

Mai 1972

KFK 1529

Institut für Datenverarbeitung in der Technik Institut für Heiße Chemie

Auswertung photometrischer Mehrkomponenten-Analyse mit CALAS

K. Rietzschel, H. Zinecker, E. Kuhn

ġ

Als Manuskript vervielfältigt

 Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE KERNFORSCHUNGSZENTRUM KARLSRUHE

Mai 1972

KFK 1529

Institut für Datenverarbeitung in der Technik Institut für Heiße Chemie

Auswertung photometrischer Mehrkomponenten-Analyse mit CALAS

- K. Rietzschel
- H. Zinecker
- E. Kuhn

Gesellschaft für Kernforschung m.b.H., Karlsruhe

and the second secon Second second

Kurzfassung

Es wird ein Verfahren zur Auswertung einer photometrischen 4-Komponenten-Analyse mit Bestimmung der Salpetersäurekonzentration aus der Leitfähigkeit beschrieben.

Abstract

A process is described for the evaluation of a photometric 4-component analysis to determine the nitricacid concentration from the conductivity.

(a) A figure (a) and (a) an

Inhalt:

- 1. Einleitung
- 2. Die photometrische Mehrkomponenten-Analyse
- 3. Rechnerische Behandlung
- 4. Programm-Modul KOMPO4
 - 4.1. Dateneingabe
 - 4.2. Auswertung
 - 4.3. Kernspeicherbedarf und Rechenzeitabschätzung
- 5. Schlußbemerkung

- - and the second second
 - All and a second state of
 - Mary British Charles
 - ション・ション・ション しんていた ないしい 読みせい みつき 通知 かいい

1. Einleitung

Im Rahmen der Arbeiten zur automatischen Prozeßkontrolle und -steuerung bei der chemischen Wiederaufarbeitung bestrahlter Kernbrennstoffe wurde ein kombiniertes Analysenverfahren, bestehend aus Spektralphotometrie und Leitfähigkeitsmessung, ausgearbeitet [1,2]. Mit Hilfe dieser Methode wird eine simultane Bestimmung der in den Prozeßlösungen auftretenden Oxidationsstufen des Plutoniums (III, IV) und Urans (IV, VI) sowie der Salpetersäure-Konzentration ermöglicht. Die Kenntnis dieser Größen ist von Wichtigkeit, weil die Effektivität des Aufarbeitungsprozesses von ihnen stark abhängig ist.

Die Hauptanwendung der photometrischen Prozeßkontrolle muß beim PUREX-Prozeß in der Überwachung der Uran/Plutonium-Trennung gesehen werden. In unserem Falle zielen die Arbeiten zunächst auf eine Überwachung des elektrolytischen Mehrstufen-Mischabsetzers EMMA [3]7 mit dem Fernziel eines rechnergeführten Trennprozesses ab. Die Auswertung der photometrischen Mehrkomponentenanalyse wird zunächst off-line durchgeführt. Beim Betrieb der EMMA mit einem In-line-Spektralphotometer und einer In-line-Leitfähigkeitsmessung wird die Datenerfassung und Verarbeitung mit dem Prozeßrechner TR86 System CALAS 69.2 durchgeführt werden.

2. Die photometrische Mehrkomponenten-Analyse

Es werden für die einzelnen Komponenten charakteristische Banden ausgewählt, bei denen ein geringer Untergrund der anderen Komponenten vorliegt. Die Abhängigkeit der relativen molaren Extinktionskoeffizienten (Differenz der molaren Extinktionskoeffizienten einer ausgewählten Bande und eines Bezugtals) von der Salpetersäure-Konzentration (H) wird durch empirische Funktionen 3. Grades beschrieben und ist in Tab.1 zusammengefaßt.

Für die Bestimmung der Salpetersäure-Konzentration mittels Leitfähigkeitsmessung wurden empirische Funktionen 3. Grades in Abhängigkeit von der Metallkonzentration ermittelt (Tab.2).

