

KERNFORSCHUNGSZENTRUM

KARLSRUHE

August 1971

KFK 1239

Institut für Material- und Festkörperforschung Projekt Schneller Brüter

Auslegung, Bestrahlung und Nachuntersuchung der UO₂ -Brennstab-Prüflinge in der FR 2-Kapsel-Versuchsgruppe 3

D. Geithoff, D. Freund, K. Kummerer

KERNFORSCHUNGSZENTRUM KARLSRUHE

August 1971

KFK 1239

Institut für Material- und Festkörperforschung

Projekt Schneller Brüter

Auslegung, Bestrahlung und Nachuntersuchung der UO₂-Brennstab-Prüflinge in der FR 2-Kapsel-Versuchsgruppe 3

von

D. Geithoff, D. Freund, K. Kummerer

Gesellschaft für Kernforschung mbH., Karlsruhe

3.9.1971

-

VORBEMERKUNG

Die in diesem Bericht beschriebenen Bestrahlungsversuche basieren auf der Zusammenarbeit mehrerer Arbeitsgruppen im Kernforschungszentrum. Die vielfältige Mühe und Sorgfalt aller Beteiligten sei ausdrücklich anerkannt. Auch danken wir allen, die unmittelbar zur Abfassung dieser Dokumentation beitrugen, insbesondere Herrn W. Ernst für die Ausarbeitung der Faltblätter und grafischen Darstellungen und Frau B. Hauth für die Reinschrift des Manuskriptes.

30. Juli 1971

D. Geithoff, D. Freund, K. Kummerer

.

KURZFASSUNG

Im Rahmen der FR 2-Kapselversuchsgruppe 3 kamen 34 Brennstabprüflinge im thermischen Fluß des FR 2 zur Bestrahlung. Die Prüflinge enthielten UO₂-Brennstoff in Tablettenform oder als einvibrierte Partikel. Die Umhüllung war aus Edelstahl. In einigen Proben war CeO₂ zur chemischen Simulation von PuO₂ zugesetzt worden. Bei Stableistungen bis zu 700 W/cm und einer Hüllrohrtemperatur um 600 ^OC wurden Abbrände bis 85 MWd/kg M erreicht. Die Nachuntersuchung der Prüflinge weist typische Strukturveränderungen im Brennstoff (Zentralloch, Radialrisse) auf, während die Hülle unbeeinflußt blieb.

Der vorliegende Bericht stellt eine Dokumentation dar, in der alle Einzelheiten über die Versuchsziele, die Auslegung, Konstruktion und Spezifikation der Prüflinge, über die Probenherstellung und ihre Prüfung vor der Bestrahlung, die gesamte Bestrahlungsgeschichte sowie schließlich die zerstörungsfreie und zerstörende Nachuntersuchung der bestrahlten Stäbe zusammengestellt sind.

ABSTRACT

In an irradiation experiment called "Capsule Group No. 3" 34 fuel pin were irradiated in a thermal flux in the FR 2-Reactor. The pins contained UO_2 -pellets or vibrocompacted UO_2 -particles as fuel with stainless steel cladding. In some specimen CeO₂ had been added for chemical simulation of PuO₂.

At rod powers up to 700 W/cm and cladding temperatures around 600°C burnups up to 85 MWd/kg M were achieved. Postirradiation examination of the pins showed the typical restructuring of the fuel (formation of central voids, radial cracks) while there were no visible effects on the cladding.

This report is a documentation in which all details on the following subjects are compiled:

- aim of the experiment
- pin design and specification
- preparation of the specimens
- pre-irradiation testing
- irradiation history
- nondestructive and destructive postirradiation examination

Inhalt:

		. Einführung						
2.	Aufg	abenstellung und Versuchsziel	3					
3.	Ausl	egung der Versuchsgruppe	5					
4.	Kons	truktion der Prüflinge und Spezifikationen	7					
	4.1	Der Aufbau der Brennstäbe	7					
	4.2	Brennstoffspezifikationen	7					
	4.3	Spezifikationen für die Hülle	12					
	4.4	Brennstabspezifikationen	12					
5.	Hers	tellung der Prüflinge	13					
	5.1	Ausgangspulver für die Brennstoffherstellung	14					
	5.2	Tablettenherstellung	14					
	5.3	Herstellung des Pulverbrennstoffes	20					
	5.4	Nachweis der Brennstoffeigenschaften	23					
	5•5	Hüll- und Strukturmaterial	29					
	5.6	Hüllrohrprüfung	31					
	5.7	Herstellung der Stäbe mit Tablettenbrennstoff	32					
-	5.8	Herstellung der Stäbe mit vibriertem Brennstoff	46					
	5.9	Prüfungen an den fertigen Stäben	46					
6.	Best	rahlungseinrichtung	48					
7.	Abla	uf der Bestrahlung	53					
	7.1	Reaktorzyklen	53					
	7.2	Neutronenfluß	53					
	7.3	Temperatur und Stableistung	57					
	7.4	Thermische Abbrandberechnung	59					
8.	Tran	sport und Demontage der KVE	75					
9.	Zers	törungsfreie Untersuchung	75					
	9.1	Äußere Vermessung	75					
	9,2	Durchleuchtung	76					
	9.3	γ -Profile und γ -Spektren	7 7					
10.	Spal	tgasbestimmungen	78					
11.	Keramografie							
12.	Radiochemische Abbrandbestimmungen 84							
13.	Doku	mentation der zerstörungsfreien und keramografisc	hen					
	Nach	untersuchung	85					
14.	Schl	ußfolgerungen	88					

Literatur

Seite

1. Einführung

Die Entwicklungsarbeiten für Brennelemente schneller Brutreaktoren im Kernforschungszentrum Karlsruhe enthalten ein umfangreiches Bestrahlungsprogramm für Brennstoffe, Hüllmaterial und Brennstabproben. Die ersten Brennstabbestrahlungsversuche fanden im Karlsruher Forschungsreaktor FR 2 statt und zwar ausschließlich an Proben mit oxidischem Brennstoff und Edelstahlumhüllung. Im FR 2 gibt es zwei Typen von Versuchseinrichtungen, die für Stabbestrahlungen geeignet sind, nämlich

- das Helium-Loop und
- die Kapselversuchseinsätze (KVE).

Während im He-Loop nur Einzelproben nacheinander zur Bestrahlung kommen können, ist es möglich, auf Brennelement- oder Isotopenkanalpositionen des FR 2 nebeneinander ganze Serien von KVE gleichzeitig zu bestrahlen. Die ersten "Kapselbestrahlungen" im FR 2 sind in die Versuchsgruppen 1 bis 5 eingeteilt gemäß folgender Übersicht $\int 1_7$:

FR 2-Kapsel- Versuchsgruppe	Anzahl der Stabproben	Brennstoff
1	24	UO2, UO2-MO
2	31	UO2, UO2-CeO2, UO2-CeO2-Mo
3	34	UO ₂ , UO ₂ -CeO ₂
4a	28	UO2-PuO2
4b	35	UO2-PuO2
4c	12	UO2-PuO2
5a	9	UO2-PuO2
5 b	18	U02-Pu02

Dieser KFK-Bericht faßt alle Einzelheiten für die 34 Prüflinge der Kapsel-Versuchsgruppe 3 zusammen. Er beginnt mit der Aufgabenstellung und der Versuchsauslegung, beschreibt Spezifikationen und Herstellung der Prüflinge sowie die Details des tatsächlichen Bestrahlungsablaufes selbst und stellt schließlich die gesamte zerstörungsfreie und keramografische Nachuntersuchung in den Heißen Zellen in einer umfassenden Dokumentation dar. Die Zusammenstellung basiert auf einer Vielzahl von internen Niederschriften und persönlichen Mitteilungen. Die Hauptarbeit in all ihren Phasen

-1-

verteilte sich auf die Jahre 1965 bis 1970, wobei erste Überlegungen in das Jahr 1964 zurückreichen und die abschließende Zusammenfassung und Auswertung im Jahre 1971 erfolgt.

Diese Zeitspanne von etwa 7 Jahren ist durchaus charakteristisch für ein solches vielfältiges und umfängliches Unternehmen. In dieser langen Zeit haben sich viele Personen in den verschiedensten Arbeitsbereichen damit befaßt. In der nachfolgenden Übersicht ist der Zeitablauf grob dargestellt, außerdem sind die für jeden Teilaspekt hauptverantwortlichen Stellen bzw. Personen angegeben:

Zeitraum	Teilarbeit	Institution und Hauptbeteiligte
1964/65	Vorüberlegungen und Versuchsauslegung	IAR, Kummerer, Karsten
1965/67	Bestrahlungskapseln	IRE, Bojarsky, Häfner
1966	Spezifikationen	IAR, Karsten, Kummerer
1966	Herstellung der Prüflinge	Firma Nukem, Wolfgang/Hanau
1966/68	Organisation der Bestrah- lung und Betreuung	IRE,Häfner IAR,Gerken
1967/69	Bestrahlung im FR 2	Abteilung Reaktorbetrieb FR 2
1966/70	Organisation der Nachunter- suchung und Betreuung	IMF, Geithoff
1968/70	Zerstörungsfreie Nachunter- suchung	RB/Z, Scheeder, Enderlein
1968/70	Spaltgasuntersuchungen	RB/CuM, Gräbner
1968/70	K eramografie in den Heißen Zellen	RB/Z, Krautwedel, Pejsa
1971	Zusammenfassung und Doku- mentation der Ergebnisse	IMF, Geithoff,Freund,Kummerer

Es handelt sich hier um einen Bestrahlungsversuch, dessen Konzipierung ziemlich am Anfang unserer Brennelement-Entwicklungsarbeiten steht, wobei der damalige Kenntnisstand und die damaligen experimentellen Möglichkeiten und Randbedingungen zu beachten sind. Naturgemäß gab es eine Weiterentwicklung während der Versuchsvorbereitung und während des Versuches, in

-2-

deren Folge Versuchsschwerpunkte aufgegeben, verschoben oder neu gesetzt wurden. Anfänglich z.B. war die vorgesehene Prüflingsanzahl mit 64 Stück weit größer. Bei der tatsächlichen Durchführung des Versuches wurden dann die meisten Prüflinge mit CeO₂-Zusatz weggelassen zugunsten der früher einsetzenden Bestrahlungen an Pu-haltigen Prüflingen (Kapselversuchsgruppe 4a). Aus dem gleichen Grund wurden auch nur etwa die Hälfte der ursprünglich vorgesehenen UO₂-Prüflinge tatsächlich gefertigt und bestrahlt.

Alle diese Einzelheiten interessieren heute nur mehr den Forschungs-Historiker. Wir beschränken uns daher in der weiteren Darstellung auf die tatsächlich zur Bestrahlung gelangten 34 Prüflinge dieser Versuchsgruppe. Wir weisen aber darauf hin, daß in einer derartig komplexen wissenschaftlichtechnologischen Forschungsaufgabe Überflüssigkeiten und Irrwege unvermeidlich sind. Sie tragen umgekehrt als "Regulativum im Planspiel" sogar wesentlich zum Erfolg bei.

2. Aufgabenstellung und Versuchsziel

Die Kapsel-Versuchsgruppe 3 bringt stabförmige Prüflinge mit Oxidbrennstoff zur Bestrahlung, wobei sowohl im Aufbau des Prüflings selbst als auch in den Bestrahlungsbedingungen eine Simulation der Verhältnisse für Brennstäbe in schnellen Reaktoren angestrebt wird. Die wesentlichen Unterschiede im Vergleich zu echten Schnellbrüter-Brennstäben liegen in folgenden Beschränkungen:

- Die Stablänge der Kurzstäbe beträgt nur einen Bruchteil echter Brüterbrennstäbe.
- Der Kurzstab enthält keine axialen Brutstoff-Partien,
- Der Brennstoff enthält kein Plutonium. In nuklearer Hinsicht wird Pu durch U-235-Anreicherung ersetzt. 4 Stäbe enthalten außerdem CeO₂ als mögliche chemische Simulation des PuO₂.
- Die Bestrahlung erfolgt in einem thermischen Fluß.
- Die Wärmeübertragung nach außen geschieht über stagnierendes Natrium.

-3-

Die Aufgabenstellung der Versuchsgruppe läßt sich folgendermaßen beschreiben:

- Es sollen Oxidstabproben unter simulierten Schnellbrüterbedingungen bis zu hohen Abbränden bestrahlt werden.
- Als Parametervariation wird Brennstoff-Form und Brennstoff-Dichte gewählt.
- Der Zielabbrand wird variiert.
- Nachdem sich die früheren Kapseltypen mit Pb-Bi-Legierung als Wärmeübertrager nicht bewährt hatten, wird nun ein neuer Kapseltyp mit Na als Übertragungsmedium am Prüfling erstmals erprobt.
- Es wird untersucht, ob sich CeO₂ als Simulation für PuO₂ in einem Mischoxid sinnvollerweise verwenden läßt.
- Die experimentellen Erfahrungen dienen schließlich der Vorbereitung von Bestrahlungen PuO₂-haltiger Prüflinge in den FR 2-Kapsel-Versuchsgruppen 4 und 5.

Die Untersuchungsziele während der Bestrahlung und bei den Nachuntersuchungen sind durch folgende Fragestellungen gegeben:

- Bleiben die Stabprüflinge bis zum Zielabbrand intakt ?
- Ändert sich die äußere Geometrie, erfolgt insbesondere eine Hüllaufweitung ?
- Wie ist die radiale und axiale Strukturverteilung im Brennstoff nach der Bestrahlung ?
- Wie bildet sich der Zentralkanal im Brennstoff aus ?
- Wie groß ist der Anteil des freigesetzten Spaltgases, welcher Anteil befindet sich in den geschlossenen Poren ?
- Wie ist die Verteilung der Spaltprodukte ?
- Wie sind die Einflüsse und Veränderungen durch den CeO₂-Zusatz in einigen Proben ?
- Ist der neue Kapseltyp für hohe Abbrände geeignet ?

-4-

3. Auslegung der Versuchsgruppe

Die 34 Prüflinge der Versuchsgruppe haben gleichen Aufbau und gleiche äußere Abmessungen. Ihre Auslegung unterscheidet sich

-	in der Brennstoffzusammensetzung:	UO ₂ oder UO ₂ -CeO ₂
-	in der Brennstoff-Form:	Tabletten, Zylindermantel geschliffen oder ungeschliffen; Pulver zum Ein- vibrieren, gesintert oder geschmolzen
-	in der Brennstoffdichte:	88 oder 93 % th.D. bei den Tabletten, 85 % th.D. beim vibrierten Pulver
-	im Hüllmaterial:	X4CrNiNb 2025 oder X8CrNiMoVNb 1613

Die Verteilung der 34 Prüflinge auf diese Auslegungsvarianten zeigt Tabelle I.

Die wesentlichen Bestrahlungsbedingungen sind durch Stableistung, Hüllwandtemperatur und Abbrand gegeben. Gemäß der Auslegung der Versuchsgruppe waren vorgesehen

-	für	die	Temperatur	an	der	Außenoberfläche	der	Hüllwand:	maximal	700`	-C
-	für	die	Stableistun	g:		maximal	L 70	O W/cm			
-	für	den	Abbrand:			10 - 80) MW	d/kg M			

Für die Bestrahlung waren normale Brennelement-Positionen des FR 2 vorgesehen. Der nuklearen Auslegungsrechnung wurde ein ungestörter thermischer Neutronenfluß von maximal $1\cdot 10^{14}$ n/cm² sec zugrundegelegt. Für einen Brennstoffdurchmesser von 6,4 mm und einer UO₂-Dichte von 90 % th.D. benötigt man (bei einem Abschwächungsfaktor von 0,85 in der Bestrahlungskapsel) eine U-235-Anreicherung von etwa 11,5 Gew.-%, um eine Stableistung von 600 W/cm zu erreichen $\sqrt[-4]{2}$. Diese Anreicherung wurde für den Brennstoff aller Prüflingstypen festgesetzt. Da zur Zeit der Auslegung die Flußverhältnisse in den Bestrahlungspositionen nicht sehr genau bekannt waren und weiterhin die Flußabschwächung in der Bestrahlungseinrichtung und im Prüfling selbst nur aus etwas unsicheren theoretischen Überlegungen herzuleiten waren, wurde darauf verzichtet, für die einzelnen Prüflingstypen je nach ihrer unterschiedlichen UO₂-Dichte eine gesonderte U-235-Anreicherung zu ermitteln.

 -
-
-

Einteilung und Auslegung der Versuchsgruppe

Prüflings- typ	Anzahl der Prüflinge	Einzel- bezeichnung	Brennstoff- zusammensetzung	Brennstoff-Form g = geschliffen u = ungeschliffen	Brennstoff- Dichte % th.D.	Hüllmaterial
A B C D	5 5 5 5	2,6,10,14,AG 4,8,12,16,BU 3,7,11,15,CG 1,5,9,13,DU	UO2 UO2 UO2 UO2 UO2	Tabletten, g Tabletten, u Tabletten, g Tabletten, u	88 88 93 93	X4CrNiNb 2025
I. K	5 5	33,35,37,39,18 34,36,38,40,KM	UO2 UO2	Pulver,gesintert Pulver,geschmolzen	85 85	X4CrN1Nb 2025
L	1	18 19	^{UO} 2-CeO ₂ UO ₂ -CeO ₂	Tabletten, g Tabletten, g	88 93	X8CrNiMoVNb 1613
M	1 1	MS MM	UO ₂ -CeO ₂ UO ₂ -CeO ₂	Pulver, gesintert Pulver, geschmolzer	85 85	X4CrN1Nb 2025

Ϋ́

4. Konstruktion der Prüflinge und Spezifikationen

In diesem Abschnitt wird zuerst der technische Aufbau der Prüflinge beschrieben und anschließend die Spezifikationen für die Herstellung und Voruntersuchung. Die folgenden Unterkapitel verwenden Auszüge aus internen Notizen und Berichten $\sqrt{2}$, $3\sqrt{7}$, die nicht veröffentlicht sind.

4.1 Der Aufbau der Brennstäbe

Die Stabprüflinge haben bei einer Gesamtlänge von 172 mm folgende Längenverteilung (von oben nach unten):

Oberer Endstopfen	21	mm
Einsatzstück mit Sintermetallfilter	5	mm
Spaltgasraum mit Druckfeder	42	mm
Einsatzstück mit Rhodium-Plättchen	7	mm
Isoliertablette	5	mm
Brennstoffsäule	80	mm
Unterer Endstopfen mit Rhodium-Plättchen	12	mm

172 mm

Der Außendurchmesser der Stäbe beträgt 7,4 mm bei einer Hüllwandstärke von 0,5 mm. Die Einzelheiten der Konstruktion sind in einer GFK-Werkstattzeichnung (Abb. 1) sowie in der zugehörigen technischen Ergänzung der Firma Nukem (Abb. 2) enthalten. Die Brennstoffsäule ist oben und unten durch Rh-Scheiben mit 1 mm Dicke abgeschlossen, wodurch die Aufwölbung des Neutronenflusses verhindert werden soll. Die Sintermetallfilter sollen den Brennstoffstaub vom Spaltgasraum bzw. vom Hohlraum im oberen Stopfen fernhalten. Die Feder im Spaltgasraum dient zur Transportsicherung vor der Bestrahlung. Die Prüflinge sind am oberen Endstopfen dauerhaft gekennzeichnet.

4.2 Brennstoffspezifikationen

4.2.1 Chemische Zusammensetzung

- Der Brennstoff in den Prüflingstypen A, B, C, D, I und K ist reines UO₀.
- Der Brennstoff in den Prüflingstypen L und M ist ein UO₂-CeO₂-Gemisch mit 15 Mol-% CeO₂. Der entsprechende Gewichtsanteil an CeO₂ ist spezifiziert zu 10,1 ± 0,1 Gew.-% CeO₂

Das O/U-Verhältnis in UO₂ soll 2,0 <u>+</u> 0,015 betragen.

BEMERKLINGEN: 1. NUR EINGETRAGENE MAAZAHLEN GELTEN / 2. ALLE KANTEN ENTGRATET /

9

ELES SOMETHANTIE

<u>Abb. 2</u>

BE-Prüfling für FR 2-Kapsel-Versuchsgruppe 3 (Zeichnung BE-430/66 der Fa.Nukem) Die chemische Reinheit soll Reaktorbrennstoffen entsprechen.
 Die Neutronenabsorption der Verunreinigungen soll nicht über
 2,5 ppm Boräquivalent liegen.

4.2.2 Isotopenzusammensetzung

- Im reinen UO₂-Brennstoff beträgt die Anreicherung 11,5 <u>+</u> 0,1 Gew.-% U-235 im Uran.
- Im Mischbrennstoff beträgt die Anreicherung 11,5 <u>+</u> 0,1 Gew.-% U-235 im Uran-Anteil.
- 4.2.3 Homogenität im Mischbrennstoff
 - Die Komponenten des Mischbrennstoffes sollen zu größtmöglicher Homogenität zusammengesintert bzw. zusammengeschmolzen werden.
 - Die Partikelgröße soll kleiner als 0,05 mm sein.

4.2.4 Brennstoff-Form

Entsprechend der Zusammenstellung in der Tabelle I sind sowohl für reines UO_2 als auch für UO_2 -CeO₂ folgende Brennstoff-Formen vorgesehen:

- Tabletten, gepreßt und gesintert, ungeschliffen.
- Tabletten, gepreßt und gesintert, geschliffen.
- Pulverbrennstoff, vibrierfähig, bestehend aus abgerundeten und gesinterten Partikeln.
- Pulverbrennstoff, vibrierfähig, bestehend aus geschmolzenen Partikeln.

