KERNFORSCHUNGSZENTRUM KARLSRUHE

September 1971 KFK 1482

Institut für Neutronenphysik und Reaktortechnik
Projekt Schneller Brüter

Ergebnisse von Wärmeübergangs- und Druckverlustmessungen mit Helium an einem Rohrbündel

J. Marek, K. Maubach

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

September 1971

KFK 1482

Institut für Neutronenphysik und Reaktortechnik

Projekt Schneller Brüter

Ergebnisse von Wärmeübergangs- und Druckverlustmessungen mit
Helium an einem Rohrbündel

von

- J. Marek
- K. Maubach

•

.

Kurzfassung

Der Bericht gibt die Ergebnisse von Messungen des Druckverlustes und des Wärmeübergangs von Helium an, das durch ein Stabbündel mit 9 Rohren in quadratischer Anordnung bei einem Druck von 40 ata strömt. Die Rohre wurden direkt durch Stromdurchgang geheizt, die Heizleistung lag zwischen 30 und 300 KW, was einer Leistung von 16-160 W/cm am Heizrohr entspricht. Die Rohre waren glatt und im Abstandsverhältnis c/d = 1.283 in einem glatten quadratischen Führungsrohr angeordnet. Die Reynoldszahlen lagen zwischen 10⁴ und 3·10⁵. Wandtemperaturen bis 700°C wurden gemessen. Die isothermen Reibungsbeiwerte des gesamten Bündels mit Kanalwand wurden etwa 7% unter dem Kreisrohr gemessen; umgerechnet auf die Verhältnisse bei einer Anordnung mit unendlich vielen Stäben liegen die Meßergebnisse etwa 3% unter dem Kreisrohr. Die gemessenen Nusseltzahlen ausgewertet für enendliche Anordnung liegen ebenfalls etwas unter den vergleichbaren Kreisrohrwerten. Ein Einfluß des Temperaturfaktors auf die Nusseltzahl wurde nicht festgestellt.

Abstract

The report contains the results of measurements performed with respect to pressure drop and heat transfer of helium at a pressure of 40 ata flowing through a bundle of 9 tubes in a square arrangement. The tubes were heated directly by direct current; the heating power was between 30 and 300 KW corresponding to a power of 16 - 160 W/cm at the heating tube. The tubes were smooth and arranged in a smooth square channel at a distance ratio of c/d = 1.283. The Reynolds numbers ranged between 10^4 and $3 \cdot 10^5$. Wall temperatures up to 700 °C have been measured. The isothermal friction coefficients of the entire bundle, including the channel wall, were determined to be about 7% less than those of the circular tube. Transformed to the conditions applicable to an arrangement with an infinite number of rods, the results were about 3% less than those of the circular tube. The measured Nusselt numbers calculated for infinite arrangement are also slightly lower than the comparable values of circular tubes. An influence of the temperature factor on the Nusselt number was not observed.

Inhaltsverzeichnis

- 1. Einleitung
- 2. Technische Beschreibung der Teststrecke
 - 2.1 Aufbau
 - 2.2 Anordnung der Druck- und Temperaturmeßstellen
- 3. Durchführung und Auswertung der Druckmessungen
 - 3.1 Die Anteile des Druckverlustes
 - 3.2 Auswertung der Druckverlustmessungen
 - 3.3 Vergleich der Meßergebnisse mit der Literatur
- 4. Wärmeübergangsmessungen
 - 4.1 Durchführung und Auswertung
 - 4.2 Ergebnisse
 - 4.3 Diskussion der Ergebnisse
- 5. Zusammenfassung und Schlußfolgerungen

Anhang: A-Ergebnistabellen

B-Liste der verwendeten Symbole

C-Literaturverzeichnis

D-Abbildungen

general control

8.

1. Einleitung

Im Rahmen der wärmetechnischen Untersuchungen zu einem heliumgekühlten schnellen Reaktor sind zwei Rohrbündelteststrecken mit 9 bzw. 16 Rohren in quadratischer Anordnung untersucht worden. In diesem Bericht werden die Meßergebnisse zusammengestellt, die am 9-Rohrbündel gewonnen wurden.

Ziel der Untersuchungen ist es, bei Wärmeflüssen wie sie in einem schnellen Reaktor auftreten, das Wärmeübertragungsverhalten und die Druckverluste bei Kühlung mit Helium zu bestimmen. Es soll versucht werden, die Abhängigkeit von λ und Nu vom Temperaturfaktor, das heißt von dem Verhältnis Wandtemperatur zu Gastemperatur, zu ermitteln.

Die Versuche sind am Heliumversuchsstand des INR durchgeführt worden, der in $\sqrt{1}$ ausführlich beschrieben ist.

Eine Ansicht der Anlage zeigt Abb.1. In Abb.2 ist das Flußschema der Versuchsanlage angegeben, deren Hauptdaten in Tab. 1 zusammengestellt sind.

Gebläse:		
Druck am Gebläsesaugstutzen	50 ata	Article Language
Differenzdruck	2.5 at	
Menge	1.2 kg/sec	
Gebläsemotor	180 KW	
Temperatur am Gebläsesaugstutzen (max)	300°C	
Kreislauf:	en green de la companya de la compa	
Temperatur im Kreislauf (max)	525°C	
Wärmetauscher	600 KW	
Teststrecke ca. 3000 mm lang 250 mm Ø		
Tab. 1 Hauptdaten des Versuchskreislaufs		ningala da mana da man

Vorbereitende Versuche am Luftversuchsstand dienten der Entwicklung der Versuchsstrecke und der Meßtechniken. Diese Versuche sind in 22 beschrieben und liefern die Auslegungsdaten für die Teststrecke.

2. Technische Beschreibung der Teststrecke

2.1 Aufbau

In Abb. 3 und 4 ist der konstruktive Aufbau der Teststrecke dargestellt. Diese besteht aus 9 quadratisch angeordneten, glatten, nahtlos gezogenen Rohren in einem quadratischen Kanal. Sowohl die Kreisrohre als auch das Vierkantrohr sind aus hitzebeständigem Stahl der Werkstoff Nr. 4841.

Folgende geometrische Anordnung wurde festgelegt:

Heizrohre:

Rohrdurchmesser: d = 19 mm

Wandstärke: s = 1.2 mm

Abstandverhältnis: c/d = 1,283 mm

Führungskanal:

ä NW des quadr. Kanals: NW = 76,4 mm

Wandstärke: s = 3 mm

Die Prinzipdarstellung Abb. 5 zeigt die Anordnung der Teststrecke im Versuchsstand. Zur Aufheizung der Strecke sind je 3 Heizrohre parallel und hintereinander geschaltet, wobei eine kurze unbeheizte Anlaufstrecke L_A vorgesehen wurde. Diese Anlaufstrecke besteht aus Kupferrohren mit 3 mm Wandstärke, die mit den Heizrohren hart verlötet sind. Damit sich die Teststrecke bei den hohen Betriebstemperaturen frei ausdehnen kann, wurde sie in ein Trägerrohr eingehängt. Der quadratische Kanal ist durch eine Flanschverbindung am oberen Teil des Trägerrohres befestigt und wird durch drei Stützrippen am unteren Ende achsial geführt. Auf dem quadratischen Kanalrohr sitzt der Gaseintrittsstutzen mit eingelegter Keramikplatte, in welcher die Heizrohre zentriert sind. Am unteren Ende werden die Heizrohre ebenfalls durch eine Keramikplatte zentriert und über die Länge, wie in Abb. 5 ersichtlich, in 4 Ebenen über isolierende, in Stahlnippeln geführte Keramikstifte 27 abgestützt. Diese Stützrippen verhindern ein unzulässiges Ausbiegen der Heizrohre während des Betriebes.

Die Heizstrom-Zuführung erfolgt von oben über die unbeheizte Anlaufstrecke. Am unteren Ende sind die Heizrohre über eine Kupferbrücke miteinander verbunden, wobei die Differenzdehnungen zwischen den Heizrohren durch flexible Kupferbänder aufgenommen werden. Die Stromrückführung erfolgt über eine, zwischen dem Träger- und Kanalrohr liegende Kupferschiene nach oben. Das Kühlgas strömt zwischen Druckbehälter und Trägerrohr außen hoch, tritt oben radial durch den Gaseintrittsstutzen in die Teststrecke ein und kühlt nach unten strömend die elektrisch geheizten Rohre.

Ansichten der fertig montierten Teststrecke zeigen die folgenden Fotos. Abb. 7 zeigt den Einlauf mit Meßleitungen. Der obere Teil ist in Abb. 8 gezeigt, das untere Ende in Abb. 9.
Abb. 10 zeigt eine Gesamtansicht der Teststrecke.

2.2 Anordnung der Druck- und Temperaturmeßstellen

Die Gasein- und Austrittstemperaturen werden an den in Abb. 5 markierten Stellen durch Mantelthermoelemente mit isolierter Meßstelle gemessen.

Abb.5 zeigt die Anordnung der Druckentnahmebohrungen von 0,5 mm \emptyset im quadratischen Kanalrohr. Vorversuche ergaben, daß die einzelnen Bohrungen in jedem Querschnitt die erforderliche Genauigkeit garantieren, wenn die Innenseite sauber entgratet ist.

In die Bohrungen eingelötete Kupferrohre führen zu den Druckmeßgeräten. Der Absolutdruck wurde mit Feinmeßmanometern der Klasse 0.6 gemessen, der Druckabfall über die Teststrecke wurde mit Hg, Bromophorm, bzw. Wasser in U-Rohrmanometern gemessen.

Die Wandtemperatur der Heizrohre wurde mit Ni-NiCr-Mantelthermoelementen mit isolierter Meßstelle gemessen. Die Thermoelemente wurden durch Bohrungen im Rohrmantel von außen nach innen eingezogen und mit Vakuumgoldlot eingelötet. Die Isolierung der Thermoelemente in den Heizrohren erfolgte bis zum oberen Ende durch Keramikröhrchen, danach durch Quarzschlauch und anschließend durch Teflonschlauch. Die Thermoelemente führten vom oberen Ende der Heizrohre durch die Meßstutzen und Durchführungen ins Freie.

Abb.6 zeigt die Anordnung der Temperaturmeßstellen. Die Thermospannung wurde mit Kompensationspunktdruckern der Genauigkeitsklasse 0.25 gemessen.

Der Helium-Massenstrom wurde mit Hilfe von Venturidüsen bzw. Normblenden gemessen, wie in 17 beschrieben.

Geheizt wurde mit Gleichstrom, die elektrische Heizleistung wurde bestimmt durch getrennte Messung von Strom und Spannung.

Die Bestimmung des Temperaturkoeffizienten ß des elektrischen Widerstandes ist in Abb. 11 dargestellt, Der aus Heizspannung und Strom ermittelte Gesamtwiderstand wurde über der gemessenen mittleren Wandtemperatur der Heizrohre aufgetragen.

Es ergibt sich eine lineare Abhängigkeit des Widerstandes:

$$R = R_O \cdot (1+\beta t)$$
, wenn R_O der Widerstand bei O^OC ist.

Der Temperaturkoeffizient für dieses Material wird aus Abb. 11 zu

$$\beta = 0.322 \cdot 10^{-3} \frac{1}{\sqrt{C}}, \text{ bestimmt.}$$

Wie in Abb.5 schematisch dargestellt, werden alle Meßleitungen und Stromzuführungen im oberen Teil des Versuchsstandes durch eine Anzahl Stutzen herausgeführt.

3. Durchführung und Auswertung der Druckverlustmessungen

3.1 Die Anteile des Druckverlustes

Der beim Durchströmen eines Rohrbündels auftretende Druckverlust des Kühlmittels wird durch verschiedene Einflüsse bestimmt, die getrennt betrachtet werden. Eine schematische Darstellung zeigt Abb. 12. Im Eintrittsquerschnitt wird die Strömung beschleunigt und hat Verluste durch eventuelle Ablösungen und die erhöhte Reibung im Einlaufgebiet, beschrieben durch einen Eintrittsbeiwert K_E definiert durch:

$$\Delta_{p_{E}} = K_{E} \cdot \frac{f_{E}}{2} \cdot \omega_{E}^{2} \tag{1}$$

Entsprechend wird durch einen Gitterdruckverlustbeiwert $\mathcal{I}_{\scriptscriptstyle{G}}$ der Druckver-

lust durch den Gitterabstandshalter erfaßt, der ebenfalls die erhöhte Reibung nach den Gittern beinhaltet:

$$\Delta p_{G} = f_{G} \cdot \frac{f}{2} w^{2} \tag{2}$$

Ferner hat man den Reibungsdruckabfall und die Expansion des kompressiblen Mediums zu berücksichtigen. Anwendung des Impulssatzes auf die Rohrströmung liefert:

$$\frac{\mathrm{d}}{\mathrm{dx}} \left(p + \beta \omega^2 \right) = \mathcal{T}_{\omega} \cdot \frac{\mathbf{p}}{A} \tag{3}$$

wegen
$$\mathcal{S}_{w} = \text{const.} = \frac{M}{\Delta}$$
 (4)

und per Definition
$$\mathcal{T}_{\omega} = \frac{\lambda}{4} \cdot \frac{f}{2} \omega^2$$
 (5)

ergibt sich:

$$\frac{\mathrm{d}p}{\mathrm{d}x} + (f\omega) \frac{\mathrm{d}\omega}{\mathrm{d}x} = \lambda \cdot \frac{f}{2} \omega^2 \cdot \frac{1}{D}$$
 (6)

und

$$\frac{\mathrm{d}p}{\mathrm{d}x} + \frac{\mathrm{d}(1/f)}{\mathrm{d}x} \cdot \left(\frac{M}{A}\right)^2 = \lambda \cdot \frac{f}{2}\omega^2 \cdot \frac{1}{D} \tag{7}$$

Durch Integration dieser Gleichung haben Diamond und Hall 23_7 für ideale Gase folgende Gleichung abgeleitet, wobei über L (von 1 nach 2) gemittelte Werte für die Dichte und die Gastemperatur einzusetzen sind:

$$\Delta_{p} = \frac{1}{\sqrt{g}} \left(\frac{G}{A} \right)^{2} \left[\frac{1}{2} \lambda_{\overline{D}} + \frac{T_{2} - T_{1}}{\overline{T}} + \ln(p_{2/p_{1}}) \right]$$
(8)

mit:
$$\overline{T} = \frac{T_1 + T_2}{2}$$
 $\overline{\gamma} = \frac{R_g \overline{T}}{\overline{p}}$ $\overline{p} = \frac{p_1 + p_2}{2}$ (9)

In unserem Fall ist wegen $p_1 \geqslant 40$ atü der Logarithmus des Druckverhältnisses vernachlässigbar klein und es ergibt sich aus (8):

Reibungsdruckverlust:

$$\Delta_{p_{R}} = \lambda \cdot \frac{1}{2g\overline{\gamma}} \cdot \left(\frac{G}{A}\right)^{2} \cdot \frac{L}{D}$$
Expansionsdruckverlust: (10)

$$\Delta p_{Ex} = \frac{1}{\sqrt{7}} \cdot \left(\frac{G}{A}\right)^2 \cdot \frac{T_2 - T_1}{\overline{T}}$$
 (11)

Der Austrittsdruckverlust (Rückgewinn) ist nicht bestimmt worden, da er stark von der Geometrie abhängt und daher nicht von allgemeinem Interesse ist. Deshalb wurde der Druckverlauf nur bis Druckbohrung 6 kurz vor Bündelaustritt bestimmt (Abb.12).

