

K E R N F O R S C H U N G S Z E N T R U M

KARLSRUHE

September 1971

KFK 1299

Institut für Angewandte Kernphysik

Accuracy of Calorimetric Plutonium Determinations

C. Weitkamp and H. Beißwenger, V. W. Schneider, ALKEM, Hanau

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

September 1971

KFK 1299

Institut für Angewandte Kernphysik

Accuracy of

Calorimetric Plutonium Determinations

C. Weitkamp

and

H. Beißwenger and V.W. Schneider ALKEM, Hanau

Paper prepared for the INTERNATIONAL MEETING ON NON DESTRUCTIVE MEASUREMENT AND IDENTIFICATION TECHNIQUES IN NUCLEAR SAFEGUARDS, Ispra, Italy, 20 - 22 September 1971

Gesellschaft für Kernforschung mbH

Abstract

As calorimetry is one of the few methods for an absolute determination of plutonium, it is devoid of problems associated with the calibration procedure by means of socalled standards. So the main sources of error in the nondestructive assay of plutonium by calorimetric methods are

- errors in the measurement of the power output of the sample,
- errors in the isotopic composition, and
- uncertainties of the specific power of the isotopes involved.

An estimate of the effect of the different error sources upon the overall accuracy shows that, depending upon the composition of the sample material, each of the three can account for the largest error contribution.

Zusammenfassung

Kalorimetrie ist eine der wenigen Methoden für eine absolute Plutoniumbestimmung, weil keine Eichungen anhand sogenannter Standards erforderlich sind. Die hauptsächlichen Fehlerquellen bei der zerstörungsfreien Bestimmung von Plutonium nach kalorimetrischen Verfahren sind daher

- Fehler in der Messung der Wärmeleistung der Probe,
- Fehler in der Isotopenzusammensetzung und
- Unsicherheiten der spezifischen Leistung der beteiligten Isotope.

Eine Abschätzung über die Auswirkung der verschiedenen Fehlerquellen auf die Gesamtgenauigkeit zeigt, daß, je nach Zusammensetzung des Probenmaterials, jede der drei den Hauptbeitrag liefern kann.

• · · · ·

a de la composition d la composition de la c la composition de la c

•

Alexandra and Alexandra

المحمد معالم المحمد التي المحمد التي تعالم المحمد المحمد المحمد المحمد المحمد معالم الحمد المحمد المحمد التي ا المحمد المحم المحمد المحمد

المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحم المحمد المحم

1. Introduction

Calorimetry is a slow, but simple and accurate method for the nondestructive determination of plutonium in nuclear fuel. Unlike most other methods for nondestructive fuel assay, which depend upon the availability of a set of accurately known standards resembling the unknown samples as closely as possible, no standards are needed in calorimetry because the alpha decay heat, after conversion into electrical power, can be measured absolutely and to high precision. On the other hand, this procedure requires the exact knowledge of the isotopic composition and of the specific power (say, in watts/gram) of each of the isotopes involved. Because the composition cannot, to date, be measured nondestructively to the required accuracy but must be determined by alpha or mass spectrometry, calorimetry may be called a semi-nondestructive, though absolute, plutonium assay method. The error associated with the result of a calorimetric plutonium determination will thus depend upon uncertainties in

- the measurement of the power output from the sample,
- the determination of the isotopic composition,
- the knowledge of the specific power constants, and
- the time elapsed between the separation of the 241 Pu decay product 241.
 - 241 Am and isotopic analysis, and the calorimetric measurement.

It is the purpose of this paper to investigate the influence of the different sources of error upon the accuracy of the final result of a calorimetric plutonium determination.

2. The Model

We assume that the separation of americium and analysis of the isotopic composition are performed about simultaneously⁺at time t_a , and that the calorimetric measurement occurs at some later time $t_m = t_a + t$. Then, using H for the heat output in the measurement, the plutonium quantity M is computed from the relation

$$M = H / \sum_{i=8}^{a} p_{mi} s_{i}, \text{ with}$$
(1)
$$\sum_{i=8}^{2} p_{mi} = 1,$$
(2)

where p_{mi} is the fraction of isotope i in the material at time t, and s_i its specific power. For plutonium only the last digit of the mass number, for ²⁴¹Am an "a" is used as index. Note that the sum in eq.(2) extends only over the plutonium isotopes.

