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Summary

A.C. Losses of composite conductors and synchrotron

magnets are given. A new equation based on a skin...

effect assumption, is presented, which shows, that

the generally accepted self field calculationsyield

too high values. Results from loss equations are

compared to a few tests on small solenoids.

Losses in superconducting coils, when exposed to

time varying magnetic fields have several origins:

Eddy current losses in the conductor matrix, self field,

hysteretic and auxiliary losses in the superconducting

coils and composite conductors, hysteretic and eddy

current losses in the iran return path and eddy

current losses in the metallic support structure,

reinforcements and containers. As all los ses including

heat conduction and radiation have to be removed by

the coolant, the major effort will be to limit these

losses to manageable lowvalues.

Losses in superconductors andcomppsites have been

treated by Bean1, Han90x2, Wilsonet al. 3 and

~any others. Due to discrepancies between theory

and experimental data specifically losses due to

transport current (self field), the theory of loss

generation is reexamined by Ries and Brechna4. This
paper summarizes the results of new investigations.



Zusammenfas.sung

Es werden Wechselstromverluste von Multifilamentleitern
und Synchrotronma,gneten angegeben. Eine neue Gleichung
basierend auf einem Skineffektmodell zeigt, daß die
allgemein angenommenen Rechnungen über Selffield-Verluste
zu hohe Werte ergeben. Berechnete Verluste werden mit
einigen Tests an kleinen Solenoiden verglichen.

Verluste in supraleitenden Spulen in zeitlich ver­
änderlichen Magnetfeldern haben mehrere Ursachen:
Wirbelstromverluste in der Matrix, Selffield-,
Hysterese- und Zusatzverluste in den Supraleiterspulen,
Hysterese- und Wirbelstromverluste im Eisen und Wirbel­
stromverluste in den metallischen Halterungen, Ver­

stärkungen und Behältern.

Verluste in Supraleitern und Composites wurden von Bean~,

Hancox2, Wilson et al. 3 und vielen anderen behandelt.
Aufgrund von Abweichungen zwischen Theorie und experi­
mentellen Daten besonders bei Verlusten durch den
Transportstrom (Self-Field) wurde die Theorie der
Wechselstromverluste von Ries und Brechna4 neu über­
arbeitet. Diese Arbeit faßt die Ergebnisse der neuen

Untersuchungen zusammen.



I. EDDY CURRENT LOSSES IN COMPOSITS

In a cylindrical shaped composite conductor (single­
strand), having a large number of filaments it can

be shown that for Ip < lc' the eddy current, losses
are given by

- 1
Pc

.
where lp the twist pitch length, B the rate of field
variation and Pc the corrected resistivitybf the matrix:

for d>w •

It is assumed that the eddy currents flow only
through the matrix material and not across supercon­
ducting filaments due to the relatively high inter­
face layer resistance between the matrix and the
superconductor.

p isthe resistivity of copper, including magneto-cu
resistance and cold work; d is the filament dia-

meter, w the distance between the centres of ad­
jacent filaments.

11. SELF FIELD LOSSES

Based on the skin-effect assumption that transport­
currents penetrate from the outer filament circle,
inwards towards the inner filament circles, self
field losses per cycle can be calculated by inte­

grating the Po,nting vector over the surface of

the strand:
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In (2) the critical current I c of astrand is
assumed to be independent of the imposed transverse
field. ~I is change in the transport current from the
lowest to the peak value. Equation (2) is only valid
for a small twist pitch where additional induced
screening qurrents can be ignored. In equation (2),
the product ~I:·:L (operating current multiplied by
the total strand length) for a coil of given dimensions
is constant, the self field losses are proportional
to ~I and thus to D2, with D the strand diameter.

It can be seen that the self field losses according
to (2) in astrand compared to hysteretic losses is
small and the strand diameter can beincreased signi­
ficantly from the presently generally accepted

specifications. This results in a fewer number of
strands in a cable for a given current. The number
of filaments in astrand have to be increased
accordingly. A cable for 2000 Amp with 24 strands,
each strand having 1000 filaments with a filament­
diameter of 9 pm has past manufacturing stage, and
is being tested.

The reduction of the number of strands has the ad­
vantage of simplicity of cable manufacturing and
elimination of strand breakage during strand trans­
position and cable manufacturing.

III. HYSTERETIC LOSSES

Hysteretic losses are by far the highest in a coil.

These los ses were derived by Wilson et al. 3 and are

given in the form:
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H +H
Phl=O.5Vd(JOHo)ln (max 0) (Ws/cycl~ (3)H . +Hmln 0

with V the volume ofthe superconductor and d the

superconducting filament diameter. Hand H •max mln
are the maximum, resp. minimum field amplitudes,

averaged over the coil cross section. The current

field relation is assumed to be hyperbolic:

J o and Ho are constants.

The linear dependency of the hysteretic losses from

the filament diameter has been experimentally veri­

fied down to 4 ~m diameter.