3. Rechnerische Behandlung

Für ein Mehrkomponenten-System im obigen Sinne gilt:

$$E_{i} = \sum_{j=1}^{n} E_{ij} = \sum_{j=1}^{n} \overline{E}_{ij} \cdot c_{j} \cdot d \qquad (I)$$

E, Extinktion bei der Wellenlänge i

- Extinktion bei der Wellenlänge i der Komponente j
 Eij
 Molarer Extinktionskoeffizient bei der Wellenlänge i der Komponente j
- Ē"TAL" Molarer Extinktionskoeffizient eines ausgewählten "Bezugstales" (Minimum)

d Schichtdicke

c, Molare Konzentration Mol . 1⁻¹ der Komponente j

Für die in unserem Fall 4 Komponenten und 4 Wellenlängen (Meßpunkte) ergibt sich für eine Schichtdicke von 1 cm folgender Ansatz:

$$E_{1} = \overline{E}_{11} \cdot c_{1} + \overline{E}_{12} \cdot c_{2} + \overline{E}_{13} \cdot c_{3} + \overline{E}_{14} \cdot c_{4}$$

$$E_{2} = \overline{E}_{21} \cdot c_{1} + \overline{E}_{22} \cdot c_{2} + \overline{E}_{23} \cdot c_{3} + \overline{E}_{24} \cdot c_{4}$$

$$E_{3} = \overline{E}_{31} \cdot c_{1} + \overline{E}_{32} \cdot c_{2} + \overline{E}_{33} \cdot c_{3} + \overline{E}_{34} \cdot c_{4}$$

$$E_{4} = \overline{E}_{41} \cdot c_{1} + \overline{E}_{42} \cdot c_{2} + \overline{E}_{43} \cdot c_{3} + \overline{E}_{44} \cdot c_{4}$$
(II)

Wird statt \overline{E} der relative molare Extinktionskoeffizient verwendet, dann gilt:

$$\Delta \overline{E}_{ij} = \overline{E}_{ij} - \overline{E}_{"TAL}$$
(III)

und entsprechend ändert sich die Gleichung I:

$$(\mathbf{E}_{i}-\mathbf{E}_{TAL}) = \sum_{j=1}^{n} (\mathbf{E}_{ij}-\mathbf{E}_{TAL}) = \sum_{j=1}^{n} (\overline{\mathbf{E}}_{ij}-\overline{\mathbf{E}}_{TAL}) \cdot \mathbf{C}_{j} \cdot \mathbf{d}$$
(IV)

sowie Gleichung II.

4. Programm-Modul "KØMPØ4"

4.1. Dateneingabe

Für die Dateneingabe sind hier zwei Möglichkeiten geschaffen worden (Bild 1).

Eingabe im Off-line Betrieb

Im Off-line Betrieb werden die Extinktionen und die Leitfähigkeit über Tastatur am Sichtgerät eingegeben und nach Umwandlung in Gleitkomma-Format auf Platte abgelegt.

Datenerfassung im On-line Betrieb

Im On-line Betrieb werden die gemessenen Extinktionen und die Leitfähigkeit durch ein Steuerprogramm erfaßt, aufbereitet und ebenfalls auf dem Hintergrundspeicher abgelegt. Die Beschreibung für die automatische Meßdatenerfassung und Steuerung der Spektralphotometer erfolgt in einem anderen KFK-Bericht.

4.2. Auswertung

Die Auswertung der auf der Platte abgelegten Meßdaten erfolgt für beide Betriebsarten vom Programm-Modul KØMPØ4, dessen Flußdiagramm in Bild 2 dargestellt ist.

Über die Leitfähigkeitsfunktion f_1 (9) aus Tabelle 2 wird in erster Näherung die Salpetersäure-Konzentration berechnet. Mit dieser Konzentration werden über die Säurefunktionen ($\Delta \overline{E}_{ij} = f(HNO_3)$) die relativen molaren Extinktionskoeffizienten bestimmt. Aus dem jetzt erhaltenen Gleichungssystem werden die Konzentrationen der einzelnen Oxidationsstufen in erster Näherung berechnet. Zur Lösung dieses Gleichungssystems wird der Gauss'sche Algorithmus verwendet.