Nachdem nun für die einzelnen Anteile des Gesamtdruckverlustes die entsprechenden Gleichungen abgeleitet sind, werden durch Auswertung der Meßergebnisse die Kennzahlen bestimmt.

3.2 Auswertung der Druckverlustmessungen

Eine Übersicht über die durchgeführten Druckverlustmessungen zeigt Tab. 2. Es wurden insgesamt 7 Läufe durchgeführt und jeweils nach Erreichen eines stationären Betriebspunktes für die angegebenen Meßpunkte die Druckmessungen durchgeführt.

Tab. 2 Übersicht über die durchgeführten Druckverlustmessungen

Lauf	ohne Heizung	mit Heizung	Messung
4	-	12 Punkte	$\Delta p_{ extbf{ges}}$
5	7 Punkte	14 Punkte	$\Delta p_{ exttt{ges}}$
6	7 Punkte	• • • • • • • • • • • • • • • • • • •	Δp_{ges}
7	13 Punkte	•	Druckverlauf
8	8 Punkte	10 Punkte	. #1
9	20 Punkte)	ohne Distanz-	n
10	18 Punkte	halter	n

Ausgewertet wurden zunächst die isothermen Versuche, dann die mit Heizung.

3.2.1 Isotherme Messungen

Zweck der isothermen Messungen war , den Eintrittsbeiwert K_E , den Reibungsbeiwert \mathfrak{I} und den Gitterdruckverlust \mathfrak{I}_G in Abhängigkeit von der Reynoldszahl zu bestimmen. Dazu wurde durch Messung des Druckes an 6 Positionen der Druckverlauf in der Teststrecke bestimmt (Abb. 12). Im glatten ausgebildeten Bereich fällt der Druck linear (Expansion sehr klein), daher führt die Neigung im glatten Bereich zu:

$$\Delta_{\mathrm{PR/L}}$$
 und damit nach Gl. 10 zu λ

Extrapolation dieses Druckabfalls zum Teststreckeneintritt ergibt Δp_E und nach Gl. (1) K_E .

Aus:

$$\Delta p_{ges} = \Delta p_E + \Delta p_R + n \cdot \Delta p_G$$
 (12)

ergibt sich Δp_{G} und aus Gl. (2) γ_{G}

Ergebnistabellen der isothermen Versuche sind im Anhang angegeben, Tab. Al und A 2.

In Abb. 13 sind die ermittelten Eintrittsbeiwerte dargestellt. Die Reynoldszahl ist wie folgt definiert,

$$Re = \frac{\int w \, De}{\mu} \tag{13a}$$

wobei der hydraul. Durchmesser für den Gesamtkanal

$$De = \frac{4 \text{ Ae}}{\mathbf{p}_e} \tag{13b}$$

einzusetzen ist. K_E fällt mit zunehmender Reynoldszahl und erreicht den Wert 1,04 bei Reynolds 2.10^5 .

Abb. 14 zeigt die ermittelten Reibungsbeiwerte des glatten Bündels. Die Reibungsbeiwerte liegen im Mittel 7% unter der eingezeichneten Vergleichskurve für das glatte Kreisrohr nach / 23/:

$$\frac{1}{\sqrt{\lambda}} = 2.035 \text{ lg Re } \sqrt{\lambda} = 0.989$$
 (14)

Eine Abschätzung der Meßfehler ergibt einen Gesamtfehler der Größe B= $\frac{\lambda}{\text{Re}^{-0.2}}$

von ≤ ± 6%, bedingt vor allem durch Unsicherheiten der geometrischen Größe, der Druckabfallmessung und der Mengenmessung. Der ermittelte Druckverlustbeiwert der verwendeten Abstandshalter ist in Abb. 15 dargestellt. Es ergibt sich gute Übereinstimmung mit der empirischen Formel von K.Rehme / 4/7:

$$y_G = 6.5 \xi^2 \text{ mit } \xi = \frac{\text{Ae - Amin}}{A_e}$$
 (15a)

An einer Rippenebene tritt ein Verlust von etwa 20% des Standdruckes ein. (Amin = freier Querschnitt im Bereich der Rippenebene)

3.2.2 Versuche mit Heizung

Bei Versuchen mit Heizung ergibt sich der Gesamtdruckabfall wie folgt:

$$\Delta_{p_{ges}} = \Delta_{p_E} + n \cdot \Delta_{p_G} + \Delta_{p_{Ex}} + \Delta_{p_R}$$
 (16)

Die Anteile Eintritt, Gitter, Expansion können berechnet werden, da K_E und f_G bereits ermittelt wurden und die Temperaturen gemessen werden. Damit kann der Reibungsbeiwert λ_B bezogen auf die "Bulk-Temperatur" aus dem gemessenen Gesamtdruckverlust nach (16) bestimmt werden.

Es ergibt sich folgender Ausdruck, wenn man die über die Bündellänge wechselnde Temperatur berücksichtigt und Abschnittsweise Mittelwerte nach Abb. 12 einführt:

$$\Delta p_{\text{ges}} = \left(\frac{G}{A}\right)^2 \frac{K_E}{2g \gamma_E} + \left(\frac{G}{A}\right)^2 \cdot \frac{f_G}{2g} \left(\frac{1}{\gamma_a} + \frac{1}{\gamma_b} + \frac{1}{\gamma_c} + \frac{1}{\gamma_d} + \frac{1}{\gamma_e}\right)$$

$$+\left(\frac{G}{A}\right)^{2} \cdot \frac{1}{g} \cdot \left(\frac{1}{\gamma_{III}} \cdot \frac{\Delta T_{III}}{\overline{T}_{III}} + \frac{1}{\gamma_{IV}} + \frac{\Delta T_{IV}}{\overline{T}_{IV}} + \dots + \frac{1}{\gamma_{VII}} \cdot \frac{\Delta T_{VII}}{\overline{T}_{VII}}\right)$$

$$+\left(\frac{G}{A}\right)^{2} \cdot \frac{1}{2g} \left(\frac{\lambda_{I}}{\overline{\gamma}_{I}} \cdot \frac{L_{I}}{\overline{D}} + \frac{\lambda_{II}}{\overline{\gamma}_{II}} \cdot \frac{L_{II}}{\overline{D}} + \dots + \frac{\lambda_{VII}}{\overline{\gamma}_{VII}} \cdot \frac{L_{VII}}{\overline{D}}\right)$$
(17)

Da Re wenig über die Länge variiert, bestimmt man aus (17) den mittleren Reibungsbeiwert:

$$\lambda_{\rm B} = \lambda_{\rm I} = \lambda_{\rm II} = \lambda_{\rm III} = \lambda_{\rm IV} = \lambda_{\rm V} = \lambda_{\rm VI} = \lambda_{\rm VI}$$
 (18)

Da diese Methode zu einer aufwendigen Auswertung führt, wurde eine vereinfachende Auswertung durchgeführt, durch Einführung der über die Teststreckenlänge gemittelten Dichte

$$\overline{f} = \frac{\overline{P}}{R_{\mathbf{g}} \overline{T}} \tag{19}$$

und

$$\Delta p_{\text{ges}} = \frac{1}{2g} \left(\frac{G}{A}\right)^2 \left[\frac{K_E}{\gamma_E} + \frac{\varphi_G}{\gamma_E} \cdot 5 \cdot \frac{1}{\overline{\gamma}} + \frac{1}{\overline{\gamma}} \frac{2(T_2 - T_1)}{\overline{T}} + \frac{1}{\overline{\gamma}} \cdot \lambda_B \cdot \frac{L}{\overline{D}}\right]$$
(20)

Durch eine vergleichende Rechnung bei hohen Temperaturgradienten ergab sich ein rechnerischer Unterschied von $\lambda_{\rm B}$ nach (17) und (20) der <1.5% war, weshalb die weitere Auswertung nach (20) erfolgte.

Die Ergebnisse sind im Anhang Tab. A3 angegeben. Zunächst ist $\lambda_{\rm B}$ über Re $_{\rm B}$ in Abb. 16 dargestellt. Man erkennt, daß $\lambda_{\rm B}$ in systematischer Weise unter den isotherm gemessenen Werten liegt, ein Zusammenhang, der auch in $\sqrt{5}$ gefunden wurde. Deshalb wurde mit der Referenztemperatur

$$T_{0.4} = T_B + 0.4 (T_W - T_B)$$
 (21)

wie in _5_7 für Glattrohre beschrieben, umgerechnet auf:

$$\lambda_{O.4} = \lambda_{B} \frac{g_{B}}{g_{O.4}} = \lambda_{B} \cdot \frac{T_{O.4}}{T_{B}}$$
 (22)

$$Re_{0.4} = Re_{B} \cdot \frac{f_{0.4}}{f_{B}} \cdot \frac{m_{B}}{m_{0.4}} = Re_{B} \cdot \frac{T_{0.4}}{T_{B}}$$
 (23)

Das Ergebnis zeigt Abb. 17. Es ergibt sich eine recht gute Übereinstimmung mit den isotherm gemessenen Werten.

3.3 Vergleich der Meßergebnisse mit der Literatur

Ein direkter Vergleich ist nicht möglich, denn es gibt zwar eine Vielfalt experimenteller Untersuchungen an quadratischen Anordnungen, doch sind die Randbedingungen wie Stabzahl, Ausführung und Abstand des Führungsrohres sehr verschieden.

Eine Zusammenstellung der bekannten Messergebnisse an quadratischen Anordnungen zeigt Tab. 3.

Die Skizzen der Abb. 18 zeigen die verschiedenen Ausführungen der Führungsrohre. Es kann ein quadratischer Kanal mit ebenen Wänden sein Abb. 18a, mit quasi-co Wandausführung zur Simulation einer Anordnung mit co vielen Stäben Abb. 18b oder das Führungsrohr kann in verschiedener Weise gewellt (scalloped liner) oder mit Halbstäben besetzt sein Abb. 18c. Aufgeführt sind in Tab. 3 die charakteristischen Merkmale der Teststrecken der verschiedenen Autoren, wie Abstandsverhältnis, Stabzahl, Kanalform und Wandabstand. Im folgenden werden die Ergebnisse im Einzelnen diskutiert und in Abb. 19 miteinander verglichen.

Parette und Grimble __6_7 geben für die untersuchten 9 Stabbündel in quadratischer Anordnung lediglich aus Mass-Transfer-Messungen gewonnene örtliche und mit einer Transient-Technik gewonnene mittlere Nu-Zahlen an.

Presser [7, Abb. 81] hat zwei Teststrecken selbst gemessen und die Ergebnisse mit Meßwerten von Tourneau, Grimble und Zerbe [8] verglichen. Presser gibt als Ergebnis folgenden Ausdruck:

$$\lambda = B(C/d) \cdot Re^{-0.2}$$
 (24)

mit
$$B(C/d) = 0.181 + 0.0108 \cdot C/d - 0.132 \cdot e^{-20(C/d-1)}$$
 (25)

Pressers Meßpunkte für eine quasi-c-Anordnung sind in Abb. 19 eingetragen.

Dingee und Chastain [9] haben drei 9-Rohrbündel untersucht. Nach den Angaben in [9] wurde der Druckverlust sehr ungenau bestimmt. Die Ergebnisse liegen sehr hoch, Abb. 19, was sich wohl aus der Unsicherheit der Meßwerte erklärt.

- 11

Tabelle 3 Literaturvergleich Reibungsbeiwerte

Lit.	Autor	P/d	Stabzahl	Kanalform	a/d	λ/λ_0 (Re= 10^5 ; λ_0 = 0.0182)
<u>/</u> 7_7	Presser	1.05 1.67	1 16	quasi-co quasi-co	1.05 1.67	0.8 1.04
<u>/</u> -8_7	Tourneau et al.	1.12 1.2	64 64	glatt glatt	1	0.95 0.95
<u>/</u> -9_7	Dingee et al.	1.12 1.2 1.27	9 9 9	glatt "	1.12 1.2 1.27	0.83 1.3 1.3
<u>/īo</u> 7	Gunn, Darling	1.0 1.31	o 4	- glatt	1.157	0.68 0.98 (Re = 4.10 ⁴)
/ <u>1</u> 1/ / <u>1</u> 2/	Galloway, Epstein	1.07 1.23 1.47 2.0	16 16 16 16	glatt " "	1.035 1.115 1.235 1.5	0.963 (Re = $1.4 \cdot 10_4^4$) 0.998 (Re = $3 \cdot 10_4^4$) 1.006 (Re = $4 \cdot 10_4^4$) 1.03 (Re = $5 \cdot 10^4$)
	eigener Meßwert	1,283	9	**	1.23	0.93

Tourneau, Grimble und Zerbe _8_7 geben in _8, Fig. 4_7 Ergebnisse von A über Re, wobei der hydrauliche Durchmesser der co-Anordnung verwendet wurde. Die mit dem hier verwendeten hydraulichen Durchmesser (Gl. 13b) ermittelten Ergebnisse finden sich in _8, Fig. 10_7.

