3.0 \end{array}$	$\begin{gathered} 26 \\ 177 \\ 83 \\ 11 \\ 1.6 \end{gathered}$	$\begin{aligned} & 6.4 \\ & 66 \\ & 16 \\ & 2.4 \\ & .3 \end{aligned}$	$\begin{array}{r} 1.1 \\ 19 \\ 8.6 \\ <.6 \\ <.1 \end{array}$
7	$\begin{gathered} 40 \\ 236 \\ 109 \\ 14.7 \\ 2.7 \end{gathered}$	$\begin{gathered} 39 \\ 234 \\ 108 \\ 13.8 \\ 2.5 \end{gathered}$	$\begin{gathered} 31 \\ 211 \\ 98 \\ 9.9 \\ 1.5 \end{gathered}$	$\begin{gathered} 23 \\ 160 \\ 70 \\ 7.3 \\ 1.0 \end{gathered}$	$\begin{array}{r} 13 \\ 105 \\ 46 \\ 400 \\ 0.6 \end{array}$	$\begin{aligned} & 8.4 \\ & 77 \\ & 34 \\ & 3.0 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 33 \\ & 15 \\ & .1 \\ & .1 \end{aligned}$	$\begin{array}{r} 0.5 \\ 10 \\ 4.7 \\ <. \\ <.1 \end{array}$
8	$\begin{aligned} & 9.7 \\ & 89 \\ & 41 \\ & .4 \\ & .7 \end{aligned}$	$\begin{aligned} & 9.4 \\ & 88 \\ & 40 \\ & .4 \\ & .6 \end{aligned}$	$\begin{gathered} 6.9 \\ 75 \\ 39 \\ .3 \\ .3 \end{gathered}$	$\begin{array}{r} 4.9 \\ 56 \\ 24 \\ .2 \\ .2 \end{array}$	$\begin{gathered} 2.9 \\ 37 \\ 16 \\ 1 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 27 \\ & 12 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{array}{r} \\ \\ \\ \\ \\ \hline \end{array} 3$	0.2 4.4 2.0 $<$ $<$

Boundaries are doublelined (in fact $X=4$ or 13 , for example, are on the bounderies)

TABLE A. 3.

2PR-III-48, rod half in, flux of group 1
Deviations KASY - TRITON : $\frac{\Phi_{K}-\Phi_{\mathrm{T}}}{\Phi_{\mathrm{T}}}(\ln \%)$

Core midplane

	1	4	7	10	12	13	15	17
3	-3	$+0.9$	$+8$	$+6$	$+0.3$	-8	-58	-75
4	-7	- 4	$+2$	- 0.3	$+0.6$	- 4	-45	-63
5	-0.3	+ 0.1	+ 0.1	- 0.2	$+1.4$	+ 4.8	-10	-20
6	$+0.6$	$+0.4$	-	$+0.3$	$+1.0$	$+1.7$	$+2$	$+1$
7	$+0.4$	$+0.4$	$+0.2$	$+0.5$	$+0.9$	$+1.3$	$+2$	$+4$
8	$+0.6$	$+0.4$	$+0.2$	$+0.6$	$+0.9$	$+1.2$	$+2$	$+4$
9	+0.8	$+0.5$	$+0.3$	$+0.6$	+ 1.1	$+1.3$	$+2$	$+4$
10	$+0.2$	$+0.4$	$+0.5$	$+0.5$	$+1.0$	$+1.3$	$+2$	$+5$
11	$+0.2$	$+0.4$	$+0.7$	$+0.6$	$+0.9$	+1.5	$+2$	$+6$
12	$+0.3$	$+0.5$	$+0.6$	-	$+0.9$	$+1.6$	$+4$	$+7$
13	$+0.5$	$+0.4$	$+0.5$	$+0.5$	$+1.0$	$+1.5$	$+4$	$+7$
14	$+0.6$	$+0.4$	$+0.2$	$+0.3$	$+1.2$	$+2.5$	$+4$	$+5$
15	- 1.0	- 0.8	$+0.6$	-0.2	$+1.5$	+ 5.4	-8	-16
16	- 9	- 8	$+4$	$+0.3$	- 0.4	-4	-43	-60
17	- 6	- 6	+11	$+5$	$+0.1$	-9	-57	-77

TABLE A. 4.
ZPR-III-48, rod half in, flux of group 2
Deviations KASY - IRITON : $\frac{\Phi_{\mathrm{K}}-\Phi_{\mathrm{T}}}{\Phi_{\mathrm{T}}}$ (in \%)

1	1	4	7	10	12	13	15	17
3	-	+9	+6	+7	+11	+18	-4	-22
4	+5	+4	-1.0	-1.2	+4	+12	-9	-13
5	+7	+5	-1.5	-1.5	+1.8	+7.5	+10	+5
6	+1.1	+0.7	-0.3	-0.1	+1.4	+3.0	+4	+5
7	+0.5	+0.4	+0.1	+0.3	+1.1	+1.6	+2	+4
8	+0.7	+0.4	+0.2	+0.6	+1.0	+1.3	+2	+4
9	+1.0	+0.7	+0.3	+0.7	+1.0	+1.2	+2	+3
10	-0.1	+0.3	+0.5	+0.7	+0.9	+1.2	+1	+2
11	-0.4	0	+0.6	+0.7	+0.8	+1.0	+1	+2
12	-0.1	-	+0.6	+0.7	+0.9	+1.2	+1	+1
13	+0.1	+0.1	+0.5	+0.6	+1.1	+1.7	+1	+9
14	+0.7	+0.4	+0.1	+0.1	+1.4	+3.2	+3	+1
15	+5	+3	-	-0.2	+1.9	+9.6	+9	+1
16	+3	+1	+0.7	-0.8	+3	+11	-3	-20
17	+9	+7	+9	+7	+10	+16	-8	-31

