

Juni 1971

KFK 1433

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Druckverlustmessungen an einem rauhen Stabbündel

K. Maubauch

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

Juni 1971

KFK 1433

Institut für Neutronenphysik und Reaktortechnik

Projekt Schneller Brüter

Druckverlustmessungen an einem rauhen Stabbündel

von

K. Maubach

Gesellschaft für Kernforschung mbH., Karlsruhe

Zusammenfassung

Es wird ein Interpretationsverfahren für Druckverlustmessungen an künstlich rauhen Stabbündeln beschrieben. An einem Stabbündel mit 19 rauhen Stäben in hexagonaler Anordnung wurden mit Helium und Luft Druckverlustmessungen durchgeführt und aus den Ergebnissen universelle Parameter bestimmt, die mit Meßergebnissen an rauhen Rohren und Ringspalten verglichen werden. Damit ist es möglich, bei Vorgabe der geometrischen Form der Rauhigkeitselemente Druckverluste und Strömungsverteilung in künstlich rauhen Stabbündeln zu berechnen.

Abstract

A method of the interpretation of pressure drop measurements with bundles of rods with artificially roughened surfaces is described. Pressure drop measurements have been performed with a bundle of 19 roughend rods contained in a smooth hexagonal channel with flow of helium and air, respectively.

The universal parameters, which have been derived from these measurements, have been compared with pressure drop measurements on rough surfaces in tubes and annuli.

It is possible to calculate the pressure drop and the flow distribution in artificially roughened rod bundles by the method of this paper, if the shape of the artificial roughness is assumed.

. .

Sy	mb	01	e

đ	Stabdurchmesser
$D = \frac{4 \cdot F}{P}$	hydraulischer Durchmesser
F	Strömungsquerschnitt
G, G ⁺	Geometrieparameter
h	Höhe der Rauhigkeitselemente
L	Länge
m	Durchsatz
n	Anzahl
p	Stabmittenabstand
<u>dp</u> dx	Druckabfall in Strömungsrichtung
p ₂ , p ₃	Abstand zu 🍞 = O in Kanal 2 und 3
P	benetzter Umfang
R(h ⁺)	Rauhigkeitsfunktion
Re	Reynoldszahl
S	Abstand der Rauhigkeitselemente
u	mittlere Geschwindigkeit im Querschnitt
u ⁺ = √2w	Schubspannungsgeschwindigkeit
U	örtliche Geschwindigkeit
$u^+ = \frac{U}{u^+}$	dimensionslose Geschwindigkeit
Umax	maximale Geschwindigkeit im Querschnitt
W	Abstand der äußeren Stabreihe zum Kanal
x	Koordinate in Strömungsrichtung
У	Koordinate senkrecht zur Wand
K	Konstante
2	Reibungsbeiwert
z	Dichte
Ŷ	Zähigkeit
<i>τ</i> , <i>τ</i> ,	Schubspannung, Wandschubspannung

Einleitung

Zur Verbesserung der Wärmeabfuhr aus Kernreaktoren mit stabförmigen Brennelementen und Gaskühlung werden künstliche Rauhigkeiten auf den wärmeübertragenden Flächen verwendet. Diese Rauhigkeiten erhöhen die Turbulenz in Wandnähe, verbessern dadurch die Wärmeübertragung, erhöhen allerdings auch die Druckverluste beim Durchströmen der Kühlkanäle. Es gibt sehr zahlreiche Untersuchungen der Wärmeübertragungseigenschaften künstlicher Rauhigkeiten, die vor allem an Rohren und Ringspalten gewonnen wurden. Derartige Messungen sowie eine Zusammenstellung und Vergleich der Ergebnisse anderer Autoren findet sich bei E. Meerwald /1 7.

Die Brennelemente von Kernreaktoren sind zu Stabbündeln zusammengefaßt, wobei Kühlkanäle entstehen, wie sie in Fig. 1 dargestellt sind. Dabei werden am Rand des Bündels Kanäle mit teilweise glatter, teilweise rauher Berandung gebildet. Wie sich in diesem Falle aus Druckverlustmessungen die Strömungsparameter ermitteln lassen, wie sich weiterhin die bei anderen Kanalformen gefundenen Ergebnisse auf Stabbündel anwenden lassen, ist der Gegenstand dieser Arbeit. Daß der sogenannte "hydraulische Durchmesser" als Bezugsgröße für die Rauhigkeitshöhe diese Anwendung von Ergebniseen auf andere Kanalformen nicht allein erlaubt, war, besonders im Hinblick auf teilweise rauhe Ringspalte, Gegenstand einer früheren Arbeit / 2 7. Hier soll zunächst gezeigt werden, wie im Falle von Stabbündeln der Einfluß teils glatter und teils rauher Wände voneinander getrennt werden kann. Es werden die Gleichungen angegeben, die zur Interpretation von Druckverlustmessungen nötig sind. Anschließend werden Ergebnisse solcher Messungen mit Helium und Luft an einem Bündel mit 19 Stäben angegeben, dessen Parameter wie Anordnung, Abstandsverhältnis der Stäbe, Art und Höhe der Rauhigkeitselemente so gewählt sind, daß sie den Verhältnissen in einem schnellen gasgekühlten Brutreaktor entsprechen /3.7.

Die Ergebnisse der Messungen und der Interpretation dieser Druckverlustmessungen werden mit den Resultaten anderer Autoren an geometrisch ähnlichen Rauhigkeiten aber an anderen Kanalformen (Kreisrohre, Ringspalte) verglichen.