4.2.5 Brennstoffdichte

- Tablettendichte in 2 Varianten, nämlich $88 \pm 2 \%$ th.D. und $93 \pm 2 \%$ th.D.
- Dichte des einvibrierten Brennstoffes: 85 % th.D.
 Dabei sind auf 1 cm Brennstoffsäulenlänge Schwankungen von ± 5 % th.D. zulässig. Die integrale Schwankung darf ± 2 % th.D. nicht überschreiten.

4.2.6 Tablettengeometrie

Es ist nur der Tablettendurchmesser spezifiziert und zwar

- bei geschliffenen Tabletten auf 6,25 + 0,01 mm,
- bei ungeschliffenen Tabletten auf 6,25 ± 0,05 mm.
- 4.2.7 Oberfläche der Tabletten
 - Die Mantelflächen der Tabletten werden bei den Prüflingstypen A, C und L geschliffen, bei den Prüflingstypen B und D bleiben sie ungeschliffen.
 - In den Stirn- und Mantelflächen sind Kantenabplatzungen von 0,3 mm Tiefe allgemein zulässig. Außerdem sind zulässig:
 - a) Kantenabplatzungen, 0,5 mm in die Mantelfläche und 1 mm in die Stirnfläche reichend mit einer Maximalbreite von 2 mm, wenn die gleiche Stegbreite dazwischenliegt.
 - b) Haarrisse von 0,1 mm Weite und 2 mm Länge.
- 4.2.8 Untersuchungen und Prüfungen am Brennstoff

Damit die Ergebnisse des Bestrahlungsversuches möglichst vergleichbare Aussagen liefern, soll der Brennstoff bei der Herstellung so gut wie möglich untersucht werden, insbesondere auf:

- Chemische Reinheit
- Isotopenzusammensetzung 🕨 am Ausgangsmaterial
- BET-Oberfläche
- Stöchiometrie
- Fluor- und H₂O-Gehalt
- Keramografie
- Dichte
- Außenmaße

an Tabletten und Pulverbrennstoff

bei den Tabletten

4.3 Spezifikationen für die Hülle

4.3.1 Werkstoffe

Für die Hüllrohre und Endstopfen ist austenitischer Edelstahl nach 2 Werkstofftypen vorgesehen, nämlich

- 20/25 CrNiNb-Stahl, DIN-Bezeichnung X4CrNiNb 2025
- 16/13 CrNiNb-Stahl, DIN-Bezeichnung X8CrNiMoVNb 1613 Werkstoff-Nr. 1.4988

Für die zuerst gefertigten Prüflinge wird der 20/25-CrNiNb-Stahl verwendet. Nach Anlieferung von 16/13-CrNiNb-Hüllrohren kommen diese zum Einsatz.

4.3.2 Abmessungen der Hüllrohre

Es ist spezifiziert

- der Innendurchmesser der Hüllrohre auf $6,4 \pm 0,05$ mm (nach Möglichkeit $\pm 0,025$ mm)
- die Wandstärke auf 0,5 ± 0,025 mm .

4.3.3 Hüllrohrprüfungen

Alle Hüllrohre sind der Riß-, Rauhigkeits- und Maßprüfung zu unterziehen. Es sind Werksatteste der Rohrhersteller beizustellen.

4.4 Brennstabspezifikationen

4.4.1 Innere Geometrie

- Die Länge der Brennstoffsäule beträgt 80 + 1 mm.
- Bei den Prüflingen mit Tablettenbrennstoff soll die Dichte und Position jeder einzelnen Tablette bekannt sein.
- In jedem der beiden Endstopfen des Stabes ist (zur Verhinderung einer Flußaufwölbung) eine Rhodium-Scheibe mit 1,0 mm Stärke einzusetzen.

-12-

4.4.2 Äußere Geometrie

- Die gesamte Länge des Stabes beträgt 172,0 ± 0,5 mm.
- Die Durchbiegung kann maximal 0,1 mm betragen.

4.4.3 Helium-Füllung

- Die Stabprüflinge erhalten vor dem Zuschweißen eine Helium-Füllung.
- 4.4.4 Prüfung am fertigen Brennstab
 - An den fertigen Stäben sind folgende Prüfungen durchzuführen:
 - Maßkontrolle
 - Dichtheitsprüfung
 - Röntgenprüfung der Schweißnaht
 - Gesamtgewicht

5. Herstellung der Prüflinge

Die Firma Nukem, Wolfgang bei Hanau, hat alle Prüflinge auf der Basis der Spezifikationen hergestellt und zahlreiche Untersuchungen an den Prüflingskomponenten und an den fertigen Stäben durchgeführt. Insgesamt wurden 42 Prüflinge gefertigt. Wir geben hier für die zur Bestrahlung gekommenen 34 Prüflinge einen ausführlichen Auszug aus dem zugehörigen Nukem-Prüfbericht Nr. 6 [3]. Die Ausführungsmerkmale und deren Zuordnung zur Kennzeichnung wurden bereits in Tabelle I angegeben.

Die Kennzeichnung mit Zahlen oder Buchstaben, z.B. 16 oder DU oder L8 ist mit Schlagzahlen auf eine der beiden oberen Anfräsungen am oberen Endstopfen aufgebracht.

Die folgenden Abschnitte beschreiben die Herstellung des Brennstoffes und die Fertigung der Stäbe einschließlich der Zwischen- und Endprüfungen.

5.1 Ausgangspulver für die Brennstoffherstellung

Das UO₂-Ausgangspulver mit angereichertem Uran wies folgende Materialdaten auf:

		^
-	BET-Oberfläche	5,1 m ² /g
-	0/U-Verhältnis	2,08
-	Primärpartikelgröße	0,02 bis 0,2 µ
-	Boräquivalent der Verunreinigungen	0,61 ppm
-	U-235-Gehalt im Uran	11,5 Gew%

Das CeO_2 -Ausgangspulver enthielt ca. 500 ppm an Seltenen Erden, woraus sich ein Boräquivalent von mehreren 100 ppm ergibt. Die BET-Oberfläche betrug 18,6 m²/g. Weitere Kontrollwerte liegen nicht vor.

5.2 Tablettenherstellung

5.2.1 UO2-Tabletten

Zur Herstellung reiner UO₂-Tabletten wurde das UO₂-Ausgangspulver mit Zusatz von 1 % Polyvinylalkohol und 1,3 % Stearinsäure in einem Mischer naß plastifiziert, dann durch ein Sieb gedrückt und 48 Stunden lang bei 55°C getrocknet. Nach dem Pressen zu Grünlingen erfolgte das Entwachsen in CO₂-Atmosphäre. Das Sintern geschah in einem Schachtofen unter H₂-Atmosphäre. Für das Schleifen der Zylindermäntel wurde eine Spitzenlos-Schleifmaschine verwendet.

In Tabelle II sind die wesentlichen Herstellungsgrößen für die verschiedenen UO_2 -Tabletten-Typen eingetragen. Bei den Entwachsungs- und Sinterzeiten handelt es sich um die reinen Haltezeiten bei der angegebenen Temperatur. Die Abbildungen 3 bis 6 bringen für jede der UO_2 -Tabletten-Typen A, B, C und D die Gefügeaufnahmen aus der Mitte eines Tablettenquerschliffes und eines 0,3 mm tiefen Anschliffes der Mantelfläche sowie Aufnahmen von Stirn- und Mantelflächen.

5.2.2 UO2-CeO2-Tabletten

Die beiden Ausgangspulver UO₂ und CeO₂ wurden in der Zusammensetzung 89,9 Gew.-% UO₂ 10,1 Gew.-% CeO₂

				en Anno 1995 - Anno 1997 - Anno					
			Тур	A	В	C	D	l8	L9
			Brennstoff	υο ₂	UO2	UO2	U02	U02-Ce02	U02-Ce02
			Oberfläche	geschliffen	ungeschliffen	geschliffen	ungeschliffen	geschliffen	geschliffen
			Solldichte	88 % th.D.	88 % th.D.	93 % th.D.	93 % th.D.	88 % th.D.	93 % th.D.
		Durchme	esser (mm)	7,93	7,93	7,93	7,93	7,53	7,53
ан 1	e	Höhe	(mm)	11,00	11,30	11,00	10,30	10,40	10,40
	ing	Mittl.D	$\operatorname{pichte}(g/cm^3)$	5,25	4,84	5,55	5,10	5,83	6,00
	[u]	Preßdru	tck (t/cm ²)	2	2	2	2	4,6	4,8
	Gr	Entwachsen 4		4 h/860°C	4 n/860°c	4 n/860°c	4 h/860°C	2 n/860°c	2 n/860°C
1 ² -		Sintern	1	2 h/1500°C	2 h/1550°C	2 h/1600°C	2 h/1700°C	2 h/1550°C	2 h/1600°C
		Durchmesser,(mm) ungeschliffen		6,31	6,23		6,26	6,45	6,45
	tten	Durchme geschli	esser,(mm) ffen	6,249		6 ,2 56		6,25	6,25
	ble	Höhe	(mm)	8,00	8,90	7,90	8,00	8,90	8,90
Ē	Ца	Dichte	(%th.D.)) ca. 88	ca. 88	ca. 93	ca. 93	ca. 88	91,6
1-1-1 -1 1-1-1-1 1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1 1-1-1-1-1 1-1-1-1-1 1-1-1-1-1-1 1-1-1-1-1-1 1-						ι το			

-15-

Herstellungsdaten für Tablettenbrennstoff

Tabelle II:

Stirnfläche, V = 12x

Mantelflächen, V = 3x

Abb. 3 UO2-Tabletten, Typ A, 88 % th.D., geschliffen

Abb. 4 UO2-Tabletten, Typ B, 88 % th.D., ungeschliffen

-17-

-18-

Abb. 6 UO2-Tabletten, Typ D, 93 % th.D., ungeschliffen

in einem Taumelmischer im trockenen Zustand zur größtmöglichen Homogenität vermischt. Das Plastifizieren und Trocknen des Mischpulvers erfolgte genauso wie beim UO₂ (siehe 5.2.1). Das Pressen, Entwachsen und Sintern geschah analog zum UO₂, aber unter teilweise geänderten Bedingungen, siehe Tabelle II. Die Abbildungen 7 und 8 bringen für die beiden Typen L8 und L9 Gefüge- und Oberflächenaufnahmen.

5.2.3 Isoliertabletten

Die Merkmale der Isoliertabletten aus UO₂ mit Natururan sind:

-	Durchmesser	6,25 <u>+</u> 0,01 mm				
-	Höhe	5,03 bis 5,05 mm				
-	Dichte	96,2 bis 97,2 % th.D				

5.3 Herstellung des Pulverbrennstoffes

In den Stabproben mit einvibriertem Brennstoff kamen zwei Sorten von Pulverbrennstoff zur Anwendung, nämlich

- Pulverbrennstoff aus gesinterten Partikeln
- Pulverbrennstoff aus geschmolzenen Partikeln.
- 5.3.1 Vibrierpulver aus gesinterten Partikeln
 - Zu dessen Herstellung diente als Ausgangsmaterial entweder
 - U0₂-Ausgangspulver gemäß 5.1 oder eine
 - UO2-CeO2-Mischung mit 10,1 Gew.-% (= 15 Mol-%) CeO2,
 welches in einem Taumelmischer zu größtmöglicher Homogenität vermischt worden war.

In beiden Varianten wurde das Ausgangsmaterial durch Zusatz von 1 % Carbowax M20 und 1 % Stearinsäure plastifiziert und zu Grünlingen verpreßt. Diese Grünlinge wurden dann in einer Hammermühle mit 10 mm-Lochsieb gemahlen und in einem Lödige-Mischer abgerundet, wobei in mehreren Zeitabständen verschiedene Fraktionen abgerundeter Partikel entnommen wurden. Hierauf folgte eine 18 h-Entwachsung unter CO₂-Atmosphäre bei bis zu

-20-

Querschliff, Zentrum, V = 200x

M**a**ntelflächen, V = 3x

Stirnfläche, V = 12,5 x

<u>Abb. 7</u> UO₂-CeO₂-Tabletten, Typ L8, 88 % th.D., geschliffen

-21-

Abb. 8 U0₂-Ce0₂-Tabletten, Typ L9, 93 % th.D., geschliffen 650°C ansteigender Temperatur. Anschließend wurden die abgerundeten Partikel unter H₂-Atmosphäre gesintert.Das fertige Vibrierpulver setzt sich aus 3 definierten Kornfraktionen und dem Feinanteil zusammen.

In Tabelle III sind einige Herstellungsdaten sowie charakteristische Partikeleigenschaften angegeben. Die Abbildungen 9 und 10 bringen Form und Gefügestruktur von gesinterten Partikeln.

5.3.2. Vibrierpulver aus geschmolzenen Partikeln

Zu dessen Herstellung dienten die gleichen Ausgangspulver wie bei den gesinterten Partikeln (siehe 5.3.1). Diese Ausgangspulver wurden in einem elektrischen Schmelzofen in direktem Stromdurchgang unter Argon-Atmosphäre geschmolzen. Das Schmelzgut wurde dann in einem Backenbrecher gebrochen und gemahlen und hierauf in Fraktionen abgesiebt. Abschließend wurden die UO₂-Partikel-Fraktionen 4 h bei 1000^OC unter H₂-Atmosphäre stöchiometrisch geglüht und unter Argon abgekühlt. Beim UO₂-CeO₂ fand keine abschließende Glühbehandlung statt.

In Tabelle IV sind für diese geschmolzenen Partikel die Kenndaten der Fraktionen angegeben. Die Abbildungen 11 und 12 vermitteln einen Eindruck über die rauhe, eckige Form der geschmolzenen Partikel.

5.4 Nachweis der Brennstoffeigenschaften

5.4.1 Spaltstoff-Anreicherung

Das UO₂-Ausgangspulver mit 11,5 Gew.-% U-235 im Uran-Anteil wurde durch Mischen von 35,03 % angereichertem Uran mit Natururan hergestellt, siehe hierzu das Mischprotokoll in Tabelle V nach Angaben der Firma Nukem.

Die Isoliertabletten enthalten Natururan.

Herstellung und Eigenschaften gesinterter Partikel Tabelle III:

			U02-Part	UO2-Dartikel UO2-CeO2-Partikel		
Zusammens	setzung fgehalt		100 % UO ₂		89,9 % UO ₂ ,10,1 % CeO ₂	
Preßdruck Grünlings Sintern d	der Grünli dichte ler abgerund	nge (t/cm ²) (g/cm ³) . Partikel	8,4 6,3 2 h/1600 [°] C		11,2 6,37 2 h/1500 [°] C	
Fraktion	Korngröße (mm)	Anteil am Vibrier- pulver	Rüttel- dichte (g/cm ³)	Auftriebs- dichte (g/cm ³)	Rüttel- dichte (g /cm ³)	Auftriebs- dichte (g/cm ²)
I 1,50-1,25 40 % II 1,00-0,80 20 % III 0,25-0,10 25 % Fein- anteil < 0,09		6,56 6,72 7,06 nicht	10,64 10,54 10,50 gemessen	5,55 5,72 6,07 nicht g	9,64 9,54 9,46 emessen	

Tabelle IV:

Herstellung und Eigenschaften geschmolzener Partikel

			UO ₂ -Partikel		U02-Ce02-Partikel	
Zusammensetzung Spaltstoffgehalt			100 % UO ₂ 11,5 % U-235 im U		89,9 % UO ₂ ,10,1 % CeO ₂ 11,5 % U-235 im U	
Fraktion	Korngröße (mm)	Anteil am Vibrier- pulver	Rüttel- dichte (g/cm ³)	He-Pykno- meterd. (g/cm ³)	Rüttel- dicht <u>e</u> (g/cm ²)	He-Pykno- meterdichte (g/cm ²)
I	2,0-1,2	40 %	5,55	10,88	5,23	10,31
II	1,2-0,8	20 %	5,49	10,89	5,38	10,41
III	0,5-0,2	15 %	5,35	10,84	5,42	10,54
Fein- anteil	< 0 , 1	25 %	nicht	gemessen	nicht g	emessen

Kontur, Fraktion I V = 10x

Kontur, Fraktion III V = 10x

Kontur, Fraktion II V = 10x

Gefüge eines Grobpartikels V = 400x

Abb. 9 Form und Gefügestruktur von gesinterten Partikeln aus UO2

-25-

.....

Tabelle V:

Mischprotokoll für das angereicherte UO2-Ausgangspulver

U-Element	U-235-Anreicherung	U - 235
2,798 kg 6,102 kg	35,0293 % 0,7106 %	0,9801 kg 0,0434 kg
8,900 kg	11,5000 %	1,0235 kg

Tabelle VI: Verunreinigungen im Brennstoff

Тур	Brennstoff-Form	Bor- äquiva- lent (ppm B)	H ₂ O-Gehalt (ppm)	0/U- Ver- hältnis	Restgas- gehalt (ml/g)
A	U0 ₂ -Tabl., 88 %, g	1,29	29	2,01	0,06/0,18
В	UO ₂ -Tabl., 88 %, u	1,29	19	2,01	0,04
С	U0 ₂ -Tabl., 93 %, g	1,29	2	2,01	0,03/0,02
D	U02-Tabl., 93 %,u	1,29	1	2,01	0,01/0,02
J	U02-Partik., gesintert	0,61	15	2,00	0,06/0,06
к	U02-Partik., geschmolzen	0,60	13	2,00	0,03/0,04
18	UO ₂ -CeO ₂ -Tabl., 88 %, g	> 100	144	~ 2	0,05/0,02
L9	U0 ₂ -Ce0 ₂ -Tabl., 93 %, g	> 100	98	~2	0,02/0,02
MS	U02-Ce02-Part., gesint.	> 100	27	~2	0,07/0,06
MM	UO ₂ -CeO ₂ -Part., geschm.	> 100	26	~2	0,08/0,10
UO ₂ -Isoliertabletten		0,57	< 10	2,00	0,01/0,03

-28-
5.4.2 Chemische Reinheit und Stöchiometrie

Die Anteile an Verunreinigungen in den Brennstoffen wurden an dem Ausgangspulver und an den fertigen Tabletten und Partikeln ermittelt. In den UO₂-Brennstoffen bleibt das Boräquivalent weit unter dem Grenzwert von 4 ppm. In den CeO₂-haltigen Brennstoffen ist dagegen das Boräquivalent wegen der Verunreinigungen an Seltenen Erden (siehe 5.1) relativ hoch.

Der Wassergehalt wurde an allen Brennstoffsorten ermittelt, bei den Partikelbrennstoffen unmittelbar vor dem Einvibrieren des getrockneten Granulats. Das O/Me-Verhältnis konnte nur bei den reinen UO₂-Brennstoffen bestimmt werden, da für UO₂-CeO₂ keine verläßliche Meßmethode bekannt ist.

Eine Übersicht über die ermittelten Werte für die einzelnen Brennstoffsorten bringt Tabelle VI.

5.4.3 Restgasgehalt

An allen Brennstoffausführungen wurde mittels Heißextraktion der Restgasgehalt bestimmt (überwiegend H_2). In Tabelle VI sind die Meßwerte (meist von zwei Proben) eingefügt. Dieser Gesamtgasgehalt bezieht sich auf 0[°]C und 760 Torr, die Meßgenauigkeit liegt bei \pm 0,02 ml/g.

5.5 Hull- und Strukturmaterial

5.5.1 Hüllrohre aus Edelstahl X4CrNiNb 2025

Aus einer Herstellungscharge der Firma Mannesmann vom Jahre 1965 wurden 8 Rohre (Lieferlänge 1,25 m) verwendet. Die Rohre waren nahtlos gezogen und hatten einen Außendurchmesser von 7,4 mm und eine Wandstärke von 0,5 \pm 0,05 mm. Die Schmelzanalyse und die Festigkeitswerte sind mit Protokollen des Herstellers belegt, Auszug siehe Tabelle VII.

5.5.2 Hüllrohre aus Edelstahl X8CrNiMoVNb 1613

Die zur Verwendung gekommenen 2 Hüllrohre, mit einer Lieferlänge von 1,0 m, stammen aus einer Herstellungscharge der

-29-

-30-

Tabelle VII: Schmelzanalyse und Festigkeit des Hüllrohrmaterials

	· · · · · · · · · · · · · · · · · · ·		
	Edelstahl	X4CrNiNb 2025	WNr. 1.4988 X8CrN1MOVNb 1613
	Schmelze Nr.	3 SL-2060	25116
Zusammensetzung in %	C Cr Ni Mo V Nb Fe	0,02 20,41 25,71 0,59 Rest	0,05 16,30 13,65 1,42 0,77 0,66 Rest
Streckgrenze (kp Zugfestigkeit (kp Dehnung	/mm ²) /mm ²) (%)	48,3 62,1 37,5	30,2 / 33,4 61,8 / 62,4 54,5 / 51,0

Firma Mannesmann vom Jahre 1966. Einzelheiten zur Schmelzanalyse und zur Festigkeit sind ebenfalls in Tabelle VII enthalten.

5.5.3 Rundmaterial

Das Rundmaterial aus den beiden Edelstahltypen zur Fertigung der Endstopfen und Federhülsen wurde auf der Mantelfläche feinstgedreht und mit Ultraschall auf Fehlerfreiheit geprüft. Die Drehteile wurden aus einwandfreien Rundstangen oder Abschnitten gefertigt.

5.5.4 Endscheiben aus Rhodium

Die zurVerhinderung der Flußaufwölbung dienenden Rhodiumscheiben wurden von der Firma Degussa, Hanau, geliefert. Das Rh hat einen Reinheitsgrad > 99,9 %.

5.5.5 Druckfedern und Filterstopfen

Die Druckfedern und Filterstopfen wurden von der GFK besorgt und dem Prüflingshersteller übergeben.

