

Januar 1972

KFK 1549

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Ergebnisse von Wärmeübergangs- und Druckverlustmessungen mit Helium an einem Bündel mit sechzehn Rohren

J. Marek, K. Maubach

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

Januar 1972

KFK 1549

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Ergebnisse von Wärmeübergangs- und Druckverlustmessungen mit Helium an einem Bündel mit sechzehn Rohren

von

J. Marek K. Maubach

Gesellschaft für Kernforschung mbH., Karlsruhe

a sector a statistica da sector de la sector d Sector de la sector d

ka a stra file e en a per en ante en per a see a su a su a ser e en ante en a por stra par a stra a A ser file e e participar e e en esta en en esta en a su a su a su a participar e en a su a su a su a

 $\phi = \phi + \frac{1}{2} \left[\frac$

Kurzfassung

Dieser Bericht beinhaltet die Ergebnisse von Messungen des Druckverlustes und des Wärmeübergangs von Helium, das durch ein Stabbündel mit sechzehn Rohren in quadratischer Anordnung bei einem Druck von 43 ata strömt. Die Rohre wurden direkt durch Stromdurchgang beheizt, die Heizleistung lag zwischen 110 und 295 kW, was einer Leistung von 40 - 105 W/cm am Heizrohr entspricht. Die glatten Rohre, angeordnet im Abstandsverhältnis p/d = 1.283, wurden in einem glatten quadratischen Rohr geführt. Die Reynoldszahlen lagen zwischen 1,5 \cdot 10⁴ und 1,4 \cdot 10⁵. Wandtemperaturen bis 550^oC wurden gemessen. Die isothermen Reibungsbeiwerte des gesamten Bündels mit Kanalwand wurden etwa 2% über dem Kreisrohr gemessen. Die Nusseltzahl für den zentralen Kanal liegt etwas unter den vergleichbaren Werten für das Kreisrohr.

Abstract

The report contains the results of measurements performed with respect to pressure drop and heat transfer of helium at a pressure of 43 ata flowing through a bundle of 16 tubes in a square arrangement. The tubes were heated directly by direct current; the heating power was between 110 and 295 kW corresponding to a power of 40 - 105 W/cm at the heating tube. The tubes were smooth and arranged in a smooth square channel at a distance ratio of p/d = 1.283. The Reynolds numbers ranged between $1.5 \cdot 10^4$ and $1.4 \cdot 10^5$. Wall temperatures up to $550^{\circ}C$ have been measured. The isothermal friction coefficients of the entire bundle, including the channel wall, were determined to be about 2% higher than that of the circular tube. The Nusselt numbers for the central channel are slightly smaller than the comparable values of circular tubes.

,

1. Einleitung

Dieser Bericht beschreibt die Messungen von Druckverlusten und Wärmeübergangszahlen mit Helium an einem Rohrbündel mit 16 Rohren in quadratischer Anordnung. Der Bericht schließt an die Arbeit $\angle 1_7$ an, in der die Ergebnisse einer Teststrecke mit 9-Rohren beschrieben sind. In $\angle 1_7$ sind der Versuchsstand mit seinen Hauptdaten beschrieben sowie die verwendeten Meßmethoden und die Art der Auswertung der Messungen. Es wird daher in diesem Bericht wiederholt auf $\angle 1_7$ hingewiesen werden und nur wichtige Formeln sowie Änderungen gegenüber den in $\angle 1_7$ verwendeten Methoden sollen hier angegeben werden.

د بالمحمد المحمد ال المحمد المحمد

2. Beschreibung der Teststrecke

2.1 <u>Aufbau</u>

Der konstruktive Aufbau der Teststrecke ist in Abb. 1 und 2 dargestellt. Sechzehn quadratisch angeordnete, glatte Rohre sind in ein Vierkantrohr eingebaut. Die Rohre und der Vierkantkanal sind aus hitzebeständigem Stahl der Werkstoff-Nr. 4841.