1

Verfahren der Interpretation

Aus den gemessenen Druckverlusten wird der mittlere Reibungsbeiwert des Rohrbündels und seine Abhängigkeit von der Reynoldszahl ermittelt. Es ist

$$\lambda = \frac{\frac{dp}{dx}}{\frac{2}{2}u^2 \cdot \frac{1}{D}}$$
(1)
Re = $\frac{u}{v}$

Ziel der hier durchgeführten Interpretation ist, aus dem so gewonnenen Reibungsbeiwert die charakteristischen Größen für die Unterkanäle des Bündels und die Parameter der Geschwindigkeitsprofile zu ermitteln, die als universelle Konstanten mit Meßwerten an Kreisrohren und Ringspalten verglichen werden können.

Zur Interpretation der Versuche wird die in <u>/</u>2_7 entwickelte Methode benutzt, wonach die Reibungsbeiwerte für glatte und rauhe Kanäle bei vom Kreisrohr abweichenden Kanalformen ermittelt werden aus Reibungsgesetzen, mit folgendem Aufbau:

Im Falle glatter Kanalwand:

$$\sqrt{\frac{8}{\lambda}} = \frac{1}{K} \ln\left(\frac{\mathbf{L} \cdot \mathbf{u}^{*}}{\mathbf{v}}\right) + 5.5 - G$$
(3)

Im Falle rauher Kanalwand:

$$\sqrt{\frac{8}{\lambda}} = \frac{1}{\kappa} \ln \frac{L}{h} + R(h^{+}) - G \qquad (4)$$

Dabei tritt in den Reibungsgesetzen ein empirisch zu ermittelnder Geometrieparameter G neben den Größen aus den jeweiligen Geschwindigkeitsverteilungen auf.

Im Falle glatter Wand ist die angenommene Geschwindigkeitsverteilung:

$$u^{+} = \frac{1}{K} \ln\left(\frac{y \cdot u^{*}}{v}\right) + 5.5$$
 (5)

Im Falle rauher Wand:

$$u^{+} = \frac{1}{K} \ln \frac{Y}{h} + R(h^{+})$$
 (6)

Der Geometrieparameter G ist wie folgt definiert

$$G = \frac{U_{\text{max}} - u}{u^*}$$
(7)

2

Nimmt man K = 0,4 und ersetzt die Bezugsgröße L in (2) und (4) durch den hydraulischen Durchmesser, so ergeben sich folgende Reibungsgesetze:

Glatte Wand:

$$\sqrt{\frac{8}{\lambda}} = 2.5 \ln\left(\operatorname{Re}\sqrt{\frac{\lambda}{8}}\right) + 5.5 - G^{*}$$
(8)

Rauhe Wand:

$$\sqrt{\frac{8}{\lambda}} = 2.5 \ln \frac{D_h}{h} + R(h^+) - G^*$$
 (9)

Zusammen mit K. Rehme $\angle 4$ $\angle 7$ ist diese Methode zur Beschreibung der Reibungsgesetze weiterentwickelt worden, wie in Anhang A erläutert.

Bei einem Rohrbündel teilt man den Strömungsquerschnitt an den Symmetrielinien in Unterkanäle ein, Fig. 1. Sieht man von einem Impulsaustausch über die Trennlinie ab, so gilt wegen $\frac{dp}{dx}$ =konstant für jeden Unterkanal i nach Gl. (1):

$$\frac{\lambda_{i} u_{i}^{2}}{D_{i}} = \frac{\lambda_{i}^{2}}{D}$$
(10)

Zur Erfüllung der Kontinuitätsgleichung ist gefordert:

$$\leq \frac{u_{i}}{u} \cdot \frac{F_{i}}{F} = 1$$
 (11)

Aus (10) folgt:

$$\frac{u_{i}}{u} = \sqrt{\frac{D_{i}}{D}} \cdot \sqrt{\frac{\lambda}{i}}$$
(12)

in (11) eingesetzt ergibt die folgende Beziehung zwischen den Reibungsbeiwerten der Unterkanäle und denen des Gesamtbündels:

$$\sqrt{\frac{8}{\lambda}} = \sum \sqrt{\frac{8}{\lambda_{i}}} \cdot \sqrt{\frac{D_{i}}{D}} \cdot \frac{F_{i}}{F}$$
(13)

Das hier vorliegende Bündel aus 19-Stäben bildet folgende drei Art von Unterkanälen, Fig. 1 und 2.

- 24 Zentralkanäle mit rauhen Wänden (Index 1)
- 12 Randkanäle mit glatter Wand am Führungsrohr und rauhen Stäben (Index 2)
 - 6 Eckkanäle ebenfalls mit glatten und rauhen Wänden (Index 3)

Die Zentralkanäle werden entsprechend Gl. (9) beschrieben, für die Rand- und Eckkanäle ist eine besondere Überlegung notwendig, da diese Kanäle teilweise glatte und rauhe Berandungen haben. Es wird daher die in Fig. 1 dargestellte Unterteilung des Kanals 2 in eine von der glatten Wand beeinflußte Zone a sowie eine von der rauhen Wand beeinflußte Zone b vorgenommen. Der Kanal 3 wird entsprechend in die "glatte" Zone C und die "rauhe" Zone d geteilt.