Hormalisation point

TABLE A. 5.
ZPR-III-48, rod half in, flux of group 3. Deviations KASY - TRITON : $\frac{\Phi_{K}-\Phi_{T}}{\Phi_{T}}$ (in $\phi_{\%}$)

Core midplane

z	x	1	4	7	10	12	13	15
3	+3	+6	+6	+7	+11	+9	-24	-37
4	-1	+1	+0.1	+2	+5	+5	-19	-28
5	+1.8	+2.0	-1.0	-6.5	+2.8	+7.1	+1	-2
6	+0.5	+0.2	-0.3	+0.6	+1.6	+2.6	+3	+4
7	+0.4	+0.1	-0.1	+0.4	+1.3	+1.7	+2	+4
8	+0.7	+0.3	-0.1	+0.7	+1.0	+1.4	+2	+5
9	+1.7	+0.8	-0.1	+1.2	+1.3	+1.3	+2	+4
10	-	+0.8	+0.5	+0.7	+0.9	+1.1	+2	+3
11	-0.1	+0.4	+1.1	+0.6	+0.7	+0.9	+1	+2
12	+0.4	+0.4	+0.7	+0.5	+0.7	+1.2	+2	+2
13	+0.5	+0.4	+0.4	+0.5	+1.1	+1.7	+2	+3
14	+0.8	+0.3	-0.2	+0.3	+1.8	+3.0	+3	+2
15	+1.7	+0.5	-0.9	-0.3	+3.0	+7.5	+1	-3
16	+0.1	-2	+0.8	+2	+5	+6	-19	-30
17	+7	+4	+7	+9	+11	+9	-22	-40

TABLE A. 6.

> ZPR-III-48, rod half in, fission rate (in core and blanket regions) capture rate (in control rod region)

Deviations KASY - IRITON : $\frac{F_{\mathrm{K}}-F_{T}}{F_{T}}$ (in $\%$)

Core midplane

2	1	4	4	7	10	12	13	15	17
3	+3	+6	+2	+8	+6	+2	-7	-46	-63
4	-1	+1	-3	+2	-1	+2	-5	-36	-52
5	+1.0	+1.2	+1.5	-1.6	-1.5	+1.1	+6.6	-8	-16
6	-0.3	-0.6	-0.4	-0.4	-0.9	+0.5	+2.3	+2	+2
7	-0.4	-0.7	-0.5	-0.7	-0.4	+0.3	+1.0	+2	+4
8	-0.1	-0.5	-0.4	-0.7	-0.2	+0.2	+0.8	+2	+4
9	+0.9	-	-0.1	-0.6	-	+0.3	+0.8	+2	+4
10	-0.8	-	-0.3	-0.3	-0.2	+0.1	+0.7	+2	+4
11	-0.9	-0.5	-0.5	-	-0.2	-	+0.6	+2	+5
12	-0.6	-0.5	-0.5	-0.2	-0.4	+0.1	+0.8	+4	+6
13	-0.4	-0.5	-0.5	-0.3	-0.3	+0.3	+1.1	+4	+6
14	-0.1	-0.4	-0.4	-0.7	-0.6	+0.7	+2.4	+4	+5
15	+2.1	+0.1	+0.2	-0.9	-1.0	+0.7	+7.0	-6	-13
16	-2	-3	-8	+4	-	-	+5	-34	-51
17	+3	+2	-5	+10	+6	+2	-8	-45	-66

TABLE A. 7.

SNEAK-2C, rod in, flux map
(4 group fluxes, 1 to 4)