Das Material der Druckfedern ist

Edelstahl, Werkstoff-Nr. 1.4310 Zusammensetzung X12CrNi 1717

Die Filterstopfen sind aus Sintermetall der Zusammensetzung 18 % Cr, 12,5 % Ni, 2,2 % Mo, 0,6 % Si, Rest Fe.

5.6 Hüllrohrprüfung

Die Hüllrohre wurden mit Ultraschall auf äußere und innere Oberflächenfehler und auf Wanddicke geprüft. Der Innendurchmesser wurde kontinuierlich mit einer pneumatischen Prüfanlage ermittelt.

Alle ausgewählten Rohrabschnitte waren frei von unzulässigen Oberflächenfehlern. Die mittlere Wandstärke lag immer um etwa 0,02 mm unterhalb des spezifizierten Wertes, das im übrigen nicht unzulässig breite Toleranzfeld ist nach unten verschoben. Die Schwankungen des Innendurchmessers genügt den Spezifikationen. In Tabelle VIII sind die wichtigsten zahlenmäßigen Ergebnisse der Hüllrohrprüfung zusammengestellt. Außerdem ist die Zuordnung der einzelnen Rohrabschnitte zu den Brennstäben angegeben.

5.7 Herstellung der Stäbe mit Tablettenbrennstoff

5.7.1 Auswahl der Tabletten

Die für einen Brennstab ausgewählten Tabletten wurden nach Durchmesser und Höhe einzeln vermessen. Die Abweichungen von der Zylinderform ist bei den geschliffenen Tabletten maximal 4 μ , bei den ungeschliffenen Tabletten maximal 30 μ . Die Planparallelität der Stirnflächen weist einen Fehler von maximal 60 μ auf. Aus den geometrischen Abmessungen und dem Gewicht wurde die Dichte der Tabletten errechnet. Zur Verwendung gelangten nur Tabletten, deren Oberflächengüte innerhalb der spezifizierten Grenzen lag.

5.7.2 Tablettensäulen

Jede Tablettensäule enthält 9 oder 10 Brennstofftabletten und eine Isoliertablette. Die Tabellensammlung IX/1 bis IX/22 umfaßt alle Einzelangaben der Tabletten sowie die Summen- und Mittelwerte für die zusammengestellten Säulen. Die Nummern der Tabletten laufen von unten nach oben. Über der obersten Tablette Nr. 9 oder 10 liegt dann die Isoliertablette.

5.7.3 Einfüllen und Verschließen der Stäbe

Zuerst wurde der untere Endstopfen eingeschweißt und dann die Tablettensäule sowie die Einführungshülsen mit Druckfeder eingeschoben. Vor dem Eindrücken des oberen Endstopfens wurden die Proben mitHelium (Druck 1 atm) gefüllt. Das Verschweißen beider Endstopfen erfolgte mit einer W-Elektrode unter Argon-Atmosphäre nach dem WIG-Verfahren.

Tabelle VIII: Ergebnisse der Hüllrohrprüfung

Rohr-Nr. Material	Gemessene Wandstärke (mm)	Rohr- Abschnitt Nr.	Innendurchmesser- bereich (mm)	verwendet für Brenn- stab-Nr.
M4 X4CrNiNb 2025	0,45 0,50	M4/1 M4/2 M4/3 M4/5 M4/6 M4/8	6,43 6,44 6,42 6,43 6,43 6,44 6,42 6,44 6,43 6,44 6,42 6,44	2 6 10 14 AG 4
M8 X4CrNiNb 2025	0,45 0,48	M8/1 M8/3 M8/6 M8/7 M8/8	6,43 6,44 6,43 6,44 6,43 6,44 6,43 6,44 6,43 6,44 6,43 6,44	8 12 16 BU 3
M15 X4CrNiNb 2025	0,45 0,47	M15/1 M15/2	6,42 6,44 6,42 6,43	7 11
M19 X4CrNIND 2025	0,46 0,49	M19/1 M19/2 M19/3 M19/4	6,43 6,44 6,43 6,45 6,43 6,44 6,43 6,44	36 38 40 KM
M23 X4CrNiNb 2025	0,46 0,49	M23/1 M23/3 M23/5 M23/6	6,43 6,44 6,43 6,44 6,43 6,44 6,43 6,44 6,43 6,44	33 37 IS 3 ⁴
M39/X4CrNiNb 202	5 0,45 0,48	M39/3	6,43 6,44	15
M48 X4CrNiNd 2025	0,45 0,49	M48/2 M48/3 M48/4 M48/6 M48/7 M48/8	6,43 6,45 6,43 6,45 6,43 6,44 6,43 6,44 6,43 6,44 6,42 6,44	CG 1 5 9 13 DU
M50 X4CrN1Nd 2025	0,47 0,49	M50/1 M50/4 M50/5 M50/6	6,43 6,44 6,42 6,44 6,42 6,44 6,42 6,44 6,42 6,44	MS 39 MM 35
M1 + M5 X8CrNiMoVNb 1613	0,49 0,52	M1/3 M5/1	6,38 6,39 6,38 6,39	L8 L9

Tabelle Prüf: Nr. IX/1 2 IX/2 6 IX/3 10 IX/4 14 IX/5 AG	lings- Typ
IX/1 2 IX/2 6 IX/3 10 IX/4 14 IX/5 AG	
IX/2 6 IX/3 10 IX/4 14 IX/5 AG	
IX/3 10 IX/4 14 IX/5 AG	
IX/4 14 IX/5 AG	A
IX/5 AG	
IX/6 4	
IX/7 8	
IX/8 12	В
IX/9 16	
IX/10 BU	1971
IX/11 3	
IX/12 7	
IX/13 11	C
IX/14 15	
IX/15 CG	
IX/16 1	
IX/17 5	
IX/18 9	D
IX/19 13	
IX/20 DU	۲۰۰۰ور ۲۰۰۰
IX/21 18	L
IX/22 L9	-

.

Tabellensammlung IX/1 bis IX/22, Übersicht

Tabelle IX/1:

Tablettensäule für Prüfling 2

Brennstoff: UO₂-Tabletten, geschliffen Solldichte: 88[°]% th.D. Länge der Brennstoffsäule (gemessen): 80,2 mm Gewicht der Brennstoffsäule (gemessen): 23,9 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isoli	ertablette	6 ,2 5	5,05	97,0
ennstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,249 + 0,005 - 0,003	8,00 8,04 8,00 7,98 8,04 7,99 8,04 7,99 7,99 7,99	88,2 88,2 86,9 88,8 86,7 89,7 88,2 88,0 87,8 88,7
L A A	Summe		80,06	
	Mittelwert			88,12

Tabelle IX/2:

Tablettensäule für Prüfling 6

Brennstoff: UO₂-Tabletten, geschliffen Solldichte: 88% th.D. Länge der Brennstoffsäule (gemessen): 80,0 mm Gewicht der Brennstoffsäule(gemessen): 24,0 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isol	iertablette	6,25	5,05	96,7
remstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,249 + 0,005 - 0,003	8,00 7,99 8,00 8,00 7,99 7,99 8,00 7,98 8,00	88,4 89,5 87,3 88,5 87,3 89,5 88,1 88,2 87,6 88,5
а С Д И И	Summe		79 , 95	
	Mittelwert			88,29

-35-

Tabelle IX/3:

Tablettensäule für Prüfling 10

Brennstoff: U0₂-Tabletten, geschliffen Solldichte: 88²% th.D. Länge der Brennstoffsäule (gemessen): 80,0 mm Gewicht der Brennstoffsäule (gemessen): 24,0 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isol	iertablette	6,25	5,04	96,4
ennstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,249 + 0,005 - 0,003	8,01 7,97 7,98 8,00 8,00 7,98 8,00 7,98 7,98 7,98 7,99	89,0 88,0 87,8 89,5 89,2 87,7 88,9 89,1 89,7 89,7
Ъ	Summe		79,89	
and the state of t	Mittelwert	******		88,86

Tabelle TX/4:

Tablettensäule für Prüfling 14

Brennstoff: UO₂-Tabletten, geschliffen Solldichte: 88²% th.D. Länge der Brennstoffsäule (gemessen): 80,1 mm Gewicht der Brennstoffsäule (gemessen): 23,9 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isol	iertablette	6,25	5,03	96,8
brennstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,249 + 0,005 - 0,003	7,99 7,99 8,00 8,04 8,05 8,05 8,03 7,97 8,00 8,00 8,00	89,1 88,0 89,7 88,9 88,9 87,8 86,3 89,7 88,2 89,0
рц Г	Summe		80,07	
	Mittelwert			88,56

Tabelle IX/5: Tablettensäule für Prüfling AG

Brennstoff: UO₂-Tabletten, geschliffen Solldichte: 88²% th.D. Länge der Brennstoffsäule (gemessen): 80,0 mm Gewicht der Brennstoffsäule (gemessen): 24,0 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Iso	lierta blette	6 ,25	5,05	96,5
mnstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,249 + 0,005 - 0,003	7,99 7,98 7,98 8,00 7,99 7,99 7,99 8,00 7,96 8,00	89,1 87,6 89,2 89,5 89,7 89,2 87,3 89,6 88,6 88,6 89,7
Bre	Summe		79,88	
1.42	Mittelwert			88,95

Tabelle IX/6:

Tablettensäule für Prüfling 4

Brennstoff: U0₂-Tabletten, ungeschliffen Solldichte: 88²% th. D. Länge der Brennstoffsäule (gemessen): 80,3 mm Gewicht der Brennstoffsäule (gemessen): 23,7 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Iso	liertablette	6 ,2 5	5,09	96,7
remstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,226 6,233 6,233 6,237 6,233 6,233 6,243 6,230 6,230 6,230	8,88 8,91 8,90 8,92 8,89 8,92 8,90 8,90 8,90 8,90	88,2 88,4 88,5 88,1 88,7 88,1 88,7 88,1 88,3 88,3 88,3 87,9
B	Summe		80,12	
	Mittelwert	6,232	Y. Constant	88,28

Tabelle IX/7:

Tablettensäule für Prüfling 8

Brennstoff: UO_-Tabletten, ungeschliffen Solldichte: 88²% th.D. Länge der Brennstoffsäule (gemessen): 80,3 mm Gewicht der Brennstoffsäule (gemessen): 23,7 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isol	iertablette	6,25	5,05	96,5
nnstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	- 6,233 6,233 6,237 6,243 6,230 6,230 6,230 6,230 6,240	- 8,91 8,92 8,91 8,92 8,91 8,90 8,90 8,90 8,92 8,91	88,2 88,7 88,1 88,5 88,5 88,2 88,5 88,5 88,5 88,5 87,6
Bre	Summe		80,20	
	Mittelwert	6,234		88,31

Tabelle IX/8:

Tablettensäule für Prüfling 12

Brennstoff: U0₂-Tabletten, ungeschliffen Solldichte: 88% th.D. Länge der Brennstoffsäule (gemessen): 80,4 mm Gewicht der Brennstoffsäule (gemessen): 23,7 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Iso	liertablette	6,25	5,03	96,2
nnstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,227 6,233 6,230 6,227 6,230 6,237 6,233 6,227 6,243	8,90 8,92 8,90 8,92 8,93 8,91 8,91 8,89 8,95	88,2 88,8 88,3 87,7 88,4 88,4 88,4 88,6 89,3 87,6
Bre	Summe		80,23	
	Mittelwert	6,232		88,37

Tabelle IX/9:

Tablettensäule für Prüfling 16

Brennstoff: UO₂-Tabletten, ungeschliffen Solldichte: 88% th.D. Länge der Brennstoffsäule (gemessen): 80,3 mm Gewicht der Brennstoffsäule (gemessen): 23,7 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isol	.iertablette	6,25	5,05	97,2
nnstoffsä u le	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,237 6,233 6,233 6,233 6,243 6,243 6,230 6,240 6,233 6,237	8,93 8,91 8,90 8,90 8,93 8,90 8,93 8,92 8,91	87,9 88,8 88,7 87,1 88,8 87,7 87,7 87,7 88,4 87,6
Bre	Summe		80,23	
	Mittelwert	6 ,23 5		88,08

Tabelle IX/10: Tablettensäule für Prüfling BU

Brennstoff: U0₂-Tabletten, ungeschliffen Solldichte: 88²% th.D. Länge der Brennstoffsäule (gemessen): 80,4 mm Gewicht der Brennstoffsäule (gemessen): 23,6 g

_		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isol	.iertablette	6,25	5,05	96,8
emstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,237 6,227 6,233 6,233 6,233 6,233 6,233 6,240 6,253 6,227	8,92 8,90 8,92 8,92 8,92 8,92 8,92 8,92 8,92 8,92	87,9 87,7 88,1 88,0 88,0 87,7 87,6 88,5 87,4
Bre	Summe		80,24	
	Mittelwert	6 ,235		87,88

-40-

Tabelle IX/11:

Tablettensäule für Prüfling 3

Brennstoff: U0₂-Tabletten, geschliffen Solldichte: 93% th.D. Länge der Brennstoffsäule (gemessen): 80,2 mm Gewicht der Brennstoffsäule (gemessen): 26,2 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isc	oliertablette	6,25	5,05	96,6
ennstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,256 + 0,002 - 0,003	7,90 7,91 7,91 7,93 7,88 7,96 7,91 7,92 7,92 8,91	96,6 92,6 93,1 93,3 93,4 92,5 94,1 93,8 94,1 94,0
Br	Summe		80,15	
	Mittelwert			93,44

Tabelle IX/12:

Tablettensäule für Prüfling 7

Brennstoff: U0_-Tabletten, geschliffen Solldichte: 93[°]% th.D. Länge der Brennstoffsäule (gemessen): 80,2 mm Gewicht der Brennstoffsäule (gemessen): 25,2 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Iso	liertablette	6,25	5,05	96,4
ennstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,256 + 0,002 - 0,003	7,92 7,92 7,90 7,92 7,92 7,92 7,91 7,91 7,91 8,85	94,1 93,3 94,1 93,5 93,5 94,1 93,8 93,8 93,8 93,4 93,6
Br	Summe		80,09	
	Mittelwert			93,72

-41-

Tabelle IX/13:

Tablettensäule für Prüfling 11

Brennstoff: U0₂-Tabletten, geschliffen Solldichte: 93% th.D. Länge der Brennstoffsäule (gemessen): 80,1 mm Gewicht der Brennstoffsäule (gemessen): 25,2 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isoliertablette		6 ,2 5	5,04	96,5
Tablette Nr e In ss JJ o t suu	. 10 9 8 7 6 5 4 3 2 1	6,256 + 0,002 - 0,003	7,90 7,95 7,91 7,96 7,92 7,91 7,90 7,91 7,90 8,84	94,1 93,8 93,0 93,0 94,7 94,7 93,0 93,4 93,8 93,3
б Д Summe			80,10	
Mittelwert				93,68

Tabelle IX/14:

Tablettensäule für Prüfling 15

Brennstoff: U0₂-Tabletten, geschliffen Solldichte: 93% th.D. Länge der Brennstoffsäule (gemessen): 80,1 mm Gewicht der Brennstoffsäule (gemessen): 25,2 g

an a	Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isoliertablette	6,25	5,05	97,2
Tablette Nr. 10 9 8 7 9 1 nes 1 9 1	6,256 + 0,002 - 0,006	7,90 7,91 7,91 7,92 7,91 7,92 7,91 7,91 7,91 7,89 8,95	93,3 93,8 93,1 93,3 93,8 94,1 93,8 94,5 92,6 94,0
Summe		80,13	
Mittelwert			93,63

-42-

Tabelle IX/15:

Tablettensäule für Prüfling CG

Brennstoff: U0₂-Tabletten, geschliffen Solldichte: 93⁶% th.D. Länge der Brennstoffsäule (gemessen): 80,4 mm Gewicht der Brennstoffsäule (gemessen): 25,2 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Iso:	liertablette	6,25	5,03	96,4
unstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,256 + 0,002 - 0,005	7,90 7,92 7,91 7,95 7,90 7,89 7,97 7,91 7,91 7,97 9,00	93,5 93,8 94,3 93,0 93,3 93,8 93,3 93,8 93,8 93,8 94,1
Brer	Summe		80,32	
	Mittelwert			93,67

Tabelle IX/16:

Tablettensäule für Prüfling 1

Brennstoff: U0₂-Tabletten, ungeschliffen Solldichte: 93[°]/₇ th.D. Länge der Brennstoffsäule (gemessen): 80,0 mm Gewicht der Brennstoffsäule (gemessen): 24,9 g

e Series de Co			Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isol	iertablette		6,25	5,05	96,5
nns toff säule	Tablette	Nr. 10 9 8 7 6 5 4 3 2 1	6,243 6,237 6,240 6,277 6,243 6,263 6,257 6,247 6,247 6,237 6,267	8,00 8,00 8,00 8,00 8,01 8,01 8,05 8,02 8,01 8,00	92,6 93,0 92,6 92,5 92,6 93,0 92,4 92,4 92,9 92,5
Brei	Summe		- 15 - 1	80,09	
	Mittelwe	ert	б,251		92,65

Tabelle IX/17: Ta

Tablettensäule für Prüfling 5

Brennstoff: U0₂-Tabletten, ungeschliffen Solldichte: 93% th.D. Länge der Brennstoffsäule (gemessen): 80,0 mm Gewicht der Brennstoffsäule (gemessen): 24,9 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isol	liertablette	6 ,2 5	5,05	96,4
nnstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,247 6,247 6,273 6,247 6,240 6,260 6,263 2,267 6,237 6,277	8,00 7,99 8,00 7,99 8,00 8,00 8,00 8,00 8,01 7,97	92,6 93,1 93,4 92,5 93,0 93,2 93,4 93,2 92,4 91,5
Bre	Summe		79,96	
- <u>1</u> -	Mittelwert	6 ,2 56		92,83

Tabelle IX/18:

Tablettensäule für Prüfling 9

Brennstoff: UO₂-Tabletten, ungeschliffen Solldichte: 93% th.D. Länge der Brennstoffsäule (gemessen): 80,0 mm Gewicht der Brennstoffsäule (gemessen): 25,0 g

		Durchmesser	Höhe	Dichte
Isol	iertablette	6 ,25	5,04	96,8
stoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,247 6,257 6,253 6,233 6,270 6,240 6,273 6,273 6,240 6,240 6,247	8,00 7,99 8,05 8,00 8,00 7,98 7,99 8,00 7,99 8,01	93,1 93,0 93,0 93,1 92,9 92,6 92,6 92,6 93,4 93,0 92,4
renr	Summe		80,01	
щ	Mittelwert	6,253		92,91

Tabelle IX/19:

Tablettensäule für Prüfling 13

Brennstoff: UO_-Tabletten, ungeschliffen Solldichte: 93²% th.D. Länge der Brennstoffsäule (gemessen): 80,0 mm Gewicht der Brennstoffsäule (gemessen): 24,9 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Iso	liertablette	6 ,2 5	5,05	96 ,2
stoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,267 6,260 6,250 6,253 6,253 6,250 6,270 6,237 6,253 6,253	8,01 8,00 8,00 8,00 7,98 8,00 8,05 8,00 7,99	93,2 93,4 92,4 92,7 93,0 92,1 92,5 93,1 92,7
enns	Summe		80,03	
Å.	Mittelwert	6 ,25 5		92,75

Tabelle IX/20:

Tablettensäule für Prüfling DU

Brennstoff: U0₂-Tabletten, ungeschliffen Solldichte: 93% th.D. Länge der Brennstoffsäule (gemessen): 80,0 mm Gewicht der Brennstoffsäule (gemessen): 24,9 g

		Durchmesser (mm)	Höh e (mm)	Dichte (% th.D.)
Iso	liertablette	6 ,2 5	5,03	96,7
ennstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,237 6,267 6,260 6,257 6,237 6,260 6,260 6,250 6,220 6,273	7,99 8,00 7,96 8,00 8,05 8,03 7,98 7,98 8,01 7,98	91,9 92,5 92,1 93,4 92,5 92,6 92,5 91,8 92,4 93,2
Вř	Summe		79,98	
	Mittelwert	6,252		92,49

Tabelle IX/21:

Tablettensäule für Prüfling L8

Brennstoff: U0₂-CeO₂-Tabletten, geschliffen Solldichte: 88% th.D. Länge der Brennstoffsäule (gemessen): 79,8 mm Gewicht der Brennstoffsäule (gemessen): 22,5 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isol	iertablette	6 ,25	5,05	97,0
mstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,246 6,250 6,250 6,248 6,249 6,249 6,249 6,248 6,251	8,82 8,99 8,85 8,87 8,85 8,85 8,85 8,85 8,84 8,91	86,5 89,5 89,0 89,0 88,7 89,0 86,9 86,9 87,3 88,4
Bren	Summe		79,83	
1.434	Mittelwert	6,249		88,26

Tabelle IX/22:

Tablettensäule für Prüfling L9

Brennstoff: U0_-Ce0_-Tabletten, geschliffen Solldichte: 93% th.D. Länge der Brennstoffsäule (gemessen): 80,1 mm Gewicht der Brennstoffsäule (gemessen): 23,4 g

		Durchmesser (mm)	Höhe (mm)	Dichte (% th.D.)
Isol	iertablette	6 ,2 5	5,06	96,8
ıstoffsäule	Tablette Nr. 10 9 8 7 6 5 4 3 2 1	6,254 6,253 6,252 6,254 6,255 6,252 6,254 6,258 6,255	8,92 8,86 8,84 8,92 9,03 8,93 8,83 8,83 8,88	- 91,9 91,5 91,8 91,2 91,7 91,2 91,2 91,9 91,2
ren	Summe		80,08	
щ	Mittelwert	6 ,25 4		91,51

5.7.4 Rhodium-Endscheiben

Die unteren Endstopfen der Prüflinge sowie alle unteren Hülsen (mit Ausnahme der Stäbe L8 und L9) sind auf den brennstoffseitigen Stirnflächen mit 1 mm dicken, eingebördelten Rh-Scheiben versehen.