Zone a und b sowie c und d werden durch eine Linie getrennt, an der die Impulsübertragung von einer Zone zur anderen verschwindet (Schubspannung Υ = 0). Die Lage dieser Linie wird im folgenden berechnet. Zunächst werden die $\sqrt{\frac{8}{\lambda_i}}$ ermittelt. Es gilt für die zentralen Kanäle:

$$\sqrt{\frac{8}{\lambda_1}} = 2.5 \ln \frac{D_1}{h} + R(h^+) - G_1^*$$
(14)

Für die Zone a der Wandkanäle gilt:

$$\sqrt{\frac{8}{\lambda_a}} = 2.5 \ln\left(\operatorname{Re}_{a}\sqrt{\frac{\lambda_a}{8}}\right) + 5.5 - G_{a}^{*}$$
(15)

für die von der rauhen Seite beeinflußte Zone b:

$$\sqrt{\frac{8}{\lambda_{\rm b}}} = 2.5 \ln \frac{D_{\rm b}}{h} + R(h^{+}) - G_{\rm b}^{*}$$
(16)

Sinngemäße Anwendung der Gl. 13 ergibt

$$\sqrt{\frac{8}{\lambda_2}} = \sqrt{\frac{D_a}{D_2}} \cdot \frac{F_a}{F_2} \cdot \sqrt{\frac{8}{\lambda_a}} + \sqrt{\frac{D_b}{D_2}} \cdot \frac{F_b}{F_2} \cdot \sqrt{\frac{8}{\lambda_b}}$$
(17)

dabei ergibt sich aus Gl. (15)

$$\sqrt{\frac{8}{\lambda_{a}}} = 2.5 \ln \left[\operatorname{Re} \sqrt{\frac{\lambda}{8}} \cdot \left(\frac{D_{a}}{D} \right)^{3/2} + 5.5 - G_{a}^{*}$$
(18)
da: $\operatorname{Re}_{a} \sqrt{\frac{\lambda_{a}}{8}} = \frac{u_{a}D_{a}}{\sqrt{\lambda}} \sqrt{\frac{\lambda_{a}}{8}} = \frac{u \cdot D}{\sqrt{\lambda}} \sqrt{\frac{\lambda}{8}} \cdot \frac{u_{a}}{u} \frac{D_{a}}{D} \sqrt{\frac{\lambda_{a}}{\lambda}} = \operatorname{Re} \sqrt{\frac{\lambda}{8}} \cdot \left(\frac{D_{a}}{D} \right)^{3/2}$ (19)

a 8 Y 8

damit ist mit den Gleichungen (17), (18) und (16) die Größe $\sqrt{\frac{8}{\lambda^2}}$ gefunden. Die benötigten G[#] sind in Anhang A zusammengestellt, die Geometriegrößen D, F und P in Anhang B.

Für den Eckkanal wird das Reibungsgesetz in entsprechender Weise abgeleitet.

Für die Zone c (glatte Wand) gilt:

$$\sqrt{\frac{8}{\lambda_c}} = 2.5 \ln\left(\operatorname{Re}_c \sqrt{\frac{\lambda_c}{8}}\right) + 5.5 - G_c^*$$
(20)

daraus wieder:

$$\sqrt{\frac{8}{\lambda_{c}}} = 2.5 \ln \left[\operatorname{Re} \sqrt{\frac{\lambda}{8}} \cdot \left(\frac{D_{c}}{D}\right)^{3/2} \right] 5.5 - G_{c}^{*}$$
(21)

Für die Zone d:

$$\sqrt{\frac{8}{\lambda d}} = 2.5 \ln \frac{D_d}{h} + R(h^+) - G_d^{*}$$
(22)

wieder ergibt Anwendung der Gleichung(13) den gesuchten Reibungsbeiwert:

5

$$\frac{8}{\lambda_3} = \sqrt{\frac{8}{\lambda_c}} \cdot \sqrt{\frac{D_c}{D_3}} \cdot \frac{F_c}{F_3} + \sqrt{\frac{8}{\lambda_d}} \cdot \sqrt{\frac{D_d}{D_3}} \cdot \frac{F_d}{F_3}$$
(23)

G^{*} und Geometriegrößen siehe Anhang A und B.

Die Lage der Υ =O Linie wird für die Zone 2 als wandparallele Linie im Abstand p₂/₂ von der äußeren Stabreihe angenommen, Fig. 1.

Wie in 27 bei einseitig rauhen Ringspalten wird auch hier der Schnittpunkt der extrapolierten Geschwindigkeitsverteilung als die Stelle angenommen, an der $\tau=0$ ist.

Damit ergibt sich für die Zone 2 an der engsten Stelle Fig. 1:

$$\sqrt{\frac{\boldsymbol{\tau}_{a}}{\boldsymbol{S}}} \left[2.5 \ln\left(\frac{\boldsymbol{\chi}_{2}}{\boldsymbol{\chi}}\right) + 5.5 \right] = \sqrt{\frac{\boldsymbol{\tau}_{b}}{\boldsymbol{S}}} \left[2.5 \ln\left(\frac{\boldsymbol{P}_{2} - d}{h}\right) + R(h^{+}) \right] \quad (24)$$

setzt man ein:

$$\sqrt{\frac{\boldsymbol{\tau}_{\mathrm{b}}}{\boldsymbol{\tau}_{\mathrm{a}}}} = \sqrt{\frac{\mathrm{D}_{\mathrm{b}}}{\mathrm{D}_{\mathrm{a}}}}$$
(25)

und

$$\frac{z_2 \sqrt{\frac{2}{3}}}{\sqrt{2}} = \frac{z_2 \cdot u_a \sqrt{\frac{\lambda a}{8}}}{\sqrt{2}} = \frac{z_2}{D} \operatorname{Re} \sqrt{\frac{\lambda}{8}} \cdot \sqrt{\frac{D_a}{D}}$$
(26)

wobei

$$z_2 = w - \frac{d}{2} \cdot \frac{p_2}{2}$$
 (27)

so ergibt sich die Bestimmungsgleichung für p₂:

2.5
$$\ln\left[\operatorname{Re}\left(\frac{\lambda}{8}\right)^{D_{a}}_{D}, \frac{\left(w-d/2-\frac{p_{2}}{2}\right)}{D}\right] + 5.5 = \sqrt{\frac{D_{b}}{D_{a}}}\left[2.5 \ln\left(\frac{\frac{p_{2}}{2}}{h}\right) + R(h^{+})\right]$$
 (28)

Entsprechend findet man nach Fig. 1 für die Lage der Υ =0 Linie, die in Zone 3 als konzentrischer Kreis im Abstand p₃/2 um den Eckstab angenommen wird:

2.5
$$\ln\left[\operatorname{Re}\left|\frac{\lambda}{8}\right|^{\frac{D_{c}}{D}}, \frac{\left(w-d/2-\frac{p_{3}}{2}\right)}{D}\right] + 5.5 = \left|\frac{D_{d}}{D_{c}}\right|^{\frac{D_{c}}{2}} \left[2.5 \ln\left(\frac{\frac{p_{3}}{2}-\frac{d}{2}}{h}\right) + R(h^{+})\right]$$
 (29)

Wenn nun Re, $\lambda_i \frac{h}{d}$ gegeben ist, können aus den Gleichungen (13), (14), (17), (23), (28), (29) sowie den geometrischen Größen im Anhang iterativ die Werte λ_1 , λ_2 , λ_3 , p_2 , p_3 und R(h⁺) berechnet werden.

Für die Auswertung wird zunächst angenommen, daß für alle von den rauhen Wänden beeinflußten Kanäle $R(h^+)$ den gleichen Zahlenwert hat, also nicht von h^+ abhängt. Wie später gezeigt wird, bestätigt sich diese Annahme insofern, als für jedes Wertepaar Re, λ die Zahlenwerte h_1^+ , h_b^+ und h_d^+ so dicht beeinander liegen, daß für jeden Meßpunkt $R(h^+)$ als nicht von h^+ abhängig betrachtet werden kann. Aus den verschiedenen Meßwerten mit deutlich veränderter Reynoldszahl ergibt sich dann jedoch sehr wohl die Abhängigkeit von h^+ .

Das für die Auswertung aufgestellte Rechenprogramm ermittelt zu einem ersten Schätzwert von λ_1 aus (14) einen ersten Wert von R(h⁺); aus (28) und (29) werden dann p₂ und p₃ gerechnet, dann aus (17) λ_2 sowie aus (23) λ_3 . Anschließend wird aus (13) ein zweiter Wert für λ_1 gerechnet und sofort, bis die Änderung eine vorgegebene Schranke unterschreitet.

Jetzt kann die Strömungsverteilung aus (12) berechnet werden. Für die lokalen Reynoldszahlen folgt:

$$\operatorname{Re}_{i} = \operatorname{Re} \cdot \frac{u_{i}}{u} \cdot \frac{D_{i}}{D}$$
(30)

R(h⁺) wird dann über h⁺ aufgetragen, das wie folgt berechnet wird:

$$h_1^{+} = \frac{h \cdot u_1^{*}}{v} = \frac{h}{D} \operatorname{Re} \sqrt{\frac{\lambda}{8}} \sqrt{\frac{D_1}{D}}$$
(31)

Für Zone b des Wandkanals:

$$h_{b}^{+} = \frac{h \cdot u_{b}^{*}}{v} = \frac{h}{D} \operatorname{Re} \sqrt{\frac{\lambda}{8}} \sqrt{\frac{D_{b}}{D}}$$
(32)

Für Zone d des Eckkanals:

$$h_{d}^{+} = \frac{h \cdot u_{d}^{+}}{\gamma} = \frac{h}{D} \operatorname{Re} \sqrt{\frac{\lambda}{8}} \sqrt{\frac{D_{d}}{D}}$$
(33)

Die Ergebnisse der Messungen und der Rechnung folgen im Abschnitt 4.

Beschreibung der Teststrecke

Eine schematische Darstellung der Teststrecke zeigt Fig. 2. Die Rohre sind hexagonal mit dem Abstandsverhältnis p/d = 1,45 im Führungsrohr angeordnet. Die Stäbe haben einen Durchmesser von 18 mm, das Führungsrohr hat eine lichte Weite von 120 mm, das entspricht einem Abstandsverhältnis von w/d = 1.32 zur äußeren Wand. Die Teststrecke ist 2280 mm lang. Die Stäbe sind im unteren Teil auf einer Länge von 750 mm künstlich aufgerauht. Die Rauhigkeitselemente sind gewindeartig durch spanabhebende Bearbeitung erzeugt worden und haben die in Fig. 3 gezeigte Form gleichseitiger Dreiecke. Angegeben sind die Höhen und Abstände, die nach Fertigung gemessen und gemittelt worden sind. Diese Art der Herstellung so kleiner Rippen ist äußerst schwierig. Wie die Meßergebnisse zeigen, ergeben sich relativ große Toleranzen, vor allem in der Rippenhöhe (bis zu \pm 20%), aber auch in der Rippenform, da die Spitze mancher Rippen abgestumpt war (bis zu einer Breite von maximal 10% der Höhe).

Wir haben der Auswertung die gemittelte Höhe h = 0.111 mm zu Grunde gelegt, da die Toleranzen über die einzelnen Stäbe und das ganze Bündel annähernd gleichmäßig verteilt sind. Zur Druckabfallmessung sind an dem rauhen Teil der Teststrecke zwischen den Abstandshaltern drei Druckentnahmebohrungen vorgesehen, Fig. 2.