Die Abmessungen sind wie folgt:

Rohrdruchmesser:	d	=	17,4	mm
Wandstärke:	S	== .	1,2	mm
Abstandsverhältnis:	P/d	—	1,28	33 mm
ä.NW. des quadrat.Kanals:	NW	==	93,8	mm
Wandstärke:	S		3	mm

Auf einen wichtigen Unterschied zur Teststrecke mit 9 Rohren soll hier hingewiesen werden. Der Wandabstand zum äußeren Führungsrohr ist im Falle des 16-er Bündels relativ größer als im 9-er Bündel. Dies bedeutet, da das Abstandsverhältnis innen p/d = 1.283 gleich geblieben ist, daß im 16-er Bündel durch die Außenkanäle ein relativ größerer Gasanteil strömt, was die Reibungsbeiwerte und Nusseltzahlen beeinflußt, wie später noch erläutert wird.

Der Einbau der Teststrecke in den Teststreckendruckbehälter erfolgte auf ähnliche Art wie bereits in $_1_7$ beschrieben. Zur elektrischen Aufheizung der Strecke sind hier jedoch je 4 Heizrohre parallel und hintereinander geschaltet, wobei eine unbeheizte Anlaufstrecke LA, aus Kupferrohren mit der Wandstärke 3 mm vorgesehen wurde.

Die axiale Führung und Zentrierung der Heizrohre sowie die Heizstromzu- und -rückführung wurde auf gleiche Art wie bei der Teststrecke B9 $/ 1_/$ vorgesehen. Die Messungen der Gasein- und Austrittstemperaturen wurden durch Mantelthermoelemente mit isolierter Meßstelle durchgeführt.

2.2 Druck- und Temperaturmessungen

Um den Druckabfall über die gesamte Teststrecke zu ermitteln, wurden im quadratischen Kanalrohr Druckentnahmebohrungen von 0,5 mm Ø, mit den in Abb. 12 gezeigten Abständen, vorgesehen. Die einzelnen Differenzdrücke wurden abweichend von \sum_{1}^{7} mit Hilfe von Drucktransmittern gemessen. Dabei wird der Differenzdruck mit einer Bartonzelle gemessen und umgewandelt in einen eingeprägten Gleichstrom, der dem Druck proportional ist. Der durch diesen Strom an einem Festwiderstand hervorgerufene Spannungsabfall wurde dann mit einem Kompensator gemessen. Die Meßeinrichtung wurde vor Versuchsbeginn mit Hilfe einer Wassersäule geeicht, so daß eine Genauigkeit der Messung von 0.2% des jeweiligen Meßbereichs erreicht werden konnte.

Zur Messung der Wandtemperatur der Heizrohre wurden Ni-NiCr-Mantelthermoelemente mit isolierter Meßstelle verwendet. Diese Thermoelemente wurden wie bei der Teststrecke B9 $_$ 1_7 in den Rohrmantel mit Vakuumgoldlot gelötet, auf gleiche Art isoliert und durch die Meßstutzen und Durchführungen ins Freie geführt. In zwei der Rohre wurde die Wandtemperatur mit Meßköpfen $_$ 2_7 gemessen. Die Anordnung der Temperaturmeßstellen ist in Abb. 10 dargestellt. Die Thermospannung wurde durch Kompensationspunktdrucker der Genauigkeitsklasse 0.25 registriert.

Der Heliumdurchsatz wurde mit den vorgesehenen Venturidüsen bzw. Normblenden gemessen. Geheizt wurde wieder mit Gleichstrom, Strom und Spannung wurden gemessen und so die elektrische Heizleistung bestimmt.

Wie in / 1 / wurde auch hier aus Strom und Spannungsmessungen bei verschiedenen Temperaturen der Koeffizient des elektrischen Widerstandes bestimmt. Das Ergebnis zeigt die Abb. 3. Es ergibt sich für den untersuchten Bereich die lineare Abhängigkeit

$$R = R_{0} (1 + \beta t)$$
(1)

und wie auch in $\sqrt{1}$ findet man:

 $\beta = 0,322 \cdot 10^{-3} \frac{1}{0C}$

(2)

3. Druckverlustmessungen

3.1 Auswertung

Wie in <u>/</u>1_7ausgeführt, zerlegt man den Druckverlust der Teststrecke zweckmäßig in folgende Anteile:

Eintrtittsdruckverlust (Beschleunigung, Ablösungen und erhöhte Reibung im Einlaufgebiet):

$$\Delta P_{\rm E} = K_{\rm E} \cdot \frac{1}{2g \mathscr{D}_{\rm E}} \left(\frac{\rm G}{\rm A}\right)^2 \tag{3}$$

Reibungsdruckverlust:

$$\Delta P_{R} = \lambda \cdot \frac{1}{2g\bar{\sigma}} \left(\frac{G}{A}\right)^{2} \cdot \frac{L}{D}$$
(4)

Expansionsdruckverlust (nur bei Heizung):

$$\Delta p_{\text{Ex}} = \frac{1}{g \,\overline{\sigma}} \left(\frac{G}{A}\right)^2 \cdot \frac{T_2 - T_1}{\overline{T}}$$
(5)

Gitterdruckverlust:

$$\Delta p_{\rm G} = \varphi_{\rm G} \cdot \frac{1}{2g\overline{\sigma}} \left(\frac{\rm G}{\rm A}\right)^2 \tag{6}$$

١

Der Austrittsdruckverlust (Rückgewinn) wird nicht betrachtet. Der Gesamtdruckabfall bis zu letzten Bohrung vor dem Austritt aus der Teststrecke ist dann bei n Gitterebenen:

$$\Delta p_{ges} = \Delta p_E + \Delta p_R + \Delta p_{Ex} + n \cdot \Delta p_G$$
(7)

Wenn nun der Druckverlauf über die Teststrecke gemessen wird, können durch Auswertung nach den Gleichungen (3) - (6) die gesuchten Größen bestimmt werden. Eine schematische Darstellung der Druckverlustanteile zeigt Abb. 12.

3.2 Isotherme Messungen

Die zunächst durchgeführten Messungen ohne Wärmezufuhr dienten der Ermittlung der Abhängigkeit von K_E , \mathcal{G}_G und λ von der Reynoldschen Zahl, wie wie folgt definiert ist:

$$Re = \frac{\int w D}{u}$$
(8)

mit dem hydraulischen Durchmesser des Gesamtkanals

$$D = \frac{4 \cdot Ae}{Pe}$$
(9)

In Tab. Al sind die Meßergebnisse und die ermittelten Reibungsbeiwerte und Eintrittsdruckverlustbeiwerte dargestellt, in Tab. A2 die Gitterdruckverlustbeiwerte. Abb. 4 zeigt die Eintrittsbeiwerte, die sich mit der Reynoldszahl nur wenig ändern. Die Zahlenwerte liegen für größere Reynoldszahlen etwas höher als die zum Vergleich eingezeichneten Werte des Bündels $\sqrt{1}$, bedingt durch die veränderten Einlaufverhältnisse. Die isothermen Reibungsbeiwerte sind in Abb. 5 dargestellt. Sie liegen nur wenig (2%) über den Vergleichswerten für das Kreisrohr. Dieses Ergebnis weicht ab von dem Resultat in $\sqrt{1}$, wonach λ_{λ_0} zu 0.93 ermittelt wurde. Die Abweichung wird zurückgeführt auf das bei dieser Teststrecke größere Abstandsverhältnis außen und die dadurch andere Strömungsverteilung im Bündel. Bestätigt wird diese Schlußfolgerung durch die Meßergebnisse von Grillo und Marinelli $\sqrt{4}$, die ebenfalls an einem Bündel mit 16 Stäben in einem Quadratkanal gemessen haben. Es ist p/d = 1.2833. Der Unterschied der Teststrecken liegt lediglich in einem anderen Außenabstand w/d = 1.238 und gerundeten Ecken des Führungskanals. Bei einer Streuung von \pm 5% ergeben sich in $\sqrt{4}$ die folgenden Werte:

Re	104	4·10 ⁴	105	3•10 ⁵
λ	0.0255	0.0196	0.0162	0.013

und bei Re = 10^5 ist $\frac{\lambda}{\lambda_0}$ = 0.89, also 11% unter dem Kreisrohrwert.