Durch Summenbildung wird die Gesamtmetallkonzentration ermittelt. Ist die Summe kleiner als 2 mg Metall/ml, werden die Ergebnisse der Berechnung und die Salpetersäure-Konzentration auf Display ausgegeben und anschließend auf Schnelldrucker protokolliert.

Ist die Summe größer als 2 mg Metall/ml wird durch lineare Interpolation mit Hilfe der beiden Leitfähigkeitsfunktionen, zwischen denen die summarische Metallkonzentration liegt, in zweiter Näherung die Salpetersäure-Konzentration ermittelt. Der Rechenvorgang wiederholt sich danach von der Bildung der relativen molaren Extinktionskoeffizienten bis zur Summenbildung. An dieser Stelle wird geprüft, ob die Differenz der Summe der Metallkonzentration aus erster und zweiter Näherung größer als 3 % ist, wenn "Nein", erfolgt die Ausgabe der Komponenten-Konzentrationen und der Salpetersäure-Konzentration auf Display und Protokollierung auf Schnelldrucker, wenn "Ja", wird nach Interpolation der Zyklus wiederholt. Nach insgesamt fünf Durchläufen wird die Berechnung mit Hilfe des Laufindexes I abgebrochen. Ebenfalls abgebrochen wird das Programm, wenn die summarische Metallkonzentration grösser als 40 mg Metall/ml ist.

Bild 3 zeigt eine CALAS-Datenstation im Institut für Heiße Chemie, über deren Tastatur die Meßwerte für Extinktionen und Leitfähigkeit im Off-line Betrieb zum Rechner übertragen werden. Die Ergebnisse der 4-Komponenten Analyse werden über Display (Bild 4) am Experimentierplatz ausgegeben und auf Anforderung in der Datenverarbeitungszentrale auf Schnelldrucker protokolliert.

· 4 -

4.3. Kernspeicherbedarf und Rechenzeitabschätzung

Der Programm-Modul KØMPØ4 läuft unter der Regie des Realzeitbetriebssystems CALAS 69/2 in der B-Ebene $\angle 4_7$ mit niedrigster Priorität. Die Module in dieser Ebene dürfen einen Kernspeicherbedarf von 8K TR86-Worten (1 TR86-Wort = 3 Byte = 24 bit) nicht überschreiten. Das Programm KØMPØ4 belegt einschließlich der von Telefunken zur Verfügung gestellten Gleitkomma-Arithmetik ca. 7,5 K Kernspeicher.

Zur Berechnung der molaren Extinktionskoeffizienten und der Konzentration unter Verwendung des Gauss'schen Algorithmus werden etwa 600 msec benötigt.

Bild 5 zeigt einen Ausschnitt aus dem Programm-Modul KØMPØ4. In Bild 6 ist die Liste der Koeffizienten der Säurefunktion f_i (?) im Gleitkommaformat dargestellt.

5. Schlußbemerkung

Die zur Zeit noch erforderliche Eingabe der Meßwerte über die Tastatur der CALAS-Datenstation wird beim Betrieb der EMMA durch eine automatische Meßdatenerfassung ersetzt. Die Entwicklung des erforderlichen Interfaces bei DVZ zur Ankopplung des <u>Elektrolyti-</u> schen-<u>M</u>ehrstufen-<u>M</u>isch-<u>A</u>bsetzers (EMMA) an CALAS ist abgeschlossen.

Herrn H. Schmieder danken wir für die wertvollen Diskussionen im Zusammenhang mit dieser Arbeit.