5.7.5 Filterstopfen

Zur Vermeidung von Kontaminationen durch Brennstoffstaub bei späteren Spaltgasuntersuchungen sind in der unteren Führungshülse sowie im oberen Endstopfen Filtereinsätze aus gesintertem Edelstahl eingebaut.

5.8 Herstellung der Stäbe mit vibriertem Brennstoff

Über das Einvibrieren des Brennstoffes liegen vom Hersteller keine genauen Angaben vor. Die Fertigung der Prüflinge ist analog zu den Tabletten-Stäben. An beiden Enden der Brennstoffsäule befinden sich Rh-Scheiben. Vor dem Verschweißen wurde ebenfalls mit Helium gefüllt, wobei zweimal gespült wurde.

Die Merkmale der einvibrierten Partikelsäulen (Dichte, Säulenlänge und Gewicht) sind in der Tabelle X zusammengefaßt. Die Dichteschwankungen der vibrierten Partikelsäulen wurden durch Gamma-Absorption ermittelt.

Beim Stab MS mit gesinterten UO₂-CeO₂-Partikeln wurde der spezifizierte Dichtebereich nicht erreicht. Die Dichteschwankungen (bezogen auf den Mittelwert) lagen bei allen Prüflingen innerhalb der zulässigen Streubreite.

5.9 Prüfungen an den fertigen Stäben

Alle Schweißnähte wurden geröntgt. Die Verbindungen zwischen den Hüllrohren und Endstopfen ist einwandfrei. Bei einigen Proben liegt der Schweißnahtdurchmesser örtlich bis zu 0,05 mm über dem rechnerisch festgelegten Außendurchmesser (= Innendurchmeser + 2 x Wandstärke). Die Dichtheitsprüfung mittels He-Lecktest ergab eine Leckrate $< 10^{-8}$ Torrliter/sec.

Tabelle X: Vibrierte Brennstoffsäulen

Prüflingstyp	Prüfling	Füllgewicht	Länge der vibrierten	Mittlere Vibrier-	Maximale Dichteschwankung in % der mittleren Dichte								
Partikelbrennstorr	<u>-</u>	(g)	(mm)	(% th.D.)	nach oben	nach unten							
	33	24,18	80,00	85,63	+ 2,7	- 3,0							
	35	24,19	80,30	85,38	+ 1,4	- 1,8							
I	37	24,28	80,00	85,99	+ 2,5	- 2,5							
UO ₂ , gesintert	39	24,25	80,20	85,69	+ 1,9	- 1,8							
	IS	24,26	80,50	85,39	+ 3,2	- 4,8							
	34	23,64	80,10	83,64	+ 3,2	- 4,4							
	36	23,50	79,95	83,28	+ 3,7	- 3,1							
K	38	24,05	79,85	85,35	+ 4,1	- 3,1							
U02, geschmolzen	40	23,50	80,10	83,14	+ 4,7	- 3,2							
	KM	24,04	80,25	84,86	+ 4,1	- 4,2							
М													
U0 ₂ -Ce0 ₂ , gesintert	MS	21,81	80,20	81,21	+ 4,1	- 2,1							
U0 ₂ -Ce0 ₂ , geschmolzen	MM	22,55	80,20	84,03	+ 3,4	- 4,4							

-47-

Abschließend wurden die Längenmaße zwischen den Stirnflächen der Stäbe gemessen sowie die Krümmung der Proben durch Messung des "Schlages" beim Drehen ermittelt. Die Toleranzen für die Länge und die Krümmung (= ca. die Hälfte des Schlages) sind nicht überschritten. Diese Meßwerte sowie die Gewichte sind in Tabelle XI zusammengestellt.

6. Bestrahlungseinrichtung

Die Bestrahlung der Prüflinge erfolgte in Kapselversuchseinsätzen auf Brennelementpositionen des FR 2. Bei diesen Kapselversuchseinsätzen handelt es sich um instrumentierte Natrium-Bleiwismut-Doppelkapseln (Typ 4 der in Karlsruhe entwickelten KVE-Reihe). Dieser KVE-Typ $\int 5_{-}7$ erlaubt bei Testbrennstäben von 7,4 mm Durchmesser bis zu 700 W/cm Stableistung und ist auch für hohe Abbrände geeignet. Die maximalen Hüllrohroberflächentemperaturen betragen 550°C bei Natrium-Füllung und 700°C bei NaK-Füllung.

In dieser Bestrahlungseinrichtung wird jeder Brennstabprüfling in eine Einzelkapsel eingesetzt, siehe Zeichnung in Abb. 13. Zur Wärmeübertragung im Ringspalt zwischen Brennstab und Kapselwand wurde bei dieser Versuchsgruppe Natrium verwendet. Bis zu 4 dieser dichtverschlossenen Kapseln wurden längs aneinandergesetzt und in eine äußere Kapsel eingesetzt, siehe Zeichnung in Abb. 14. Der Ringspalt zwischen den inneren Kapseln und dem äußeren Kapselrohr ist mit der eutektischen Blei-Wismut-Legierung ausgefüllt. Im Na-Spalt jeder inneren Kapsel wird mit Thermoelementen die Temperatur kontinuierlich gemessen und registriert.

Für die Versuchsgruppe 3 kamen insgesamt 13 Versuchseinsätze zur Bestrahlung, nämlich die KVE Nr. 20 bis 32. Die Verteilung der Prüflinge auf diese KVE ist in Tabelle XII wiedergegeben. Außerdem sind dort einzelne Hinweise für den Kapselaufbau angefügt, da einige Details unterschiedlich waren.

-48-

-49-

Tabelle XI:

Maße und Gewicht der fertigen Stäbe

Prüflings- typ	Prüfling	Länge (mm)	Schlag (= 2x Durchbiegung) (mm)	Gewicht (g)
Α	2	167,1	0,18	50,6
	6	167,1	0,08	50,5
	10	167,2	0,09	50,7
	14	167,1	0,18	50,6
	AG	167,1	0,17	50,5
В	4	167,0	0,13	50,5
	8	167,1	0,12	50,5
	12	167,2	0,18	50,5
	16	167,1	0,11	50,5
	BU	167,2	0,12	50,4
с	3	167,2	0,10	52,0
	7	167,2	0,16	51,9
	11	167,2	0,08	51,9
	15	167,1	0,16	52,0
	CG	167,1	0,09	52,1
D	1 *	167,3	0,17	51,8
	5	167,2	0,18	51,8
	9	167,2	0,15	51,9
	13	167,2	0,12	51,8
	DU	167,1	0,11	51,7
IS	33	167,2	0,09	50,8
	35	167,2	0,14	50,9
	37	167,2	0,13	51,1
	39	167,1	0,14	51,0
	IS	167,1	0,10	51,0
K	34	167,2	0,11	50,4
	36	167,2	0,16	50,3
	38	167,2	0,11	50,6
	40	167,1	0,15	50,3
	KM	167,3	0,15	50,9
L	18	167 , 2	0,10	49,4
	19	167,2	0,12	50,3
M	MS	167,3	0,16	48,5
	MM	167,3	0,15	49,3

.

2 Na- bzw. Nak- Spalt 5,3mm dick
3 Thermoelement 1mm⁴ in Fingerhutröhrchen
4 Zentrierplatten
5 Distanzhalter
6 Edelstahlkapsel 20mm⁴ x1 mm Wand
7 Endstopfen
8 Na - Einfüllstopfen
9 Zwischenstück
10 Pb - Bi - Spalt 1,5mm dick
11 Äußere Kapsel 26mm⁴ x 1,5mm Wand
12 Wärmedämmung
13 Wasserführungsrohr. 40mm⁴ x 2mm Wand

1 Brennstabsprüfling mit Spaltgasplenum 7,4 mm Can⁴

Abb.13 Ausschnitt aus der Na-PbBi-Doppelkapsel

- 50 -

<u>Abb.: 14</u> Kapselversuchseinsatz mit Na-Pb -Doppelkapsel (Typ 4)

-51-

KVE Brennstab-Detailaufbau Thermoelemente prüflinge nach Zeichnung nach Zeichnung 1 20 5 IRE 2-06-0-2115 IRE 2-06-2-2107 7 11 IRE 2-06-0-2120 IRE 2-06-2-2121 21 13 τ.8 IRE 2-06-2-2127 22 wie KVE 21 L9 3 9 IRE 2-06-0-2183 IRE 2-06-2-2184 23 MM 4 24 IRE 2-06-0-2123 IRE 2-06-2-2193 6 2 25 wie KVE 24 wie KVE 24 MS 8 26 wie KVE 24 wie KVE 24 10 12 wie KVE 24 27 wie KVE 24 14 BU 28 wie KVE 24 wie KVE 24 16 15 AG 29 IRE 2-06-0-2190 IRE 2-06-2-2307 CG DU 33 34 30 wie KVE 29 wie KVE 29 35 36 37 38 31 IRE 2-06-0-2191 TRE 2-06-2-2334 39 40

wie KVE 31

wie KVE 31

32

ΚM

IS

Tabelle XII: Zuordnung der Prüflinge zu den KVE

-52-

7. Ablauf der Bestrahlung

7.1 Reaktorzyklen

Die dreizehn Kapselversuchseinsätze KVE 20 bis KVE 32 der Versuchsgruppe 3 wurden im FR 2 zwischen einem und 21 Reaktorzyklen bestrahlt. Die vorgesehenen Bestrahlungszeiten konnten lediglich bei drei Kapseln (KVE 23, 25 und 32) nicht erreicht werden, da infolge von Thermoelementdefekten bzw. überhöhten Temperaturen an den Kapseln die Bestrahlung abgebrochen werden mußte.

In Tabelle XIII ist der zeitliche Bestrahlungsablauf der einzelnen KVE zusammengestellt. Neben den Zeitangaben sind die Bestrahlungspositionen mit den einzelnen Zyklen sowie alle Abschaltungen und Schnellschlüsse aufgeführt, die ein qualitatives Maß für die thermisch-zyklische Belastung der Brennstab-Prüflinge darstellen. Bei den Abschaltungen sind neben den echten Abschaltungen auch Leistungsreduktionen auf Leistungen N < 10⁻³ N_{nom} mit N_{nom} = 44 MW Nominalleistung berücksichtigt worden.

In der Positionskarte des FR 2-Cores (Abb. 15) sind die von der Versuchsgruppe 3 benutzten Brennelement-Positionen gekennzeichnet. Außerdem sind die Isotopenkanal-Positionen markiert, in denen Flußmessungen durchgeführt wurden, auf die im folgenden Abschnitt näher eingegangen wird.

7.2 Neutronenfluß

Im Bestrahlungszeitraum der Versuchsgruppe 3 sind verschiedene Messungen des thermischen Flusses in den Isotopenkanal-Positionen des FR 2 (Abb.15) durchgeführt worden <u>6</u>7. Es handelt sich um Messungen des vertikalen Flußverlaufs, bei denen Co-Sonden als Flußdetektoren eingesetzt wurden. In Tabelle XIV sind die Flußwerte der verschiedenen Messungen in den Isotopenkanälen in Höhe der Prüflingsmitten zusammengestellt. Unter den Flußwerten ist der Zeitpunkt der Messung sowie die Stellung der Trimmabschaltstäbe (TA) in mm angegeben. Die TA waren alle gleich tief in die entsprechende Stellung eingefahren.

Die Auswertung der Messungen zeigt über einen längeren Zeitraum im Mittel keinen ausgeprägten Trend nach niedrigeren Flüssen. Den Messungen mit gleichmäßiger TA-Eintauchtiefe entnimmt man, wie der Fluß sich mit wachsender Eintauchtiefe in den unteren Core-Bereich verschiebt.

KVE Nr.	Bestrahlungs- zeitraum	BetrZeit (Voll.)(d)	Core- Pos.	Anz. Zykl.	Abschal Schnell A	ltng. (A) lschl.(S) S	Bemerkungen
20	17.3.67-17.4.67	30	42/08	1	1	1	nach Plan
21	23.4.67-31.7.67	87,5	42/08 44/08 44/12	1 1 1	2 2 4	1 1 1	nach Plan
22	23.4.67 -30 .6.69	6 0 6,8	36/12 44/28 50/16	1 1 19	2 2 42	1 1 37	nach Plan
23	25.5.67-18.9.67	87	36/12 44/08 44/12	1 1 1	2 4 1	1 1 5	Bestrahlung abgebr.,überh. TE-Anzeige
24	1.7.67-6.10.69	6 09, 6	36/12 44/08 44/12 44/16	1 7 1 12	4 12 1 34	1 17 3 17	nach Plan
25	1.7.67-22.7.68	280,2	40/30 40/20 44/22	1 6 3	4 11 6	1 12 9	Bestrahlung abgebr., TE-Ausfall
26	1.7.67-13.5.68	220,5	42/04 40/12 44/12	1 1 6	4 1 11	1 5 12	nach Plan
27	21.8.67-10.2.69	399,4	36/16 40/12 50/12	1 11 2	1 23 3	5 19 2	nach Plan
28	21 . 8.67 - 25.8.69	542,8	40/08 50/08 42/28 44/22 54/16	2 4 3 9 1	4 7 6 21 5	5 7 9 16 0	nach Plan
29	23.9.67-8.4.68	132,5	40/28	5	10	7	nach Plan
30	23.9.67-22.7.68	223	36/16 40/08	1 7	3 13	0 16	nach Plan
31	27.10.67-17.3.69	371,3	40/08 36/16 54/10 54/12 54/16	4 1 1 4 3	7 1 1 11 6	7 5 3 4 4	nach Plan
32	27.10.67-29.1.68	45,5	36/16	2	4	3	Bestr.abgebr. überh.TE-Anz.

Iso.	3 7/15	41/05	41/07	41/09	41/15	41/23	41/33	45/15	45/23	49/15	49/23	49/31	53/07	53/09	51/15	53/23	57/13	57/15	61/17
	7,9 (7/68) 525 mm	4,2 (3/67) 1020mm	6,2 (4/67) 720 mm	7,1 (4/67) 720 mm	8,9 (4/67) 720 mm	7,3 (4/67) 720 mm	4,4 (7/68) 525 mm	9,0 (4,67) 720 mm	7,8 (4/67) 720 mm	8,8 (4/67) 720 mm	8,3 (4/67) 635 mm	5,3 (4/67) 720 mm	6,9 (7/68) 525 mm	6,8 (4/67) 720 mm	8,2 (4/67) 720 mm	6,8 (4/67) 720 mm	6,3 (4/67) 720 mm	6,8 (4/67) 720 mm	5,0 (7/68) 525 mm
	7,5 (1/69) 430 mm	4,7 (4/67) 640 mm	14	7,4 (7/68) 525 mm	8,8 (7/68) 525 mm		4,9 (1/69) 430 mm	8,9 (7/68) 525 mm		8,9 (7/68) 525 mm	6,2 (3/67) 1020mm	6,5 (7/68) 525 mm		7,6 (7/68) 525 mm	8,6 (7/68) 525 mm	7,3 (7/68) 525 mm		7 ,3 (7/68) 525 mm	
			_	7,1 (1/69 430 mm	7,9 (1/69 430 mm			8,4 (1/69 430 mm		8,3 (1/69 430 mm								7,5 (1/69 430 mm	
	8,2	5,0	6,7	8,1	9,6	8,6	4,6	9,6	8,7	9,4	8,6	6,4	7,1	7,4	8,7	7,4	6,8	7,3	5,1
	7,5	5,0		7,5	9,0		5,1	8,9		8,9	7,7	6,6		7,6	8,6	7,3	-	7,4	- <u>6</u>
				7,1	8 ,0			8,3		8,3			3					7,7	
	8,1	5,4	6,8	8,2	9,8	9,3	4,6	9,7	9,1	9,4	8,6	7,0	7,0	7,4	8,8	7,6	6,9	7,4	5,1
	7 , 3	4,8		7,4	8,9		5,0	8,7		8,6	8,8	6,6		7,3	8,3	7,2		7,2	
				6,9	7,8			8,0		8,1			e e e Referencia Referencia	e e e	· · ·		7	7,5	
	7,6	5,6	6,6	7,9	9,5	9,3	4,4	9,4	9,1	9,1	8,3	7,1	6,6	7,1	8,4	7,4	6,6	7,0	5,0
	6 , 8	4,7		7,0	8,3		4,7	8,2		8,3	9,4	6,3		6,8	7 , 8	7,0		6,7	
				6,5	7,3			7,5		7,6								7,1	
J	Enläutomunge														بو بینتو مواجواتی ا			hamanamanamant	

Tabelle XIV: Vertikaler Verlauf des thermischen Flusses in den Isotopenkanal-Positionen in Höhe der Prüflingsmitte $(\phi_{th} \times 10^{-13} / \text{cm}^{-2} \text{sec}^{-1}/)$

Spalte 1: $\phi_{\text{th}} = 7.9 \times 10^{13} \text{ n/cm}^2$ sec bei TA-Stellung 525 mm, gemessen Juli 1968 in Iso.-Kanal 37/15 in Höhe der oberen Prüflingsmitte $\phi_{th} = 7.5 \times 10^{13}$ " " " 430 mm, " Jan. 1969 " 11

(entsprechend für die folgenden Prüflinge und Iso.-Kanäle)

Der Fluß kann sich hierbei um bis zu 50 % verändern (s. Spalte 49/23 der Tabelle XIV). Eine Zuordnung des Flusses zu den einzelnen KVE-Positionen kann im Rahmen dieser Dokumentation nicht erfolgen. Wie neuere Rechnungen mit dem Zellprogramm WIMS /77 zeigen, beträgt die Flußabschwächung entgegen den Annahmen bei der Auslegung in der Na/PbBi-Doppelkapsel tatsächlich etwa 30 %. Die Flußmessungen zeigen weiterhin, daß der Fluß über die Prüflingslänge als nahezu konstant angenommen werden kann.

7.3 Temperatur und Stableistung

Die bei den Bestrahlungen der Versuchsgruppe 3 verwendeten Na/PbBi-Doppelkapseln $\int 5_{-}^{-7}$ sind mit Thermoelementen ausgestattet, welche die Messung der Na-Temperatur in Höhe der Bestrahlungsprüflinge gestatten. Aus diesem Meßwert kann die Hülloberflächentemperatur sowie die Stableistung des Prüflings ermittelt werden. Wie Eichversuche zeigen, besteht gute Übereinstimmung zwischen experimentell und rechnisch ermittelten Werten $\int 8_{-}^{-7}$. Abweichungen von maximal 20[°] rühren von der Einbringung der Thermoelemente in Tauchrohren mit 0,2 mm Spiel her. Der Gesamtfehler der Temperaturbestimmung wird auf ± 5 % abgeschätzt. Die Umrechnung der Meßwerte erfolgt graphisch über die linearen

Darstellungen

$$T_{Ha} = 1,25 \cdot T_{m} - 25 \qquad \text{Hülloberflächentemperatur (°C) (1)}$$
$$X = 1,885 \cdot T_{m} - 165,5 \text{ lin. Stableistung (W/cm) (2)}$$

für $T_m = 90^{\circ}C$, wobei T_m die Meßstellentemperatur bedeutet.

Die Mittelung der Thermoelementanzeige erfolgt linear über jeweils einen Reaktorzyklus. Die mittlere Abweichung der Prüflingstemperatur von dieser linearen Approximation beträgt etwa ± 1 %. Zu Beginn eines jeden Zyklus liegen die Anfangstemperaturen im Mittel etwa 15 bis 20[°] über dem mittleren Anfangswert, um nach einigen Stunden auf den Mittelwert zurückzugehen (Temperaturerhöhung in der Anfahrphase).

Die Auswertung der Meßwerte umfaßt tabellarische und grafische Darstellungen des zeitlichen und axialen Verlaufs der Hülloberflächentemperaturen und der Stableistungen der einzelnen Prüflinge. Die geometrische Zuordnung der Meßwerte zu den Prüflingen ist aus dem Instrumentierungsplan (Tabelle XV) ersichtlich. Die Zahlen neben den TE-Nummern bedeuten die Lage des Thermoelements in mm vom unteren

Tabelle XV: I

Instrumentierungsplan der Versuchsgruppe 3

KVE	20	21	22	23	24	25	26	27	28	29	30	31	32
80 mm+										DU	36		
										TE Höhe	TE Höhe	р. — р. — — — — — — — — — — — — — — — —	
							х. -			7 40	7 40		
			-					- 7 1					
o													
80 mm	Prüfl			MIM						CG	35	39	IS
	TE Höhe			TE Höhe			·			6 55	6 55		
	Nr.			Nr.								640	640
	6 40			6 40					·	5 25	5 25		
o <u>↓</u>													
80 mm+	Prüfl.	5 13	L9	9	6	MS	10	14	BU	AG	34	<u>3</u> 8	KM
	5 70			5 65						4 55	4 55	5 70	5 70
	4 40	6 40	6 40	4 40	6 40	6 40	6 40	6 40	6 40	4 55	4 55	1. 1.0	<u>h</u> ho
	7 16	9		7 05			0.0			3 05	3 25	4 40	4 40
	215			25			-					3 15	3 25
			-0										lia
00 mm +	Prui 1. 7	3 80			4	2	8	12	16	15		51	40
		2 75	2 15		3 65	3 65	3 65	3 65	3 65	2 55	2 55	2 60	2 60
	1 40	1 40	2 40	1 40	2 40	2 40	2 40	2 40	2 40		-))		
			1 40		1 10	1 10	1 10	1 10	1 10	1 25	1 25	1 20	1 20
o _													

-58-

Prüflingsende entsprechend der Skizze. In Tabelle XVI sind die einer linearen Approximation entsprechenden Anfangs- und Endwerte der Hülloberflächentemperatur eines jeden Prüflings je Zyklus zusammengestellt. In den Abb. 16 bis 21 ist der zeitliche Temperaturverlauf sämtlicher Prüflinge dargestellt. Hierbei wurden jeweils die Thermoelemente zur Auswertung hinzugezogen, die etwa den Temperaturmittelwert, bezogen auf die Prüflingslänge, anzeigen. In den Abb. 22 bis 27 ist der axiale Verlauf der Hülltemperatur sämtlicher Prüflinge mit 2 - 3 Thermoelementen dargestellt, wobei der Anfangs-, End- und Maximalverlauf ausgewählt wurde. Schließlich sind in Tabelle XVII die nach Gl. (2) berechneten mittleren und maximalen Stableistungen aller Prüflinge zusammengefaßt, wovon die mittleren zur Bestimmung des Abbrandes herangezogen werden.

