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ABSTRACT

DTA-measurements were carried out to obtain some additional data on

the phase relations in the U-N sysTem. The nitrogen decompositlon pressure

of ß-U2N3 and UN 1.5z02(1_zl(0~z~llas wel I as the equi I Ibrlum nitrogen pres­

sure for the reactlon from ß- to a-U2N3 was measured as a function of tem­

perature.

I. The temperature dependence of the equil ibrium nitrogen pressure for the
l-xreaction: 2UN + --2- N2 ~ ß-U2N3_x,measured by DTA, showed a falrly good

agreement with the results obtalned by other methods and is expressed

by the equation:

log P
N2

(atm.l = 6.361-10.649 x 103/T (1450 - I6600 Kl

i.e., UN transforms to ß-U2N3 at 13900 C and atm. N2 .

2. The reaction temperature from ß- to a-U2N
3

was examined at various ni­

trogen pressures. The equl I Ibrium nitrogen pressure for +he reaction
~ß-U2N3_x + 2 N2 + a-U2N3+y is:

log PN (atm.l = 6.131 - 8.115 x 103/T (1145 - I3250 Kl
2

i .e., ß-U2N3 transforms to a-U 2N3 at 10500 C and 1 atm. N2

3. When oxygen Is dissolved in the a-phase, the nitrogen decomposition pres­

sure of UNI .5z02(1-zl to ß-U2N3 (in the case of low oxygen contentl, or

to UN (high oxygen contentl becomes lower than that of pure a-U 2N3 .

Such, a reduction of the nitrogen potential can be useful to suppress

the fuel-cladding interaction In a nitride fuel element at high burn-up.
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INTRODUCTION

The knowledge of phase relations and thermodynamie data in the uranium­

nitrogen system is important, because of the potential of (U,Pu)N as a nu­

clear fuel. The thermodynamical properties in the U
2
N

3
region have not been

so wel lestabi ished as those in the U-UN region, In spite of its teehnieal

importance for understanding the burn-up behaviour of a nitride fuel. Four

eompounds are known in this system, UN, a-U
2
N

3
, ß-U

2
N

3
and UN

2
, whieh have

the erystal strueture of fee NaCI type, bee Mn
2
0

3
type, hep La

2
0

3
type and

fee CaF
2

type, respeetively. The homogeneity range of UN is very narrow even

at high temperature (1). a-U
2
N

3
contains more nitrogen than is indieated by

its formula (2,3,4) and exhibits a wide homogeneity range. ß-U
2
N

3
is the

high temperature phase wlth lower N/U eomposition than 1.5 (5,6,7,8) and is

reported to be stable above about 8000C (1,8). The deeomposition nitrogen

pressures of UN and ß-U
2
N

3
have been investigated several times, but there

is no measurement of equi I ibrium nitrogen pressure for the reaetion

a t ß + yN
2

. In this study, at first, the reaetion temperature of a t ß as

wel I as that of UN t ß-U
2
N

3
were measured by DTA method un~er various ni­

trogen pressures.

With respeet to the nitrogen potential the a-U
2
N

3
phase is stabil ized

by the presenee of oxygen, dissolved in the nitride phase. (1,10,1 I). At low

temperatures oxygen solubi I ity in the a-U
2
N

3
phase is low. At elevated tem­

perature there is a eomplete miseibl I ity between U0
2

and a-U
2

N3 (5). This

compound retains the a-U
2
N

3
strueture at least up to 60 mol.% U02 and has a

larger lattiee parameter than pure a-U
2
N

3
. In this work the equi I Ibrlum

nitrogen pressure of the U
2

N
3

phase with various oxygen contents was meas­

ured. This has a teehnleal importanee in respeet to the eompatibll ity prob­

lem of nuelear fuel wlth eladdlng material. The stabl I ity of ß-U
2
N

3
with

of
small Intake oxygen was also examlned.

EXPERIMENTAL

1. DTA measurements

The high temperature DTA apparatus by Netzseh co. was used to observe

the reaetion temperature under various nitrogen pressures. The sampie hold­

er and referenee material was alumina. Measurements were carried out be­

tween room temperature and 15500C with the heating and cool ing rate of

100C/min. elther in a gasstream of pure nitrogen, pure argon, mixtures of
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both, or in a closed system with a certain pressure of pure nitrogen. The

accuracy of the temperature measurement by the Pt-PtRh thermocouple, which

was cal ibrated by the melting points of Ag (9600 C) and NaCI (SOOoC), was

within .:!: 50 C.

When the differential temperature is plotted against the surface tem­

perature of the sampie, the point of initial departure from the base I ine

of the DTA curve should correspond to the reaction temperature (12). There­

fore in this experiment the onset points which are indicated by arrows in

Fig.1, should be regarded as the reaction temperatures.