Gunn, Darling $\sqrt{10}$ geben Meßwerte von Teststrecken mit 4 Rohren. Der Meßwert bei $\mathcal{C}/d = 1$ Abb.19 wird für den Zentralkanal allein angegeben (\mathfrak{o} -Anordnung) $\sqrt{10}$, Fig. 12 $\sqrt{10}$. Das 4-Rohrbündel mit C/d = 1,3 ist bis Re = $4\cdot10^4$ gemessen und liegt dort knapp unter dem Kreisrohr.

Schließlich findet man bei Galloway, Epstein/11/2 Meßwerte für 16-Rohr-Bündel, die je nach \mathcal{C}/d Verhältnis bis Re etwa $5\cdot10^4$ heraufreichen; die Zahlenwerte sind aus /12/2 entnommen. Auch diese Ergebnisse sind in Abb.19 eingetragen, zusammen mit dem eigenen Meßwert. Die Darstellung von λ/λ_0 wurde gewählt, um einen schnellen Überblick zu geben, obwohl sie die Abhängigkeit von der Reynoldszahl nicht erkennen läßt.

Wegen der genannten Einflüsse ist die Streuung der Ergebnisse in Abb.19 sehr groß. Weitere Untersuchungen müssen durchgeführt werden zur Klärung des Einflusses von Stabzahl, C/d Verhältnis und Form des äußeren Kanals.

Erst dann wird es möglich sein, eine allgemeine gültige Beziehung zur Berechnung des Reibungsbeiwertes von Bündeln in quadratischer Anordnung anzugeben mit der dann jeder Meßwert verglichen werden kann.

4. Wärmeübergangsmessungen

4.1 Durchführung und Auswertung der Messungen

Die Teststrecke ist mit Thermoelementen so besetzt worden, daß die Längsverteilung der Wandtemperatur des zentralen Stabes sowie in einem ausgewählten Querschnitt Abb. 6 auch die Temperaturen an einem Eckstab und mittleren Stab der äußeren Reihe bestimmt werden konnten.

Aus den Meßwerten wird die dimensionslose Kenngröße für den Wärmeübergang berechnet, die Nusseltzahl:

$$Nu = \frac{\alpha \cdot D}{k} \tag{26}$$

deren Abhängigkeit von den Strömungsparametern üblicherweise wie folgt angegeben wird:

$$Nu_{B} = C \cdot Re_{B}^{m} Pr^{QH} \left(\frac{T_{W}}{T_{B}}\right)^{e}$$
 (27)

Der Exponent der Pr-Zahl wird wie üblich zu 0.4 angenommen. Die Größe C gibt die Abhängigkeit von der geometrischen Anordnung an. Die Stoffwerte in Nu_{B} und Re_{B} werden bei der sich aus der Enthalpiedifferenz berechneten mittleren Gastemperatur, der "Bulktemperatur" bestimmt.

Nach dem hydraulischen und thermischen Einlauf wird die Strömung immer wieder durch die eingebauten Gitter gestört, die eine Art Einlaufeffekt erzeugen. Dies führt zu einem Temperaturverlauf an der Teststrecke, wie er schematisch in Abb. 20 dargestellt ist.

Es wurde daher festgelegt, Wärmeübergangszahlen für die als "Meßebene" bezeichnete Stelle zu rechnen, die noch am ehesten das Verhalten der ausgebildeten Strömung zeigt.

An dieser Stelle ($L/D\omega = 80$) ist die Wärmeübergangszahl zu bestimmen:

$$\alpha = \frac{q}{T_W - T_B} \tag{28}$$

Die Flächenleistung q ist über die Teststreckenlänge nicht konstant, da der elektrische Widerstand von der Temperatur abhängt Abb. 11.

Nachdem aus der zugeführten Heizleistung ${\bf Q}_{{\bf Z}{\bf U}}$ die mittlere Flächenleistung durch Division durch die Elementoberfläche bestimmt ist:

$$q = \frac{Q_{ZU}}{9 \cdot 1 \cdot d \cdot L_H}$$
 (29a)

wird die örtliche Flächenleistung unter Verwendung des in Abb. 11 ermittelten Koeffizienten des elektrischen Widerstandes bestimmt. Es ist:

$$q_{80} = q \frac{1 + \beta \cdot t_{80}}{1 + \beta \cdot \overline{t}_{W}}$$
 (29b)

 t_{80} ist die gemessene Wandtemperatur bei L/D=80, \bar{t}_{W} die mittlere Temperatur an der Teststrecke. Da ß klein ist, hat man praktisch überall die gleiche Flächenleistung.

Zur Berechnung von q aus (29a) muß nun die dem Gas zugeführte Leistung bestimmt werden. Bei der Konstruktion der Teststrecke wurde Wert auf eine sehr sorgfältige Isolierung gelegt, um Wärmeverluste durch die äußere Kanalwand zu begrenzen.

Da gleichzeitig die elektrische Leistung relativ hoch ist -kein Versuch ist unter 30 KW, Maximum ist 300 KW- ist nur mit kleinen relativen Wärmeverlusten zu rechnen, die im folgenden abgeschätzt werden durch Berechnung der Wärmeleitung durch die äußere Isolierung der Teststrecke. Das quadratische Führungsrohr ist mit einer Isolierung aus Asbestband versehen (mittlerer Durchmesser D_1 =125mm) mit einer Lagendicke von s_1 =15mm. Weiter ist das äußere Trägerrohr durch eine s_2 =70mm dicke Sillansteinwolleschicht (mittlerer Durchmesser D_2 =225mm) gegen das außen aufsteigende kalte Gas isoliert.

Rechnet man beide Isolierschichten als hintereinander liegende ebene Wände mit konstanter Wärmeleitfähigkeit $\mathbf{k_i}$, so ergibt sich der Wärmeverlust über die Heizlänge:

$$Q_{\text{Verl}} = k_1 \frac{\overline{\Delta T}}{D_2 s_1 + D_1 s_2} \cdot D_1 D_2 \cdot \overline{\Pi} \cdot L_H$$
 (30)

Dabei ist das treibende Temperaturgefälle gleich der mittleren Differenz der Gastemperaturen:

$$\overline{\Delta T} = \frac{T_A - T_E}{2} \tag{31}$$

da außen an dem Trägerrohr über die ganze Länge die Eintrittstemperatur \mathbf{T}_{E} herrscht und innen die Temperatur nahezu linear auf \mathbf{T}_{A} ansteigt. Die Wärme-

leitfähigkeit k_i wurde nach dem für Steinwolle geltenden Wert zu k_i =0.2 kcal/mh $^{\bullet}$ C geschätzt. Das Ergebnis der Berechnung der Wärmeverluste zeigt für alle Versuche die Tabelle A 4 im Anhang. Der Wärmeverlust ist immer kleiner 0.7% der elektrischen Leistung.

Damit ergibt sich die dem Gas zugeführte Leistung:

$$Q_{zu} = Q_{el} - Q_{Verl} \tag{32}$$

Die Annahmen wurden geprüft durch Aufstellung der Wärmebilanz für alle Meßpunkte. Dabei zeigen sich allerdings Abweichungen bis zu + 9%, bedingt vorallem durch die Ungenauigkeiten der Gastemperaturmessungen Tab. A 4. Wegen der guten Wärmetransporteigenschaften des Heliums bestehen oft nur kleine Temperaturdifferenzen zwischen Gaseintritt und -austritt; daher wirken sich schon Meßfehler von wenigen Graden stark auf die Wärmebilanz aus. Außerdem gibt es Unsicherheiten bei der Bestimmung der Gasaustrittstemperatur, da völlige Gasmischung vorausgesetzt wird.

Die Bulktemperatur an der Stelle x errechnet sich nun aus der gemessenen Eintrittstemperatur und der zugeführten Wärme:

$$T_{B} = T_{E} + \frac{Q_{zu} \cdot \frac{x}{L}}{G \cdot C_{D}}$$
 (33)

$$A_{z} \cdot W_{z} = 2 A_{w} \cdot W_{w} \tag{34}$$

da die anteilige Heizfläche im Wandkanal gerade halb so groß ist. Konstanten Druckabfall vorausgesetzt ergibt:

$$\lambda_1 \cdot \frac{z}{D_z} = 2 \cdot \frac{w}{D_w} \tag{35}$$

So findet man mit einem Reibungsbeiwert proportional Re^{-0.2}:

$$\frac{\lambda z}{\lambda_{w}} = \left(\frac{w^{D}_{w}}{w^{D}_{z}}\right)^{0.2} \tag{36}$$

eine Beziehung für den Wandabstand a der äußeren Kanalwand. Mit einem so bestimmten Wandabstand ist die Teststrecke ausgeführt $\sqrt{1}$. Es wird also gleiche Aufheizspanne in den Unterkanälen erwartet, was durch Mischungseffekte noch verbessert wird, so daß konstante Bulktemperatur in allen Unterkanälen der Auswertung zugrunde gelegt werden kann.

Die Wandtemperatur wurde gemessen mit Mantel-Thermoelementen, deren Spitze in die Rohre eingelötet war 22. Bei hohen Leistungen wird eine Korrektur der Meßwerte dann nötig, wenn hohe Temperaturunterschiede in der Wand bestehen. Im folgenden wird dieser Einfluß abgeschätzt. Bei konstanter Wärmeleitfähigkeit ergibt sich folgende Differenz der Temperatur an Innen- und Außenwand elektrisch beheizter Rohre 2137 (Außenkühlung):

$$t_{wi} - t_{wa} = \frac{q}{k_w} \cdot \frac{D_a}{2} \left(\frac{1}{2} - \frac{D_i^2}{(D_a^2 - D_i^2)} \ln \frac{D_a}{D_i} \right)$$
 (37)

Für dünnwandige Rohre kann die folgende für die ebene Platte abgeleitete Formel verwendet werden, wenn $D_a/D_i < 1.5 / 13/7$, (hier Rohr 19x1.2, also $D_a/D_i = 1.15$). Der Temperaturverlauf ist dann:

$$t - t_{wa} = \frac{q}{k_w} \cdot \left(y - \frac{y^2}{2s} \right)$$
 (38a)

mit y=Koordinate in der Wand. Es ist:

$$t_{wi} - t_{wa} = \frac{q}{k_w} \cdot \frac{s}{2} \tag{38b}$$

Das Ergebnis der Berechnung für die hier verwendeten Rohre ist in Abb. 21 dargestellt. Die Wärmeleitfähigkeit des Materials ist temperaturabhängig und für die angegebenen mittleren Wandtemperaturen aus / 14/7 entnommen.

Entsprechend der in Abb. 21 angegebenen Skizze, welche den Einbau der Thermoelemente in die Wand zeigt, ist hier angenommen, daß die isolierte Meßstelle etwa die Temperatur der Wandmitte mißt, damit beträgt die anzubringende Korrektur 3/4 der durch (38b) berechneten Werte. Die Flächenleistung bei den hier beschriebenen Versuchen liegt zwischen 3 und 30 W/cm², damit ergeben sich Korrekturen der Wandtemperatur bis zu 7°C. Die korrigierten Wandtemperaturen sind im Anhang Tab. A 5 angegeben. Es ist dabei t₈₀ die gemessene Wandtem-

peratur (Mittelwert aus den Thermospannungen der Thermoelemente am zentralen Stab), $T_{\mathbf{w}}$ die Wandtemperatur an der Oberfläche des zentralen Stabes.

Wie oben erwähnt ist der Wandabstand so bestimmt worden, daß in den Unterkanälen ein der Heizfläche entsprechender Massenstrom sich einstellt. Damit strömt in den vier zentralen Kanälen, Abb. 6, jeweils 1/9 des Gesamtmassenstroms. Es wurde daher festgelegt, Nu- und Re-Zahlen nur für die Zentralzelle zu berechnen unter Verwendung des hydraulischen Durchmessers der Zentralzelle:

$$D_{\infty} = \frac{4(p^2 - \frac{\pi d^2}{4})}{\pi d}$$
 (39)

Es ergibt sich:

$$Nu_{B} = \frac{\alpha \cdot D\omega}{k} \tag{40}$$

$$Re_{B} = \frac{(\Im w) \infty D \infty}{\mu} = \left(\frac{G}{9}\right) \cdot \frac{4}{\mu \pi d}$$
 (41)

Zur Auswertung werden die schon in 257 verwendeten Stoffwerte benutzt; eine Darstellung findet sich in Abb. 22. Diese Stoffwerte unterscheiden sich in dem hier verwendeten Bereich nur sehr wenig von den von H.J.Pfriem 2157 empfohlenen Werten.

4.2 Ergebnisse

Die Meßergebnisse sind im Anhang Tab. A 5 und A 6 angegeben. Die ermittelten Wärmeübergangszahlen sind in Abb. 23 dargestellt. Zum Vergleich der Ergebnisse ist die von Prandtl _ 16_7 für das Kreisrohr abgeleitete Gleichung eingezeichnet:

$$Nu = \frac{\frac{\sqrt{8 \text{ Re Pr}}}{1 + \sqrt{(Pr-1)}}$$
 (42)

mit nach Hofmann _17_7:

$$\gamma = 1.5 \cdot \text{Re}^{-1/8} \text{Pr}^{-1/6}$$
 (43)

Ebenso eingezeichnet ist der auch in [5] zum Vergleich verwendete Ausdruck von Taylor [18] (s. auch Gl. (46)).

Nu = 0.021 Re^{0.8} Pr^{0.4}
$$\left(\frac{T_W}{T_R}\right)^{-C}$$
 (44)

sowie die von Deissler / 19 / für Gase angegebene Gleichung:

$$Nu = \frac{Re^{0.75}}{31} \qquad (Pr = 0.7) \tag{45}$$

Die aus den Gleichungen (42), (44), (45) ermittelten Nu-Zahlen sind für 3 charakteristische Re-Zahlen in Tab. 4 angegeben.

$$Pr = 0.667$$

Re	104	10 ⁵	10 ⁶
2	0.0316	0.0182	0.0117
Nu (42)	31.7	174	1080
Nu (44)	28.2	178	1120
Nu (45)	32.2	181	1020

Tab. 4 Berechnete Nusseltzahlen nach Gl. (42), (44), (45).