Durchführung der Messungen und Ergebnisse

Die Messungen wurden am Heliumversuchsstand des INR durchgeführt. Insgesamt gab es drei Versuchsreihen, zwei davon mit Helium, eine mit Luft. Die ermittelten Meßwerte sind in Tab. 1, 2 und 3 zusammengestellt. Angegeben sind Durchsatz, Druck- und Temperatur an der Stelle der Druckverlustmessung sowie der Druckverlust. Ebenfalls aufgeführt sind die nach Gl. (1) bzw. (2) berechneten Reibungsbeiwerte und Reynoldszahlen. Die zur Berechnung der Reynoldszahl benötigte Zähigkeit wurde aus Fig. 4 entnommen, die nach Daten aus $\sqrt{5}$ und $\sqrt{6}$ aufgestellt wurde.

Eine Darstellung der so ermittelten Reibungsbeiwerte zeigt. Fig. 5. Als Vergleichskurve sind die Reibungsbeiwerte des Kreisrohres angegeben, die nach Gl. (A-7) im Anhang A berechnet wurden. Zunächst steigen die Reibungsbeiwerte mit Re an, ab Re = $6 \cdot 10^4$ sind sie nahezu unabhängig von Re.

Die aus den Meßwerten errechneten Wertepaare Re, λ wurden nach dem oben beschriebenen Verfahren weiter ausgewertet und die das Geschwindigkeitsprofil charakterisierende Größe R(h⁺) sowie die weiteren Strömungsparameter bestimmt.

Zur Verdeutlichung sind für drei charakteristische Meßpunkte die vollständigen Ergebnisse in Tab. 4 zusammengestellt. Für alle Meßpunkte zeigt die Tab. 5 die wichtigsten Ergebnisse.

Zunächst muß geprüft werden, inwieweit die Voraussetzung erfüllt ist, daß in den Zonen 1, b und d der Zahlenwert von $R(h^{+})$ für einen Meßpunkt derselbe ist. Hierzu gibt die Fig. 6 aus den Meßpunkten der Tab. 1 $R(h^{+})$ über h^{+} an. Wie man erkennt, sind die Unterschiede von h_1^{+} , h_b^{+} und h_d^{+} für einen Meßpunkt klein (Vergl.Tab.5), so daß die Voraussetzung als erfüllt angesehen werden kann.

Fig. 7 zeigt alle ermittelten $R(h^+)$ über h_1^+ . Weiter sind dargestellt Meßwerte von Webb $/_7_7$ an Kreisrohren mit Rechteckrauhigkeiten, die einen ähnlichen Verlauf von $R(h^+)$ zeigen. Ebenfalls eingezeichnet ist zum Vergleich die Rauhigkeitsfunktion von Sand aus $/_8_7$. Die hier ermittelten $R(h^+)$ fallen zunächst stark ab und schließlich wird $R(h^+)$ nahezu konstant ab etwa $h^+ = 60$. Dieser konstante Wert ist R = 3,5 und wird verglichen mit entsprechenden Messungen an Rauhigkeiten in Form gleichseitiger Dreiecke von Feurstein und Rampf $/_9_7$

8

sowie Puchkow $\overline{107}$, an Ringspalten, die von E. Meerwald $\overline{177}$ interpretiert und zusammengestellt wurden.

Aus $\overline{1}$, Abb.297 sind die in Fig. 8 dargestellten Werke entnommen, zusammen mit dem hier ermittelten Wert bei s/h = 8.25. Die Übereinstimmung mit den Ergebnissen aus $\overline{9}$ und $\overline{107}$ ist gut.

Schlußfolgerungen

Die beschriebene Methode setzt voraus, daß das Geschwindigkeitsprofil bei turbulenter Strömung über rauhe Flächen universellen Charakter hat, also nicht von der Form des Strömungskanals abhängt. Dieses Geschwindigkeitsprofil wird bestimmt durch die Rauhigkeitsfunktion $R(h^+)$. Von der Form des Kanals dagegen hängt der Geometrieparameter G^{*} ab, der zusammen mit den Parametern des Geschwindigkeitsprofils nach Gl. (8) und (9) den Reibungsbeiwert festlegt. Für G^{*} wird eine empirisch gefundene Beziehung angegeben.

Wie gezeigt worden ist, erlaubt diese Methode aus einer integralen Messung (des Druckverlustes) die lokalen Strömungsparameter des Bündels zu bestimmen. Damit ist gezeigt, daß die Kenntnis des Parameters R(h⁺) für einen bestimmten Rauhigkeitstyp genügt, die Wirkung der Rauhigkeit auf die Strömung in einem Rohrbündel zu beschreiben. Wenn man also für Parameterstudien den Druckverlust in einem rauhen Rohrbündel berechnen muß, genügt nach Festlegung der Rauhigkeitsform und Höhe die Kenntnis der entsprechenden Rauhigkeitsfunktion $R(h^{\tau})$, die aus Experimenten an den verschiedensten Kanalformen (Rohre, parallele Platte, Ringspalte) gewonnen werden kann. Nicht untersucht wurde in dieser Arbeit der Einfluß des Impulsaustausches zwischen den Unterkanälen auf die Strömungsverteilung und den Gesamtreibungsbeiwert. K. Presser $\overline{117}$ hat für glatte Stabbündel gezeigt, daß dieser Austausch keinen großen Einfluß hat. Dabei sind turbulente Austauschgrößen verwendet worden, die aus Messungen an Kreisrohren bekannt sind. Ob dieser Impulsaustausch im Falle rauher Stäbe einen größeren Einfluß hat, ist noch zu prüfen, allerdings fehlt es in diesem Falle völlig an experimentellen Werten über die Austauschgrößen. Diese Arbeit soll ein erster Schritt sein zum Verständnis der verwickelten Strömungsvorgänge bei der turbulenten Strömung in Bündeln künstlich rauher Stäbe.