7.4 Thermische Abbrandberechnung

Die Berechnung des mittleren Abbrandes \overline{A} der Prüflinge wird über die aus den Temperaturwerten gewonnenen mittleren Stableistungen \overline{X} (s.o.) nach der Gleichung

$$\overline{A} = \overline{X} \cdot \frac{1 \cdot t_{V}}{G} \quad (MWd/kg M) \quad (3)$$

mit

1 = Brennstofflänge (cm) t_v = Bestrahlungszeit (Vollastäquivalent) (d) G = Brennstoffgewicht (Metall) (g)

durchgeführt. In Tabelle XVIIIsind die Abbrandwerte für jeden Prüfling mit Angabe des ausgewerteten Thermoelements aufgeführt. Diese Werte stellen die Summe der Teilabbrände in den einzelnen Zyklen dar. Eine Kontrollrechnung mit einer über die gesamte Bestrahlungszeit gemittelten Stableistung zeigt Abweichungen von < 1 %. Bei Prüflingen mit einem Thermoelement in Prüflingsmitte kann die berechnete Stableistung i.a. als mittlere Stableistung bezogen auf die Brennstofflänge angesehen werden, wie bei Prüflingen mit 3 Elementen gezeigt werden kann (vergl. Abb. 22 - 27). Bei Prüflingen mit zwei Elementen im oberen und unteren Drittel der Brennstoffsäule kann der Fehler der Abbrandberechnung durch Abweichung von \overline{X}_{TE} vom Mittelwert - bezogen auf die Brennstofflänge - etwa ± 5 % betragen.

KVE	Priifling/TE	TE C/67 D/67			E/67		F/67		н/67		1/67	,	K/67		A/68		B/68		c/68		D/68		E/68		F/68		н/68		1/68	T	K/68		L/68		A/69		в/69		c/69		D/69		E/69		G/69		H/69		
20	1/6 5/5 5/4 5/3 7/1	469 538 485 450 460	429 480 428 395 394																																	u.													
21	13/6 11/1	-	-	425 455	416 412	455 475	436 434	436 462	428 414	(TE	2 un	1d 3 W	ie l	+ 5%)				12				,																											
22	19/6 18/3 18/2 18/1	-		370 380 380 314	370 343 365 298	410 417 436 356	397 370 399 326	¥\$\$%5	436 387 410 334	443 412 427 348	414 372 391 316	384 381 394 323	381 360 366 292	379 372 372 372 304	362 354 354 279	347 354 354 278	347 330 330 266	355 347 347 278	342 318 318 253	330 323 334 255	318 292 311 228	323 314 309 235	291 278 250 198	311 294 272 215	285 260 237 191	267 260 237 191	253 242 212 162	242 247 222 174	242 228 198 158	237 237 206 160	233 210 178 140	228 216 183 141	228 204 167 135	228 210 180	198 189 154	178 189 155 -	160 170 139	154 180 145	154 162 135	147 172 141 115	147 158 127 104	147 167 137 112	147 158 123 104	128 147 115 100	128 140 105 90	~			
23	MM/6 9/5 9/4 9/3 3/1					388 436 417 399 394	367 425 405 366 350	393 456 430 405 405	362 412 386 355 355	468 560 500 475 475	412 481 462 405 399				,																1											Þ							۰ ۱
24	6/6 4/3 4/2 4/1		1					394 397 367 291	348 333 33 245	455 459 459 351	386 405 360 274	8865¢	<u></u> ይ፟፝፝ጜ፝፝፝፝፞፠፟፝፝፝	417 438 394 305	384 410 365 277	786 416 766 298	350 372 321 253	567 557 558 278	726 365 306 237	367 380 336 260	326 331 277 216	366 372 323 254	311 344 278 222	356 401 341 267	305 352 278 222	350 408 341 267	305 348 277 222	323 393 318 -	291 344 279 -	314 384 311 -	277 334 260	278 338 272 -	235 297 226	349 316 247 -	218 267 210 -	241 321 245 -	205 274 208	179 316 266 -	160 311 258	210 316 367 242	170 291 354 205	185 293 354 216	155 278 343 192	155 274 338 190	140 271 334 165	192 245 175 -	140 205 145 -	160 242 170 145	140 222 153 128
25	MS /6 2/3 2/2	-			-		111	311 352 330	287 311 293	481 550 550	412 456 456	468 545 545	412 456 456	418 500 500	401 43 4 子 子 子	444 538 538	372 450 450	405 506 506	333 408 408	365 462 462	306 394 394	336 436 436	296 379 379	321 415	260 360																								
26	10/6 8/3 8/2					- - -		215 235 193	185 193 166	487 493 450	430 435 780	487 506 445	事事が	468 487 430	417 436 386	475 506 444	418 434 381	450 480 414	398 403 350	430 450 386	372 380 334	410 414 3 67	343 355 304																										
27	14/6 12/3 12/2 12/1								1 1 1 1	450 481 418 330	455 416 88 88 88 88	85.EGG	416 438 78 75 25	434 475 416 321	405 430 377 287	452 500 439 344	397 425 366 291	416 341 397 311	360 399 348 268	405 334 394 304	355 393 331 260	378 425 355 279	331 379 309 250	348 401 330 275	292 339 283 227	342 405 336 265	293 338 276 224	323 397 323 258	287 348 285 227	320 395 318 255	276 336 272 216	274 338 276 220	242 298 233 193	253 318 233 210	212 272 192 170	230 305 240 193	203 265 205 180												
28	BU/6 16/3 16/2 16/1				-		1 1 1			372 372 348 265	336 334 305 230	354 360 334 254	530 7875 878 878 878 878 878 878 878 878 87	409 434 399 300	379 406 354 268	404 444 389 305	360 374 336 266	379 360 283	338 313 247	356 386 350 260	313 341 293 230	420 455 393 309	366 404 334 258	394 438 372 285	350 384 323 247	372 412 352 271	323 352 323 226	375 435 366 285	336 374 311 245	358 406 348 265	311 352 287 226	309 356 296 228	267 298 247 193	276 318 262 208	245 276 224 183	267 318 266 208	235 266 217 175	262 318 255 200	230 277 222 180	272 334 268 210	222 274 212 170	229 287 227 181	193 241 192 154	204 260 204 160	181 227 174 147	193 247 187 153	160 210 182 128		
29	DU/7 CG/5 CG/6 AG/3 15/1 15/2						11111					457 487 505 487 462 494	417 418 536 399 369 405		423 406 436 393 366 395	462 471 523 469 444 493	430 418 458 399 370 397	447 455 480 430 421 455	405 399 423 362 343 365	418 430 465 402 394 417	388 378 412 354 323 354																												
30	36/7 35/6 35/5 34/4 34/3 33/2 33/1										1 1 1 1 1 1	¥\$ 6 £ 5 £ 5 £ 5	412 416 397 397 397 397 39 37 37 37 39 37 37 37 3 37 3 37 3 37 3 3 3 3	388 414 397 419 419 410 429 381	388 395 379 397 372 381 339	386 416 401 444 414 414 395	384 389 370 397 354 372 336	367 399 380 412 389 405 370	362 367 352 358 341 359 309	365 394 370 397 377 397 350	355 360 323 342 323 336 293	362 386 365 386 365 381 338	341 350 328 330 311 323 282	300 334 305 331 315 330 290	287 305 274 282 272 277 232	330 362 331 356 336 355	306 323 292 300 292 298																		-				
31	39/6 38/5 38/4 38/3 37/2 37/1													380 388 362 321 298 350	362 358 338 298 276 328	417 452 405 360 399 336	367 416 355 316 336 285	374 436 366 325 360 304	352 372 330 305 317 266	381 421 362 331 365 311	356 370 323 292 307 256	436 475 408 366 412 343	388 417 356 313 348 287	392 433 362 330 369 311	358 366 330 272 316 265	405 445 336 336 380 323	374 388 325 280 323 274	399 430 366 317 372 317	350 365 313 274 304 274	365 399 341 298 366 304	334 355 304 262 304 258	354 381 323 285 334 283	321 341 285 253 291 240	338 380 323 283 336 285	298 318 272 235 277 233	298 328 276 245 298 240	278 298 247 220 260 210	287 328 278 247 304 253	272 296 247 215 260 212										
32	15/6 KM/5 KM/4 KM/3 40/2 40/1													434 469 416 374 399 342	23588888 235888888	477 588 469 444 448 386	467 562 405 378 386 328	TE #	läuft "	hoch "																			-										

Tabelle XVI: KVE-Versuchsgruppe 3

Mittlere Hülloberflächentemperaturen zu Zyklusanfang und -ende.

·60-

						· · · · ·			· · · ·															
Zyklus			19	67								19	68							·	<u>196</u>	9		
Prüfl. TE	C	D	E	F	н	I	ĸ	A	в	C	D	E	F	н	1	ĸ	L	A	В	C	• • D	E	đ	н
20/1/6 🗙 X max	550 580				-													·						
20/5/4 🕱	560 6 3 0															ч. 								
20/7/1 X X max	515 585																							
20/11/1 x x _{max}	-	520 560	550 585	530 560					•	2														
21/13/6 X X _{max}	-	505 510	540 550	520 530																-				
22/18/2 X X max	-	443 462	508 557	529 576	484 557	455 480	430 462	397 415	380 405	361 386	300 348	261 281	221 253	200 215	178 190	155 170	145 155	125 140	116 1 25	110 125	104 110	80 95		
22/19/6 🕱 X max	-	440 443	490 500	542 557	520 547	458 462	438 443	409 424	405 415	369 3 86	335 367	329 348	272 290	243 272	232 253	225 234	204 225	152 163	131 140	121 125	121 125	102 110		
23/MM/6 X X max	-	-	445 455	445 460	530 575	н. Х																		
23/9/4 X X _{max}	-	-	480 500	485 520	575 640																			
23/3/1 X X max	-	-	430 460	445 480	525 585																11			
24/4/2 X X max	-	-	-	345 480	442 550	408 500	425 530	760 480	350 475	320 425	305 392	325 475	325 482	305 462	300 442	233 385	220 333	192 345	325 333	302 420	295 405	260 <i>3</i> 75	123 228	123 200
24/6/6 X X max	-	-	-	410 472	492 545	445 482	463 492	412 442	387 415	382 415	362 415	350 405	350 385	315 <i>3</i> 55	310 330	242 285	208 230	198 227	125 133	15 3 168	134 150	115 120	118 125	118 125
25/MS/6 X X ma.x	-	-	-	325 363	543 593	534 586	493 526	489 567	428 474	381 448	352 391	307 567	266 497					7	-					
25/2/2 X X _{max}	-	-	-	353 437	605 725	605 708	571 6 3 4	605 700	549 660	512 616	482 549	446 540	419 484											
26/10/6 X X _{max}	-	-	-	549 590	560 634	571 604	540 586	549 586	506 564	478 549	441 493													
26/8/2 X X _{max}	-	-	-	521 630	493 630	504 6 3 0	489 614	493 630	452 608	411 590	381 493													
27/12/2 X X max	-	-	-	-	480 614	500 633	480 595	492 633	439 576	428 576	380 519	338 500	344 500	338 480	325 480	262 405	196 367	215 <i>3</i> 86						
27/14/6 X X _{max}	-	-	-	-	529 557	542 576	513 538	516 557	466 500	449 519	411 470	352 443	361 405	341 367	339 367	272 310	230 253	205 253						
28/16/2 X X _{max}	1	-	-	-	338 443	325 412	433 523	423 550	363 412	338 457	408 550	393 550	342 492	367 533	335 472	268 408	223 345	210 345	210 340	210 362	165 295	138 263	108 220	
28/BU/6 X X _{max}	1	-	-	-	398 437	373 402	450 483	442 483	398 442	362 418	450 503	427 472	385 432	393 437	377 393	290 352	245 378	232 260	228 258	228 267	168 202	1 78 168	110 178	
29/DU/7 X X max	-	-	-	-		567 586	517 541	5 38 604	512 560	484 504														
29/AG/3 X X _{max}		-	-	-	-	534 625	493 540	519 585	465 520	441 510							- -							
29/CG/5 X X _{max}	-	-	-	-	-	553 632	518 578	5 3 4 688	515 601	478 57.7														
29/15/2 X X _{max}	-	-	-	-	-	541 615	504 560	538 635	500 580	448 525	-				÷	÷ .								
30/36/7 X X _{ma.x}	-	-	-	-	-	490 508	460 465	448 465	426 445	419 437	400 422	302 325	353 374				eta e							
30/34/4 X X _{max}	-	-	-	-	- '	490 540	490 521	504 549	452 502	422 485	411 456	335 393	363 422		•									
30/35/6 X X _{max}	-	-	-	-	-	521 549	484 504	478 512	452 484	437 474	432 456	352 381	391 437											
30/33/2 X X _{max}	-		-	-	-	489 530	478 521	478 585	441 512	415 498	400 456	329 400	363 430											
31/37/2 X X max	-	-	-	-	-	-	305 320	435 485	386 416	380 452	443 492	396 432	410 445	399 455	380 435	350 382	342 400	306 320	304 320	-				
31/38/4 X X max	-	-	-	-	-	-	410 412	452 482	408 435	390 445	455 487	397 425	410 445	391 445	365 400	340 370	327 352	287 300	280 305					
31/39/6 X X max	-	-	-	-	-	-	42 445	467 500	334 440	433 460	495 530	443 500	468 482	4 36 482	400 420	380 405	360 382	312 325	298 340					
32/IS/6 X X _{max}	-	-	-	-	-	-	521 530	579 698																
32/KM/4 X X max	-	-	-	-	- •	-	486 582	530 754																
32/40/2 X X max	-	-	-	-	-	-	446 484	502 586																

Mittlere und maximale Stableistungen der Prüflinge der Versuchsgruppe 3

Tabelle XVII:

- 73 -

Tabelle XVIII: Mittlerer Abbrand der Prüflinge der Versuchsgruppe 3

KVE	Prüfling	TE Nr.	Ā (MWd/kg M)
20	1	6	6,25
	5	4	6,35
	7	1	5,60
21	13	6	16,8
	11	1	17,1
22	19	6	86 ,0
	18	2	76,9
23	MM	6	18,3
	9	4	16,2
	3	1	14,7
24	6	6	65,4
	4	2	68,3
25	MS	6	53 ,3
	2	2	48 , 3
26	10	6	44,1
	8	2	39,7
27	14	6	59,2
	12	2	55,7
28	BU	6	66,0
	16	2	60,6
29	DU	7	25,4
	CG	5	24,9
	AG	3	24,7
	15	2	24,3
30	36	7	35,5
	35	6	37,1
	34	4	37,1
	33	2	35,4
31	39	6	57,1
	38	4	52,1
	37	2	51,7
32	IS	6	9,46
	KM	4	8,81
	40	2	8,43

8. Transport und Demontage der KVE

Nach Bestrahlungsende wurden die KVE im Abklingbecken des FR 2 zwischengelagert, wobei sich die Lagerzeit im groben an der Aktivität der Proben. also am Abbrand orientierte. Häufig war jedoch auch die technische Notwendigkeit, zu einem bestimmten Zeitpunkt KVE in die Heißen Zellen zur Untersuchung einzuschleusen Ursache für eine Verlängerung oder Verkürzung der Zwischenlagerung. Die üblichen Lagerzeiten lagen zwischen drei und sechs Wochen. Danach wurden die KVE ohne besondere Kühlung zu den Heißen Zellen transportiert und eingeschleust. Die Demontage erfolgte üblicherweise unmittelbar nach dem Einschleusen. Sie wurde durch eine Untersuchung kapselspezifischer Effekte (Veränderung des Pb-Bi-Spiegels, Funktion der Thermoelemente u.a.) eingeleitet. Die Brennstoffprüflinge wurden anschließend isoliert, wobei die mit Natrium gefüllten Kurzkapseln aufgeschnitten und die Natrium-Füllungen mit Hilfe von Methanol herausgelöst wurden. Dem Methanol wurde im Laufe des Lösungsvorganges Wasser zugesetzt, um einerseits die Lösegeschwindigkeit zu erhöhen, andererseits die Bildung von Natriummethylat-Krusten zu vermeiden. Dabei ging man davon aus, daß die gebildete Natronlauge die Stahlhülle der Brennstoffprüflinge während der kurzen Verweilzeit im Lösungsbad nicht korrosiv angreift. Zuletzt wurden die Prüflinge mit Wasser von anhaftender Natronlauge befreit.

9. Zerstörungsfreie Untersuchung

9.1 Außere Vermessung

Alle Brennstoffprüflinge wurden nach der Bestrahlung äußerlich vermessen. Hierbei wurde die Stablänge sowie der Stabdurchmesser entlang der Längsachse bestimmt. Die Durchmesserbestimmungen wurden auf einer Meßbank mit Hilfe eines induktiven Wegaufnehmers als Meßtaster durchgeführt, wobei die Meßwerte kontinuierlich mit einem Makrograph-Formgestalt-Schreiber aufgezeichnet wurden. Von den ⁴ bei jedem Prüfling vermessenen Mantellinien (Winkelabstand 90[°]) wurden die jeweils gegenüberliegenden zur Bestimmung des Durchmessers herangezogen. Hierbei wurden die relativen Aufzeichnungen des Formgestalt-Schreibers durch Eichmessungen an einem Meisterbolzen in absolute Meßwerte umgewandelt. Bei der hier verwendeten Vermessungsmethode muß der Prüfling genau zentral zwischen zwei Dorne eingespannt werden. Geringe Abweichungen von der Ideal-Linie führen zu nur umständlich auswertbaren Schreiberdiagrammen. Ferner sei noch darauf hingewiesen, daß zu Beginn der Untersuchungen ein Taster mit Kugelkopf verwendet wurde, der ebenfalls empfindlich auf nicht genau zentrale Einspannung des Prüflings reagiert. Im späteren Verlauf der Vermessungen wurde der Kugeltaster durch einen Schneidentasterersetzt. Eine weitere Einschränkung der Auswertung ergibt sich aus der geringen Breite des Schreiberpapiers, das mit 4,5 cm Gesamtbreite nur geringe Zeigerausschläge aufzuzeichnen gestattet, was wiederum dazu führt, daß die Meßwerte nur um den Faktor 50 vergrößert werden können.

Es wurde daher bei der Auswertung der Meßschriebe im wesentlichen auf den gleichmäßigen Verlauf der einzelnen Mantellinien geachtet. Da man bei dieser Versuchsgruppe davon ausgehen kann, daß weder Spaltgasdruck noch Hüllmaterial-Schwellen zu einer Durchmesservergrößerung führt, hätte eine Aufweitung der Hülle nur in der Brennstoffzone erfolgen können. Eine solche Aufweitung hätte sich dann als Sprung am Übergang zwischen Brennstoff- und Spaltgasraum zeigen müssen. Es wurden jedoch bei keinem der untersuchten Prüflinge sprunghafte Änderungen des Außendurchmessers im Übergangsbereich gefunden. Daraus ist zu schließen, daß der Durchmesser der Prüflinge sich während der Bestrahlung nicht verändert hat.

Die Längenmessungen zeigten eine geringfügige Verkürzung aller Prüflinge um 50 bis 200 µm. Da die Längsausdehnung der Prüflinge während der Bestrahlung nicht behindert war und auch sonst keine Mechanismen bekannt sind, die zu einer Verkürzung der Stäbe führen können, wird angenommen, daß unterschiedliche Meßpraktiken vor und nach der Bestrahlung zur oben erwähnten Diskrepanz geführt haben.

9.2 Durchleuchtung

Die innere Geometrie der Brennstoff-Prüflinge wird durch die bei der Bestrahlung auftretenden hohen Brennstoff-Zentraltemperaturen stark verändert. So bildet sich zum Beispiel im Zentrum der Brennstoffsäule ein langgestreckter Hohlraum, dessen Größe und Form Aufschluß über das Stabverhalten unter Bestrahlung liefert. Für einen gerichteten Einsatz

-76-

der zerstörenden Untersuchungen, insbesondere der Keramografie, ist daher eine vorherige Kenntnis der Brennstoffgeometrie sehr nützlich. Wegen der starken Eigenstrahlung der Brennstoffprüflinge, durch die bei der Bestrahlung gebildeten Spaltprodukte, ist eine Röntgendurchleuchtung in der üblichen Art jedoch nicht durchführbar.

In unserem Falle wurde die Durchleuchtung mit einem Betatron vorgenommen, das eine harte y-Strahlung mit einer Maximal-Energie von 18 MeV aussendet. Für diese hohe y-Energie ist das Element Eisen weitgehend transparent, so daß die Eigenstrahlung der Prüflinge mit Eisen gegen den Aufnahmefilm abgeschirmt werden kann, ohne die Intensität der Durchstrahlungsquelle wesentlich zu schwächen. Um eine Randüberstrahlung zu vermeiden, werden die zylinderförmigen Prüflinge in einen auf den Durchmesser angepaßten Dickenausgleichskörper aus Blei durchleuchtet, wobei das Blei noch zusätzlich als Abschirmung gegen den Aufnahmefilm wirkt. Auf diese Art wurden bei Durchleuchtungszeiten zwischen 10 und 30 Minuten die in den angefügten Prüflings-Dokumen-Röntgenbilder hergestellt. Die durch tationen wiedergegebenen Betatron-Durchleuchtung erzeugten Aufnahmen weisen in den Originalfilmen einen hohen Schwärzungsgrad auf. Sie sind damit nur unter Verlust einiger Zeichnungsdetails auf Fotopapier zu kopieren. Bei der Auswertung der Aufnahmen werden daher stets die Originalfilme zur Beurteilung herangezogen.