2. Sampie preparation

UN powder (0
2

< 1000 ppm) was used for the study of the pure uranium­

nitrogen system and as starting material to form the oxynitride. For the

preparation of the oxynitrides, the powders of U2N
3

and U02 were mixed,

cold-pressed and homogenized in 300 Torr nitrogen at 17000 C for 3 hrs. and
at 0

then 1550 C for 13 hrs. These sampies were examined by X-ray and chemical

analysis for composition and phases present.

RESULTS

A typical heating and eool ing curve of DTA for the pure uranium nitride is

shown in Fig.1a. The four peaks in the curve correspond to the fol lowlng

reactions:

(A 1') ß-U2N3_x + x;y N2 + a-U2N3+Y

(A 2') 2UN +~ N
2 2

For these reactions, the relation between reactlon temperature and nitro-

gen pressure is shown in Fig.2. The white and black circles correspond to

the onset temperature of the reactlon peak A 2 (heating cycle) and A 2'

(cool Ing eycle), respectively. The reaction temperature on both cycles

agreed wel land the relation, whlch is calculated by the least squares

method, is:

log P
N

(atm) = 6.361 - 10.649 x 103/T (1450 - I6600 K) (1)
2

In the case of reaction A 1, the nitrogen pressure dependence of the re-

action temperature was not clear. On the reserve reaction, however, there

is a clear relation which Is expressed by the equatlon:

log P
N2

(atm) = 6.131 - S.115 x 103/T (1145 - 13250 K) (2)
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In order to Investigate the influence of oxygen on the reaction tempera­

ture,up to 10 vol.% of oxygen gas was mixed with the nitrogen gas. The

DTA measurement was carried out in a closed system with a total pressure

of 1 atm. At first, the increase of the reaction temperature and the de­

crease of the reaction intensities were observed for al I the existing peaks

and a pair of additional peaks appeared at high temperature as shown In

Fig.lb. Temperatures of the reactions with and wlthout oxygen are I isted

in Table 1.

Tab Ie 1: Inf Iuence of oxygen on the react ion temperature

Reactlon temperature at 1 atm NZ
Reaction

with 10 vol.%without oxygen gas oxygen gas

ß+NZ-+a 10500 C 11800 C

a+ß+N
Z 12050 C 1Z900 C

ßt UN 13900 C I4650 C

These results show that the ß phase, as wel I as the a phase, can dlssolve

oxygen. The influence of oxygen was further investigated quantitatively.

The results of the DTA measurements of sampies wlth definite oxygen

contents are presented In Table 2. The schematical DTA curve of the ho­

mogenlzed oxynltrlde 15 shown In Fig.1c. The relative intensities of the

peaks and the reaction temperatures are strongly dependent on the oxygen

content. The DTA peaks were Identlfied as the fol lowing reactions.

z
(B 0): (l-z) UOZ + 2 UZN3 t UNI .5z0Z(I-z)

This reversible reaction 15 a dissociatlon-formation reaction of the oxy­

nitride. The reactlon temperatures of both cool ing (dlssoclatlon) and heat­

ing (formation) cycles were the same and independent of nitrogen pressure.

We observed:1 130 ± ZOoC for UN, ° 64 and 1150 ± ZOoC for UN 7101 7'
.00 o. o. .0

Because of the rapid reaction, the UN, .5z0Z(1-z) phase could not be

quenched.

+(8 1) : a(o) + ß (0) + al(o) + Nz
a(o), al(o): UN , .5z02(1-z) with different z values

ß(o) ß - U2N3phase including oxygen
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The change of the reaction temperature with Increasing oxygen content

which is al ready shown in Table 1, lends further support to the exlstence

of an oxygen sd ub i I ity in the ß phase.

(B 2): ß(o) + a'(o) * UN + a"(o) + N2

ß-U2N3 was stabi I ized by oxygen with respect to decomposition into UN and

N2• Below 13000 C the stabi I ity seems to be proportional to the total oxy­

gen content in the sampie, as shown In Flg.3. At temperatures above about

14000 C the sampies with various oxygen contents show the same decomposi­

tion pressure. This can be explained by a constant but higher oxygen con­

tent in the ß phase, taking part in the reaction.

(B 3): a" (0) t UN + U02 + N2

Figure 3 shows that the decomposltlon nitrogen pressure of the oxinitride

a"(o) is lowered wlth increasing oxygen content. In the case of large oxy­

gen content, the ß·phase does not exist and the a phase decomposes direct­

Iy to UN, U02 and N2.