Ich danke den Herren Marek, Mensinger und Roth für die Mitarbeit an den Rechneprogrammen sowie bei den Messungen und Auswertungen.

10

Literaturverzeichnis

- [1] E. Meerwald, Druckverlust und Wärmeübergang an glatten und rauhen Flächen bei hohen Temperaturen und turbulenter Strömung, und deren Darstellung durch universelle Gesetze, Dissertation Universität Karlsruhe (1971)
- / 2_/ K. Maubach, Reibungsgesetze turbulenter Strömungen, Chemie-Ing.-Technik 42 Jg. Heft 15, 996 (1970)
- <u>M. Dalle Donne, E. Eisemann, K. Wirtz, Some Considerations</u> on Gas Cooling for Fast Breeders, KFK 595 (1967)
- /4 7 K. Rehme, K. Maubach, Unveröffentlicht
- [5] H.J. Pfriem, Properties of Helium Gas, Zurich Club Gas Cooled Fast Reactor Heat Transfer Meeting, Würenlingen (1970)
- / 6_7 VDJ Wärmeatlas, Berechnungsblätter für den Wärmeübergang VDJ-Verlag
- [7] R.L. Webb, E.R.G. Eckert, R.J. Goldstein, Heat Transfer and Friction in Tubes with Repeated-Rib Roughness, Intern. Journal Heat Mass Transfer, Vol.14, 601 (1971)
- [8] H. Schlichting, Grenzschichttheorie G. Braun Karlsruhe (1958); S. 487
- [9] H. Rampf, G. Feurstein, Wärmeübergang und Druckverlust an dreiecksförmigen Rauhigkeiten in turbulenter Ringspaltströmung, Heat Transfer 1970, Paris, Vol.II FC 5.3 (1970)
- /10/ P.I. Puchkow, O.S. Vinogradov, Heat Transfer and Hydraulic Resistance in Annular Channels with Smooth and Rough Heat Transfer Surfaces, Teplo-i-massoperenos, Vol.I, Nauka i Tekhnika, Minsk (1965)
- <u>K. Presser, Wärmeübergang und Druckverlust an Reaktorbrennelementen in Form längsdurchströmter Rundstabbündel,</u> Jül.-486-RB (1967)
- <u>K. Rehme, Laminarströmung in Stabbündel,</u> Chemie-Ing.-Technik - im Druck.

Anhang A Bestimmung der Geometriefaktoren G*

Für Ringzonen ist in 27 gezeigt, wie G^{*} berechnet werden kann. Dabei ist eine Ringzone definiert als Teil der Strömung im konzentrischen Ringspalt zwischen der Wand und der $\tau=0$ Linie, wie in Fig. 9 dargestellt. Charakteristischer Parameter ist:

$$\xi = \frac{r_0}{r_w}$$
(A-1)

Wie man sieht, entspricht: $\xi = 0$ dem Kreisrohr

Der hydraulische Durchmesser der Ringzone ist $D_R = \frac{2(r_0^2 - r_W^2)}{r_W}$ (A-2) Für derartige Ringzonen ist nach $\sqrt{2}$. Im Falle glatter Wand:

$$G_{g} = \frac{3.966 + 1.25 \cdot \xi}{1 + \xi} - 2.5 \ln\left(\frac{r_{o} - r_{w}}{D_{R}}\right)$$
 (A-3)

Im Falle rauher Wand:

$$G_r = \frac{3.75 + 1.25E}{1 + E} - 2.5 \ln\left(\frac{r_o - r_W}{D_R}\right)$$
 (A-4)

Als Beispiel ergibt sich für das glatte Kreisrohr aus (A-3)

$$G_{KR}^{*} = 3.966 - 2.5 \ln(\frac{1}{2})$$

 $G_{KR}^{*} = 5.698$
(A-5)

Damit findet man für das Reibungsgesetz des Kreisrohres

$$\sqrt{\frac{8}{\lambda}} = 2.5 \ln\left(\operatorname{Re}\sqrt{\frac{\lambda}{8}}\right) + 5.5 - G_{\mathrm{KR}}^{*} \qquad (A-6)$$

Daraus ergibt sich die in 27 angegebene Gleichung:

$$\frac{1}{\sqrt{\lambda}} = 2.5 \ln\left(\text{Re}\sqrt{\lambda}\right) - 0.989 \qquad (A-7)$$

Zusammen mit K. Rehme / 4 / wurde ein Verfahren entwickelt, das die so ermittelten G^{*} in Zusammenhang bringt mit dem Reibungsgesetz bei laminarer Strömung, bei der gilt:

$$\lambda = \frac{K}{Re}$$
 (A-8)

K beschreibt den Einfluß der Kanalform auf das Reibungsgesetz bei laminarer Strömung, G⁺ den Einfluß bei turbulenter Strömung. Wenn es nun einen universellen Zusammenhang zwischen G^{*} und K gibt, genügt die Kenntnis von K (das man für jede Kanalform leicht finden kann) zur Festlegung des turbulenten Reibungsgesetzes. In $/ 4_7$ wird gezeigt, daß für viele nichtkreisförmige Kanäle die auf diese Art gefundenen Reibungsbeiwerte mit experimentellen Werten sehr gut übereinstimmen.