9.3 y-Profile und y-Spektren

Zur Charakterisierung der Brennstoffsäulen hinsichtlich Rißstruktur, axialem Leistungsverlauf, Brennstoffverlagerung und Spaltproduktverhalten werden die Prüflinge γ -spektrometrisch untersucht. Diese Untersuchung umfaßt das Aufnehmen von γ -Spektren an vorgegebenen Zonen der Brennstoffsäule und die Erstellung von γ -Profilen (γ -Scanning) über die Gesamtlänge des Prüflings.

Als γ -Detektor diente hierzu am Anfang der Untersuchungen ein Natriumjodid-Kristall (1,5" x 1,5"), der später durch einen Germanium-Halbleiterdetektor ersetzt wurde. Die Profile wurden durch einen 0,5 mm weiten Kollimator aufgenommen, wobei die Prüflinge jeweils um ihre Längsachse rotierten. Durch die Rotation wird erreicht, daß Aktivitätsansammlungen

-77-

im Außenbereich des Brennstoffs nicht durch eine zufällige ungünstige Orientierung des Prüflings zum Detektor unbeobachtet bleiben.

Bei der üblichen Art der Untersuchung wurde zunächst vom Prüfling durch ein Kollimator ein γ-Spektrum aufgenommen und zwar an einer Brennstoffzone, bei der keine Spaltproduktansammlungen erwartet wurden. Meist war dies eine Zone in der Mitte der Brennstoffsäule. An Hand des γ-Spektrums wurden dann Energiebereiche für das Aufnehmen von Profilen ausgewählt. Für jeden Prüfling wurde, unabhängig vom jeweiligen γ-Spektrum, ein integrales Profil aufgenommen, das alle γ-Energien oberhalb von 400 keV umfaßte. Die obere Grenze dieses Bereiches wurde durch das verwendete Meßgerät bestimmt, sie lag bei etwa 860 keV. Weitere Meßbereiche für die Profile waren die γ-Linien der Radio-Nuklide Zr-95/Nb-95,Ce-144, Ru-103,Ba-140/Ia-140.Aus diesen Gruppen wurde das Zr-95/Nb-95 regelmäßig, die anderen Radio-Nuklide je nach Abklingzeit des Prüflings gemessen, so daß von jedem Prüfling mindestens zwei γ-Profile, das integrale und das Zr-95/Nb-95 zur Verfügung standen.

Beide Profile haben einen unterschiedlichen Aussagewert. Während beim integralen Profil vornehmlich Spaltproduktwanderungen sichtbar werden, gibt das Zr-95/Nb95 als nicht mobiles Nuklid die Verteilung des Brennstoffs wieder und zwar überlagert vom axialen Leistungsverlauf.

Eine genauere Analyse der häufig auftretenden Aktivitätsspitzen auf bestimmte Radionuklide mußte bei den meisten Prüflingen unterbleiben, da der NaJ-Detektor naturgemäß eine unzureichende Auflösung des sehr komplexen Spaltprodukt- γ -Spektrums erbringt. Erst mit der Umstellung des Meßplatzes auf einen Halbleiterdetektor wurde die Möglichkeit einer intensiven γ -spektrometrischen Untersuchung erschlossen. Sie kam jedoch bei der hier beschriebenen Versuchsgruppe nicht mehr zum Tragen.

10. Spaltgasbestimmungen

Bei den experimentellen Spaltgasuntersuchungen an den bestrahlten Prüflingen werden Messungen durchgeführt $\sqrt{9}$ zur Bestimmung

- der freien Spaltgasmenge V_T
- des freien Volumens innerhalb der Hülle
- der Spaltgasmenge in geschlossenen Poren V_p
- der im Brennstoff gelösten Spaltgasmenge V_G

-78-

Zu diesem Zweck wird der Prüfling zuerst an der Stirnseite des oberen Stopfens angebohrt und das freie Spaltgas abgezogen mit anschließender Helium-Spülung. Die Zusammensetzung des Spaltgases wird gaschromatografisch ermittelt, wobei die Menge an Xe, Kr und Kr-85 quantitativ bestimmt wird. Hierauf folgt eine manometrische Messung des freien Volumens (Hohlräume, offene Poren) innerhalb der Brennstabhülle.

Für die weiteren Spaltgasbestimmungen (Anteile in geschlossener Porosität bzw. im Brennstoffgitter gelöst) werden bei der Aufteilung des Prüflings (siehe jeweiligen Schnittplan in den Faltblättern von Kapitel 13) zwei Brennstoffproben von etwa 3 g Gewicht bereitgestellt. Jede Probe wird zuerst in einer gasdichten Kugelmühle aus Edelstahl ca. 2 Stunden gemahlen, wobei eine Mahlfeinheit von weniger als 1 μ erreicht wird. Das hierbei freigesetzte "Porenspaltgas" umfaßt alles Gas, das sich in geschlossener Porosität mit Porengrößen $\geq 1 \mu$ befand. Nach der gaschromatographischen Bestimmung dieses Anteils wird die gemahlene Brennstoffprobe schließlich in HNO₃ aufgelöst. Dabei wird der im Brennstoff gelöste Anteil, das "Gitterspaltgas", freigesetzt und bestimmt.

Die für eine weitere Auswertung wichtigen Ergebnisse sind zusammenfassend in einigen Tabellen dargestellt. Tabelle XIX bringt für alle Prüflinge die gemessene Menge an freiem Spaltgas sowie den Spaltgasdruck bei einer (angenommenen) mittleren Betriebstemperatur von 500°C. Die Gasmengenangaben in mm³ beziehen sich auf 20°C und 760 Torr.

In Tabelle XX sind alle gemessenen Werte für das im Brennstoff gebundene Spaltgas (wieder aufgetrennt nach Krypton und Xenon) enthalten. Die Messungen wurden hierbei an kleinen Brennstoffproben durchgeführt und die Meßergebnisse auf die in einem Prüfling enthaltene Gesamtmenge an Brennstoff umgerechnet.

In Tabelle XXI schließlich wird für jeden Prüfling die Spaltgasbilanz aufgestellt und mit der theoretisch aus dem Abbrand errechneten "Sollmenge" verglichen. Dabei werden für das Poren- und Gitterspaltgas Mittelwerte aus den Angaben in Tabelle XX eingesetzt, wobei allerdings unsichere Werte unberücksichtigt bleiben.

-79-

Tabelle XIX: Freies Spaltgas und Spaltgasdruck

KVE	Prüfling	Abbrand (MWd/kg M)	Freies S Krypton	Spaltgas Xenon	V _F (mm ³) gesamt	Xe/Kr- Verhältnis	Freies Volumen (mn ³)	Spaltgasdruck bei 500 ⁰ C (atm)
20	1	6,25	365	2639	2994	7,2	984	8,0
	5	6,35	239	1885	2124	7,9	996	5,6
	7	5,60	98	952	1050	9,7	997	2,8
21	11	17,1	650	5378	6028	8,3	929	17,1
	13	16,8	6 3 9	4082	4721	6,4	927	13,4
22	18	76,9	3320	21800	25120	6,6	844	78,4
	19	86,0	x	x	x	x	8 3 5	x
23	3	14,7	634	4380	5014	6,9	668	19,8
	9	16,2	674	5520	6194	8,2	744	22,0
	ММ	18,3	995	6522	7517	6,6	909	21,8
24	4	65,4	x	x	x	ж	1147	x
	6	68,3	2230	14230	16460	6,4	x	x
25	2	48,3	1503	10480	11983	7,0	935	33,8
	MS	53,3	900	7880	8780	8,8	1034	22,5
26	8	39, 7	1290	3350	4640	2,6	1051	11,7
	10	44,1	1365	6280	7645	4,6	1010	20,0
	12	59,2	4180	28900	33080	6,9	930	95,0
27	14	55,7	2690	157 0 0	18390	5,8	910	54,0
28	BU	60,6	4150	35100	39250	8,5	936	112,0
	16	66,0	42 30	36700	40930	8,7	999	109,0
29	15	24,3	653	4580	5233	7,0	885	15,6
	AG	25,0	x	x	x	x	1010	x
	CG	24,9	846	5860	6706	6,9	972	18,2
	DU	25,4	702	4920	5622	7,0	859	17,3
30	33	35,4	1162	7850	9012	6,8	1004	23,8
	34	37,1	1425	9870	11295	6,9	991	30,0
	35	37,1	1262	8880	10142	7,0	1010	26,5
	36	35,5	1292	9020	10312	7,0	1064	25,6
31	37	51,7	348	2680	3028	7,7	x	x
	38	52,1	2800	23000	25800	8,2	998	68,4
	39	57,1	4220	35500	39720	8,4	958	109,0
32	40 KM IS	8,43 8,81 9,46	246 239 372	2008 2615 3100	2254 2854 3472	8,1 8,0 8,3	1130 1017 1098	5,25 7,40 8,35

x = keine Werte gemessen

- 80 -

Tabelle XX: Im Brennstoff gebundenes Spaltgas

- 81 -

	1		r					Ye/Kn-Verhältnis			
KVE	Prüfling	Abbrand (MWd/kg M)	Probe Nr.	Forenspa Krypton	Ltgas (mm Xenon	gesamt	Gittersp Krypton	aitgas (m Xenon	gesamt	xe/Kr-V Poren	ernaltnis Gitter
	1	6,25	3-20-1-2 3-20-1-4	169 196	900 1081	1069 1277	(28) 138	(297) 1210	(325) 1348	5,3 5,5	(10,6) 8,8
20	· 5	6,35	3-20-5-2 3-20-5-4	178 191	986 782	1164 973	142 149	1412 1412	1554 1631	5,6 4,1	10,0 10,0
	7	5,60	3-20-7-2 3-20-7-4	(30) 275	(202) 330	(232) 610	(164) (48)	(755) (1810)	(919) (1851)	(6,7) (1,2)	(4,6) (38,1)
	11 -	17,10	3-21-11-2 3-21-11-5	433 524	2846 3385	3279 3909	(339) 260	2468 2260	2807 2520	6,6 6,5	7,6 8,7
21	13	16,8	3-21-13-2 3-21-13-5	485 567	2830 3230	3315 3797	287 358	2670 3170	2957 3528	5,8 5,7	9,3 8,9
	18	76 , 9	3-22-18-2 3-22-18-4	3230 2991	23577 21469	26807 24460	641 57 3	3422 2976	4063 3549	7,3 7,2	5,1 5,2
22	L9	86,0	3-22-19-2 3-22-19-4	2594 2840	19793 19677	22 3 87 22517	441 756	2248 3878	2689 4634	7,8 6,9	5,1 5,1
	3	14,7	3-23-3-3 3-23-3-6	x 244	x 1510	x 1754	326 286	1970 2200	2296 2486	х 7,6	7,6 7,7
23	9	16,2	3-23-9-3 3-23-9-6	337 328	1780 1715	2117 2043	204 162	188 0 1625	2084 1787	5,3 5,2	9,3 10,0
	MM	18,3	3-23-MM-3 3-23-MM-6	260 180	1275 835	1535 1015	147 74	1720 840	1867 914	4,9 4,7	11,7 10,5
	4.	65,4	3-24-4-0	x	x	x	x	x	x	x	x
24	6	68,3	3-24-6-0	x	x	x	x	x	x	x	x
25	2	47,8	3-25-2-2 3-25-2-5	1640 895	10350 7760	11990 8655	369 232	3340 1840	3709 2072	6,3 8,7	9,1 7,9
25	MS	50,7	3-25-MS-2 3-25-MS-5	1220 1275	8320 7560	9540 8835	815 642	7100 5000	7915 5642	6,8 5,9	8,7 7,8
06	8	39,7	3-26-8-3 3 - 26-8-6	824 900	5000 5840	5824 6740	375 448	2980 4250	3355 4698	6,1 6,5	8,0 9,5
20	10	44,1	3-26-10-2 3-26-10-5	1150 945	6880 5220	8030 6165	440 377	42 30 3210	4670 3787	6,0 5,5	9,6 8,5
	12	59,2	3-27-12-0	x	x	x	x	x	x	x	x
27	14	55,7	3-27-14-2 3-27-14-4	2710 2180	20800 16050	23510 18230	900 914	9200 8960	10100 9874	7,7 7,3	10,2 9,8
28	BU	60,6	3-28-bu-2 3-28-bu-4	3790 28 3 0	10200 21100	13990 23930	582 724	5350 6100	59 3 2 6824	2,7 7,5	9,2 8,4
20	16	66,0	3-28-16-2 3-28-16-4	2340 2720	18150 21000	20490 23720	634 742	4870 6300	5504 7042	7,8 7,3	7,7 8,5
	15	24,3	3-29-15-2 3-29-15-5	904 914	6 380 522 0	7284 6134	507 637	4500 5370	5007 6007	6,9 5,8	8,4 8,4
29	AG	25,0	3-29-AG-2 3-29-AG-5	900 1020	5770 7300	6670 8320	155 710	1290 5600	1445 6 310	6,4 7,2	8,3 7,9
	ca	24,9	3-29-00-2 3-29-00-5	1040 1432	6440 8350	7480 9 <u>7</u> 82	654 746	2150 5190	2804 59 3 6	6 ,2 5,8	3,3 7,0
	DU	25,4	3-29-DU-2 3-29-DU-5	692 720	4680 467 0	5372 5390	617 598	5000 51 <i>3</i> 0	5617 5728	6,8 6,5	8,1 8,6
	33	35 , 4	3-30-33-2 3-30-33-5	666 704	4710 5220	5376 5924	421 494	3070 3600	3491 4094	7,1 7,4	7,3 7,3
30	34	37,1	3-30-34-2 3-30-34-5	893 610	6040 4180	69 33 4790	x 507	x 3000	x 3507	(6,8) 7,5	x 6,0
	35	37,1	3-30-35-2 3-30-35-5	1112 752	7280 4430	8 39 2 5182	506 564	3260 6220	3766 6784	6,6 5,9	6,4 11,0
	3%	37,5	3-30-36-2 3-30-36-5	712 1445	3690 6770	4402 8215	284 360	3410 3780	3694 4140	5,2 4,0	12,0 10,5
	37	51,7	3-31-37-2 3-31-37-4	1110 538	6150 5000	7260 5538	387 772	3640 6400	4027 7172	5,5 9,3	9,4 8,3
31	3 8	52,1	3-31-38-2 3-31-38-4	x 1660	x 11600	x 13260	437 590	4040 5420	4477 6010	6,9 7,0	9,2 9,2
	<i>3</i> 9	57,1	3-31-39-2 3-31-39-4	1165 1165	8260 8400	9425 9565	380 466	3360 4230	3740 4696	7,1 7,2	8,9 9,1
	40	8,43	3-32-40-2 3-32-40-5	204 266	1345 1155	1549 1421	93 96	1110 1262	1203 1358	6,6 4,3	12,0 13,0
32	KM	8 ,8 1	3-32-KM-2 3-32-KM-5	298 250	1550 1740	1848 1990	49 80	406 434	455 514	5,2 7,0	8,2 5,4
	IS	9,46	3-32-IS-2 3-32-IS-5	166 168	716 1120	882 1288	84 115	990 950	1074 1065	4,1 6,8	11,6 8,3

x = keine Werte gemessen / () = unsichere Werte

	-	Abbrand	Freies S	oaltgas V_	Porenspal	teas V.	Gitterspa	ltgas V	Gesamtspa]	tgas (mm ³)
KVE	Prüfling	(MWd/kg M)	(mm ³)	(%)	(mm ³)	(%)	(mm ³)	(%)	gemessen	theoretisch
	1	6,25	2994	54,3	1173	21,3	1348	24,4	5515	4420
20	5	6,35	2124	44,4	1068	22,3	1593	33,3	4786	4490
	7	5,60	x	x	x	x	x	x	x	4020
	11	17,1	6028	49,1	3594	29,2	2664	21,7	12286	12200
21	13	16,8	4721	41,0	3556	30,8	3243	28,2	11520	12000
	l8	76,9	25120	46,0	25633	47,0	3800	7	54553	48800
22	19	86,0	x	x	22452	x	3670	x	x	54600
	- 3	14,7	5014	54,8	1754	19,2	2396	26,0	9164	10500
23	. 9	16,2	6194	60,5	2079	20,4	1937	19,1	10210	11500
	MM	18,3	7210	73,1	1275	12,9	1374	14,0	9859	11700
	4	65,4	x	x	x	x	x	x	x	
24	6	68,3	16460	x	x	x	x	x	x	46400
25	2	48,3	11983	47,5	10322	41,2	2890	11,3	25195	32600
	MS	53 , 3	8780	35,4	9185	37,1	6792	27,5	24757	33000
26	. 8	39,7	1625	13,6	6282	52,5	4026	33,9	11933	26600
26	10	44,1	7645	40,3	7097	37,4	4227	22,3	18969	29600
<u></u>	12	59 , 2	33080							
27	14	55 , 7	18390	37,3	20880	42,4	9989	20,3	49259	37800
28	BU	60,6	39250	60,6	18960	29,3	6378	10,1	64588	40600
	16	66,0	40930	59,0	22140	32,0	6273	9,0	69343	44200
	15	24,3	5233	28,4	6709	36,8	6507	14,8	18449	17400
~	AG	25,0			7495		3878			17000
29	CG	24,9	6706	34,0	86 30	43,8	4370	22,2	19707	17800
	DU	25,4	5622	33,8	5381	32,3	5667	33 , 9	16670	18200
	33 .	35,4	9012	49,0	5626	30,5	3791	20 , 5	18429	24400
70	34	37,1	11295	54,0	5861	28,4	3507	17,6	20663	25000
50	35	37,1	10142	45,8	6782	30,5	5275	23,7	22199	24800
	36	35,5	10312	50,4	6308	30,6	3920	19,0	20540	23900
	37	51,7	(3028)	(20,1)	(6399)	(42,4)	5599	(37,5)	(15026)	35700
31	38	52,1	25800	58,2	13260	29,9	5243	11,9	44303	35700
	39	57,1	39720	74,5	9495	17,6	4218	7,9	53433	39200
	40	8,43	2254	45,7	1485	30,2	1281	24,1	4920	5620
32 32	KM	8,81	2854	54,2	1919	36,5	485	9,3	5258	5870
	IS	9,46	3472	61,7	1084	19,6	1069	18,7	5625	6500

Tabelle XXI:

Spaltgasbilanz

 \mathbf{x} = keine Werte gemessen / () = unsichere Werte

-82-

11. Keramografie

Die Untersuchung der Brennstoffstruktur in der Keramografie gehört zu den wichtigsten Punkten der zerstörenden Nachuntersuchung. Sie beginnt mit einer Festlegung der Untersuchungsflächen (Quer- und Längsschliffe). Bei den hier besprochenen Prüflingen mit nur 80 mm Brennstoffsäulenlänge war die Stableistung über die Brennstofflänge nahezu konstant. Damit reicht es aus, eine Querfläche zu untersuchen, die dann als typisch für den gesamten Prüfling gelten kann. Da sich jedoch in den Betatronaufnahmen gezeigt hatte, daß die Brennstoffgeometrie trotz gleicher Spezifikation eine gewisse Schwankungsbreite aufweist, wurden häufig zwei Schliffe zur Darstellung der Brennstoffstruktur ausgewählt. Eine vergleichende Auswertung, bei der die Zentralkanalgröße, der Tablettenspalt zur Hülle und die konzentrischen Strukturzonen im Brennstoff vermessen werden, ist nur an Querschliffen möglich, weshalb die wichtigsten Untersuchungsebenen als Querschliffe ausgeführt wurden. Für die Beobachtung spezieller Phänomene wurden darüber hinaus am oberen Säulenende Längsschliffe angefertigt, die insbesondere den Sinn hatten, Effekte der Flußaufbeulung wie z.B. partielles Schmelzen am oberen Säulenabschluß zu erkennen, um ihren Einfluß auf die tieferliegenden Querschliffe abzuschätzen,

Für die Dokumentation einer Schliffebene wurde folgendes Schema angewandt:

- 1. Totalaufnahme der Untersuchungsebene in 10-bis 15-facher Vergrößerung (poliert).
- 2. β , γ und α -Autoradiografien in 10- bis 15-facher Vergrößerung (poliert).
- 3. Mittelvergrößerung (25-fach) der zentralen Brennstoffzonen (poliert).
- 4. Panorama-Aufnahmen über einen Radius (Vergrößerung 100-fach) poliert und geätzt.
- 5. Detailaufnahmen unterschiedlicher Vergrößerung (bis 500-fach) poliert und geätzt.

Eine Untersuchung der Hülle wurde nur für den Fall vorgesehen, daß im Brennstoffschliff Hinweise auf eine Wechselwirkung mit dem Brennstoff oder dem Kühlmittel vorlägen. Solche Effekte wurden in der hier besprochenen Versuchsgruppe nicht beobachtet.

-83-

12. Radiochemische Abbrandbestimmungen

Die ersten Abbrandwerte wurden aus den während der Bestrahlung gemessenen Kapseltemperaturen errechnet. Zur Stützung dieser Rechenwerte wurde der Abbrand nachträglich auf radiochemischem Wege bestimmt.