Now the p_{mi} must be computed from the fractional abundances p_{ai} (z p_i , dropping the index a) at time t_a from

$$p_{mi} = p_i e^{-t/\tau_i} / \sum_{i=0}^{2} p_i e^{-t/\tau_i} (i=8...2) \text{ and } (3)$$

$$p_{ma} = p_1 (1 - e^{-t/\tau_1}) / \sum_{i=8}^{2} p_i e^{-t/\tau_i}$$
 (4)

⁺ If the ²³⁸Pu content is determined by α spectrometry, this assumption is certainly reasonable because ²³⁸Pu α peaks at 5452 and 5495 keV are perturbed by ²⁴¹Am α peaks at 5443 and 5486 keV, and no decent ²³⁸Pu determination is possible in the presence of americium.

- 1 -

- 2 -

Here $\tau_i = T_{hi}/\ln 2$ is the decay constant and T_{hi} the half-life of isotope i. We assume that

$$\Gamma_{\rm hi} \ll t$$
 (i=8,1) and (5)

$$T_{hi} = \infty$$
 (i=9,0,2,a). (6)

This latter assumption for T_{ha} is necessary for the validity of eq.(4). Eq.(1) then becomes

$$M = H \qquad \frac{1 - \sum_{i=8,1}^{n} t \ln 2/T_{hi}}{p_{1} s_{a} t \ln 2/T_{h1} + \sum_{i=8,1}^{n} p_{i} s_{i} (1 - t \ln 2/T_{hi}) + \sum_{i=9,0,2}^{n} p_{i} s_{i}} .(7)$$

If the relative errors dx_j/x_j of the variables x_j (standing for the p_i , s_i , T_{hi} , t and H) are independent⁺ the relative error dM/M of the quantity of plutonium can be expressed as

$$\sigma M = \sqrt{\sum_{j} (w_{j} \sigma_{j})^{2}}$$
(8)

where the abbreviations $dM/M = \sigma M$ and $dx_j/x_j = \sigma x_j$ for the relative errors and $(x_j/M)(\partial M/\partial x_j) = wx_j$ for the relative weights have been used. If the denominator of eq.(7) is denoted by D, the wx_j are readily computed as

$$rH = 1, \qquad (9)$$

$$wp_{i} = ws_{i} = |s_{i}p_{i}/D|$$
 (i=9,0,2), (10)

$$p_8 = \left| \left[(H/M - s_8)(t \ln 2/T_{h8}) + s_8 \right] p_8 / D \right|,$$
 (11)

$$p_{1} = \left| \left[(H/M - s_{1} + s_{a})(t \ln 2/T_{h1}) + s_{1} \right] p_{1} / D \right|, \quad (12)$$

$$\mathbf{s}_{i} = \left| \left[1 - \mathbf{t} \ln 2/T_{hi} \right] \mathbf{p}_{i} \mathbf{s}_{i} / \mathbf{D} \right|, (i=8,1)$$
(13)

$$\mathbf{s}_{\mathbf{a}} = \left| \left[\mathbf{t} \, \ln 2/T_{\mathbf{h}1} \right] \, \mathbf{p}_{1} \, \mathbf{s}_{\mathbf{a}} \, / \, \mathbf{D} \right|, \qquad (14)$$

$$wT_{h8} = \left| \left[\frac{H/M - s_8}{p_8 t \ln^2} \right] \left[\frac{p_8 t \ln^2}{T_{h8}} \right] / D \right|, \quad (15)$$

$$wT_{h1} = \left| \left[\frac{H/M + s_8 - s_1}{p_1 t \ln^2/T_{h1}} \right] / D \right|, \quad (16)$$

$$\begin{bmatrix} p_8 & s_8 & p_1 (s_8 - s_1) & H & p_8 & p_1 & 7 & 1 & 1 & 2 \\ \end{bmatrix}$$

$$= \left| \left[\frac{p_8 \cdot s_8}{T_{h8}} - \frac{p_1 \cdot s_a \cdot s_1}{T_{h1}} - \frac{n}{M} \left(\frac{p_8}{T_{h3}} + \frac{p_1}{T_{h1}} \right) \right] - \frac{1}{D} \right|. (17)$$

3. Accuracy of Parameters

wt

3.1. Power Output

Present-day calorimeters achieve, under routine conditions^{2,3)}, accuracies σ M between 0.25 and 0.5 %. There is little doubt that this error will be reduced further so the lower of the two values (0.25 %) is certainly a realistic estimate.

⁺ In a rigourous treatment it would have to be considered that there are indeed correlations between the dx_j/x_j not only because $\sum p_i = 1$ but also because some, but not all of the s_i are computed from the T_{hi} into the evalutation of which enter, in turn, all T_{hk} (k+i). An investigation of this question is presently under way¹⁾. 3.2. Isotopic Composition

The determination of the abundance of 238 Pu is most delicate. Mass spectrometry requires that

i) samples be absolutely free $(\leq 10^{-5})$ from uranium and organic impurities, and that ii) memory effects in the mass spectrometer be under careful control.