Für Ringzonen gilt nach $\overline{127}$:

$$K = \left| \frac{64 \left(\xi^2 - 1 \right)^3}{3 \xi^4 - 4\xi^2 - 4\xi^4 \ln \xi + 1} \right|$$
 (A-9)

In Fig. 10 sind die aus (A-3) bzw. (A-4) für bestimmte \mathcal{E} ermittelten G^{*} über K aus (A-9) aufgetragen, Tab. Al. Aus diesem Diagramm Fig.10 kann nun für eine beliebige Querschnittsform G^{*} abgelesen werden, wenn die Laminarlösung bekannt ist.

3	0	0.5	1	1.5	2
ĸ	64	74.84	96	122	152.2
G ⁺ g1	5.698	5.808	6.073	6.361	6.633
G _r ⁺	5.483	5.664	5.965	6.275	6.561

Tab. Al

Nach diesen Vorüberlegungen können nun die in den Gleichungen (14), (15), (16), (21) und (22) noch gesuchten G^{*} ermittelt werden.

Al. Zentralkanal

Für den Zentralkanal 1 mit p/d = 1.45 findet man aus $\overline{127}$ K = 120 (A-10)

dies führt nach Fig. 10 (rauh) zu $G_1^* = 6.25$.

A2. Wandkanal

Für den Wandkanal 2 ergeben sich für die Zone a (glatt):

K = 96 (parallele Platte) und $G_a^* = 6.07$ (A-11)

Für die Zone b (rauh) ergibt sich folgender Zusammenhang: Zone b entspricht einer quadratischen Anordnung mit den Abstandsverhältnissen p/d und p_2/d .

Für quadratische Anordnung ergibt sich nach $\overline{127}$

p/d	1.4	1.45	1.5
K	110	115	120

Hieraus schätzt man für p/d = 1.45:

$$p_2/d$$
 1.4 1.45 1.5
K ~112.5 115 ~117.5
 G_b^* 6.17 6.2 6.25

damit:

$$G_b^* = 5.33 + p_2/d \cdot 0.6$$
 (A-12)

A3. Eckkanal

Die glatte Zone C wird behandelt wie eine Ringzone gleicher Fläche. Es ergibt sich mit:

$$\mathcal{E}_{c} = \frac{p_{3}^{2}}{(w-d/2)\sqrt{\frac{6}{m\sqrt{3}}}}$$
 (A-13)

aus (A-2):

$$G_{c}^{*} = \frac{3.966 + 1.25 \cdot \mathcal{E}_{c}}{1 + \mathcal{E}_{c}} - 2.5 \ln \left(\frac{(w - \frac{d}{2})\sqrt{\frac{6}{m\sqrt{3}}} - \frac{p_{3}}{2}}{D_{c}} \right)$$
 (A-14)

entsprechend für Zone d aus (A-3):

$$\boldsymbol{\xi}_{d} = \frac{p_{3}}{d}$$

$$\boldsymbol{G}_{d}^{+} = \frac{3.75 + 1.25 \,\boldsymbol{\xi}_{d}}{1 + \boldsymbol{\xi}_{d}} - 2.5 \,\ln\left(\frac{p_{3}}{2} - \frac{d}{2}\right) \qquad (A-15)$$

Anhang B Bestimmung der geometrischen Größen

Entsprechend Fig. 1 ergeben sich folgende Beziehungen. Der hydraulische Durchmesser des Gesamtkanals ist:

$$D = \frac{4 \cdot F}{p}$$
 (B-I)

Mit der Anzahl u, Zentralkanäle u2 Wandkanäle u₃ Eckkanäle

ergeben sich Gesamtfläche und Umfang zu:

$$F = u_1 F_1 + u_2 F_2 + u_3 F_3$$
(B-2)

$$P = u_1 P_1 + u_2 P_2 + u_2 P_2$$
(B-3)

$$F_{1} = \frac{p^{2}\sqrt{3}}{4} - \frac{\pi d^{2}}{8}$$
(B-4)

$$F_2 = (w-d/2)p - \frac{\pi d^2}{8}$$
 (B-5)

$$F_3 = (w - \frac{d}{2})^2 \cdot \frac{1}{3} - \frac{\Pi d^2}{24}$$
 (B-6)

$$P_{1} = \Upsilon \cdot \frac{d}{2}$$
(B-7)

$$P_{2} = p + n \frac{1}{2}$$

$$P_{3} = (w - \frac{d}{2}) \frac{1}{\sqrt{3}} + \frac{n}{6}$$
(B-9)

Für die Zonen der Wandzelle gilt:

$$F_{a} = (w - \frac{d}{2} - \frac{p_{2}}{2}) p$$
(B-10)
$$F_{a} = \frac{p_{2}}{2} \cdot p - \frac{\pi d^{2}}{2}$$
(B-11)

$$P_{b} = \frac{1}{2} \cdot p - \frac{1}{8}$$
 (B-11)
 $P_{a} = p$ (B-12)

$$P_{b} = \frac{\pi d}{2}$$
 (B-13)

 $F_{c} = (w - \frac{d}{2})^{2} \cdot \frac{1}{2} - \frac{\pi p_{3}^{2}}{24}$

$$F_{d} = \frac{1}{6} \left[\left(\frac{P_{3}}{2} \right)^{2} - \left(\frac{d}{2} \right)^{2} \right] \mathbf{T}$$
 (B-15)

$$P_{c} = (2w-d) \frac{1}{\sqrt{3}}$$

$$P_{1} = \frac{\pi}{\sqrt{d}}$$
(B-16)
(B-17)

$$P_{d} = \frac{\hat{\mathbf{T}} d}{6}$$
 (B-17)