Hierbei wurden aus der Brennstoffsäule ca. 7 - 8 mm lange Abschnitte entnommen, die zusammen mit der anhaftenden Stahlhülle analysiert wurden.Die Lage der Probe innerhalb der nur 80 mm langen Brennstoffsäule wurde im wesentlichen dadurch festgelegt, daß weitere Untersuchungen große Teile des Brennstoffs beanspruchten, somit nur Zwischen- und Endstücke für die Abbrand-Analyse zur Verfügung standen. Die Endstücke waren allerdings wegen der unsicheren Leistungsverteilung (Flußaufwölbung, kompensiert durch Rhodium-Plättchen) nicht zur Untersuchung geeignet. Dem Mangel an geeigneten Untersuchungsproben wurde später dadurch begegnet, daß die zur Spaltgas-Bestimmung aufgelösten Brennstoffabschnitte auch zur Abbrand-Analyse verwendet wurden.

Als Abbrand-Indikator wurde das Spaltprodukt Ce-144/Pr-144 gewählt, wofür folgende Gründe entscheidend waren:

- 1. Ce-144/Pr-144 ist meßtechnisch gut bestimmbar.
- 2. Das Spaltprodukt bleibt im Brennstoff gelöst und unterliegt im Temperaturgradienten keiner Wanderung.
- 3. Die Halbwertzeit von 285 Tagen ist genügend lang. Eine Sättigungsaktivität wird bei den hier betrachteten Bestrahlungszeiten nicht erreicht.
- 4. Die Spaltausbeute der Isobarenreihe 144 ist gut bekannt.

Für die im thermischen Neutronenspektrum des FR 2 bestrahlten Prüflinge wurde die thermische Spaltausbeute von U-235 für die Isobarenreihe 144 mit y = 5,43 % den weiteren Umrechnungen zugrundegelegt. Nicht berücksichtigt wurden hierbei die geringen Anteile der Schnellspaltung von U-238 sowie die Spaltung der gebrüteten Plutoniumisotope hinsichtlich ihrer abweichenden Spaltausbeuten für die Isobarenreihe 144.

Für den Bestrahlungszeitraum wurde vereinfachend angenommen, daß die Bestrahlung gleichmäßig und ohne Unterbrechungen infolge von Reaktorabschaltungen verlief. Entsprechende Korrekturen für den realen Bestrahlungsablauf erniedrigen die berechneten Werte.

-84-

Die gemessenen Aktivitätswerte des Abbrand-Indikators wurden nach einer Korrektur für die Abklingzeit nach Bestrahlungsende auf die Uranmenge in der Analysenprobe bezogen. Die Bestimmung des Urans erfolgte hierbei nach der Methode der Röntgenfluoreszenz-Analyse.

Für die Umrechnung in MWd/kg wurden 10,0 MWd/kg einem Abbrand von 1,07 % der schweren Atome (hier Uran) gleichgesetzt.

In Tabelle XXII sind die radiochemischen Abbranddaten den thermisch berechneten gegenübergestellt.

Während die radiochemischen Abbrandwerte für die im Schnittplan (siehe Kapitel 13) angegebenen Positionen gelten, wurden die thermisch berechneten Werte für die Thermoelementpositionen (siehe Kapitel 7) bestimmt. Bei den kurzen Brennstoffsäulen dieser Versuchsgruppe liegen diese Punkte nur um wenige Zentimeter auseinander. Eine Normierung auf eine gleichliegende Position wurde daher nicht vorgenommen.

Der Vergleich beider Abbrandwerte zeigt, daß die radiochemischen Angaben in den meisten Fällen (75 %) höher liegen als die berechneten und zwar im Mittel um + 6,6 %. Qualitativ kann diese Divergenz aus dem verwendeten Umrechnungsfaktor von 1,07 % = 10,0 MWd/kg erklärt werden, bei dem von einer nutzbaren Spaltungsenergie von 200 MeV ausgegangen wird. Für gewöhnlich liegt die nutzbare Spaltungsenergie jedoch niedriger, da Spaltneutronen und hochenergetische γ -Quanten aus dem Brennstoff emittiert werden und somit für die Wärmeerzeugung ausfallen. Dieser Verlust ist je nach Reaktortyp und Bestrahlungsposition unterschiedlich, er liegt bei etwa 10 MeV, entsprechend 5 %. Unter Berücksichtigung dieser Korrektur ist die Übereinstimmung zwischen radiochemisch bestimmten und thermisch errechneten Abbrandwerten im allgemeinen als gut zu bezeichnen. Bei drei KVE (29, 30, 32) treten jedoch Unterschiede von bis zu 20 % auf, für die noch keine Erklärung gefunden wurde.

13. Dokumentation der zerstörungsfreien und keramografischen Nachuntersuchung

In diesem großen Abschnitt des Berichtes ist eine zusammenfassende Dokumentation der zerstörungsfreien und keramografischen Nachuntersuchung gegeben. Eine Auswahl der wichtigsten Ergebnisse ist für jeden einzelnen der 34 Prüflinge in einem 5-seitigen Faltblatt zusammengestellt.

-85-

-86-

Tabelle XXII:

Vergleich der Abbrandwerte

KVE Prüfling	Radiochem. Abbrand (Ce-144) MWd/kg	Mittl. Abbrand berechn. aus thermDaten MWd/kg	Abweichung Werte von MWd/kg	der radiochem. den berechneten ¢
20/1	6,42	6,25	+ 0,17	+ 2,7
20/5	6,63	6,35	+ 0,28	+ 4,4
20/7	5,71	5,60	+ 0,11	+ 2,0
21/11	18,8	17,1	+ 1,7	+ 9,9
21/13	17,7	16,8	+ 0,9	+ 5,4
22/1.8 22/1.9	68,9 (43,6)	76,9 86,0	- 8,0	-10,4
23/3	16,0	14,7	+ 1,3	+ 8,8
23/9	17,3	16,2	+ 1,1	+ 6,8
23/MM	18,2	18,3	- 0,1	- 0,54
24/6 24/4	64,6 (40,7)	65,4 68,3	- 0,8	- 1,2
25/MS	52,5	53,3	- 0,8	- 1,5
25/2	48,9	48,3	+ 0,6	+ 1,2
26/8	41,0	39,7	+ 1,3	+ 3,3
26/10	42,9	44,1	- 1,2	- 2,7
27/14 27/12	58,7	59,2 55,7	- 0,5	- 0,84
28/16	63,2	60,6	+ 2,6	+ 4,3
28/BU	62,3	66,0	- 3,7	- 5,6
29/15	27,8	24,3	+ 3,5	+14,4
29/AG	29,6	24,7	+ 4,9	+19,8
29/CG	30,0	24,9	+ 5,1	+20,5
29/DU	26,8	25,4	+ 1,4	+ 5,5
30/33	38,9	35,4	+ 3,5	+ 9,9
30/34	42,9	37,1	+ 5,8	+15,6
30/35	40,2	37,1	+ 3,1	+ 8,4
30/35	40,9	35,5	+ 5,4	+15,2
31/37	54,8	51,7	+ 3,1	+ 6,0
31/38	58,4	52,1	+ 6,3	+ 12,1
31/39	56,2	57,1	- 0,9	- 1,6
32/IS	10,6	9,46	+ 1,1	+12,1
32/KM	10,5	8,81	+ 1,7	+19,2
32/40	9,8	8,43	+ 1,4	+16,3
			Mittelwert	+ 6,4%

() = Fehlmessung

- Die Titelseite des Faltblattes (Seite ganz rechts) enthält die Materialund Bestrahlungsdaten für den Prüfling sowie eine lichtoptische Aufnahme und eine Durchleuchtung nach der Bestrahlung. Letztere wurde mit einem Betatron angefertigt und läßt die Materialversetzungen in der bestrahlten Brennstoffsäule (z.B. Zentralkanal) gut erkennen.
- Nach links schließen sich an die Titelseite 2 Seiten mit Aufnahmen von keramografischen Schliffen an. In der technischen Zeichnung des Prüflings sind die 2 oder 3 Stellen der Höhe nach markiert, in die die metallografischen Quer- oder Längsschnitte gelegt wurden. Die Ordnung der Fotografien auf diesen beiden Seiten folgt folgendem Schema (von links nach rechts):
 - (A) Zuerst kommen die lichtoptischen Aufnahmen der Längs- und Querschliffe, Vergrößerung etwa 4-fach.
 - (B) Es schließt sich eine Reihe von Gamme-Autoradiografien an, welche die Spaltproduktverteilung charakterisieren.
 - (C) Bei Prüflingen mit hohen Abbränden folgen Alpha-Autoradiografien, die einen Hinweis auf die Pu-Verteilung geben.
 - (D) und (E) Die letzten beiden Reihen bringen lichtoptische Detailaufnahmen der Schliffe in verschiedener Vergrößerung. Dabei werden Besonderheiten der Materialstruktur bevorzugt dargestellt.
- Die nächste Seite des Faltblattes (wieder nach links gezählt) bringt Gamma-Profile des bestrahlten Stabes, nämlich
 - (A) ein Profil für den integralen Energiebereich 400 bis ca. 850 keV,
 - (B) ein Profil f
 ür einen separaten Energiebereich wie Zr/Nb-95, La-140 oder Ce-144.
- Ganz links befindet sich schließlich der Schnittplan für die zerstörende Nachuntersuchung des Prüflings. Dabei ist in die maßstabliche Darstellung des Stabes die Höhenlage der Radialschnitte eingezeichnet sowie der Verwendungszweck der zwischen diesen Schnitten liegenden Brennstoffpartien.

14. Schlußfolgerungen

Eine zusammenfassende Wertung für diese Gruppe von Kapselbestrahlungen hat sich an der Aufgabenstellung und am Versuchsziel, wie sie in Kap. 2 formuliert sind, zu orientieren. Diese Ziele wurden im wesentlichen erreicht. Folgende Ergebnisse wurden erzielt:

- Alle 34 Prüflinge sind intakt geblieben, wobei Abbrände bis zu 85 MWd/kg M erreicht wurden.
- 2.) Eine Änderung der äußeren Geometrie konnte bei keinem Prüfling festgestellt werden.
- 3.) Die radiale und axiale Struktur des Brennstoffes nach Bestrahlung ist typisch für den Stableistungsbereich. Es bildete sich in allen Fällen ein zentraler Hohlraum aus, der ziemlich gleichmäßig die ganze Brennstofflänge durchsetzte.
- 4.) Die Spaltgasfreisetzung streut im Bereich zwischen 30 und 70 %. Der Gasanteil in geschlossenen Poren liegt meist zwischen 20 und 40 %. Die Autoradiographien zeigen konzentrische Zonen von Spaltproduktanreicherungen.
- 5.) Ein Ce0₂-Zusatz ist keine hinreichende Simulation von Pu0₂ im Brennstoffgemisch. Durch die geringere Ce0₂-Dichte kommt es zu einer Porositätsverteilung während und nach der Bestrahlung, die nicht typisch für U0₂-Pu0₂-Brennstoff ist.
- 6.) Der zur Bestrahlung verwendete Typ einer Na/PbBi-Doppelkapsel hat sich bis zu hohen Abbränden gut bewährt. Die Störanfälligkeit der Thermoelemente beendete in einigen Fällen die Bestrahlung vorzeitig.

Die Beantwortung einer Vielzahl von Detailfragen, z.B. hinsichtlich der quantitativen Strukturverteilung nach Bestrahlung oder der Spaltproduktverteilung,erfordert eine weitere gezielte Auswertung der vorliegenden Ergebnisse. Die hier zusammengestellte Dokumentation der ganzen Versuchsgruppe stellt hierfür den Ausgangspunkt dar.

-88-

Literatur:

- D. Freund, Auslegung und Bestrahlung von Oxid-Brennstoffproben im FR 2, KFK 1376, erscheint demnächst
- [2] G. Karsten, Spezifikationen und Bestrahlungsprogramm für FR 2-Kapselexperimente, Versuchsgruppe 3, BE/4-Notiz Nr. 47 (1966), nicht veröffentlicht
- [3] W. Otto, Die Herstellung von Bestrahlungsproben für Kapsel-Experimente in der Versuchsgruppe 3 im FR 2, Prüfbericht Nr. 6 der Fa. NUKEM, Wolfgang bei Hanau (1966), nicht veröffentlicht
- [4] H. Beißwenger, Die Auslegung und Durchführung von Brennelement-Bestrahlungsexperimenten, Beitrag XI in KFK 700 (1967)
- [5] H. E. Häfner, Bestrahlung von Brennstäben in instrumentierten Natrium-Bleiwismut-Doppelkapseln, Kerntechnik 12 (1970), 248
- [6] S. Hagen, H. Malauscheck, Messung des thermischen Flusses in den Isotopenkanälen des FR 2, RB-Bericht Nr. 4/70 (1970), nicht veröffentlicht
- [7] M.J. Roth et al., The preparation of input data for WIMS, Winfrith, Report AEEW-R 538, August 1967
- [8] H.E. Häfner, persönliche Mitteilung
- [9] H. Gräbner, Spaltgasmessungen, Beitrag im Jahresbericht 1970 der Heißen Zellen, KFK-Bericht, erscheint demnächst.

-89-

· · · · · · · · ·

В	r	è	n	n	S	to	ff	
~	τ.	~			÷	~~		

: Tabletten geschl.

Zusammensetzung : vo₂

- Tablettendichte : 92,7 ½ th.D.
- Hülle:

Form

Material : x4CrNiNb2025

: 0,5 mm

Aussendurchmesser : 7,4 mm

Geometrie :

Wandstärke

Länge des Prüflings	:	167,3 mm	
Länge der Brennstoffsäule	:	80,0 mm	
Radiale Spaltweite	:	75,0 µm	
Schmierdichte	:	-	

Bestrahlung:

Einrichtung : FR 2/KVE 20

Dauer

Ende ! 17.4.1967

Rechn. Abbrand : 6250 Mwd/t

Stableistung max./mittl.: 580/550 W/cm

Blatt 1

: 30 Vollasttage

Prüfling		5
Brennstoff :		
Form	:	Tabl. ungeschliffen
Zusammensetzung	:	^{U0} 2
Tablettendichte	•	93 % th.D.
Hülle:		
Material	•	X4CrNiNb 20 25
Auss en dur chmes ser	:	7,4 mm
Wandstärke	:	0,5 mm
Geometrie :		
Länge des Prüflings	:	167 , 2 mm
Länge der Brennstoffsäule	:	80,0 mm
Radiale Spaltweite	:	72,0 µm
Schmierdichte	:	-
Bestrahlung:		
Einrichtung	:	FR 2/KVE 20
Dauer	:	30 Vollasttage
Ende	:	17.4.67
Rechn. Abbrand	:	6350 Mwd/t
Stableistung max/mittl.	:	615/560 W/cm

Brennstoff :

Form	: Tabl. ungeschliffen
Zusammensetzung	: uo ₂
Tablettendichte	: 93 % th.D.

Hülle:

Material	•	X4CrNiNb 20 25
Aussendurchmesser	:	7,4 mm
Wandstärke	:	0,5 mm

Geometrie:

Länge des Prüflings	:	167,2 mm
Länge der Brennstoffsäule	:	80,2 mm
Radiale Spaltweite	•	72 µm
Schmierdichte	:	-

Bestrahlung:

Einrichtung	:	FR 2/KVE 20
Dauer	:	30 Vollasttage
Ende	!	17.4.67
Rechn. Abbran	d :	5600 Mwd/t
Stableistung	max./mittl.:	565/515 W/cm

Brennstoff :

Form	:	Tabl.	geschliffen
Zusammensetzung	:	v02	

Tablettendichte : 93 % th.D.

Hülle:

Material : x4CrNiNb 20 25 Aussendurchmesser : 7,4 mm

Wandstärke : 0,5 mm

Geometrie:

Länge des Prüflings	:	167,2 mm
Länge der Brennstoffsäule	:	80,1 mm
Radiale Spaltweite	:	72 µm
Schmierdichte	:	_

Bestrahlung:

Einrichtung:FR 2/KVE 21Dauer:88 VollasttageEnde:31.7.67Rechn. Abbrand:17 140 MWd/tStableistung max./mittl.:585/534 W/cm

Brennstoff:

Form	: Tabl. ungeschliffen
Zusammensetzung	: UO2
Tablettendichte	: 93 % th.D.

: X4CrNiNb 20 25

: 0,5 mm

Hülle:

Material

Aussendurchmesser : 7,4 mm

Wandstärke

Geometrie:

Länge des Prüflings	:	167,2 mm
Länge der Brennstoffsäule	:	80,0 mm
Radiale Spaltweite	:	72,0 µm
Schmierdichte	:	

Bestrahlung:

Einrichtung : FR 2/KVE 21

: 88 Vollasttage

: 31.7.67

Ende

Dauer

Rechn. Abbrand : 16780 Mwd/t

Stableistung max./mittl.: 550/522 W/cm

Prüfling L8

Brennstoff :

Form	`• •	Tabl. geschliffen
Zusammensetzung	•	UO2-CeO2-Gemisch
Tablettendichte	:	88 🖇 th.D.

Hülle:

Material	•	X8CrNiMoVNb 16 13
Aussendurchmesser	:	7,4 mm
Wandstärke	:	0,5 mm

Geometrie:

Länge des Prüflings	:	167 ,2	mm
Länge der Brennstoffsäule	•	79,8	mm
Radiale Spaltweite	:	80,0	μm
Schmierdichte	:	-	

Bestrahlung:

Einrichtung	:	FR 2/KVE 22
Dauer	:	607 Vollasttage
Ende	!	30.6.69
Rechn. Abbrand	:	76 860 Mwd/t
Stableistung r	max./mittl.:	576/280 W/cm

Brennstoff:

Form

Zusammensetzung : UO2-CeO2-Gemisch

Tablettendichte

: 81,2 % th.D.

: Tabl. geschliffen

: X8CrNiMoVNb 16 13

Hülle:

Material

Aussendurchmesser : 7,4 mm

Wandstärke : 9,5 mm

Geometrie:

Länge des Prüflings : 167,2 mm Länge der Brennstoffsäule : 80,1 mm Radiale Spaltweite : 80,0 µm Schmierdichte : -

Einrichtung : FR 2/KVE 22

Bestrahlung:

Dauer

Ende

Rechn. Abbrand : 86 026 MWd/t

: 30.6.69

: 607 Vollasttage

Stableistung max./mittl.: 557/328 W/cm

Blatt 7

والمسترسم مستروبا الروام سيسترو والربيان والمتعمر المروان والمتعالية مترجع ووالمتراجع العارية

: Tabl. geschliffen

B	٢	ė	n	n	S	t	o	ff	•
ີ	1	60	8 t	11	-	ι.	v	11	

Form

Zusammensetzung : VO₂

Tablettendichte : 93 % th.D.

Hülle:

Material : X4CrNiNb 20 25 Aussendurchmesser : 7,4 mm Wandstärke : 0,5 mm

Geometrie:

Länge des Prüflings	:	167 ,2	mm
Länge der Brennstoffsäule	:	80,2	mm
Radiale Spaltweite	:	72,0	μm
Schmierdichte	:	-	

Bestrahlung:

Einrichtung:FR 2/KVE 23Dauer:87 VollasttageEnde:18.9.67Rechn. Abbrand:14 700 MWd/tStableistung max./mittl.:585/465 W/cm

Blatt 8

Brennstoff :

Form	:	Tabl. geschliffen
Zusammensetzung	:	U02
Tablettendichte	:	93 % th.D.
Hülle :		
Material	:	X4CrNiNb 20 25
Aussendurchmesser	:	7,4 mm
Wandstärke	:	0,5 mm

Geometrie:

Länge des Prüflings	:	167,2 mm
Länge der Brennstoffsäule	:	80,0 mm
Radiale Spaltweite	:	72,0 µm
Schmierdichte	:	-

Bestrahlung:

Einrichtung	:	FR 2/KVE 23
Dauer	:	87 Vollasttage
Ende	:	189.67
Rechn. Abbrand	:	16 160 Mwd/t
Stableistung max/mittl	.:	640/510 W/cm

Prüf	ling	MM
------	------	----

Brennstoff :

Form	•	Pulver geschmolzen
Zusammensetzung		UO2-CeO2-Gemisch

:

: 0,5 mm

Tablettendic	chte
--------------	------

Hülle:

Material : X4CrNiNb 20 25 Aussendurchmesser : 7,4 mm

Wandstärke

Geometrie:

Länge des Prüflings : 167,3 mm Länge der Brennstoffsäule : 80,2 mm Radiale Spaltweite : -Schmierdichte : 84,3 % th.D.

Bestrahlung:

Dauer

Einrichtung : FR 2/KVE 23

: 87 Vollasttage

Ende

: 18 330 MWd/t Rechn. Abbrand Stableistung max./mittl.: 575/470 W/cm

! 18.9.67

Prüfling 4					
Brennstoff :					
Form	•	Tabl. ungeschliffen			
Zusammensetzung	:	UO2			
Tablettendichte	:	88 % th.D.			
Hülle :					
Material	:	X4CrNiNb 20 25			
Aussendurchmesser	:	7,4 mm			
Wandstärke	:	0,5 mm			
Geometrie :					
Länge des Prüflings	:	167,0 mm			
Länge der Brennstoffsäule	:	80,3 mm			
Radiale Spaltweite	:				
Schmierdichte	:				
Bestrahlung:					
Einrichtung	:	FR 2/KVE 24			
Dauer	:	610 Vollasttage			
Ende	:	6.10.69			

Blatt 11

: 68 250 MWd/t

Rechn. Abbrand

Stableistung max./mittl.: 550/292 W/cm

Prüfling 6

Tabl. geschliffen

Brennstoff:

Form

Zusammensetzung : VO₂

Tablettendichte : 88 % th.D.