Die Meßwerte in Abb. 23 liegen etwas unter den entsprechenden Werten für das Kreisrohr nach (42). Durch die Steigung m=0.75 der Gl. (45) werden die Versuchspunkte bis etwa Re= 10^5 gut wiedergegeben. Zur Ermittlung des Einflusses von $T_{\rm w}/T_{\rm B}$ ist daher die Größe:

$$\frac{\text{Nu}}{\text{Re}^{0.75}}$$
 über $\frac{\text{Tw}}{\text{TB}}$

ermittelt worden und für alle Meßpunkte in Abb. 24 dargestellt. Es ergibt sich eine Streuung der Meßpunkte um $\pm 10\%$. Ein ausgeprägter Einfluß von T_w/T_B ist

nicht festzustellen. Nun zeigen Untersuchungen von Dalle Donne und Bowditch / 20 / sowie die Arbeiten von Taylor / 18 / und Lel'chuk / 21 /, die bis zu / =4reichen, eine ausgeprägte Abhängigkeit des Temperaturfaktors von der Kanałlänge. Diese Abhängigkeit des Exponenten des Temperaturfaktors von dem Verhältnis L/D ist in Abb. 25 dargestellt. Danach ergibt sich für L/D=80 dieser Teststrecke ein Wert des Exponenten zwischen 0.44 und 0.67. In unserem Fall konnte kein derartig großer Exponent gefunden werden. Dies liegt einmal daran, daß die Versuche nur bis / T_B=1.4 reichen und somit der Einfluß der Temperaturfaktoren klein ist und zum anderen daran, daß die Meßstelle vom letzten Abstandshalter lediglich L/D/00=21 entfernt liegt und, wie bereits erwähnt, an jedem Abstandshalter wieder ein neuer Anlauf beginnt.

Es wurde bei dieser Teststrecke nicht versucht, durch eng am Umfang verteilte Thermoelemente Umfangsverteilungen der Nusselt-Zahl zu bestimmen, da sich bei den Vorversuchen 22 gezeigt hatte, daß mit dieser Technik eingelöteter Thermoelemente kleine Temperaturunterschiede nicht genügend genau erfaßt werden können. Diese Frage ist mit einer Wandtemperaturabtastung 227 in einer weiteren Teststrecke genauer untersucht worden 237. Dabei wurde keine Änderung der Umfangstemperatur gemessen, die größer als die Reproduzierbarkeit der Temperaturmessung (etwa 0.5 °C) gewesen wäre. Dieses Ergebnis ist in Übereinstimmung mit den Messungen von Dingee, Chastain 797, die ebenfalls keine signifikante Änderung der lokalen Nu-Zahl am Umfang fünden.

4.3 Diskussion der Ergebnisse

Für quadratische Anordnungen gibt es nur wenige Resultate von Wärmeübergangsmessungen. Ein direktes Gegenüberstellen der Wärmeübergangszahlen ist wegen der oben angeführten Gründe (Geometrie der Teststrecke, Auswertungsmethoden) nicht möglich. So geben Dingee und Chastain / 9 Resultate für Wärmeübergangsmessungen an 9-Rohr-Bündeln für c/d = 1.12, 1.2 und 1.27. Dabei wird / 9, Fig. 19 7 für c/d=1.27, Pr=1.18 eine Nu-Zahl angegeben, die etwa 35% über dem vergleichbaren Rohrwert liegt. Dabei ist Nu wie hier Gl. 40 definiert, die Reynoldzahl dagegen ist:

$$Re_{B} = \frac{G}{A_{e}} \cdot \frac{Doo}{2}$$
 (46)

Außerdem ist die Auswertung unter der Annahme überall konstanter Geschwindigkeit durchgeführt worden:

$$\overline{W} = \frac{G}{\gamma A_{\Delta}} \tag{47}$$

und "no mixing" angenommen, so daß der berechnete Wert von $\mathbf{T}_{\mathbf{B}}$ in den zentralen Kanälen wesentlich schneller ansteigt (Massenstrom proportional der freien Fläche) als in den äußeren. Dies führt zu höheren Nu-Zahlen. Da der Einfluß nicht abgeschätzt werden kann, ist ein Vergleich der Ergebnisse nicht möglich.

Parette und Grimble _6_7 haben zwei Teststrecken mit 9 Rohren in quadratischer Anordnung untersucht c/d = 1.2, a/d = 1.1 und c/d = 1.14, a/d = 1.136. Die Wärmeübergangszahl wurde bestimmt aus der Abkühlgeschwindigkeit des zentralen Stabes, der als einziger beheizt wurde (Transient-Technik). Die Geschwindigkeit in den zentralen Kanälen wurde berechnet, indem die aus dem Massenstrom errechnete mittlere Geschwindigkeit mit einem Geschwindigkeitsfaktor multipliziert wurde. Dieser Geschwindigkeitsfaktor wurde gewonnen unter der Annahme, daß die mittleren Geschwindigkeiten in den Unterkanälen sich wie die mit Pitotrohren gemessenen Maximalgeschwindigkeiten im Zentrum der Unterkanäle verhalten. Dann wird mit Donnach (39) die Nu-Zahl und Reynoldszahl berechnet. Die Ergebnisse sind:

für
$$c/d = 1.14$$
 Nu = 0.0044 Re^{0.936} Pr^{1/3} 3.10⁴ Re<1.05·10⁵ (48)

und liegen für c/d = 1.14 bei Re = $3 \cdot 10^4$ etwa 18% unter den Kreisrohrwerten nach Gl.(42) bei Re= 10^5 auf den Kreisrohrwerten. Für c/d = 1.2 liegen die Resultate etwa 18% über Gl.(42). Nach diesem Ergebnis würde man in unserem Fall (c/d = 1.283) noch höhere Nu-Zahlen zu erwarten haben, was sich nicht bestätigt. Allerdings ist zu beachten, daß die von Parette und Grimble $\lfloor 6 \rfloor$ verwendete Transient-Technik eine andere Randbedingung für den Wärmeübergang darstellt.

Wantland $\sqrt{25}$ gibt als Ergebnis von Messungen an einem 100-Stab-Bündel in quadratischer Anordnung mit C/d = 1.106 und a/d = 1.28 bei niedrigen Re-Zahlen folgende Beziehung an:

$$Nu = 0.0155 \text{ Re}^{0.8} \text{ Pr}^{0.4} \quad 10^{3} < \text{Re} < 1.3 \cdot 10^{4}$$
 (50)

Gleichung (50) liefert Werte, die bei Re = 10^4 etwa 22% unter dem Kreisrohr, Gl. (42), liegen. Die Meßergebnisse von Presser $\sqrt{7}$ 7 (2·10⁴< Re <2·10⁵) liegen bei C/d = 1.05 etwa 14% über dem Kreisrohr, bei C/d = 1.67 etwa 30% darüber. Beide Ergebnisse liegen sehr hoch, da nach unseren Resultaten bei C/d = 1.283 erst der Kreisrohrwert erreicht wird und für kleinere C/d mit kleineren Nu-Zahlen gerechnet werden muß.

Insgesamt erlauben die bisher vorliegenden Meßergebnisse keine endgültige Aussage über die Abhängigkeit der Nu-Zahl vom Abstandsverhältnis bei quadratischen Anordnungen.

5. Zusammenfassung und Schlußfolgerungen

Es werden Ergebnisse von Messungen des Druckabfalls und des Wärmeübergangs mit Helium an einem Bündel mit 9 Rohren in quadratischer Anordnung mit C/d = 1.283 mitgeteilt. Der Versuchsbereich war wie in folgender Liste angegeben:

Helium $10^4 < \text{Re} < 3.10^5$ Reynoldszahl 40 ata Druck max. bis 200 °C Temperatur Gaseintritt 700 °C Wandtemperatur max. $1 < T_w/T_R < 1.4$ Temperaturfaktor Durchsatz max. 1 kg/sec 30 - 300 KW Heizleistung ÷~165 W/cm Stableistung max. \div ~30 W/cm² Flächenleistung

Der ermittelte Gesamtreibungsbeiwert liegt 7% unter den Werten für das Kreisrohr Abb. 14. Umgerechnet mit Do entsprechend der Auswertung der Nu-Zahl für die zentralen Kanäle ergibt sich mit 2 nach Gl.(24) für:

$$\frac{\mathbf{B}\boldsymbol{\omega}}{\mathbf{B}_{\mathbf{e}}} = \left(\frac{\mathbf{D}\boldsymbol{\omega}}{\mathbf{D}_{\mathbf{e}}}\right)^{1.2} \cdot \left(\frac{9\mathbf{A}\boldsymbol{\omega}}{\mathbf{A}_{\mathbf{e}}}\right)^{1.8} = 1.04 \tag{51}$$

damit liegt $\lambda \omega$ noch etwa 3% unter dem Kreisrohr. Die Nu-Zahl für den Zentral-

kanal wurde nur wenig unter den Kreisrohrwerten ermittelt Abb. 23. Dieses Ergebnis stimmt mit der Reibungsbeiwertmessung gut überein (Prandl-Analogie).

Der bei Kreisrohren gefundene Einfluß des Temperaturfaktors ist bei diesem Rohrbündel nicht gemessen worden, es wird vermutet, daß die Abstandshalter diesen Effekt beeinflussen, da eine Art neue Anlaufstrecke nach jedem Abstandshalter beginnt.

Zu den Außenkanälen im Bündel ist zu sagen, daß für sie die angegebenen Nu-Zahlen nicht unmittelbar gültig sind. In diesen Kanälen stimmen die Randbedingungen für den Impuls- und Wärmeaustausch nicht überein, da das Führungsrohr nicht beheizt ist. Für diesen Fall gibt Rapier 267 für Ringzonen einen Vorschlag zur Umrechnung auf beidseitige Beheizung. Es ergibt sich nach 267 für einen zwischen ebenen Platten gebildeten Kanal bei einseitiger Beheizung eine Verminderung der Wärmeübergangszahl bei Gasen um fast 25%. Für die bei Stabbündeln auftretenden Wand- und Eckkanälen ist dieser Einfluß noch zu klären.

Die Verfasser danken den Herren Mensinger und Roth für ihre Mitarbeit bei der Vorbereitung der Teststrecke, der Durchführung und Auswertung der Versuche.

Tabelle A 1 Meßwerte zur Ermittlung von λ

	e e		ii.		* ***				
	G	p	Ŧ	APR/L	10 ⁻⁵ . Re	λ	ΔP _E	KE	
Meßpunkt	(kp/sek)	(ata)	(°K)	(kp/m ³)	Propries	e de la companya de l	(kp/m ²)		
9.1	0.454	27.213	388	332	0.8889	0.0178	326	1.12	
9.2	0.561	33.895	394	394	1.0863	0.0170	400	1.104	
9.3	0.6345	33.768	394	497	1.2286	0.0167	500	1.076	
9.4	0.7182	<i>33</i> •53 ⁴	393.5	620	1.3935	0.0161	640	1.07	
9.5	0.8063	33.292	393	765	1.5664	0.0157	790	1.043	
9.6	0.8839	33.134	393	914	1.717	0.0155	950	1.041	,
9.7	0.9657	33.008	392. 5	1057	1.878	0.0150	1125	1.031	
9.8	0.3915	32.246	389	215	0.7656	0.0183	200	1.091	
9.9	0.3534	31.956	387.5	175	0.6928	0.0182	170	1.132	
9.10	0.317	31.663	387	142	0.622	0.0182	137	1.125	
9.11	0.2778	31.471	3 86 . 5	115	0.5457	0.0191	111	1.18	
9.12	0.2422	31.277	3 86 . 5	94	0.4758	0.0205	80	1.112	
9.13	0.2068	31,183	385	69	0.4074	0.0206	66	1.259	
9.14	0.1754	31.087	384.5	51	0.3461	0.0212	-	-	
9.15	0.1685	33.189	386	44.5	0.3315	0.0212	-	-	

i V V

Anhang A

Fortsetzung von Tabelle A 1 Meßwerte zur Ermittlung von λ

							10 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a		
9.16	0.1489	32.991	386	34.8	0.293	0.0211	-	-	
9.17	0.1339	32.493	386	30.5	0.2635	0.0226	-	_	
10.1	0.7436	35.272	406.5	660	1.405	0.0164	670	1.065	
10.2	0.847	34.938	406.3	810	1.6	0.0153	865	1.05	
10.3	0.9376	34.804	406	965	1.778	0.0148	1050	1.035	
10.4	1.05	34.558	405.5	1210	1.993	0.0148	1300	1.02	
10.5	0.672	34.394	405	520	1.278	0.0154	567	1.08	
10.6	0.53	34.229	405	345	1.007	0.0163	366	1.11	
10.7	0.4484	33.949	404.5	250	0.8545	0.0165	262	1,106	
10.8	0.3838	36.162	410	185	0.722	0.0174	190	1.145	
10.9	0.3468	36.068	410	153	0.652	0.0177	160	1.18	
10.10	0.3052	35.975	409	132	0.574	0.0196	130	1.236	
10.11	0.2345	35.784	409	85	0.4417	0.0213	83	1.332	
10.12	0.1994	35.688	409	65	0.3752	0.0225	60	1.325	
10.13	0.1615	35.492	407.5	45	0.3045	0.0237	43	1.445	
10.14	0.1583	35.192	406.5	43	0.299	0.0234	41.5	1.445	
10.15	0.1451	35.093	406.5	37	0.2742	0.0240	-	_	

Tabelle A 2 Meßwerte zur Ermittlung von \mathcal{G}_{G}

		<u> </u>	·		· · · · · · · · · · · · · · · · · · ·	
Meßpunkt	G	5	T.	Δp _G	10 ⁻⁵ •Re	$\mathcal{G}_{\boldsymbol{G}}$
меврипкс	(kp/sek)	(ata)	(°K)	(kp/m^2)		
5.18	0.1814	15.9	414.5	63	0.3405	0.145
5.19	0.3065	15.9	416	184	0.5724	0.148
5.20	0.4514	16	418	443	0.8397	0.164
5.21	0.5681	15.92	421	723	1.0507	0.168
7.1	0.791	45.9	515	679.5	1.2613	0.192
7.2	0.963	45.6	515	895	1.5355	0.169
7.3	0.696	45.3	513.5	508	1.1542	0.184
7.4	0.583	44.9	512.5	367	0.9358	0.188
7.5	0.483	44.9	512.5	244	0.7754	0 181
7.6	0.399	44.7	512	156	0.641	0.17
7.7	0.412	44.6	506	146	0.6648	0.15
8.1	0.204	35.8	401	48	0.391	0.203
8.2	0.1643	3 4	376.5	26.4	0.3296	0.194
8.3	0.1293	34	376.5	19.4	0.2598	0.207
8.4	0.102	33.5	<i>3</i> 75.5	11.5	0.2052	0.197
8.5	0.0812	33. 5	<i>3</i> 73.5	6.8	0.164	0.184
8.6	0.245	31.3	365.5	72.4	0.502	0.21
8.8	0.403	31.7	362.5	146	0.831	0.156