- 5 -

Literatur

- [1]7 Schmieder, H., Kuhn, E., Ochsenfeld, W. Die Absorptionsspektren von Pu(III), Pu(IV), Pu(VI), U(IV) und U(VI) in Salpetersäure und Tri-n-butylphosphat-n-Alkan-Lösungen und ihre Anwendung in der automatischen Prozeßkontrolle KFK 1306, November 1970
- [2] Schmieder, H., Kuhn, E. Automatische Kontrolle und Steuerung von Aufarbeitungsprozessen für Kernbrennstoffe durch Spektralphotometrie und Leitfähigkeitsmessung Chemie-Ing.-Techn. 44 Jahrg. 1972, Nr. 3
- [3] Schmieder, H., Baumgärtner, F., Goldacker, H., Hausberger, H. Entwicklung eines Mischabsetzers für die elektrolytische Pu-U-Trennung im Purex-Prozeß Vortrag auf der Reaktortagung, Bonn 1971
- [4] Gagel, G., Hepke, G., Herbstreith, H., Nehmer, J. CALAS68 - Ein computergestütztes Vielfachzugriffssystem zur Laborautomatisierung Externer Bericht 19/69-1, November 1970
- [5] Baumgärtel, G., Mache, H.-R., Rietzschel, K. Zur maschinellen Auswertung von In-Line-Meßgrößen bei der Wiederaufbereitung bestrahlter Kernbrennstoffe KFK 1367, April 1971

6 -

<u>TAB.1</u> INDIZIERUNG DER REL.MOL.EXTINKTIONSKOEFFIZIENTEN UND DEREN SÄUREFUNKTIONEN MIT ANGABE DER RELATIVEN STANDARDABWEICHUNG									
	(i) Wellenlange nm	(i) Komponente	"Tal" nm	Säurefunktion (Ausgleichsrechnung)	Rel.Standardabw.				
ΔĒ11 ΔĒ12 ΔĒ13 ΔĒ14	602 602 602 602	Pu - 111 Pu - 117 U - 117 U - 117 U - 171	518 518 518 518 518	$= 35,444300 - 0.847556 [H] + 0.552981 [H]^{2} - 0.070090 [H]^{3}$ $= -4.455600 + 0.089163 [H] - 0.087824 [H]^{2} + 0.023466 [H]^{3}$ $= 3,605500 - 0.474300 [H] + 0.060600 [H]^{2} - 0.002100 [H]^{3}$ $= 0.000000$	0,43 0,37 0,08				
Δ Ē 21 Δ Ē 22 Δ Ē 23 Δ Ē 24 Δ Ē 31	476 476 476 476 476 648	Pu- 111 Pu- 117 U - 117 U - 117 Pu - 111	518 518 518 518 518 518	= 2,069400 - 0,259192 [H] + 0.148233[H]2 - 0.022639[H]3 = 52,256800 + 12,878875[H] - 2,836214 [H]2 + 0.107505 [H]3 = 15,383100 + 1,127800[H] - 0,249980[H]2 + 0.012990[H]3 = 0,757600 - 0.644122[H] + 0.388246[H]2 - 0.057545[H]3 = 0,610100 - 0.170184[H] + 0.153969[H]2 - 0,024189[H]3	0,12 1,60 0,24 0,02 0,22				
ΔĒ32 ΔĒ33 ΔĒ34	648 648 648	Pu - IX U - IX U - VI	518 518 518	= 19,327100 + 0.413039 [H] - 0.067907 [H]2 - 0.006631 [H]3 = 43.136500 - 7.309400 [H] + 1.293700 [H] ² - 0.097100 [H] ³ = 0.000000	0.61				
ΔĒ41 ΔĒ42 ΔĒ43 ΔĒ44	4 1 5 4 1 5 4 1 5 4 1 5 4 1 5	Pu - []] Pu - [] U - [] U - [] U - []	518 518 518 518 518	$= 8.692700 + 1.015512 [H] + 0.170046 [H]^{2} + 0.020544 [H]^{3}$ $= 3.561000 - 0.123889 [H] + 0.077596 [H]^{2} - 0.001865 [H]^{3}$ $= 1.104800 + 0.600100 [H] - 0.136440 [H]^{2} + 0.010930 [H]^{3}$ $= 7.775000 + 0.775019 [H] - 0.014402 [H]^{2} - 0.001492 [H]^{3}$	1,10 0,33 0,13 0,07				

<u>Tab. 2</u>

Säurefunktionen der elektrischen Leitfähigkeit von salpetersauren Uran-VI und Plutonium-IV-Lösungen. 20°C