IV. AUXILIARY LOSSES

The nonuniform field distribution in the coil region

eauses additional eddy current losses. The exact

calculation of these los ses is complex, but from

skin-effect phenomenon we can calculate the ratio

of the conductor ac to dc resistance of rectangular

shaped coils:

(4 )

C1 and C2 are functions of the conductor diamete~,

the electrical conductivity k and the pulse fre­

quency f. C1 and C2 are functions of x given by:

1/2
x = nd(2f.10-9k)

For small values of x in the region of O~x~O.4,

C1~1 and C2=(1/64),x
4; K is a function of the

number of strands n in the conductor. For n<20=

K = 1.5 - 1.9.
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Ds is the strand diameter, Do the hydraulic diameter

of the conductor (cable, or braid), c is the spacing

between the centres of adjacent conductors, m is the

number of layers, b the coil height parallel to the

field direction and W the total coil width perpendi­

cular to the field. Values of K for various coil

shapes are given in literature4. For flat coils with

W/b>5, calculated values of Kb/W vary between 1.5 and

4 for t/W=O.1 - 0.5, where t,denotes the width of,a

layer.

For low frequency pulses with f~5 Hz, ~ and thus C2
are practically zero for copper. In this case

additionallosses due to field nonuniformity may be

ignored.

V. CORE LOSSES

If the iron core is placed in the helium container

adjacent to the coil, Sampsonet al. 5 have shown that

the field enhancement factor at 5 T can approach 40%

of the field produced by the coil only. However, the
iron must be cooled to 4.2 K and the iron losses

(hysteretic and eddy current losses)must be removed

by the liquid helium. At low frequencies the major

loss portion are hysteretic and eddy current losses.

The core losses (without endeffects) are given by

(W)

ae and ah are material constants. The exponent h

varies in the range 1.6 - 2; GFe is the weight of
the laminated core and f is the applied frequency.
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Core endlosses could be reduced by appropriate shaping

of the iron at the entrance and exit of the magnet
(e.g. slanting the end portions 15 - 30 and 4S0with

respect to the median plane). If Rogowski type curved
endshapes are selected,additional endlosses are
negligible. Solutions approximating Rogowski type
shapes have been developed such that core endlosses

are fractures «10%) of the los ses obtained from (5).

VI. EDDY CURRENT LOSSES IN NONACTIVE METALLIC PARTS

Winding structure and coil reinforcements, if con­
structed from high strength metals or alloys produce
eddy current losses. The magnet dewar with warm bore
will contribute to eddy current losses, heat radiatio'n

and heat conduction. To eliminate eddy current losses,
the coil support structure and the dewar are being
des~gned with glass reinforced epoxy structures. For
coil reinforcement unidirectional preimpregnated semi
cured glass epoxy tapes are employed.

VII. COMPARISON WITH EXPERIMENTAL RESULTS

Two types of magnets have been investigated:

a) Small Solenoid with an ID of 2.4 cm, OD of 6.5 cm
and axial length of 5.3 cm. 6

6.125 turnsof a 0.04 cm diameter strand are wound
into a solenoid. The composite conductor consists of
61 filaments with 35 11m diameter each. The filaments

havea twist pitch of 0.6cm. The matrix is copper.
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The field is changed at a rate of 7 T/s. The current
change is LiI = 63 A, I c = 65 A at 5.3 T. The cycle
duration is 3.5 s.

Table 1 illustrates the various loss components ..

Table 1

Loss Calculation and Measurement cf Small S.oleno:id

Eddy current losses
Self field losses

Hysteretic losses
Auxiliary losses

Totallosses

Calculated
(Watts)

0.96
0.0035
2.14

0.0

Measured
(Watts)

b) One meter long dipole coil with iran shield

The dipolegenerates a field of 5 T in a warm bore of 6 cm
diameter. The coil is composed of two intersecting ellipses
and is energized by a current of I = 2000 A. The coil
volume is 3.4.x 10-3 m3. The strand diameter is 0.038 cm
and the filament diameter 5 ~m and 9 ~m resp., for the
two cases investigated.

In the first case each strand has 4000 filaments, in
the second case 1000 filaments. The copper to supercon­
ductor ratio in the strand is 1:1.Each strand is insulated.

26 strands are transposed into a rectangular cable of
2.5 x 2.3 mm2 dimensions. The filament twist pitch in

each strand is Ip = 0.15 cm and 0.2 cm resp. The pulse
cycle i5 3 s.

The radial thickness of the iron shield 1s 8 cm. With
an inner iron radius of 6 cm field enhancement is 1.36.



- 7 -

Table 2

Calculated Losses of a 1m Long Dipole Coil with

Iron Shield

Eddy current losses

Self field losses

Hysteretic losses
Auxiliary losses

Core losses
Dewar static los ses

9lJ.m filaments
(Watts)

1.67
0.14

20.0

0.1

5.0
4.0

30.91

5lJ.m filaments
(Watts)

0.96

0.13

11.0
0.1

5.0
4.0

21.19
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