Tabelle A 3 Versuche mit Wärmezufuhr

	1		f	1	1					``````	
	G	$P_{\mathbf{E}_{i}}$	T ₁	Т2	Δpges	∆p _R	Tw/TB	10 ⁻⁵ .Re _B	λ _B	10 ⁻⁵ -Re _{0,4}	$\lambda_{0,4}$
Meßpunkt	(kp/sek)	(ata)	(°K)	(°K)	(kp/m ²)	(kp/m ²)		-	 —	- ·	<u>-</u>
4.2	0.119	21.3	426.3	506.5	176.1	93.1	1.137	0.20357	0.0189	0.1856	0.0199
4.3	0.252	21.4	429	507	758.6	427.28	1.163	0.43032	0.0193	0.3857	0.0206
4.4	0.416	21.3	429.5	497.8	2052.2	1189.36	1.168	0.715	0.0198	0.6389	0.0211
4.5	0 .7 35	21.4	429	481.5	5581	3051.13	1.149	1.28186	0.0164	1.1596	0.0174
4.6	0.37	21.2	429	575.3	1910	1097.92	1.31	0.60109	0.0211	0.4913	0.0237
4.7	0.185	21.1	432.5	609	555.4	327.66	1.295	0.29263	0.0243	0.2414	0.0272
4.12	0.222	21.0	434.8	681.8	799.2	433.14	1.388	0.33326	0.0207	0.2594	0.0239
5.1	1.026	32.2	420.5	478.5	6475	3259.7	1.204	1.806	0.0138	1.5747	0.0149
5.2	0.4153	31.3	420.3	491.5	1294	719.08	1.17	0.7248	0.0179	0.6469	0.0191
5.3	0.4175	31.3	421.5	491.5	1246.2	664.54	1.172	0.7268	0.0164	0.6462	0.0175
5.4	0.1667	30.7	418	497	257.4	154.32	1.154	0.2899	0.0234	0.2661	0.0248
5.5	0.1673	30.6	418	497.8	230.3	126.43	1.151	0.2916	0.0190	0.2732	0.0202
5.6	0.1668	16.2	414.5	496.8	454	258.47	1.154	0.2912	0.0207	0.2670	0.0219
5.7	0.0973	16.2	415.8	504.5	203.2	126.41	1.145	0.1686	0.0295	0.1529	0.0312

χ '

Anhang A

Fortsetzung von Tabelle A 3 Versuche mit Wärmezufuhr

5.8	0.1089	16.2	419.3	559.3	223.5	120.2	1.221	0.18	0.0210	0.1557	0.0229
5.10	0.1094	16.2	418	629.3	244	127.13	1.307	0.1718	0.0206	0.1407	0.0231
5.11	0.188	16.4	422.8	618.3	637	330.78	1.324	0.2983	0.0185	0.2417	0.0209
5.12	0.1978	16.55	426.8	703.3	786	402.29	1.441	0.2951	0.0189	0.2229	0.0222
5.13	0.09707	16.25	424.8	722.8	230.3	121.91	1.385	0.1425	0.0229	0.1112	0.0264
8.10	0.4885	41.2	462.8	534.3	1473	781.36	1.173	0.818	0.0161	0.7283	0.0172
8.11	0.808	41.0	460.3	525.3	3570	1805.89	1.178	1.353	0.0139	1.2005	0.0149
8.12	0.301	39.4	441.8	519.3	600	324.86	1.167	0.521	0.0174	0.4655	0.0186
8.13	0.14	39.3	440.8	606.8	172	93.78	1.266	0.2294	0.0208	0,1925	0.0230
8.14	0.1859	39.4	442.3	608.3	289	160.88	1.281	0.2985	0.0210	0.2483	0.0233
8.15	0.2352	39.4	440.8	604	437	235.78	1.304	0.3818	0.0191	0.3132	0.0214
8.16	0.3294	39.5	442.3	598.5	784	413.96	1.314	0.527	0.0177	0.4295	0.0199
8.17	0.1775	39.7	446	747.3	312	165.4	1.45	0.2613	0.0207	0.1964	0.0244
8.18	0.132	39.1	442.8	764.8	192	103.82	1.434	0.1935	0.0227	0.1467	0.0266
8.19	0.1023	38.9	442.3	767.3	127	70.06	1.405	0.1514	0.0248	0.1167	0.0288
8.20	0.1169	35.9	415.8	745.8	165	88.28	1.46	0.1798	0.0225	0.1343	0.0266

. 27 .

Æßpunkt	G (kp/sek)	P E (ata)	% 1 (°C)	ນ 2 (°c)	Q _G (KW)	U (V)	J (A)	Q _{el}	QVerl	Q _{zu} (KW)	Q _{zu} -Q _G Q _{zu} (%)
4.1	0.0598	21.3	146.8	234	27.11	30.4	960	29.184	0.1485	29.036	+ 6.6
4.2	0.119	21.3	153.3	233.5	49.619	40	1248	49.92	0.1366	49.783	+ 0.3
4.3	0.252	21.4	156	234	102.19	57	1758	100.21	0.1328	100.07	- 2.1
4.4	0.416	21.3	156.5	224. 8	147.72	68.9	2130	146.76	0.1163	146.64	- 0.74
4.5	0.735	21.4	156	208.5	200.62	79.8	2490	198.70	0.0894	198.61	- 1.01
4.6	0.37	21.2	156	302.3	281.43	98.25	2928	287.68	0.2492	287.43	+ 2.1
4.7	0.185	21.1	159.5	336	169.76	75.8	2238	169.64	0.3006	169.34	- 0.25
4.8	0.0932	20.8	156.8	3 55•5	96.28	58.95	1740	102.57	0.3384	102.24	+ 5.8
4.9	0.0448	20.7	151.3	327.5	41.04	38.2	1152	44.006	0.3001	43.706	+ 6.1
4.10	0.061	20.6	155.8	466.3	98.473	60.8	1746	106.16	0.5288	105.63	+ 6.8
4.11	0.121	21.1	164	444.3	176.33	78.9	2268	178.95	0.4774	178.47	+ 1.2
4.12	0.222	21.0	161.8	408.8	285.09	98.9	2844	281.27	0.4206	280.85	- 1.5
5.1	1.026	32.2	147.5	205.5	309.38	98.75	3 065	302.67	0.0988	302.57	- 2.2
5.2	0.4153	31.3	147.3	218.5	153.84	69.1	2144	148.15	0,1213	148.03	- 3.9
5.3	0.4175	31.3	148.5	218.5	151.94	69.04	2142.5	147.92	0.1192	147.8	- 2.8
5.4	0.1667	30.7	145	224	68.467	46.4	1442.5	66.932	0.1345	66.8	- 2.5
5.5	0.1673	30.6	145	224.8	69.366	46.7	1452.5	67.832	0.1359	67.696	- 2.5
5.6	0.1668	16.2	141.5	223.8	71.327	47.4	1475	69.915	0.1402	69.775	- 2.2

					- P						
5.7	0.0973	16.2	142.8	231.5	44.895	38.2	1185.5	45.286	0.151	45.135	+ 0.53
5.8	0.1089	16.2	146.3	286.3	79.264	51.5	1557	80.186	0.2384	79.948	+ 0.86
5.9	0.065	16.3	150.5	358.3	70.206	50.85	1490	75.767	0 .3 539	75.413	+ 6.9
5.10	0.1094	16.2	145	356.3	120.15	64.2	1887.5	121.18	0.3598	120.82	+ 0.55
5.11	0.188	16.4	149.8	345.3	191.13	80	2345.5	187.64	0.3329	187.31	- 2.04
5.12	0.1978	16.6	153.8	430.3	284.34	99.85	2833	282.88	0.4709	282.4	- 0.69
5.13	0.097	16.3	151.8	449.8	150.31	73.3	2092	153.34	0.5075	152.84	+ 1.7
5.14	0.0451	16.3	154.3	474.3	74.982	53	1515	80.295	0.545	79.75	+ 6.0
8.10	0.4885	41.2	189.8	261.3	181.59	79.2	2420	191.66	0.1218	191.54	+ 5.2
8.11	0.808	41.0	187.3	252.3	273.06	96	2940	282.24	0.1107	282.13	+ 3.2
8.12	0.301	39.4	168.8	246.3	121.28	64.8	1990	128.95	0.132	128.82	+ 5.9
8.13	0.14	39.3	167.8	333.8	120.83	66	1980	130.68	0.2827	130.4	+ 7.3
8.14	0.1859	39.4	169.3	335.3	160.44	75.2	2230	167.7	0.2827	167.41	+ 4.2
8.15	0.2352	39.4	167.8	331	199.63	84.1	2500	210.25	0.2779	209.97	+ 4.9
8.16	0.3294	39.5	169.3	325.5	267.59	96	2850	273.6	0.266	273.33	+ 2.1
8,17	0.1775	39.7	173	474.3	278.01	102	2880	293.76	0.5131	293.25	+ 5.2
8.18	0.132	39.1	169.8	491.8	221	91.3	2580	235.55	0.5484	235.01	+ 6.0
8.19	0.1023	38.9	169.3	494.3	172.6	81.6	2310	188.5	0.5535	187.94	+ 8.2
8.20	0.1169	35.9	142.8	472.8	200.5	88.2	2520	222.26	0.562	221.7	+ 9.6

. 130

Tabelle A 5 Ermittlung der Wärmeübergangszahlen

·										
Meßpunkt	q (W/cm ²)	t̄ _w (°C)	^t 80 (°C)	^q 80 (W/cm ²)	3/4 (t _{wi} -t _{wa}) (°C)	T _W	(°K)	T _W - T _B	$\left(\frac{\text{kcal}}{\text{m}^2\text{h}^0\text{C}}\right)$	$ \frac{10 \cdot k}{\left(\frac{\text{kcal}}{\text{m h}^{9}\text{C}}\right)} $
4.1	2.69	253	285.5	2.72	0.7	557.8	497	60.8	384.74	1.887
4.2	4.61	257	287.5	4.65	1.2	559.3	492.8	66.5	601.35	1.88
4.3	9.27	271	299	9.35	2.2	569.8	492.2	77.1	1042.93	1.879
4.4	13.58	268.5	290	13.67	3.2	559.8	485.6	74.2	1584.39	1.852
4.5	18.39	250	270	18.5	4.7	538.2	472	66.2	2403.32	1.82
4.6	26.62	385	438	27.02	6.2	704.8	552.6	152.2	`1526.75	2.035
4.7	15.68	402	468.5	16.0	3.6	737.9	578.1	159.8	861.08	2.105
4.8	9.47	406	486	9.69	2.1	756.9	604.3	152.6	546.09	2.17
4.9	4.05	350.5	418	4.13	1.0	690	579.5	110.5	321.43	2.109
4.10	9.78	525.5	644	10.1	2.0	915	704.2	210.8	412.05	2.425
4.11	16.53	529	626	16.97	3.3	895.7	671.6	224.1	651.24	2.34
4.12	26.01	502.5	599	26.71	5.3	866.7	636	230.7	995.69	2.25
5.1	28.02	268.5	280	28.12	7.2	545.8	467.4	78.4	3084.6	1.81
5.2	13.71	261	284	13.8	3.5	553.5	477	76.5	1551.37	1.837
5.3	13.69	263	286	13.78	3.5	555.5	477.8	77.7	1525.2	1.83
5.4	6.19	256	283	6.24	1.6	554.4	431.7	72.7	739.16	1.84
5.5	6.27	253	282.5	6.33	1.6	553.9	482.4	71.5	761.37	1.849

. 30 •

		Section and the second	the second of	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1						
5.6	6.45	253.5	28 3. 4	6.51	1.6	554.8	481	73.8	758.62	1.845
5 .7	4.18	254.5	287.6	4.22	1.1	559.5	489.6	69.9	519.2	1.866
5.8	7.4	325.5	378.5	7.51	1.7	649.8	536.1	113.7	568.04	1.993
5.9	6.98	402	484	7.14	1.5	755.5	608.1	147.4	416.58	2.18
5.10	11.19	412.5	493.5	11.45	2.4	764.1	593.7	170.4	577.88	2.145
5.11	17.35	415	490.5	17.72	3.8	759.7	581.3	178.4	854.22	2.12
5.12	26.15	540	637	26.85	5.3	904.7	653.9	250.8	920.69	2.3
5.13	14.15	526	637	14.58	2.9	907.1	675.3	231.8	540.93	2.35
5.14	7.39	532	646.5	7.62	1.5	918	708.8	209.2	313.25	2.43
8.10	17.74	312	336	17.87	4.5	604.5	525.2	79.3	1937.98	1.96
8.11	26.13	307.5	330	26.3	6.6	596.4	515.8	80.6	2806.2	1.94
8.12	11.93	288	314	12.02	3.0	584	509.9	74.1	1395.03	1.92
8.13	12.08	390	449	12.28	2.7	719.3	589	130.3	810.5	2.13
8.14	15.5	400	459	15.76	3.5	728.5	585.6	142.9	948.47	2.124
8.15	19.45	408	462	19.75	4.4	730.6	582.8	147.8	1149.2	2.12
8.16	25.31	411	464	25.69	5.7	731.3	574.3	157.0	1407.2	2.1
8.17	27.16	592	694	27.91	5.1	961.9	708.8	253.1	948.35	2.43
8.18	21.76	593	702	22.4	4.1	970.9	726	244.9	786.61	2.47
8.19	17.41	577	704	18.01	3.3	973.7	734.5	239.2	647.52	2.4
8.20	20.53	575	6 9 8	21.22	3.9	967.1	717.5	249.6	731.14	2.45

31.