Metallkonzentration g/l *	Säurefunktion (Ausgleichsrechnung)	Bezeichnung
0	$[HNO_3] = -0,494 + 7,991 \cdot \rho - 14,646 \cdot \rho^2 + 15,352 \cdot \rho^3$	f ₁ (ρ)
10	$[HNO_3] = -0,531 + 8,221 \cdot \rho - 14,884 \cdot \rho^2 + 15,555 \cdot \rho^3$	f ₂ (ρ)
20	$[HNO_3] = -0,552 + 8,367 \cdot \rho - 15,090 \cdot \rho^2 + 15,886 \cdot \rho^3$	f ₃ (ρ)
30	$[HNO_3] = -0,543 + 8,340 \cdot \rho - 15,233 \cdot \rho^2 + 16,637 \cdot \rho^3$	f ₄ (ρ)
40	$[HNO_3] = -0,591 + 8,624 \cdot \rho - 15,892 \cdot \rho^2 + 17,719 \cdot \rho^3$	f ₅ (ρ)

* Für die Funktionen mit 10 und 20 g Metall/I wurden die Uran-VI- und Plutonium-IV-Meßwerte zur Ausgleichsrechnung verwendet. Für 30 und 40 g Metall/I wurden nur die Uran-VI- Meßwerte verwendet.

Bild: 2

Schematischer Ablauf des Programm-Moduls KØMPØ4

Bild: 3 CALAS Datenstation

A.Nr. 2815-2205

15.02.72.	58.41.UHR	SEITE 001	EMMA	CALAS
	4 - KOM Me	PONENTEN - SYSTE SSWERTEINGABE	M	
	EX602 EX476 EX648 EX415	z '+' '0'.'014' z '+' '0'.'142' z '+' '0'.'222' z '+' '0'.'420'		
	LEITF.	= '0','466'S/CM		
	ERG	EBNIS		
	CPU3 CPU4 CU4 CU6	= -0.0277 G/L = 0.0492 G/L = 1.5188 G/L = 10.8514 G/L		
	HN03	= 1.660 MOL.		

Bild: 4 Display Messwerteingabe und Resultatdarstellung

PROJEKT: EMMA

4-KOMPONENTEN-SYSTEM MIT BESTIMMUNG DER Salpetersaeurekonzentration durch kombination MIT der leitfaehigkeitsmessung

DATEL: PO7

57324	OODFEC	000000		đ	NUH=2/0	
57325	OUDFED	666666		ð		
57326	OODFEE	060007		7	7	BENUTZERNUMMER
57327	90 DF EF	000000		e	17/0	
57343	OODFFF	000000		0		
57344	00E000	000000		6	0	
57345	00E001	B0E003+	SU	57347	SU START	<u></u>
57346	00E002	B200F3	SUE	243	SUEY BENDE	
57347	00E063	000000	A A	6	STARTSAA OUV	

DISPLAY DES EINGABETEXTES

57348 006004	201800	SH ~ U	8	. SH	υ σ	
57349 00E005	00E015+	AA	57365	44	BLOTA	ADRESSE DES VERSORGUNGSBLOCKS FUER DISPLAY AUSGARE
57350 00E006	214040	VM S	M	A M	SM	
57351 00E007	8200F0	SUE	240	SUE	Y SIKOP5.	SI.: TEXT FUER EINGABE DER EXTINKTIONEN

EINGABE DER EXTINKTIONEN UND DER LEITFAEHIGKEIT

57352 00E008	F0E01A+	B 57376	8 BLOTA+5	AURESSE DES SICHTGERAETEBEREICHS
57353 00E009	70E018+	CA 57368	Ca tablo+1	
57354 00E00A	70E012+	CA 57362	CA UMW+2	
57355 00E00B	201800	SH U 0	Sh ug	
57356 00E00C	00E017+	AA 57367	AA TABLO	ADRESSE DES VERSORGUNGSBLOCKS FUER TASTATURANMELDUNG
57357 00E00D	214040	VM S N	Vm Sm	
57 358 00E00E	B200EC	SUE 236	SUEY TASTATUR	TASTATURANMELDUNG