z^{x}	1	5	10	14	20	21.	23	26
1.	$\begin{gathered} .25 \\ 4.2 \\ 13 \\ .80 \end{gathered}$	$\begin{array}{r} .23 \\ 3.9 \\ 12 \\ .73 \end{array}$	$\begin{gathered} .18 \\ 2.8 \\ 11 \\ .63 \end{gathered}$	$\begin{gathered} .17 \\ 2.4 \\ 11 \\ .65 \end{gathered}$	$\begin{gathered} .10 \\ 1.6 \\ 5.7 \\ .33 \end{gathered}$	$\begin{gathered} .07 \\ 1.2 \\ 4.2 \\ .25 \end{gathered}$	$\begin{array}{r} .03 \\ .57 \\ 2.0 \\ .12 \end{array}$	$\begin{aligned} & .003 \\ & .061 \\ & .14 \\ & .065 \end{aligned}$
3	$\begin{gathered} 2.1 \\ 28 \\ 125 \\ 10 \end{gathered}$	$\begin{array}{r} 2.0 \\ 26 \\ 115 \\ 9.2 \end{array}$	$\begin{gathered} 1.4 \\ 17 \\ 87 \\ 6.2 \end{gathered}$	$\begin{gathered} 1.2 \\ 15 \\ 80 \\ 5.4 \end{gathered}$	$\begin{gathered} .78 \\ 10^{.7} \\ 52 \\ 3.9 \end{gathered}$	$\begin{gathered} .55 \\ 7.8 \\ 39 \\ 2.9 \end{gathered}$	$\begin{gathered} .20 \\ 3.4 \\ 18 \\ 1.3 \end{gathered}$	$\begin{gathered} .08 \\ .34 \\ 1.3 \\ .72 \end{gathered}$
5	$\begin{array}{r} 17 \\ 100 \\ 371 \\ 40 \end{array}$	$\begin{array}{r} 16 \\ 98 \\ 341 \\ 37 \end{array}$	$\begin{array}{r} 10 \\ 59 \\ 243 \\ 22 \end{array}$	$\begin{gathered} 8.4 \\ 49 \\ 217 \\ 19 \end{gathered}$	$\begin{gathered} 5.8 \\ 36 \\ 148 \\ 14 \end{gathered}$	$\begin{gathered} 3.7 \\ 27 \\ 112 \\ 10 \end{gathered}$	$\begin{array}{r} .76 \\ 9.9 \\ 46.5 \\ 3.6 \end{array}$	$\begin{gathered} .05 \\ .86 \\ 2.9 \\ .17 \end{gathered}$
6	$\begin{array}{r} 55 \\ 168 \\ 586 \\ 89 \end{array}$	$\begin{array}{r} 51 \\ 154 \\ 557 \\ 82 \end{array}$	$\begin{array}{r} 28 \\ 98 \\ 573 \\ 44 \end{array}$	$\begin{array}{r} 20 \\ 77 \\ 316 \\ 32 \end{array}$	$\begin{array}{r} 19 \\ 61 \\ 234 \\ 29 \end{array}$	$\begin{array}{r} 11 \\ 46 \\ 180 \\ 20 \end{array}$	$\begin{aligned} & 1.4 \\ & 15 \\ & 66 \\ & 5.4 \end{aligned}$	$\begin{gathered} .07 \\ 1.2 \\ 4.0 \\ .23 \end{gathered}$
8	$\begin{aligned} & 104 \\ & 229 \\ & 756 \\ & 152 \end{aligned}$	$\begin{array}{r} 96 \\ 210 \\ 694 \\ 139 \end{array}$	$\begin{array}{r} 56 \\ 141 \\ 505 \\ 74 \end{array}$	$\begin{array}{r} 37 \\ 114 \\ 432 \\ 52 \end{array}$	$\begin{array}{r} 37 \\ 88 \\ 315 \\ 48 \end{array}$	$\begin{array}{r} 23 \\ 70 \\ 255 \\ 33 \end{array}$	$\begin{gathered} 2.4 \\ 23 \\ 94 \\ 7.9 \end{gathered}$	$\begin{gathered} .10 \\ 1.7 \\ 5.5 \\ .39 \end{gathered}$
10	$\begin{aligned} & 138 \\ & 284 \\ & 907 \\ & 194 \end{aligned}$	$\begin{aligned} & 128 \\ & 261 \\ & 833 \\ & 178 \end{aligned}$	$\begin{array}{r} 74 \\ 177 \\ 616 \\ 95 \end{array}$	$\begin{array}{r} 49 \\ 145 \\ 527 \\ 67 \end{array}$	$\begin{array}{r} 49 \\ 112 \\ 307 \\ 62 \end{array}$	$\begin{array}{r} 31 \\ 90 \\ 317 \\ 43 \end{array}$	$\begin{array}{r} 3.2 \\ 29 \\ 117 \\ 10 \end{array}$	$\begin{gathered} .13 \\ 2.2 \\ 6.9 \\ .40 \end{gathered}$
13	$\begin{array}{r} 157 \\ 318 \\ 1000 \\ 217 \end{array}$	$\begin{aligned} & 145 \\ & 293 \\ & 919 \\ & 199 \end{aligned}$	$\begin{array}{r} 85 \\ 199 \\ 678 \\ 107 \end{array}$	$\begin{array}{r} 56 \\ 163 \\ 585 \\ 75 \end{array}$	$\begin{array}{r} 55 \\ 126 \\ 430 \\ 69 \end{array}$	$\begin{array}{r} 35 \\ 102 \\ 353 \\ 48 \end{array}$	$\begin{gathered} 3.6 \\ 33 \\ 132 \\ 11 \end{gathered}$	$\begin{gathered} .15 \\ 2.5 \\ 7.7 \\ .45 \end{gathered}$

TABLE A.8.