Tabelle A 6 Ermittlung von Nu und Re

	<u> </u>				
Meßpunkt	NuB	10 ⁵ •μ	10 ⁻⁵ •Re _B	Nu _B /Re _B 0.75	Tw/TB
		$\left(\frac{\mathrm{kp}}{\mathrm{m}\ \mathrm{sek}}\right)$			
4.1	42.41	2.893	0.1539	0.0307	1.122
4.2	66.53	2.88	0.3077	0.0284	1.135
4.3	115.45	2.877	0.6522	0:0283	1.157
4.4	177.95	2.85	1.0868	0.0297	1.153
4.5	274.67	2.79	1.9616	0.0295	1.14
4.6	156.05	3.13	0.8802	0.0305	1.275
4.7	85.09	3.237	0.4256	0.0287	1.276
4.8	52.34	3.34	0.2078	0.0302	1.253
4.9	31.70	3.24	0.103	0.0310	1.191
4.10	35.34	3 . 73	0.1218	0.0305	1.299
4.11	57.89	3.626	0.2485	0.0293	1.334
4.12	92.05	3.475	0.4757	0.0286	1.363
5.1	354.47	2.775	2.753	0.0295	1.168
5.2	175.66	2.81	1.1005	0.0291	1.16
5.3	173 .36	2.823	1.0954	0.0288	1.163
5.4	83.44	2.833	0.4381	0.0276	1.151
5.5	85.65	2.835	0.4394	0.0282	1.148

5.6	85.52	2.829	0.439	0.0282	1.153
5•7	57.87	2.866	0.2528	0.0289	1.143
5.8	59 .2 8	3.07	0.2641	0.0286	1.212
5.9	39.75	3.36	0.144	0.0302	1.242
5.10	56.04	3.3	0.2468	0.0285	1.287
5.11	83.81	3. 25	0.4307	0.0280	1.307
5.12	83.26	3·5 ⁴	0.4161	0.0286	1.384
5.13	47.88	3.63	0.1991	0.0286	1.343
5.14	26.81	3.75	0.0895	0.0291	1.295
8.10	205.66	3.02	1.2044	0.0318	1 .1 51
8.11	300.87	2.975	2.0223	0.0315	1.156
8.12	151.13	2.95	0.7597	0.0330	1.145
8.13	79.15	3.2 8	0.3178	0.0333	1.221
8.14	92.88	3.274	0.4228	0.0315	1.244
8.15	112.75	3.265	0.5364	0.0320	1.254
8.16	139.38	3.23	0.7593	0.0305	1.273
8.17	81.18	3.7 5	0.3524	0.0316	1.357
8.18	66.24	3.81	0.258	0.0325	1.337
8.19	56.12	3 . 85	0.1979	0.0336	1.326
8.20	62.07	3 .7 8	0.2303	0.0332	1.348
Property of the last of the la					

Anhang B

Liste der Symbole

A	Strömungsquerschnitt
A _{min}	Strömungsquerschnitt im Gitterbereich
a=b+d	Abstand, entspricht c
В	Konstante im Reibungsgesetz
b	Abstand der Heizrohre vom Führungskanal
C	Konstante
C	Abstand der Heizrohrmittelpunkte
c _p	spezifische Wärme
D, D _h	hydraulischer Durchmesser D = $\frac{\mu A}{P}$
d	Rohraußendurchmesser
e	Exponent des Temperaturfaktors
g	Erdbeschleunigung
G	Durchsatz pro Zeiteinheit
k	Wärmeleitfähigkeit
K _E	Eintrittsdruckverlustbeiwert
L	Teststreckenlänge
LA	unbeheizte Anlauflänge
LĦ	beheizte Länge
M	Massenstrom pro Zeiteinheit
n	Anzahl der Abstandshalter
Nu	Nusselt-Zahl
NW	Nennwerte des quadratischen Kanals
p	Druck
P	Umfang
Pr	Prandtl-Zahl
q	Wärmeleistung pro Flächeneinheit
Q	Heizleistung

Anhang B

r	Rohrradius, Radius
Re	Reynolds-Zahl
R	elektrischer Widerstand
Ro	elektrischer Widerstand bei 0 °C
Rg	Gaskonstante
s	Wandstärke
t	Temperatur COC_7
Т	TemperaturOK7
W	Gasgeschwindigkeit
x	Koordinate in Strömungsrichtung
α	Wärmeübergangszahl
ß	Koeffizient des elektrischen Widerstandes
Υ	spezifisches Gewicht
٤	Versperrungsfaktor
λ	Reibungsbeiwert
3	Dichte
Υ	Schubspannung
S.	Gastemperatur
μ	Zähigkeit
∮ G	Gitterdruckverlustbeiwert
	4

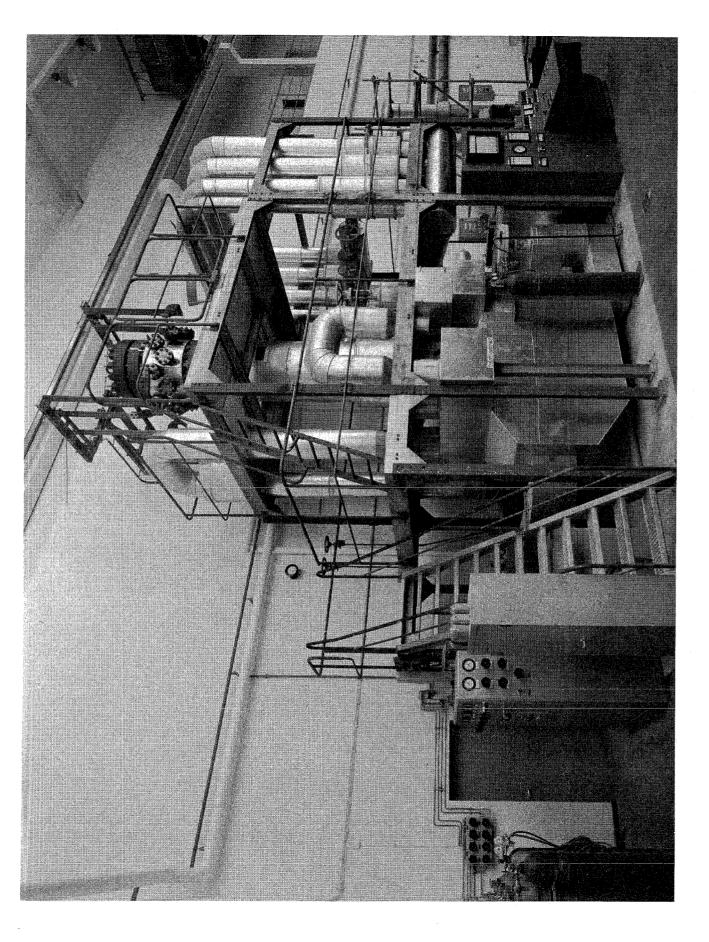
Indices

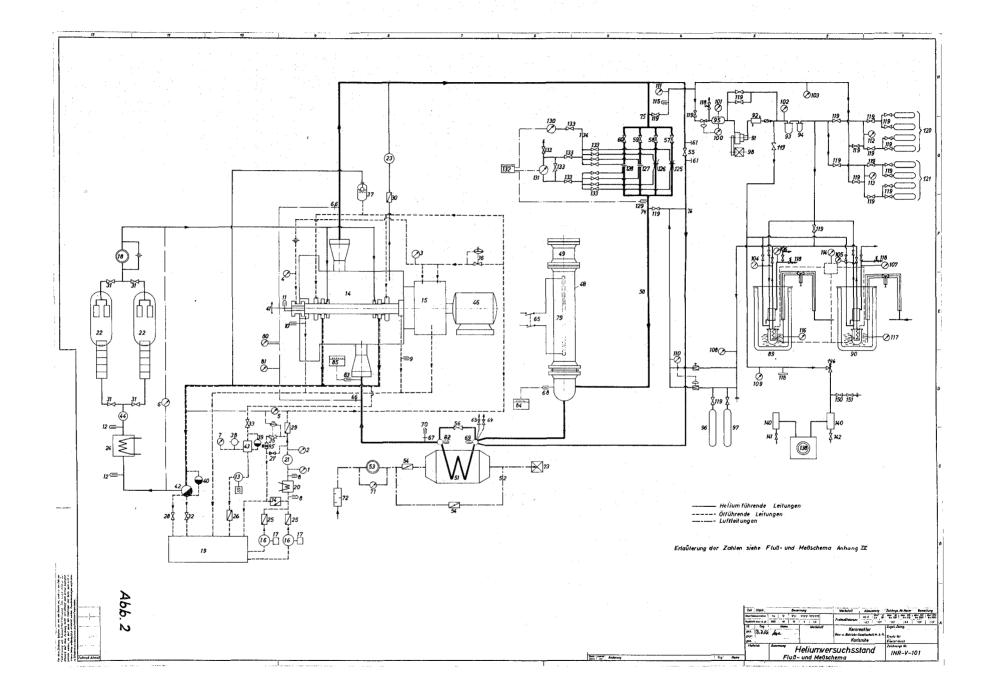
Ex

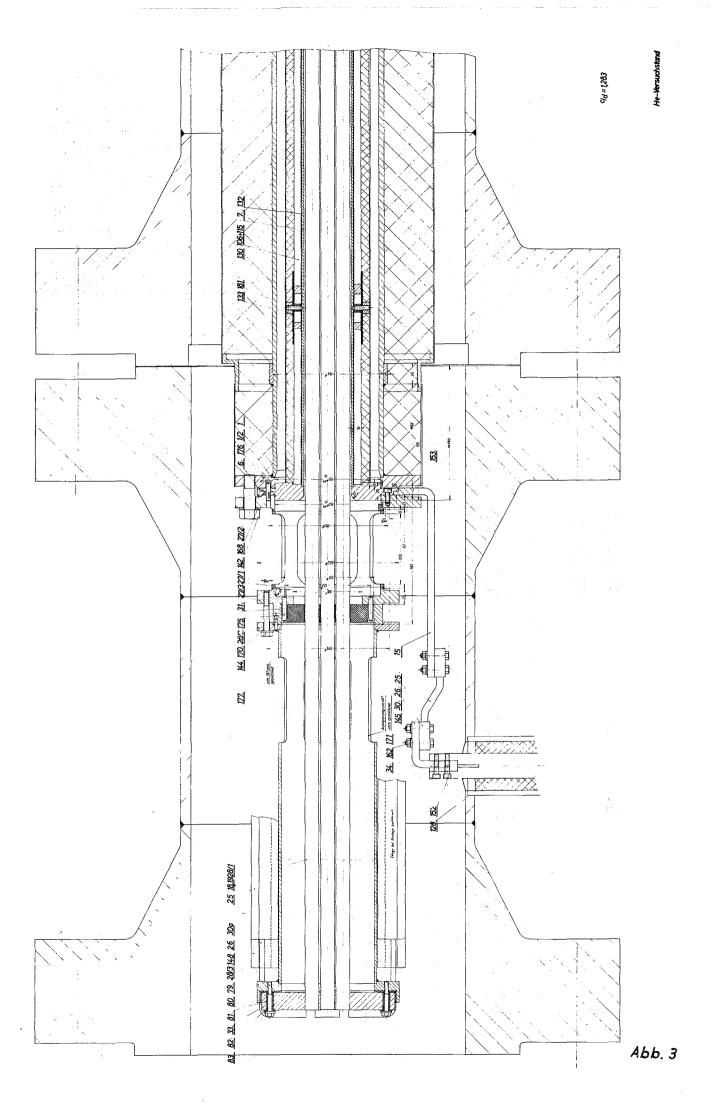
1	Beginn Heizstrecke
2	Ende Heizstrecke
a	außen
Α	Austritt
В	Bulk
e	Gesamtkanal
E	Eintritt

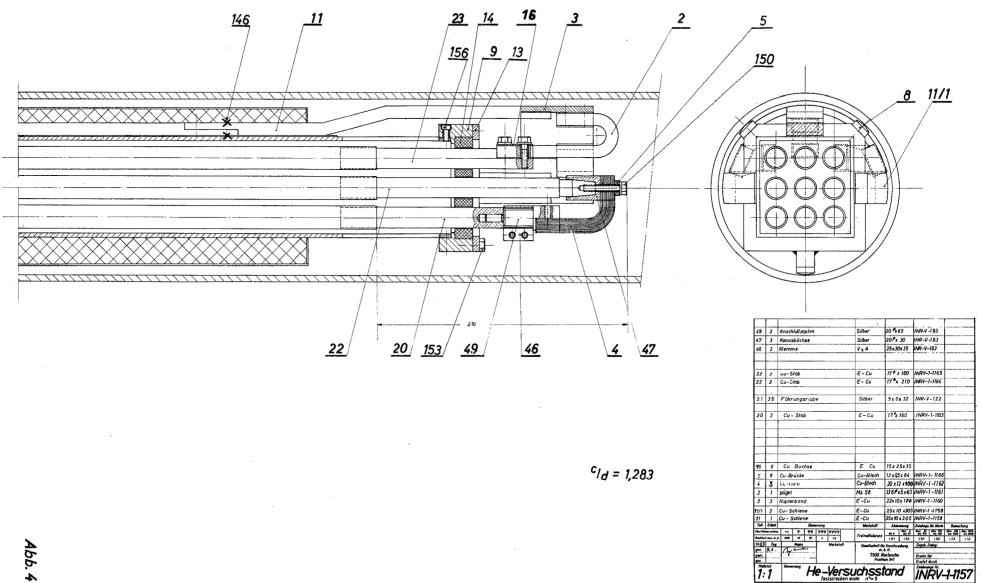
Expansion

Anhang B


G	Abstandshalter
i	innen
R	Reibung
W	Wand
∞	unendliche Anordnung


Anhang C


Literaturverzeichnis


- Dalle M., Föglein F., Maubach K.: Der Heliumversuchsstand des INR und sein Versuchsprogramm (1965) unveröffentlicht.
- Föglein F.: Vorversuche am Luftversuchsstand. (1965) unveröffentlicht.
- Diamond J., Hall W.B.: Heat Removal from Nuclear Power Reactors. Symp. on Nuclear Energy, London, (1956)
- Rehme K.: Widerstandsbeiwerte von Gitterabstandshaltern für Reaktorbrennelemente. Atomkernenergie 15, 127 (1970)
- Maubach K.: Messungen von Wärmeübergang und Druckverlust mit Helium an glatten Rohren (1966) unveröffentlicht.
- Parette J.R., Grimble R E.: Average and Local Heat Transfer Coefficients for Parallel Flow through a Rod Bundle. WAPD TH 180 (1956)
- Presser K.: Wärmeübergang und Druckverlust an Reaktorbrennelementen in Form längsdurchströmter Rundstabbündel. Jül-486-RB Juni 1967
- Le Tourneau W., Grimble R E., Zerbe J.E.: Pressure Drop for Parallel Flow through Rod Bundles. Trans. ASME 79, 1751-58 (1967)
- Dingee D.A., Chastain J.W.: Heat Transfer from Parallel Rods in Axial Flow. TID 7529 Reactor Heat Transfer Conf. (Pt.1) Book 2, (1957)
- Galloway L.R., Epstein N.: Longitudinal Flow between Cylinders in Square and Triangular Arrays and in a tube with Square-edged Entrance. AIChE-I. Chem.E.Symposium Series No 6, 3-44 (1965)
- Galloway L.R.: Longitinal Flow between Cylinders in Square and Triangular Arrays. Univ. Mikrofilms INC. London, Univ. of Br. Columbia Ph. D. (1964)
- Grass G.: Oberflächentemperaturmessung bei hoher Wärmestromdichte. Allg. Wärmetechnik 9, Nr. 1, 1-3 (1958)
- [714] Kummerer, Staschewski D.: Physikalische und mechanische Eigenschaften von Strukturwerkstoffen (1962) unveröffentlicht.
- / 15_7 Pfriem H.J.: Properties of Helium Gas. Paper submitted to "Zürich Club" Gas Cooled Fast Reactor Heat Transfer Meeting, Würenlingen (1970)
- / 16_7 Prandtl L.: Führer durch die Strömungslehre. 4.Auflage Fried. Vieweg und Sohn, Braunschweig (1956)