UMWANDLUNG DER EINGABENERTE VON DEZIMAL IN DUAL

57359 00E00F	F0E014+ B 57364	B 14	ANZAHL DER UMZUWANDELNDEN EINGAREWERTE
57360 00E010	SUZ ISODU2(+6)	UMW=SUZ ISODU2	
57361 00E011	000020 '000020'H	(20'H	
57362 00E012	000000 AA 000000	AA O U V	
57363 00E013	00E016• AA 57366	AA FELDUM	ADRESSE DES FELDES FUER DIE UMGEWANDELTEN EINGABEWERTE

Bild: 5 Ausschnittaus dem Programm Modul KøMPø4

KONSTANTEN DER SAEUREFUNKIIONEN DER ELEKTRISCHEN LEITFAEHIGKEIT VON SALPETERSAUREN URAN-VI UND PLUTONIUM-IV LOESUNGEN

58690 0	0E2EA	COC498	' 6	614	223	3310	F11=GL	-0.494
58091 0	0E2E8	0052F1	' 0	665	13(51′0		
58092 0	0E2EC	3FED91	1	776	662	21′0	F12=GL	7.991
58093 0	QESED	013439	10	623	207	71′0		
58094 0	0ESEE	8AD4FD	14	255	237	7510	F13=GL	-14.646
58095 0	0E2EF	0179DB	10	027	473	33'0		
58696 0	0E2F0	7ADGE5	13	655	634	\$5'0	F14=GL	15.352
58097 0	OE2F1	013020	10	023	664	10'0		
58698 0	0E2F2	800831	13	760	40 (51'0	F21=GL	-0.531
58099 0	0E2F3	001374	16	661	156	54'0		
58100 0	0E2F4	41C49B	15	034	223	33'0	F22=GL	8.221
58101 0	0E2F5	0152F1	' 🕈	025	136	51'0		
58102 0	DE2F6	88ED91	14	216	663	21'0	F23=GL	-14.884
58103 0	DE2F7	613439	10	023	267	71'0		
58164 0	0E2F8	7C78A3	13	707	024	43'0	F24=GL	15,555
58105 0	DE2F9	016885	16	626	56(55'0		
58106 0	DE2FA	895810	15	625	402	20'0	F31=GL	-0.552
58107 0	DE2FB	603126	10	663	844	\$6'0		
58108 0	DE2FC	42EF 9D	12	056	763	35'0	F32=GL	8.367
58109 0	0E2FD	015916	10	025	44;	26'0		
58110 0	0E2FE	8747AE	• 4	164	365	36'0	F33=GL	-15,090
58111 0	DE2FF	010A3D	18	620	50,	75'0		
58112 0	0E300	7F1687	13	761	320	37'0	F34=GL	15.886
58113 0	0E301	011581	10	021	26(51'0		
58114 0	0E302	BA7EF9	' 5	647	73	71'0	F41=GL	-0.543
58115 0	0E303	006D91	10	006	66;	21'0		
58116 0	0E304	428851	12	653	41:	21'0	F42=GL	8.340
58117 6	0E365	017502	10	027	276	5210		
58118 0	0E306	862200	14	142	132	20'0	F43=GL	-15,233
58119 0	0E307	617280	ŕ 🖸	027	12(50'0		
58120 0	0E368	214624	11	024	304	44'0	F44=GL	16.637
58121 0	02309	01EE97	10	036	72;	2710		
58122 0	0E30A	845A1C	15	565	58:	34'0	F51=GL	-0.591
58123 0	02368	005604	10	005	300	5410		
58124 0	0E30C	44FDF3	′ 2	117	676	53'0	F52=GL	8,624
58125 0	0E30D	615822	16	025	544	4210	_	
58126 0	GE3GE	86DD2F	14	015	64	57'0	F53=GL	-15.892
58127 0	0E30F	010D4F	'0	020	65:	17'0	-	-
58128 0	6E310	237020	11	667	60	40'0	F54=GL	17.719
58129 0	0E311	01E24D	10	036	111	15'0	- · · -	
	· · ·					-		

Bild:6 Liste der Koeffizienten der Säurefunktion fi (9) in Gleitkommadarstellung

r