Alpha spectrometry is limited by

i) the high-energy tail of the very intense α group of ²³⁹Pu and ²⁴⁰Pu around 5150 keV, and ii) the presence of small quantities of americium (cf. first footnote in paragraph 2).

Alpha spectrometry is certainly the more accurate method, at least for abundances ≤ 0.1 %, and an error $\sigma_{P_{Q}}$ of 2.5 % appears reasonable⁴.

Isotopic ratios of the other plutonium isotopes are always determined by mass spectrometry. It seems to be generally accepted⁵⁾ that, under normal laboratory conditions, accuracies are achieved that amount to

 0.1 % - 0.3 %
 for ratios of
 1 - 10

 0.3 % - 1.0 %
 "
 "
 10 - 100

 1.0 % - 5.0 %
 "
 "
 100 - 1000.

If the ratios are denoted by α the error $\int \alpha / \alpha$ follows roughly the law

$$d\alpha / \alpha = 10^{-3} \sqrt{\alpha}$$
 (18)

from which the errors in the abundances, $\delta p_i / p_i$, are computed as

$$dP_{9}/P_{9} = 10^{-3} \sqrt{\sum_{i \neq 9} \alpha_{i}} p_{9}$$
, and (19)

$$\delta p_{i} / p_{i} = 10^{-3} p_{9} \sqrt{\left[(1 + \sum_{j \neq i} \alpha_{j})^{2} \alpha_{i} \right]} + \sum_{j=i} \alpha_{j} (i=8,0,1,2) (20)$$

with $\alpha_i = p_i / p_q$.

3.3. Specific Power

The best values available to date for the specific powers of the isotopes involved are listed in Table I.A critical evaluation of these data is highly desirable.

3.4. Time

It occurs that the americium separation and isotopic analysis are not performed simultaneously and only one of the dates is available at the time of calorimetry, or that only the month is given in which the separation or analysis took place. Although this error could be made zero, a figure of t = 0.5 % was assumed to show the effect upon the total error.

Table I.

Specific powers of the plutonium isotopes and of 241 Am, and associated estimated standard deviations. If data are calculated from & decay energy and half-life, these values are also given, with errors as quoted by the authors.

Isotope	Specific Power	Relative	Data Used, and References					
	m₩ / g	Error	Q / keV	T _h / years				
238 _{Pu} 239-	567.2	0.027 %	5.592.8 <u>+</u> 0.8 ⁶)	$(87.80 \pm 0.02)^{7)}$				
240 _{Pu}	1.923 7.008	0.1 % 0.76 %	calorimetry 5.255.3 <u>+</u> 0.7 ^{6,9)}	6620 ± 50 10)				
²⁴¹ Pu 242 _{Pu}	3.62 0.1137	4.9 % 0.45 %	calorimetry ¹ 4.980.3 + $7.0^{9,12}$	$(3.834 + 0.016) \times 10^5 13)$				
²⁴¹ Am	114.5	0.15 %	calorimetry ¹	4)				

- 3 -

3.5. Half-life of 238 Pu and 241 Pu It follows from Table I that 57 Half = 0.02 % and 57 Half = 1.85 %.

4. Total Error

In Table II the most important contributions, in terms of weights wx_j and errors σx_j of the individual parameters, have been listed for different kinds of reactor grade plutonium^{4,15)}. Times after separation of americium of 0, 90, and 180 days have been considered realistic. The largest effect is clearly the uncertainty in p₈, the percentage of ²³⁸Pu in the mixture. Only for very low contents in ²³⁸Pu (≤ 0.05 %) the error in the heat output H becomes dominant. Next come the uncertainties in s₀ and s₁, the specific powers of ²⁴⁰Pu and ²⁴¹Pu, with the relative importance depending upon the composition. All other contributions remain unsignificant until accuracies of p₈ and H can be improved by factors of at least 10 and about 3, respectively.

Table II

Contributions to the overall relative standard deviation $\Im M$ of a calorimetric plutonium determination, in terms of weights w_{x_j} and relative errors $\Im x_j$ of the different parameters according to the formula $\Im M = \sqrt{\sum_{i}^{j} (w_{x_j} \Im x_j)^2}$, for different reactor-grade plutonium. For clarity w_{x_i} and $\Im x_i$ are put in heavy boxes.