- Taylor M.F.: Experimental Local Heat Transfer and Average Friction Data for Hydrogen and Helium. NASA-TN D-2280 (1964) und NASA-TN E-2664 (1965)
- Dalle Donne M., Bowditch F.H.: Experimental Local Heat Transfer and Friction Coefficients for Air or Helium. DP Rep. 184 (1963)
- [21] Lel'chuk V.L., Shuiskaya K.F., Sorokin A.G.: Turbulent Heat Transfer of Argen Flowing in Pipes under Wall-Temperature up to 3000 K. Heat Transfer 1970, Vol. II, FC 4.2 (1970)
- Maubach K.: Beschreibung einer Methode zur Messung der Wandtemperatur außenumströmter, direkt beheizter Rohre. (1966) unveröffentlicht.
- [23] Marek J., Maubach K.: Wärmeübergangs- und Druckverlustmessungen an einem Bündel mit 16-Stäben in quadratischer Anordnung. (in Vorbereitung).
- [24] Sutherland W.A.: Experimental Heat Transfer in Rod Bundles. In Heat Transfer in Rod Bundles ASME, Winter Meeting, New York (1968)
- [25] Wantland J.L.: Compact Tubular Heat Exchanges Reactor Heat Transfer Conf.; TID 7529 (pt 2) (1956)
- Rapier A.C.: Forced Convection Heat Transfer in Passages with varying Roughness and Heat Flux around Perimeter. TRG Rep. 519 (e) (1963)
- Maubach K.: Reibungsgesetze turbulenter Strömungen. Chemie-Ing-Technik 42, 15, 995 (1970)

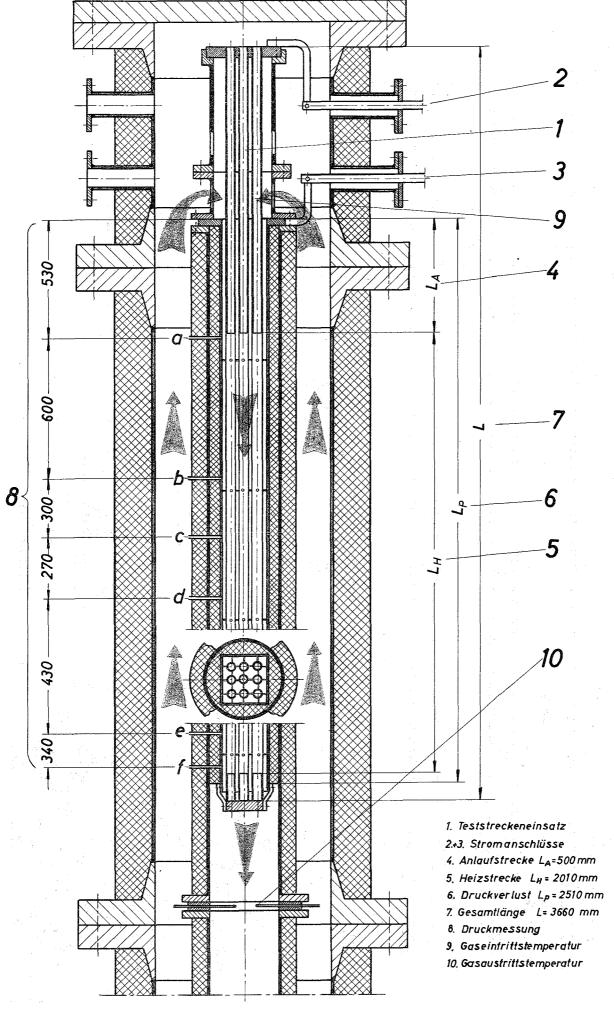
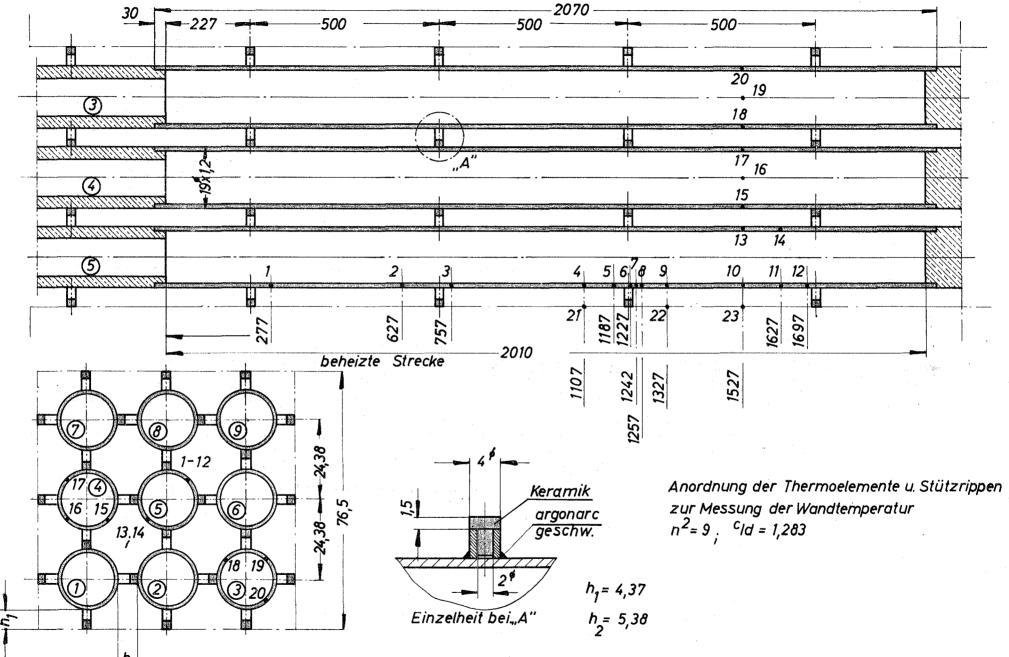



Abb.5 Skizze der Teststrecke

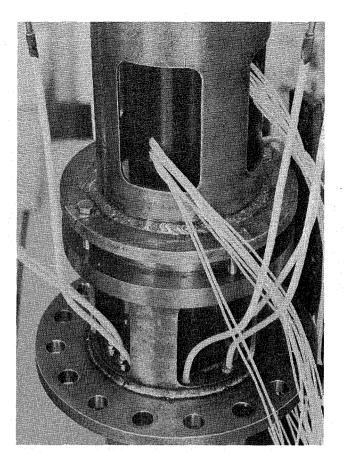


Abb. 7 Einlauf mit Meßleitungen

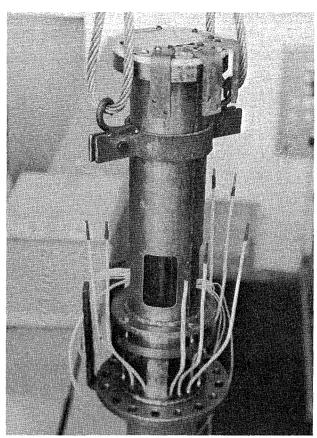


Abb. 8 Teststreckenkopf

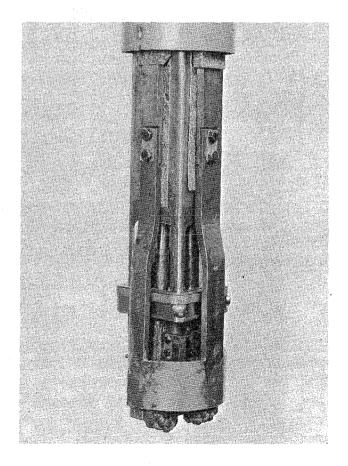


Abb. 9 Teststreckenende

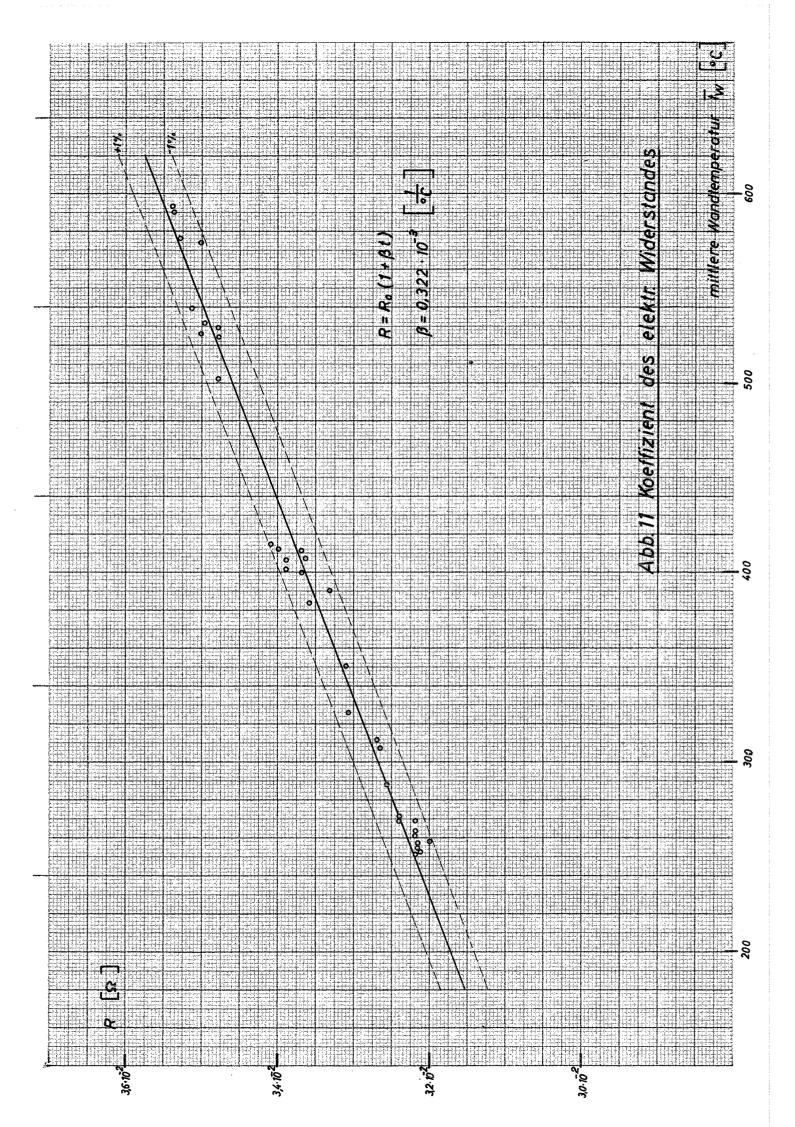
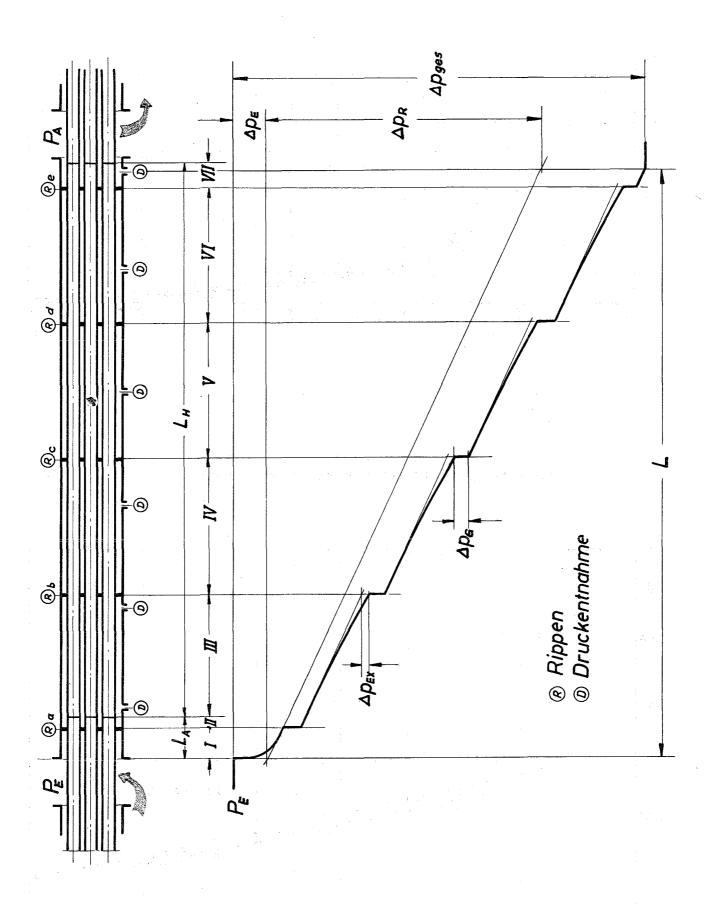
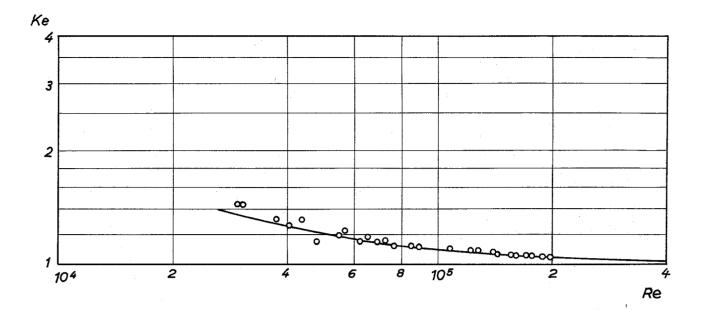
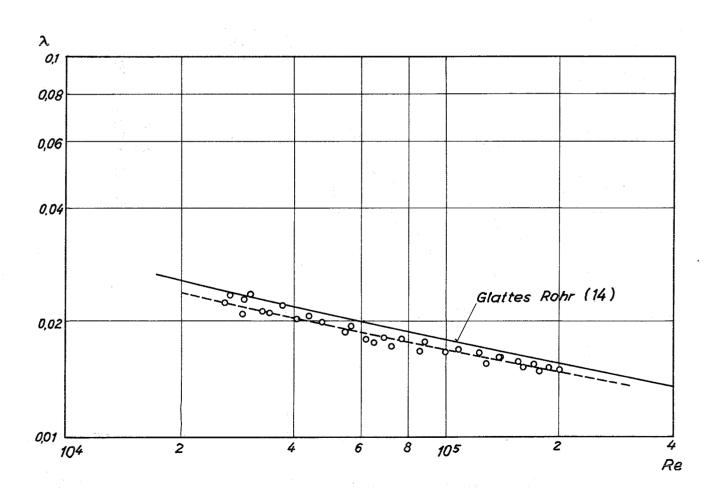