SNEAK-2C, rod in, flux of group 1
Deviations KASY - IRITON : $\frac{\Phi_{\mathrm{R}}-\Phi_{\mathrm{T}}}{\Phi_{\mathrm{T}}}$ (in $\%$)
for the three synthesis considered, using respectively, 1,2 and 3 trial functions.

z^{x}	1	5	10	14	20	21	23	26
1	$\begin{aligned} & +45 \\ & +41 \\ & +54 \end{aligned}$	$\begin{aligned} & +46 \\ & +42 \\ & +53 \end{aligned}$	+9 +7 +7	$\begin{aligned} & -22 \\ & -24 \\ & -28 \end{aligned}$	$\begin{aligned} & +30 \\ & +40 \\ & +27 \end{aligned}$	$\begin{aligned} & +13 \\ & +39 \\ & +29 \end{aligned}$	$\begin{aligned} & -72 \\ & +13 \\ & +22 \end{aligned}$	$\begin{array}{r} -89 \\ +96 \\ +121 \end{array}$
3	$\begin{array}{r} \overline{2} \\ +5 \end{array}$	-2 -4 +1	$\begin{aligned} & -19 \\ & -20 \\ & -61 \end{aligned}$	$\begin{aligned} & -36 \\ & -37 \\ & -40 \end{aligned}$	$\begin{aligned} & -3 \\ & +2 \\ & -6 \end{aligned}$	$\begin{aligned} & -13 \\ & -1 \\ & -7 \end{aligned}$	$\begin{aligned} & -47 \\ & -27 \\ & -20 \end{aligned}$	$\begin{aligned} & -88 \\ & +45 \\ & +68 \end{aligned}$
5	$\begin{aligned} & -1 \\ & -2 \\ & +2 \end{aligned}$	-1 -1 +1	$\begin{array}{r} -8 \\ -8 \\ -9 \end{array}$	$\begin{aligned} & -27 \\ & -27 \\ & -29 \end{aligned}$	$\begin{aligned} & +5 \\ & +6 \\ & +2 \end{aligned}$	$\begin{aligned} & +3 \\ & +8 \\ & +2 \end{aligned}$	$\begin{aligned} & -47 \\ & -22 \\ & -16 \end{aligned}$	$\begin{aligned} & -64 \\ & +31 \\ & +61 \end{aligned}$
6	$\begin{aligned} & -0.8 \\ & -0.6 \\ & +0.2 \end{aligned}$	$\begin{aligned} & -0.4 \\ & -0.4 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +5.0 \\ & +5.0 \\ & +4.3 \end{aligned}$	$\begin{aligned} & +1.0 \\ & +1.0 \\ & -0.5 \end{aligned}$	$\begin{aligned} & +4.8 \\ & +4.8 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +10.8 \\ & +10.8 \\ & +8.1 \end{aligned}$	-9 -14 -12	$\begin{aligned} & -23 \\ & -51 \\ & -29 \end{aligned}$
8	$\begin{aligned} & +0.5 \\ & +0.5 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +2.0 \\ & +2.0 \\ & +1.1 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +3.0 \\ & +1.9 \end{aligned}$	$\begin{aligned} & +2.2 \\ & +2.2 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +2.6 \\ & +2.6 \\ & +0.9 \end{aligned}$	+2 +5 +1	$\begin{array}{r} +3 \\ +15 \\ +3 \end{array}$
10	$\begin{aligned} & +0.6 \\ & +0.6 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.1 \\ & -0.3 \end{aligned}$	$\begin{aligned} & +1.5 \\ & +1.5 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +1.9 \\ +1.8 \\ +0.8 \end{array}$	$\begin{aligned} & +1.8 \\ & +1.6 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +2.1 \\ & +2.3 \\ & +0.7 \end{aligned}$	+2 +3 +9	+5 +12 +5
13	$\begin{aligned} & +0.3 \\ & +0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +0.7 \\ & +0.3 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +1.2 \\ & +1.1 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +1.4 \\ & +1.4 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +1.6 \\ & +1.6 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +1.7 \\ & +1.7 \\ & +0.3 \end{aligned}$	+3 +3 +2	+4 +6 +3

TABLE A.9.

SNEAK-2C, rod in, flux of group 2
Deviations KASY - TRITON : $\frac{\Phi_{\mathbf{K}}-\Phi_{T}}{\Phi_{T}}$ (in ϕ)
for the three syntheses considered using respectively, 1, 2 and 3 trial functions