DI SCUSSION

1. Decomposition nitrogen pressure of a- and ß-U2N3
For the reactlon ß-U2N3 t UN + zN2 experimental results of the equil ibrlum

nitrogen pressure by many investigators are shown in Fig.4. The results by

DTA showed a good agreement with those obtained from other methods uslng

effusion cel I (13), thermobalance (3), Sievert apparatus (2) and manometer

(4, 14). In the reaet ion a-U 2N3 t ß-U2N3 + yN2, the nitrogen pressure of de­

composition of a-U2N3 must be distlngulshed from that of formation. Dis­

agreement of the reactlon temperature between heatlng and cool Ing cycles

may be attributed to the reaction mechanism. Such a hysteresis of the

reaction is frequently observed in the "nucleation and growth" transforma­

tions. It Is conceivable that the nucleation process Is affected by the

oxygen impurlty. Thls could be a cause for the fluctuation of the reaction

temperature for the reaction from a-U2N3 to ß-U2N3 .

2. Oxynitrlde

2-1) The composltion of the oxynitrides

The content of oxygen and nitrogen determined in oxynitrides are plotted

in Flg.5. The composition of our sampies agreed reasonably wel I with the
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formula UNi .5z02(1-z)' which is essential Iy the same as that proposed by
Blum et al (11).

The reaction temperature by the present DTA measurements agreed very wel I

with that obtained from X-raY measurements by Keller (15) and Blum et al

(16). The temperature of this reaction was found to be independent of ni-
-2trogen pressure between 3 x 10 and 1 atm. This suggests that the reac-

tion equation does not Include a nitrogen moleeule.

2-3) edo) ... a.' (0) + ß(o) + N.2.... a.'~(o) + UN + N2 ... UN + U02 ~2

For the sampies with smal I oxygen content, these reactions were identified

from the DTA curve. Although these reactions are essential Iy the same with

those described by Benz et al (5), it should be pointed out that the ß

phase also exhibited an oxygen solubi I ity.

In the first reaction the broadening of the DTA peak wlth oxygen is

plausible, because the dissociatlon reactlon of the oxynitride is connect­

ed with a continuous change In compositlon of the a.' phase. In view of the

results In Fig.3, the oxygen solubl I Ity at high temperature In ß-U2N3 Is

considered to be at most 2 atomic %.

3. Compatlbi I ity

The U2N3 formation and the increase of nitrogen pressure due to the burn­

up of a nitride fuel wi I I cause an unfavorable effect with regard to com­

patibl I ity with the cladding material. It is probable that by disperslng

a smal I amount of U02 in the UN fuel in advance, U2N3 formed during burn­

up wi I I react with U02 and form an oxynitride. The formation of thls oxy­

nitride is expected to contribute to a decrease of nitrogen potential in

the fuel.

Although we cannot draw a clear conclusion whether the formation of

oxynitride can prevent areaction between U2N3 and Cr -the most critical

component concerning nitride formation in case of stalnless steel as

cladding material- the decrease of nitrogen potential due to the presence

of the oxynitride can be useful to suppress the fuel-cladding interaction.

The real compatibil ity problem should be solved by investigating the di­

reet reaction between oxygen containing nitride fuel and the cladding

materia I.
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Table 2: Results of the DTA measurements for the oxynitrides at nitrogen pressures of 1.0 and 0.1 atm.

Composition
UNmOn Temperature -

(m) (n)

.---- ( 1.0) 1050(b) 8 (1.0) 1390~
1l 1.505 0.018

(0.1 ) 865 (0.1 ) 117: UN
Oll ..

"
,...--
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CI Oll

"
-..

(]) a.' (0)
.. ~

> not cl ear ( 1.0) 1460 ( 1.0) 1465
+

3) 1.404 0.106 U2N
3

_.L
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-- (]) "
Oll + .. UN

" "
Oll ..

Ul ( 1.0) 1460 UN ( 1.0)not clear ß(o) 1475

4) 1.340
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0.225 ~o ---"
1235
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...
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..
1150

( 1.0)

8) 0.710 1.066 - .. '----
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Note a) For example [(0.1) 1130J means the reaction temperature of 11300C at 0.1 atm.nitrogen pressure
b) This temperature indicates reaction from ß- to a.-U2N3
c) a.' (0) and a."(o) are bcc a.-U2N3 containing oxygen and ß(o), hcp ß-U2N3containing oxygen
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Tempera ture (Oe)
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Flg. z: Equil Ibrlum nitrogen pressure for the reactions:

l-x I-xß-UZN3_
X

+ Z UN + --Z-- Nz; 2 UN + --z-- NZ + ß-UZN3_
X

;

a-UzN3+y + ß-UZN3_x + 9 NZ and ß-UZN3_x + 7 NZ + a-UZN3+Y
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Temperature (Oel
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