Die hydraulischen Durchmesser für alle Unterkanäle ergeben sich entsprechend (B-1) zu:

$$D_{i} = \frac{4 \cdot F_{i}}{P_{i}}$$
(B-18)

(B-14)

B-I

Dabei ist:

Eckzelle:

Meßpunkt	m (kg/sec)	p (ata)	(°c)	dp dx (kg/m ³)	10 ⁵ •Re -	10.
1.1	1.0617	38.740	212.3	683	1.0058	0.5352
1.2	1.1354	38.695	215.4	817	1.0707	0.5556
1.3	0.9542	37.911	207.4	555	0.9107	0.5322
1.4	0.6850	37.673	204.0	279	0.6572	0.5195
1.5	0.5200	39.473	202.9	151	0.4997	0.5125
1.6	0.4300	42.484	219.6	85	0.4030	0.4386
1.7	0.2982	42.342	223.7	38	0.2778	0.4029
1.8	0.2439	40.995	215.2	26	0.2301	0.4061
1.9	0.3553	41.188	218.5	56	0.3335	0.4114
1.10	0.4138	41.684	216.7	81	0.3895	0.4454
1.11	0.6034	41.486	215.4	198.5	0.5690	0.5123
1.12	0.8416	41.334	215.4	391.5	0.7936	0.5176

Tab. 1 Ergebnisse der Druckverlustmessungen - Helium Lauf 1

Meßpunkt	m (kg/sec)	p (ata)	(⁰ C)	dp dx (kg/m ³)	10 ⁵ •Re	10•
2.1	0.8354	41.159	173.0	362	0.8417	0.5295
2.2	0.9386	41.145	173.0	448	0.9456	- 0.5190
2.3	1.0456	41.058	173.3	560	1.0529	0.5213
2.4	1.1377	40.890	173.0	676	1.1462	0.5298
2.5	1.2193	40.694	173.0	788	1.2285	0.5344
2.6	0.7055	40.856	176.0	257	0.7073	0.5198
2.7	0.4093	40.735	175.0	82.3	0.4110	0.4942
2.8	0.4059	40.586	175.0	75	0.4076	0.4563
2.9	0.4685	40.531	175.5	104	0.4700	0.4738
2.10	0.4629	40.450	175.0	105	0.4649	0.4894

Tab. 2 Ergebnisse der Druckverlustmessungen - Helium Lauf 2

Meßpunkt	m (kg/sec)	p (ata)	(°c)	dp dx (kg/m ³)	10 ⁵ •Re	10.
3.1	1.9632	17.717	108	560	2.4043	0.5411
3.2	2.1647	17.697	110	689	2.6410	0.5441
3.3	2.3677	17.680	108	812	2.8997	0.5383
3.4	1.7692	17.631	107	470	1.1708	0.5580
3.5	1.5720	17.645	109	376	1.9215	0.5619
3.6	1.4011	17.556	110	296	1.7094	0.5536
3.7	1.2524	17.565	110	238	1.5279	0.5574
3.8	1.1134	17.571	110	195	1.3584	0.5780

Tab. 3 Ergebnisse der Druckverlustmessungen - Luft Lauf 3

Tab. 4

Vollständige Ergebnisse für charakterische Meßpunkte

Meßpunkt	R(h ⁺)	$10^5 \cdot \text{Re}_1$	10.1	₽ ₂ /d	p ₃ /d	h ₁ +	h _b +	h _d +
2.5	3.6368	1.3505	0.6861	1.3959	1.4757	58.536	64.022	55.328
2.8	4.9956	0.4661	0.5413	1.3264	1.4164	17.946	18.813	15.677
3.2	3.3854	2.8615	0.7192	1.4229	1.4998	126.98	141.06	123.62

Tab.	5
	and the second

R(h⁺) für alle Meßpunkte

Meßpunkt	R(h ⁺)	h1 ⁺	h _b +	h _d +
1.1	3.6688	47.959	52.246	44.987
1.2	3.4195	52.017	56.929	49.206
1.3	3.7256	43.305	47.053	40.422
1.4	3.9577	30.875	33.227	28.304
1.5	4.1183	23.317	24.893	21.054
1.6	5.2952	17.396	18.145	15.061
1.7	6.0954	11.495	11.725	9.5511
1.8	6.1075	9.5559	9.6969	7.8596
1.9	5.8584	13.941	14.344	11.772
1.10	5.1902	16.944	17.689	14.690
1.11	4.0866	26.547	28.432	24.117
1.12	3.9383	37.215	40.208	34.376
2.1	3.7752	39.923	43.284	37.113
2.2	3.8800	44.404	48.174	41.340
2.3	3.8285	49.550	53.902	46.366
2.4	3.7068	54.377	59.343	51.187
2.5	3.6368	58,536	64.022	55.328
2.6	3.9367	33.239	35.834	30.573
2.7	4.4210	18.833	19.928	16.726
2.8	4.9956	17.946	18.813	15.677
2.9	4.6800	21.089	22.290	18.702
2.10	4.4545	21.198	22.479	18.908
3.1	3.4352	115.28	127.80	111.80
3.2	3.3854	126.98	141.06	123.62
3.3	3.4364	138.68	154.16	135.21
3.4	3.2636	105.70	117.26	102.61
3.5	3.2310	93.969	104,10	90.964
3.6	3.3538	82.899	91.517	79.733
3.7	3.3317	74.351	81.957	71.301
3.8	3.1319	67.312	74.257	64.625

.

. ..

.

.