z^{x}	1	5	10	14	20	21	23	26
1	$\begin{aligned} & +52 \\ & +50 \\ & +63 \end{aligned}$	$\begin{aligned} & +51 \\ & +49 \\ & +59 \end{aligned}$	$\begin{aligned} & +44 \\ & +43 \\ & +41 \end{aligned}$	$\begin{aligned} & +38 \\ & +37 \\ & +31 \end{aligned}$	$\begin{aligned} & +61 \\ & +63 \\ & +50 \end{aligned}$	$\begin{aligned} & +74 \\ & +80 \\ & +66 \end{aligned}$	$\begin{aligned} & +19 \\ & +38 \\ & +41 \end{aligned}$	$\begin{aligned} & -15 \\ & +24 \\ & +50 \end{aligned}$
3	$\begin{array}{r} -1 \\ -2 \\ +5 \end{array}$	$\begin{aligned} & -1 \\ & -1 \\ & +4 \end{aligned}$	+1 +1	-3 -3 -7	$\begin{aligned} & +8 \\ & +9 \\ & +9 \end{aligned}$	$\begin{aligned} & +16 \\ & +18 \\ & +9 \end{aligned}$	-14 -8 -6	-34 -22 -4
5	$\begin{aligned} & -2 \\ & -1 \\ & +2 \end{aligned}$	$\begin{aligned} & -2 \\ & -1 \\ & +1 \end{aligned}$	$\begin{aligned} & +5 \\ & +5 \\ & +4 \end{aligned}$	$\begin{aligned} & +4 \\ & +4 \\ & +1 \end{aligned}$	+9 +8 +3	$\begin{array}{r} +19 \\ +17 \\ +11 \end{array}$	+5 -4 -2	$\begin{aligned} & -8 \\ & -30 \\ & -14 \end{aligned}$
6	$\begin{aligned} & -1.7 \\ & -0.8 \\ & +1.4 \end{aligned}$	$\begin{aligned} & -1.2 \\ & -0.5 \\ & +1.2 \end{aligned}$	$\begin{aligned} & +6.9 \\ & +7.3 \\ & +6.6 \end{aligned}$	$\begin{aligned} & +11.1 \\ & +11.1 \\ & +10.9 \end{aligned}$	$\begin{aligned} & +8.3 \\ & +7.2 \\ & +3.3 \end{aligned}$	$\begin{array}{r} +11.7 \\ +11.4 \\ +11.0 \end{array}$	$\begin{aligned} & +17 \\ & +3 \\ & +3 \end{aligned}$	$\begin{aligned} & +11 \\ & -29 \\ & -18 \end{aligned}$
8	$\begin{aligned} & -0.7 \\ & -0.5 \\ & +0.1 \end{aligned}$	$\begin{array}{r} -0.2 \\ -0.1 \\ -0.1 \end{array}$	$\begin{aligned} & +1.8 \\ & +2.0 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +3.3 \\ & +3.4 \\ & +2.0 \end{aligned}$	$\begin{aligned} & +4.1 \\ & +3.9 \\ & +1.5 \end{aligned}$	$\begin{aligned} & +5.5 \\ & +4.9 \\ & +2.5 \end{aligned}$	+7 +4 +2	$+8$
10	$\begin{aligned} & +0.1 \\ & +0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.3 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +1.4 \\ & +1.4 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +1.6 \\ & +1.6 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +2.1 \\ & +2.1 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +2.7 \\ & +2.6 \\ & +1.0 \end{aligned}$	+3 +3 +1	+5 +4 +2
13	$\begin{aligned} & +0.3 \\ & +0.2 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +1.2 \\ & +1.2 \\ & +0.3 \end{aligned}$	$\begin{aligned} & -0.5 \\ & -0.5 \\ & +0.1 \end{aligned}$	$\begin{array}{r} +1.7 \\ +1.8 \\ +0.4 \end{array}$	$\begin{aligned} & +2.3 \\ & +2.3 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +2 \\ & +3 \\ & +1 \end{aligned}$	+3 +4 +2

table A. 10.

SNEAK-2C, rod in, flux of group 3
Deviations KASY-TRITON: $\frac{\Phi_{K}-\Phi_{T}}{\Phi_{T}}$ (in ϕ)
for the three syntheses considered using respectively, 1, 2 and 3 trial functions