Abb. 10 Gesamtansicht



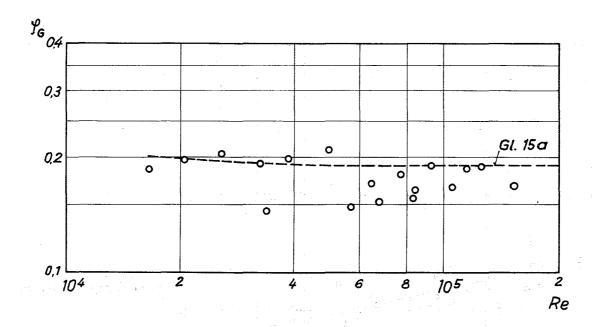

Darstellung der Eintrittsdruckverlustbeiwerte

Abb.13

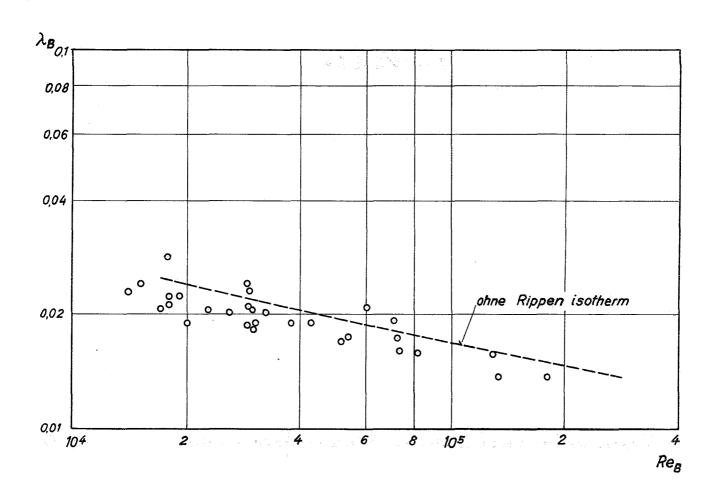

Darstellung der Reibungsbeiwerte (isotherm)

Abb.14

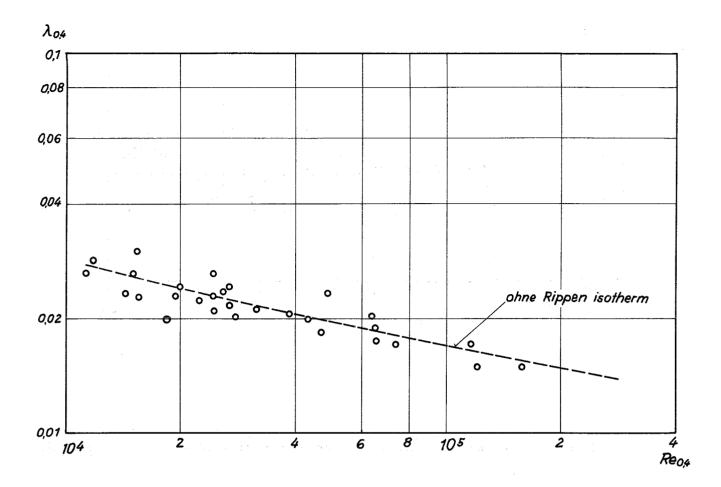
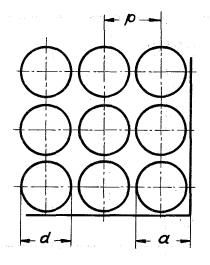

Darstellung der Druckverlustbeiwerte für eine Rippenebene

Abb.15



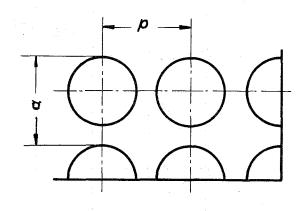
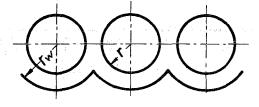
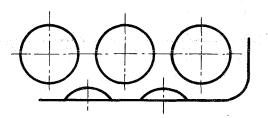
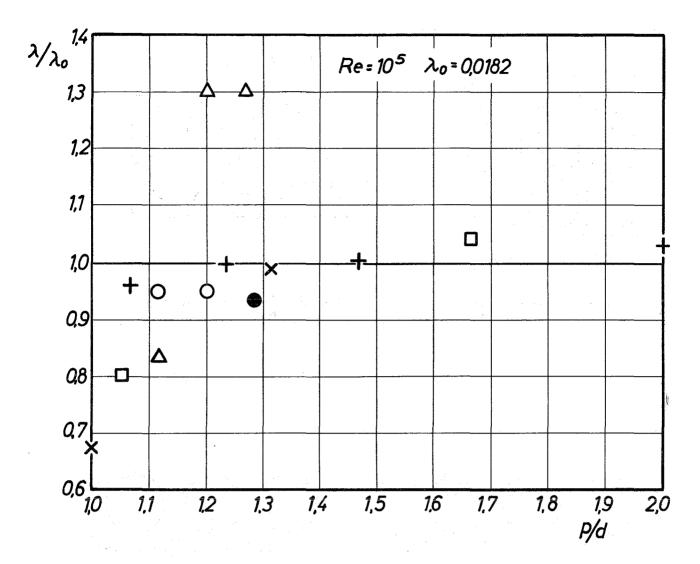

Darstellung der Reibungsbeiwerte (thermisch)

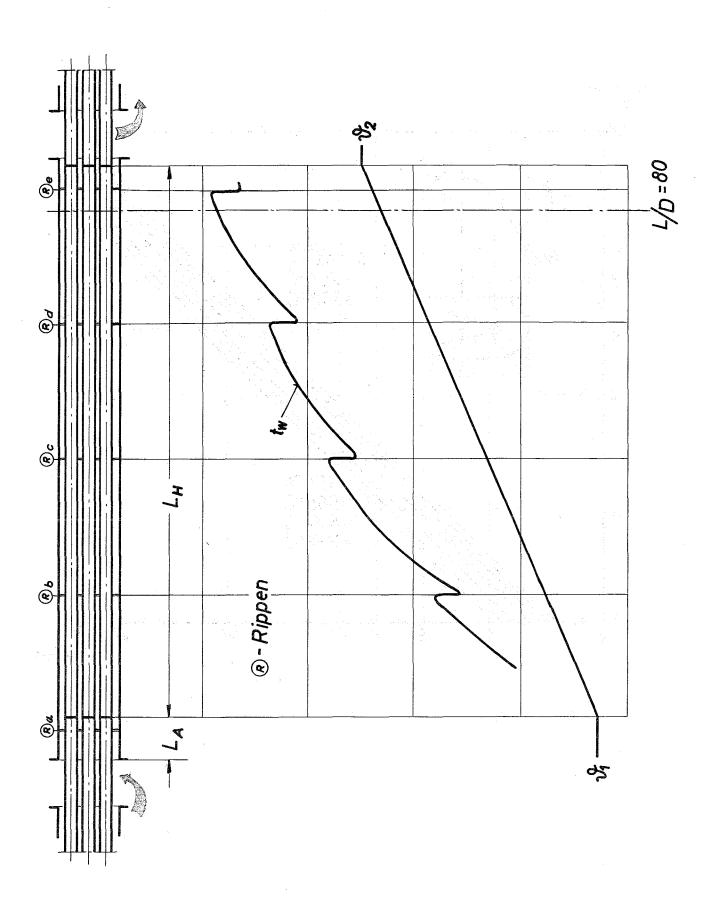
Abb.16

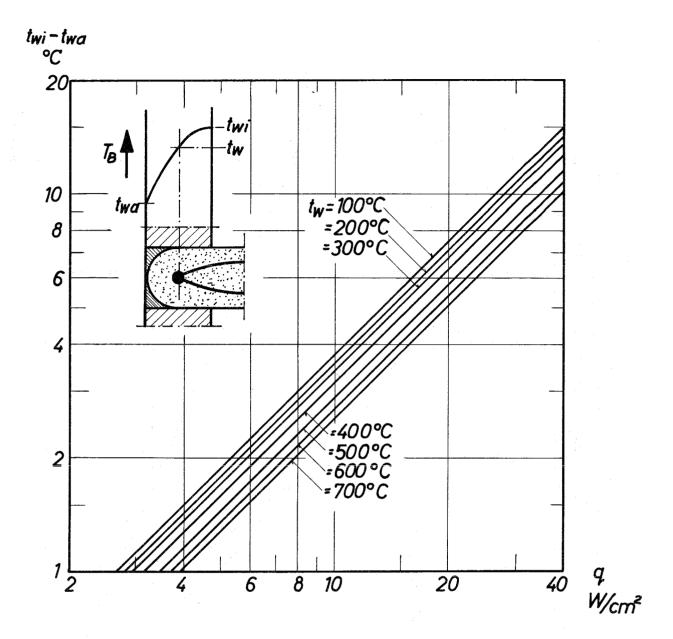



 $1 \leqslant T_W/T_B \leqslant 1.4$

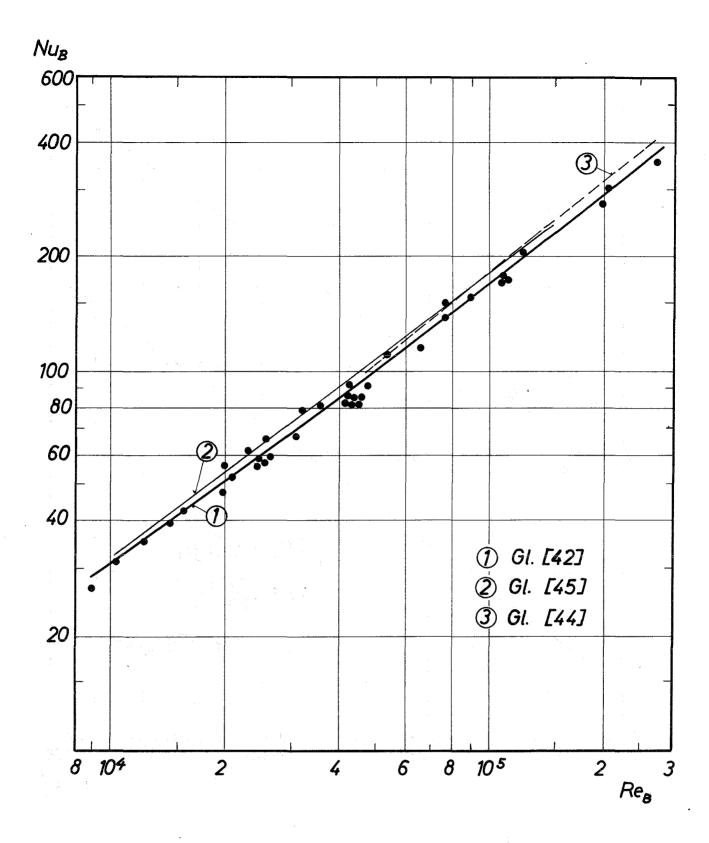


- a) glatte ebene Wand
- b) quasi-oo-Wandausführung

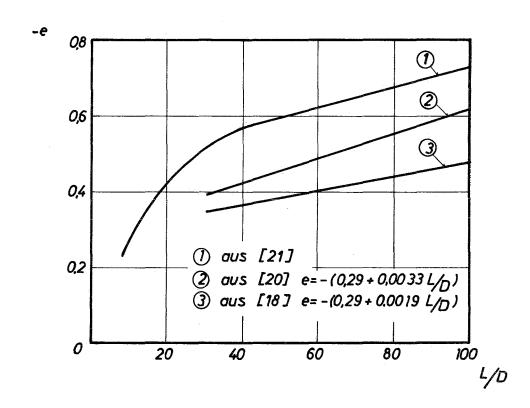




c) Ausführungen mit gewellter Wand (scalloped)



- Presser <u>/</u>7_/
- Dingee, Chastain / 9 / Tourneau et al. / 8 /
- X Gunn, Darling $\sqrt{10}$
- Galloway, Epstein $\sqrt{117}$, $\sqrt{127}$
- eigener Meßwert



Darstellung über dem Temperaturfaktor

Abb. 24

1

and the second of the second of

entre de la companya Antigonomia de la companya de la co

:

The state of the s

1.50