Fuel Batch		ALKEM, 1968			Yankee V + VI, 1				Yankee V + VI, 16			
Composition Pu-238 Pu-239 Pu-240 Pu-241 Pu-242		p _i in 0.04 90.55 8.20 1.15 0.00	% Sp _i 41 17 65 13 64	in % 2.50 0.03 0.30 0.89 3.40	p _i in % 0.289 85.050 10.294 4.011 0.356		σp _i in % 2.50 0.04 0.26 0.44 1.52		P _i in % 1.228 69.309 16.337 10.853 2.274		o'p _i in % 2.50 0.04 0.18 0.23 0.42	
Time after separation, days		0	90	180	0	9	90	180	0	_	90	180
Quantity x _j	Relative error Sx _j in %	Weight wx _j										
Power output H	0.25	1.0000	1.0000	1.0000	1.0000	1.00	000 1	.0000	1.0000	1.0	000	1.0000
Composi- tion P8 P9 P0 P1 P2	above	0.0897 0.6713 0.2234 0.0155 0.0000	0.0890 0.6676 0.2221 0.0214 0.0000	0.0883 0.6639 0.2209 0.0271 0.0000	0.3958 0.3949 0.1742 0.0351 0.0001	0.39 0.39 0.17 0.04 0.00	902 0 901 0 721 0 481 0 001 0	.3848 .3854 .1700 .0608 .0001	0.7079 0.1355 0.1164 0.0399 0.0003	0.6 0.1 0.1 0.0 0.0	971 337 148 555 003	0.6866 0.1319 0.1133 0.0706 0.0003
Specific Power s8 s9 s0 s1 s2 sa	0.03 0.10 0.76 4.90 0.45 0.15	0.0897 0.6713 0.2234 0.0155 0.0000 0	0.0890 0.6676 0.2221 0.0153 0.0000 0.0060	0.0883 0.6639 0.2201 0.0150 0.0000 0.0119	0.3958 0.3949 0.1742 0.0351 0.0001 0	0.39 0.39 0.17 0.03 0.00	902 0 901 0 721 0 342 0 001 0 134 0	. 3848 . 3854 . 1700 . 0334 . 0001 . 0264	0.7079 0.1355 0.1164 0.0399 0.0003 0	0.6 0.1 0.0 0.0 0.0	971 337 148 389 003 152	0.6866 0.1319 0.1133 0.0379 0.0003 0.0300
Half- life T _h 8 Th1	0.02	0 0	0.0002 0.0059	0.0003 0.0118	0 0	0.00	008 C 134 C	0.0015	0	0.0	013 161	0.0026 0.0317
Time t	0.50	0	0.0057	0.0114	0	0.0	127 C	.0251	0	0.0	147	0.0291
Total error in percent		0.40	0.40	0.40	1.05	1.0	3	1.02	1.80	1.7	7	1.75
Main contributions from $x_j =$ Approximate value of $wx_j \sigma x_j$ in %		н 0.25 0	p ₈ so	^s 1, 9, ^p 0 7 0.07 each	р ₈ 0.98	н 0.25	^s 1 0.17	^s o 0.13	р ₈ 1.74	н 0.25	\$1 0.1	^s o 9 0.09

References

- 1) K. Böhnel, private communication.
- V.W. Schneider, F. Hille, M. Kiy, W. Gmelin, <u>Safeguards Techniques</u> Vol.1 p. 181, IAEA, Vienna, 1970.
- 3) A. v.Baeckmann, M. Küchle, C. Weitkamp, R. Avenhaus et al., A/CONF. 49/A/809 (1971).
- 4) W. Beyrich, C-Notiz 23 (1968), unpublished.
- 5) L. Koch, private communication; report from an IAEA Panel on Analytical Chemistry on Nuclear Fuels, Vienna, 13 - 17 July 1970.
- 6) C.F. Leang, Comptes Rendus Acad. Sci. 255 (1962) 3155.
- 7) Mound Laboratories Report MLM-1691 (1969).
- 8) F.L. Oetting, J. Inorg. Nucl. Chem. 27 (1965) 2151.
- 9) J.H.E. Mattauch, W. Thiele and A.H. Wapstra, Nucl. Phys. 67 (1965) 1.
- 10) Ya.P. Dokuchaev, Atomnaja Energija 6 (1959) 74.
- 11) F.L. Oetting, Phys. Rev. 168 (1968) 1398.
- 12) J.P. Hummel, UCRL-3456 (1956).
- 13) C.E. Bemis, Jr., V. Halperin, and R. Eby, J. Inorg. Nucl. Chem. 31 (1969) 599.
- 14) F.L. Oetting and S.R. Gunn, J. Inorg. Nucl. Chem. 29 (1967) 2659.
- 15) D.E. Christensen, R.P. Matsen, R.A. Schneider, W.C. Wolkenhauer, BNWL-1473 (1970).

الم المراجع المحلي المراجع المحلي المحلي

.