z^{x}	1	5	10	14	20	21	23	26
1	$\begin{aligned} & +72 \\ & +71 \\ & +80 \end{aligned}$	$\begin{aligned} & +74 \\ & +73 \\ & +80 \end{aligned}$	$\begin{aligned} & +45 \\ & +45 \\ & +43 \end{aligned}$	$\begin{aligned} & +21 \\ & +21 \\ & +18 \end{aligned}$	$\begin{aligned} & +78 \\ & +80 \\ & +69 \end{aligned}$	$\begin{array}{r} +99 \\ +102 \\ +90 \end{array}$	$\begin{aligned} & +56 \\ & +69 \\ & +70 \end{aligned}$	$\begin{aligned} & +31 \\ & +57 \\ & +75 \end{aligned}$
3	$\begin{array}{r} +1 \\ +5 \end{array}$	$\begin{aligned} & +1 \\ & +1 \\ & +4 \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \\ & -2 \end{aligned}$	$\begin{aligned} & -7 \\ & -7 \\ & -9 \end{aligned}$	$\begin{aligned} & +7 \\ & +7 \\ & +1 \end{aligned}$	$\begin{aligned} & +17 \\ & +18 \\ & +11 \end{aligned}$	$\begin{aligned} & -6 \\ & -2 \\ & -2 \end{aligned}$	-23 -16 -5
5	$\begin{aligned} & -1 \\ & -1 \\ & +2 \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \\ & +1 \end{aligned}$	$\begin{aligned} & +3 \\ & +3 \\ & +2 \end{aligned}$	-2	+9 +8 +4	$\begin{aligned} & +18 \\ & +17 \\ & +12 \end{aligned}$	$\begin{aligned} & +6 \\ & +1 \\ & +1 \end{aligned}$	$\begin{gathered} - \\ -12 \\ -3 \end{gathered}$
6	$\begin{aligned} & -1.4 \\ & -0.6 \\ & +1.2 \end{aligned}$	$\begin{array}{r} -1.2 \\ -0.2 \\ +0.9 \end{array}$	$\begin{aligned} & +5.9 \\ & +6.5 \\ & +5.4 \end{aligned}$	$\begin{aligned} & +8.1 \\ & +8.2 \\ & +6.3 \end{aligned}$	$\begin{aligned} & +8.1 \\ & +6.8 \\ & +3.5 \end{aligned}$	$\begin{aligned} & +15.6 \\ & +13.0 \\ & +\quad 9.3 \end{aligned}$	$\begin{aligned} & +18 \\ & +6 \\ & +6 \end{aligned}$	$\begin{aligned} & +15 \\ & -12 \\ & -5 \end{aligned}$
8	$\begin{aligned} & -0.8 \\ & -0.3 \\ & +0.6 \end{aligned}$	$\begin{array}{r} -0.4 \\ +0.4 \end{array}$	$\begin{aligned} & +1.9 \\ & +2.1 \\ & +1.2 \end{aligned}$	$\begin{array}{r} +3.1 \\ +3.1 \\ +1.7 \end{array}$	$\begin{array}{r} +4.6 \\ +4.2 \\ +1.8 \end{array}$	$\begin{aligned} & +6.3 \\ & +5.4 \\ & +2.8 \end{aligned}$	$\begin{aligned} & +8 \\ & +4 \\ & +3 \end{aligned}$	+9 -1 +1
10	$\begin{array}{r} -0.2 \\ -0.1 \\ +0.1 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.1 \\ & +0.1 \end{aligned}$	$\begin{aligned} & +1.4 \\ & +1.4 \\ & +0.5 \end{aligned}$	$\begin{aligned} & +1.9 \\ & +1.9 \\ & +0.7 \end{aligned}$	$\begin{aligned} & +2.7 \\ & +2.5 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +3.1 \\ & +2.9 \\ & +0.9 \end{aligned}$	$\begin{aligned} & +5 \\ & +4 \\ & +2 \end{aligned}$	$\begin{aligned} & +4 \\ & +2 \\ & +2 \end{aligned}$
13	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	+0.2 +0.2	$\begin{aligned} & +1.1 \\ & +1.1 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +1.5 \\ & +1.5 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +2.2 \\ & +2.1 \\ & -1.8 \end{aligned}$	$\begin{aligned} & +2.3 \\ & +2.3 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +3 \\ & +2 \\ & +1 \end{aligned}$	+3 +3 +2

[^7]TABLE A. 11.

SNEAK-2C, rod in, flux of group 4
Deviations KASY - TRITON : $\frac{{ }^{\Phi_{K}}-\Phi_{T}}{\Phi_{T}}$ (in ${ }_{\mathbf{F}}$)
for the three syntheses considered using respectively, 1, 2 and 3 trial functions

Z	1	5	10	14	20	21	23	26
1	$\begin{aligned} & -81 \\ & -82 \\ & -82 \end{aligned}$	$\begin{aligned} & -80 \\ & -81 \\ & -81 \end{aligned}$	$+23$ $+24$ $+23$	$\begin{aligned} & -15 \\ & -10 \\ & -11 \end{aligned}$	$\begin{aligned} & +69 \\ & +72 \\ & +70 \end{aligned}$	$\begin{aligned} & +41 \\ & +78 \\ & +74 \end{aligned}$	$\begin{aligned} & -31 \\ & +64 \\ & +57 \end{aligned}$	$\begin{aligned} & -48 \\ & +113 \\ & +101 \end{aligned}$
3	$\begin{aligned} & +8 \\ & +3 \\ & +3 \end{aligned}$	$\begin{aligned} & +9 \\ & +4 \\ & +5 \end{aligned}$	$\begin{aligned} & -13 \\ & -12 \\ & -13 \end{aligned}$	$\begin{aligned} & -29 \\ & -25 \\ & -26 \end{aligned}$	$\begin{array}{r} -9 \\ -1 \end{array}$	-15 +4 +1	$\begin{aligned} & -56 \\ & -4 \\ & -7 \end{aligned}$	$\begin{aligned} & -68 \\ & +18 \\ & +13 \end{aligned}$
5	$\begin{array}{r} +3 \\ +1 \\ +1 \end{array}$	$\begin{aligned} & +4 \\ & +1 \\ & +1 \end{aligned}$	$\begin{aligned} & -6 \\ & -6 \\ & -7 \end{aligned}$	$\begin{aligned} & -21 \\ & -18 \\ & -19 \end{aligned}$	$\begin{aligned} & -2 \\ & +3 \\ & +2 \end{aligned}$	-6 +4 +2	$\begin{array}{r} -39 \\ -4 \\ -8 \end{array}$	$\begin{aligned} & -47 \\ & +19 \\ & +13 \end{aligned}$
6	$\begin{aligned} & +1.2 \\ & +0.7 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +1.6 \\ & +1.1 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +3.2 \\ & +2.5 \end{aligned}$	$\begin{aligned} & -1.9 \\ & -1.1 \\ & -2.0 \end{aligned}$	$\begin{aligned} & +1.8 \\ & +3.2 \\ & +2.0 \end{aligned}$	$\begin{aligned} & +3.3 \\ & +6.2 \\ & +4.7 \end{aligned}$	$\begin{aligned} & -11 \\ & +1 \\ & -2 \end{aligned}$	$\begin{aligned} & -16 \\ & +12 \\ & +5 \end{aligned}$
8	$\begin{aligned} & -0.2 \\ & -0.2 \\ & -0.2 \end{aligned}$	$\begin{aligned} & +0.3 \\ & +0.3 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +1.5 \\ & +1.6 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +2.1 \\ & +2.2 \\ & +1.1 \end{aligned}$	$\begin{aligned} & +2.4 \\ & +2.7 \\ & +1.1 \end{aligned}$	$\begin{aligned} & +2.6 \\ & +3.0 \\ & +1.4 \end{aligned}$	$\begin{aligned} & +2 \\ & +4 \\ & +2 \end{aligned}$	$\begin{aligned} & +2 \\ & +7 \\ & +4 \end{aligned}$
10	$\begin{array}{r} -0.1 \\ -0.1 \\ -0.1 \end{array}$	$\begin{aligned} & +0.1 \\ & +0.1 \\ & -0.1 \end{aligned}$	$\begin{aligned} & +1.2 \\ & +1.2 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +1.7 \\ & +1.7 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +2.1 \\ & +2.1 \\ & +0.6 \end{aligned}$	$\begin{aligned} & +2.5 \\ & +2.6 \\ & +1.0 \end{aligned}$	+3 +3 +1	$\begin{aligned} & +4 \\ & +5 \\ & +3 \end{aligned}$
13	-0.1	$\begin{aligned} & +0.2 \\ & +0.2 \\ & -0.1 \end{aligned}$	+0.8 +0.8	$\begin{aligned} & +1.4 \\ & +1.4 \\ & +0.3 \end{aligned}$	$\begin{aligned} & +1.8 \\ & +1.8 \\ & +0.4 \end{aligned}$	$\begin{aligned} & +2.0 \\ & +2.1 \\ & +0.6 \end{aligned}$	+3 +3 +1	$\begin{aligned} & +4 \\ & +4 \\ & +2 \end{aligned}$