Hülle:

Material : x4CrNiNb 20 25 Aussendurchmesser : 7,4 mm

Wandstärke : 0,5 mm

Geometrie:

Länge des Prüflings : 167,1 mm Länge der Brennstoffsäule : 80,0 mm Radiale Spaltweite : Schmierdichte : -

Bestrahlung:

Einrichtung:FR 2/KVE 24Dauer:610 VollasttageEnde:6.10.69Rechn. Abbrand:65 425 MWd/t

Stableistung max./mittl.: 545/284 W/cm

Blatt 12

Prüfling 2

Brennstoff:

Form

: Tabl. geschliffen

Zusammensetzung : vo₂

Tablettendichte : 88 % th.D.

: X4CrNiNb 20 25

Hülle:

Material

Aussendurchmesser : 7,4 mm

Wandstärke : 0,5 mm

Geometrie:

Länge des Prüflings	:	167,1 mm
Länge der Brennstoffsäule	:	80,2 mm
Radiale Spaltweite	:	90,0 µm
Schmierdichte	•	_

Bestrahlung:

Einrichtung : FR 2/KVE 25 : 280 Vollasttage Dauer : 22.7.68 Ende Rechn. Abbrand : 50 720 Mwd/t

Stableistung max./mittl.: 725/472 W/cm

Blatt 13

100jum

100_{ju}m

100*j*um

1 mm

100jum

1mm

. 100 лт

100*j*um

1 mm

1mm

100_jum

1 mm

100 Jum

1mm

1mm

100 jum

lmm

100 jum

100 jum

100 jum

100jum

1mm

1mm

the second s

.

.....

a successive a successive second and a successive second as a successive second second second second second se

.

Gesamtbrennstoffmenge:22, 5 grOberflächentemperatur:Gesamtspaltstoffmenge:2, 5 grBestrahlungsdauer:614 dBrennstoff: $UO_2 - GeO_2$, Tabl. geschl.BB % H. D. Bestrahlungsende:5.5.69Stableistung:Rechn. Abbrand:

Unters. 1. Visuelle Inspektion 2. Röntgengrobstrukturprüfung 3. y -scanning 4. Dimensionskontrolle 5. Dichtheitsprüfung-6. Freie Spaltgase messen 7. Freies Volumen messen 8. Abbrandanalyse zur RCH Probe: 3-22 - 28 - 2 3-22-28 - 6 9. Gebundene und gelöste Spaltgase bestimmen Probe: 3-22-68-2:4 10. Metallographische Untersuchungen Probe: 3-22-28-1;3;5 11. Autoradiographie \ll , β -jProbe: 3-22-28-7, 3,5 12. Mikroproben entnahme Probe:

Nicht für Mikroproben schneiden.

Gesamtbrennstoffmenge:Z3, 4, qrOberflächentemperatur:Gesamtspaltstoffmenge:2, 73, qrBestrahlungsdauer:614, arBrennstoff: $ClO_Z - CeO_Z$, Tabl. gestchl. q3 % th gBestrahlungsende:<math>3, 5, 69Stableistung:Rechn. Abbrand:

Unters. 1. Visuelle Inspektion

- 2. Röntgengrobstrukturprüfung
- 3. p-scanning
- 4. Dimensionskontrolle
- -5. Dichtheitsprüfung
- 6. Freie Spaltgase messen
- 7. Freies Volumen messen
- 8. Abbrandanalyse zur RCH Probe: 3-22-29-2 3-22-29-6
- 9. Gebundene und gelöste Spaltgase bestimmen

Probe: 3-22- 29 - 2; 4

- 10. Metallographische Untersuchungen Probe: 3-22-29-7.3.5
- 11. Autoradiographie \checkmark , β - \hat{j} Probe: 3-22-24=1,3,5
- -12. Mikroproben entnahme -Probe:

Nicht für Mikroproben schneiden.

Prüfling	MS
----------	----

Tablettendichte : -

Brennstoff :

Form	:	Pulver, gesintert
Zusammensetzung	:	U02-Ce02-Gemisch

Hülle:

Material : X4CrNiNb 20 25

Aussendurchmesser : 7,4 mm

: 0,5 mm

Wandstärke

Geometrie:

Länge des Prüflings	:	167 , 3	mm
Länge der Brennstoffsäule	:	80,2	mm
Radiale Spaltweite	;	-	
Schmierdichte	:	81,21	% th.D.

Bestrahlung:

Einrichtung:FR 2/KVE 25Dauer:280 VollasttageEnde!22.7.68Rechn. Abbrand:52 500 MWd/tStableistungmax./mittl.:593/406 W/cm

100jum

Δ

1mm

Prüfling		8
Brennstoff :		
Form	:	Tabl. ungeschliffen
Zusammensetzung	:	UO2
Tablettendichte	•	88 % th.D.
Hülle:		
Material	:	X4CrNiNb 20 25
Aussendurchmesser	:	7,4 mm
Wandstärke	:	0,5 mm
Geometrie :		
Länge des Prüflings	•	167,1 mm
Länge der Brennstoffsäule	:	80,3 mm
Radiale Spattweite	:	100,0 µm
Schmierdichte	•	_
Bestrahlung:		
Einrichtung	:	FR 2/KVE 26
Dauer	:	221 Vollasttage
Ende	:	13.5.68
Rechn. Abbrand	:	39 730 Mwd/t
Stableistung max./mittl	:	6 3 0/458 W/cm
 an an a		ning an a law of the fill and a second and the second strategy and the second strategy of the fill and the strategy of the

100jum

Prüfling	Prüfling 10					
Brennstoff :						
Form	:	Tabl. geschliffen				
Zusammensetzung	÷	^{U0} 2				
Tablettendichte	:	88 % th.D.				
Hülle:						
Material	:	X4CrNiNb 20 25				
Aussendurchmesser	:	7,4 mm				
Wandstärke	:	0,5 mm				
Geometrie:						
Länge des Prüflings	:	167 , 2 mm				
Länge der Brennstoffsäule	?:	80,0mm				
Radiale Spaltweite	:	90,0 µm				
Schmierdichte	:	-				
Bestrahlung:						
Einrichtung	:	FR 2/KVE 26				
Dauer	:	221 Vollasttage				
Ende	:	13.5.68				
Rechn. Abbrand	:	44 120 Mwd/t				
Stableistung max./mittl	. :	634/515 W/cm				

1mm

3-26-10-4/9 13-4

Prüfling 12

B	r	ė	n	n	S	tc	off	:
---	---	---	---	---	---	----	-----	---

Form
Form

: Tabl. ungeschliffen

Zusammensetzung : VO₂

Tablettendichte : 88 % th.D.

Hülle:

Material

: X4CrNiNb 2025

Aussendurchmesser : 7,4 mm

Wandstärke : 0,5 mm

Geometrie:

Länge des Prüflings	:	167,2	mm
Länge der Brennstoffsäule	:	80,4	mm
Radiale Spaltweite	:	10 0, 0	μm
Schmierdichte	:	-	

Bestrahlung:

Einrichtung : FR-2/KVE 27

Dauer

Ende

! 10.2.69 Rechn. Abbrand : 55 686 Mwd/t

Stableistung max./mittl.: 614/365 W/cm

: 400 Vollasttage

Prüfling 14			
Brennstoff :			
Form	:	Tabl. geschliffen	
Zusammensetzung	:	UO2	
Tablettendichte	:	88 % th.D.	
Hülle :			
Material	:	X4CrNiNb 20 25	
Aussendurchmesser	:	7,4 mm	
Wandstärke	:	0,5 mm	
Geometrie :			
Länge des Prüflings	:	167,1 mm	
Länge der Brennstoffsäule	:	80,1 mm	
Radiale Spaltweite	:	90,0 µm	
Schmierdichte	:	_	
Bestrahlung:			
Einrichtung	•	FR 2/KVE 27	
Dauer	:	400 Vollasttage	
Ende	:	10.2.69	
Rechn. Abbrand	:	59 153 Mwd/t	
Stableistung max./mittl.	:	576/390 W/cm	

		· · · · · · · · · · · · · · · · · · ·
Prüfling]	BN
Brennstoff :		
Form	:	Tabl. ungeschliffen
Zusammensetzung	:	UO2
Tablettendichte	:	88 % th.D.
Hülle:		
Material	:	X4CrNiNb 20 25
Aussendurchmesser	:	7,4 mm
Wandstärke	:	0,5 mm
Geometrie :		
Länge des Prüflings	:	167,2 mm
Länge der Brennstoffsäule	:	80,4 mm
Radiale Spaltweite	:	100,0 µm
Schmierdichte	:	-
Bestrahlung:		
Einrichtung	:	FR 2/KVE 28
Dauer	•	543 Vollasttage
Ende	ļ	25.8.69
Rechn. Abbrand	:	65 984 Mwd/t
Stableistung max./mittl	.:	503/317 W/cm

100*j*um

imm

brennstoffmenge: 23,6 gr.	Oberflächentemperatur:
spaltstoffmenge: 2,4 gr.	Bestrahlungsdauer: 551 d
toff: UOZ - Table, ungeschl.	88 % 16. D Bestrahlungsende: 25. 8. 69
istung: 503 W/Cm max	Rechn. Abbrand: 64 900 MWd/f
325 W/ cm mithe	
%	
ez. S.	
Proben-Nr.	Unters. 1. Visuelle Inspektion
20 20 20 20 20 20 20 20 20 20 20 20 20 2	
	2. Röntgengrobstrukturprüfung
	7 <i>(1)</i> 1 1 1 1
*	J. F-scanning
	4. Dimensionskontrolle
	-5. Dichtheitsprüfung
	0. Freie Spaltgase messen
	7. Freies Volumen messen
o,	8. Abbrandanalyse zur RCH
	Probe: $3 - 28 - 84 - 4$
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	9. Gebundene und geloste Spalt-
	gase bestimmen
3-28-3U-2 w	Probe: $3 - 28 - 84 - 2.4$
3-28-80-3	
	10. Metallographische Untersuchungen
3-28-30-4	Probe: $3 - 2\theta - 3\theta - 1 - 3 - 5$
3-28-84-6	11. Autoradiographie (β, α, λ)
<u>∼</u>	Probe: $3 - 28 - 34 - 1 - 3 - 5$
~	
3-28-84-5	12. Mikroproben entnahme
	Probe:
M 11	c.C.
40	

Prüfling 16

Brennstoff:

Form	: Tabl. ungeschliffen
Zusammensetzung	: UO2

Tablettendichte : 88 % th.D.

Hülle:

Material : X4CrNiNb 20 25

Aussendurchmesser : 7,4 mm

Wandstärke : 0,5 mm

Geometrie:

Länge des Prüflings	:	167,1 mm
Länge der Brennstoffsäule	:	80,3 mm
Radiale Spaltweite	:	100,0 µm
Schmierdichte	:	-

Bestrahlung:

Einrichtung : FR 2/KVE 28

Dauer : 543 Vollasttage

Ende ! 25.8.69

Rechn. Abbrand : 60 575 Mwd/t

Stableistung max./mittl.: 550/292 W/cm

imm

1mm

\$

1 mm

Prüfling	15
Brennstoff :	
Form :	Tabl. geschliffen
Zusammensetzung :	uo ⁵
Tablettendichte :	93 % th.D.
Hülle:	
Material :	X4CrNiNb 20 25
Aussendurchmesser :	7,4 mm
Wandstärke :	0,5 mm
Geometrie :	
Länge des Prüflings :	167,1 mm
Länge der Brennstoffsäule :	80,1 mm
Radiale Spaltweite :	88,0 µm
Schmierdichte :	-
Bestrahlung:	
Einrichtung :	FR 2/KVE 29
Dauer :	133 Vollasttage
Ende :	8.4.68
Rechn. Abbrand :	24 250 Mwd/t
Stableistung max./mittl.:	610/505 W/cm

1mm

		·
Prüfling		G
Brennstoff :		
Form	;	Tabl. geschliffen
Zusammensetzung	:	UO2
Tablettendichte	:	88 % th.D.
Hülle :		
Material	:	X4CrNiNb 20 25
Auss en dur chmes ser	:	7,4 mm
Wandstärke	:	0,5 mm
Geometrie:		
Länge des Prüflings	:	167,1 mm
Länge der Brennstoffsäule	:	90,0 mm
Radiale Spaltweite	:	90,0 µm
Schmierdichte	:	-
Bestrahlung:		
Einrichtung	:	FR 2/KVE 29
Dauer	:	133 Vollasttage
Ende	:	8.4.68
Rechn. Abbrand	:	24 960 Mwd/t

Stableistung max./mittl.: 610/490 W/cm

:

Prüfling _{ca}		
Brennstoff :		
Form	:	Tabl. geschliffen
Zusammensetzung	:	002
Tablettendichte	:	93 % th.D.
Hülle:		:
Material	•	X4CrNIND 20 25
Auss en dur chmes ser	•	7 , 4 mm
Wandstärke	:	0,5 mm
Geometrie :		
Länge des Prüflings	:	167,1 mm
Länge der Brennstoffsäule	:	80,4 mm
Radiale Spaltweite	•	88,0 µm
Schmierdichte	:	-
Bestrahlung:		
Einrichtung	:	FR 2/KVE 29
Dauer	:	133 Vollasttage
Ende	:	8.4.68
Rechn. Abbrand	:	24 930 Mwd/t
Stableistung max./mittl.	:	688/516 W/cm

1mm

Prüfling]	DU
Brennstoff :		
Form	:	Tabl. ungeschliffen
Zusammensetzung	:	UO2
Tablettendichte	:	93 % th.D.
Hülle:		
Material	:	X4CrNiNb 20 25
Aussendurchmesser	:	7,4 mm
Wandstärke	:	0,5 mm
Geometrie :		
Länge des Prüflings	•	167,1 mm
Länge der Brennstoffsäule	; ;	80,0 mm
Radiale Spaltweite	:	90,0 um
Schmierdichte	:	-
Bestrahlung:		
Einrichtung	:	FR 2/KVE 29
Dauer	:	133 Vollasttage
Ende	!	8.4.68
Rechn. Abbrand	:	25 440 MWd/t
Stableistung max./mitt	l,:	604/524 W/cm

imm

Prüfling		33
Brennstoff :		
Form	:	Pulver gesintert
Zusammensetzung	•	UO2
Tablettendichte	:	-
Hülle:		
Material	:	X4CrNiNb 20 25
Aussendurchmesser	•	7,4 mm
Wandstärke	:	0,5 mm
Geometrie:		
Länge des Prüflings	:	167,2 mm
Länge der Brennstoffsäule	:	80,0 mm
Radiale Spaltweite	:	-
Schmierdichte	:	85,63 % th.D.
Bestrahlung:		
Einrichtung	:	FR 2/KVE 30
Dauer	:	223 Vollasttage
Ende	!	22.7.68
Rechn. Abbrand	:	35 410 MWd/t
Stableistung max./mittl	:	585/420 W/cm

Prüfling 34

Brennstoff :

Form

Zusammensetzung : VO₂

Tablettendichte

Hülle:

Material

: X4CrNiNb 20 25

: -

: Pulver geschmolzen

Aussendurchmesser : 7,4 mm

Wandstärke : 0,4 mm

Geometrie :

Länge des Prüflings : 167,2 mm Länge der Brennstoffsäule : 80,1 mm Radiale Spaltweite : -Schmierdichte : 83,4 % th.D.

Bestrahlung:

Einrichtung:FR 2/KVE 30Dauer:223 VollasttageEnde:22.7.68Rechn. Abbrand:37 060 MWd/tStableistung max./mittl. :549/430 W/cm

1mm

		· · · · · · · · · · · · · · · · · · ·
Prüfling		35
Brennstoff :		
Form	:	Pulver gesintert
Zusammensetzung	:	UO2
Tablettendichte	:	-
Hülle:		
Material	:	x4CrNiNb 20 25
Aussendurchmesser	:	7,4 mm
Wandstärke	:	0,5 mm
Geometrie:		
Länge des Prüflings	:	167,2 mm
Länge der Brennstoffsäule	:	80,3 mm
Radiale Spaltweite	:	-
Schmierdichte	:	85,38 % th.D.
Bestrahlung:		
Einrichtung	:	FR 2/KVE 30
Dauer	:	223 Vollasttage
Ende	i	22.7.68
Rechn. Abbrand	:	37 050 Mwd/t
Stableistung max./mitt	.:	549/440 W/cm

·	
Prüfling	36
Brennstoff :	
Form :	Pulver geschmolzen
Zusammensetzung :	U02
Tablettendichte :	: -
Hülle:	
Material :	X4CrNiNb 20 25
Aussendurchmesser :	7,4 mm
Wandstärke :	0,5 mm
Geometrie :	
Länge des Prüflings :	167,2 mm
Länge der Brennstoffsäule :	79,95 mm
Radiale Spaltweite :	-
Schmierdichte :	83,28 % th.D.
Bestrahlung:	
Einrichtung :	FR 2/KVE 30
Dauer :	223 Vollasttage
Ende !	22.7.68
Rechn. Abbrand :	35 490 Mwd/t
Stableistung max./mittl.:	508/409 W/cm

And a second second

Prüfling		37
Brennstoff :		
Form	:	Pulver, gesintert
Zusammensetzung	:	UO2
Tablettendichte	:	-
Hülle:		
Material	:	X4CrNIND 20 25
Aussendurchmesser	:	7 , 4 mm
Wandstärke	:	0,5 mm
Geometrie :		
Länge des Prüflings	:	167,2 mm
Länge der Brennstoffsäule	:	80,0 mm
Radiale Spaltweite	:	-
Schmierdichte	•	86 % th.D.
Bestrahlung:		
Einrichtung	:	FR 2/KVE 31
Dauer	:	389 Vollasttage
Ende	ţ	21.3.69
Rechn. Abbrand	•	51 688 Mwd/t
Stableistung max./mittl	. •	613/372 W/cm
		Blatt 29

100jum

1mm

Prüfling		38
Brennstoff :		
Form	:	Pulver geschmolzen
Zusammensetzung	•	UO2
Tablettendichte	:	-
Hülle:		
Material	:	X4CrNiNb 20 25
Aussendurchmesser	•	7,4 mm
Wandstärke	•	0,5 mm
Geometrie :		
Länge des Prüflings	:	167,2 mm
Länge der Brennstoffsäule	:	79,85 mm
Radiale Spaltweite	:	-
Schmierdichte	:	85,35 % th.D.
Bestrahlung:		
Einrichtung	:	FR 2/KVE 31
Dauer	:	371 Vollasttage
Ende	!	21.3.69
Rechn. Abbrand	:	52 139 MWd/t
Stableistung max./mittl	,:	613/374 W/cm

Prüfling		39
Brennstoff :		
Form	•	Pulver gesintert
Zusammensetzung	:	U0 ₂
Tablettendichte	:	-
Hülle:		
Material	:	X4CrNiNb 20 25
Aussendurchmesser	:	7,4 mm
Wandstärke	:	0,5 mm
Geometrie:		_
Länge des Prüflings		167,1 mm
Länge der Brennstoffsäule	•	80 ,2 mm
Radiale Spaltweite	:	-
Schmierdichte	•	85,70 % th.D.
Bestrahlung:		
Einrichtung	:	FR 2/KVE 31
Dauer	:	371 Vollasttage
Ende	!	21.3.69
Rechn. Abbrand	•	57 119 Mwa/t
Stableistung max./mittl.	:	61 3/411 W/cm

Prüfling 40

В	r	e	n	n	s	t	0	ff	
	4	Ŷ			-	•	~	* *	

	•	Pulver,	geschmolzen
setzung	:	uo2	

: __

: 0,5 mm

Zusammensetzung

Tablettendichte

Hülle:

Form

Material : X4CrNiNb 20 25

Aussendurchmesser : 7,4 mm

Wandstärke

Geometrie:

Länge des Prüflings : 167,1 mm Länge der Brennstoffsäule : 80,1 mm Radiale Spaltweite : --Schmierdichte : 83,14 % th.D.

Bestrahlung:

Einrichtung:FR 2/KVE 32Dauer:45,5 VollasttageEnde:29.1.68Rechn. Abbrand:8430 MWd/tStableistungmax./mittl.:586/476 W/cm

Blatt 32

Prüfling	JIS
Brennstoff :	
Form	: Pulver, gesintert
Zusammensetzung	: UO2
Tablettendichte	: _
Hülle:	
Material	: X4CrNiNb 20 25
Aussendurchmesser	: 7,4 mm
Wandstärke	: 0,5 mm
Geometrie :	
Länge des Prüflings	: 167,1 mm
Länge der Brennstoffsäule	e: 80,5 mm
Radiale Spaltweite	:
Schmierdichte	: 85,39 % th.D.
Bestrahlung:	
Einrichtung	: FR 2/KVE 32
Dauer	: 45,5 Vollasttage
Ende	: 29.1.68
Rechn. Abbrand	: 9460 Mwa/t

Stableistung max./mittl.: 698/551 W/cm

Blatt 33

100*j*um

1 mm

Prüfling K M

В	r	e	n	n	s	t	0	ff	•
---	---	---	---	---	---	---	---	----	---

Form	: Pulver, geschmolzen
Zusammensetzung	: UO2
Tablettendichte	:

Hülle:

Material

: X4CrNiNb 20 25

mm

Aussendurchmesser	:	7,4	mm

Wandstärke	: 0,5

Geometrie:

Länge des Prüflings	:	167,3 mm	
Länge der Brennstoffsäule	:	80,25 mm	
Radiale Spaltweite	•		
Schmierdichte	:	84,86 % th.D	•

Bestrahlung:

Einrichtung: FR 2/KVE32Dauer: 45,5 VollasttageEnde: 29.1.68Rechn. Abbrand: 8810 MWd/tStableistung max./mittl: 754/510 W/cm

Blatt 34

*j*um

mm