table A. 12.

SNEAK-2C, rod in, fission rate (in core and blanket regions) Capture rate (in control rod region)
Deviations KASY - TRITON : $\frac{\mathrm{F}_{\mathrm{K}}-\mathrm{F}_{\mathrm{T}}}{\mathrm{F}_{\mathrm{T}}}$ (in $\%$)
for the three syntheses considered using respectively, 1, 2 and 3 trial functions.

$Z>$	1	5	10	10	14	20	21	23	26
1	$\begin{aligned} & +47 \\ & +44 \\ & +55 \end{aligned}$	$\begin{aligned} & +48 \\ & +45 \\ & +54 \end{aligned}$	$\begin{aligned} & +27 \\ & +26 \\ & +25 \end{aligned}$	$\begin{aligned} & +38 \\ & +36 \\ & +35 \end{aligned}$	$\begin{array}{r} +12 \\ +13 \\ +15 \end{array}$	$\begin{aligned} & +53 \\ & +59 \\ & +47 \end{aligned}$	$\begin{aligned} & +52 \\ & +68 \\ & +57 \end{aligned}$	$\begin{aligned} & -13 \\ & +39 \\ & +43 \end{aligned}$	$\begin{aligned} & -36 \\ & +34 \\ & +94 \end{aligned}$
3	$\begin{aligned} & +1 \\ & -1 \\ & +5 \end{aligned}$	$\begin{array}{r} -2 \\ -1 \\ +3 \end{array}$	$\begin{aligned} & -10 \\ & -10 \\ & -11 \end{aligned}$	$\begin{aligned} & -12 \\ & -12 \\ & -13 \end{aligned}$	$\begin{aligned} & -10 \\ & -11 \\ & -14 \end{aligned}$	$\begin{aligned} & -2 \\ & +6 \\ & -2 \end{aligned}$	$\begin{aligned} & +10 \\ & +8 \\ & +2 \end{aligned}$	$\begin{aligned} & -30 \\ & -14 \\ & -11 \end{aligned}$	$\begin{array}{r} -57 \\ +13 \\ +30 \end{array}$
5	$\begin{aligned} & -1 \\ & -1 \\ & +2 \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \\ & +1 \end{aligned}$	$\begin{aligned} & -2 \\ & -2 \\ & -3 \end{aligned}$	$\begin{aligned} & +1 \\ & -1 \\ & -3 \end{aligned}$	$\begin{aligned} & -6 \\ & -5 \\ & -8 \end{aligned}$	$\begin{aligned} & +6 \\ & +7 \\ & +3 \end{aligned}$	$\begin{array}{r} +10 \\ +12 \\ +7 \end{array}$	$\begin{aligned} & -21 \\ & -11 \\ & -8 \end{aligned}$	-33 +7 +26
6	$\begin{array}{r} -2.5 \\ -1.9 \\ +0.1 \end{array}$	$\begin{array}{r} -1.7 \\ -1.5 \\ -0.1 \end{array}$	$\begin{aligned} & +4.3 \\ & +4.6 \\ & +4.3 \end{aligned}$	$\begin{aligned} & +4.0 \\ & +4.6 \\ & +3.6 \end{aligned}$	$\begin{aligned} & +2.5 \\ & +2.3 \\ & +3.7 \end{aligned}$	$\begin{aligned} & +4.5 \\ & +4.3 \\ & +2.2 \end{aligned}$	$\begin{aligned} & +6.4 \\ & +9.4 \\ & +7.8 \end{aligned}$	$\begin{array}{r} +9 \\ -6 \\ -5 \end{array}$	$\begin{aligned} & -9 \\ & -35 \\ & -20 \end{aligned}$
8	$\begin{aligned} & -2.0 \\ & -1.6 \\ & -0.6 \end{aligned}$	$\begin{aligned} & -1.7 \\ & -1.4 \\ & -0.7 \end{aligned}$	$\begin{array}{r} +0.3 \\ +0.5 \\ +0.2 \end{array}$	$\begin{aligned} & +0.3 \\ & +0.5 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +1.4 \\ & +1.5 \\ & +0.8 \end{aligned}$	$\begin{aligned} & +2.5 \\ & +2.4 \\ & +0.5 \end{aligned}$	$\begin{array}{r} +2.9 \\ +2.9 \\ +1.2 \end{array}$	$\begin{aligned} & +3 \\ & +4 \\ & +1 \end{aligned}$	+4 +8 +1
10	$\begin{aligned} & -1.3 \\ & -1.4 \\ & -0.8 \end{aligned}$	$\begin{aligned} & -1.4 \\ & -1.4 \\ & -1.0 \end{aligned}$	$\begin{aligned} & -0.2 \\ & -0.1 \\ & -0.4 \end{aligned}$	$\begin{aligned} & -0.2 \\ & -0.1 \\ & -0.4 \end{aligned}$	$\begin{aligned} & +0.2 \\ & +0.3 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.8 \\ & +0.7 \\ & -0.3 \end{aligned}$	$\begin{aligned} & +1.2 \\ & +1.2 \end{aligned}$	$\begin{aligned} & +2 \\ & +2 \\ & +1 \end{aligned}$	+4 +7 +3
13	$\begin{array}{r} -1.5 \\ -1.4 \\ -1.0 \end{array}$	$\begin{aligned} & -1.3 \\ & -1.3 \\ & -1.0 \end{aligned}$	$\begin{aligned} & -0.6 \\ & -0.5 \\ & -0.7 \end{aligned}$	$\begin{aligned} & -0.5 \\ & -0.4 \\ & -0.7 \end{aligned}$	$\begin{aligned} & -0.6 \\ & -0.3 \\ & -0.7 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.4 \\ & -0.4 \end{aligned}$	$\begin{aligned} & +0.5 \\ & +0.6 \\ & -0.3 \end{aligned}$	$\begin{aligned} & +2 \\ & +2 \\ & +1 \end{aligned}$	+3 +4 +2

Figure 1	Geometrical model ZPR-III-48 used for the comparison KASY-TRITON.
Figure 2	Geometrical model SNEAK-2C (simplified) used for the comparison KASY-TRITON.
Figure 3	SNEAK-2C Control rod experiments, core with 494 elements.
Figure 4	SNEAK-2C Control rod experiments, core with 494 elements, calculational model.
Figure 5	SNEAK-2C Control rod experiments, core with 539 elements, calculational model.
Figure 6	KASY results compared to TRITON results, off-center control rod in a two-zone core (SNEAK-2C).
Figure 7	Radial fission rate traverse in the core midplane in the presence of three control rods Na- $\mathrm{B}_{4} \mathrm{C}$ half inserted.
Figure 8	Characteristic curve $\delta k=f(h)$ of a $\mathrm{E}_{4} \mathrm{C}$ - Na control rod.

Fig. 1 Geometrical model ZPR -III-48 used for the comparison KASY - TRITON above : transversal section in the core midplane ($Z=1$ or 10) below : axial section in the plane $Y=1$

Fig. 2 Geometrical model SNEAK-2C (simplified) used for the comparison KASY - TRITON
above : horizontal section in the core midplane $(Z=13)$
below : vertical section in the plane $Y=22$

Maßstab 1:10

Maßstab 1:10

Maßstab 1: 10

KASY results compared to TRITON results
distance
TO CORE MIDPLANE (cm.)
Off-center control rod in a two-zone core (SNEAK-2 C)
Relative deviations in the fission rate $\frac{\mathrm{F}_{\mathrm{KASY}}-\mathrm{F}_{\text {TRITON }}}{\text { (capture rate in the control rod) }}$ (in \%)

[^0]: ASometimes oniy one trial function is used by KASY. Although triviel, such a synthesis has first of all the advantage of coherence. In addition the results are generally satisfactory.

[^1]: $A_{\text {T.F. }}=$ trial function.

[^2]: ${ }^{2}$ Here are presented results for the plane 22 . The perpendicular plane $\mathrm{X}=14$ was also considered in detail; the deviations were found similar.

[^3]: SNR : Schneller Natriungekinlter Reaktor.

[^4]: ${ }^{4}$ Average over the core portion of the traverse.

[^5]: * On loen from the MASURCA facility, Cadarache Center of the Cormissariat à l'Energie Atomique, France,

[^6]: Few group cross-sections were used in order to limit the computer time. But there is no limitation on the number of groups in KASY.

[^7]: Normalisation point