Das Ergebnis zeigt wieder die bereits in $/ 1_7$ diskutierte Bedeutung der Parameter Stabzahl, Außenabstand und Kanalform für die Ergebnisse von Druckverlustmessungen und den Vergleich mit anderen Autoren. Zu diesem Vergleich sind aus $/ 1_7$ die Tab. 1 und die Abb. 6 entnommen, wobei jeweils der weitere eigene Meßwert und der Meßwert aus $/ 4_7$ zugefügt wurde.

Abb. 7 zeigt die Gitterdruckverlustbeiwerte, die stark streuen; hier wirken sich Fehler der Druckabfallmessung besonders stark aus, da der Druckabfall am Gitter mit etwa 18% des Staudruckes sehr klein ist. Die Übereinstimmung mit der empirischen Formel von K. Rehme $\sqrt{3}$ ist weniger gut als für das Bündel mit 9 Rohren.

3.3 Versuche mit Heizung

Unter Verwendung der bereits ermittelten K_E und \mathcal{C}_G wird aus dem Druckabfall Δp_{ges} entsprechend Gl. (7) der Reibungsbeiwert λ_B bestimmt, wobei die Expansionsdruckverluste berücksichtigt werden. Es wird wie in $\int 1_7$ mit einer über die Teststreckenlänge gemittelten Dichte gerechnet. Es ergibt sich:

Lit.	Autor	p/d	Stab- zahl	Kanalform	a/d	λ_{λ_0} (Re = 10 ⁵ ; = 0.0182)
<u> </u>	Presser	1.05	1	quasi-∞	1.05	0.8
		1.67	16	quasi- ∞	1.67	1.04
<u> </u>	Tourneau et al.	1.12	64	glatt	1	0.95
		1.2	64	glatt	1	0.95
[7]	Dingee et al.	1.12	9	glatt	1.12	0.83
		1.2	9	U.	1.2	1.3
		1.27	9	11	1.27	1.3
<u> </u>	Gunn,Darling	1.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-	0.68
		1.31	4	glatt	1.157	0.98 (Re = $4 \cdot 10^4$)
<u>[97</u>	Galloway, Ebstein	1.07	16	glatt	1.035	$0.963 \ (\text{Re} = 1.4 \cdot 10^4)$
<u> </u>		1.23	16	£8., ·	1.115	0.998 (Re = $3 \cdot 10^4$)
		1.47	16	1 10	1.235	1.006 (Re = $4 \cdot 10^4$)
		2.0	16	17	1.5	1.03 (Re = $5 \cdot 10^4$)
<u>_1_7</u>	eigener Meßwert	1.283	9	glatt	1.23	0.93
	eigener Meßwert	1.283	16	glatt	1.27	1.02
<u> </u>	Grillo Marinelli	1.2833	16	glatt	1.238	0.89

Tabelle 1

σ

$$\lambda_{\rm B} = \frac{\Delta P_{\rm R}}{\frac{1}{2g\bar{\sigma}} \left(\frac{GP}{A} \cdot \frac{L}{D}\right)}$$
(10)

Die Ergebnisse sind in Tab. A3 angegeben und in Abb. 8 dargestellt. In Abb. 9 sind die auf die Bezugstemperatur

7

$$T_{0.4} = T_B + 0.4 (T_W - T_B)$$
 (11)

umgerechneten Reibungsbeiwerte $\lambda_{0.4}$ über Re_{0.4} dargestellt, die wie folgt berechnet wurden:

$$\lambda_{0.4} = \lambda_{\rm B} \cdot \frac{f_{\rm B}}{f_{0.4}} = \lambda_{\rm B} \cdot \frac{T_{0.4}}{T_{\rm B}}$$
(12)

ā.

$$\operatorname{Re}_{O.4} = \operatorname{Re}_{B} \cdot \frac{\mathcal{J}_{O.4}}{\mathcal{J}_{B}} \cdot \frac{\mathcal{M}_{B}}{\mathcal{M}_{O.4}} = \operatorname{Re}_{B} \left(\frac{\mathrm{T}_{O.4}}{\mathrm{T}_{B}}\right)^{-1.73}$$
(13)

Dabei werden die Stoffwerte aus Abb. 14 entnommen, wobei $/u \sim T^{0.73}$ im betrachteten Temperaturbereich ist.

Die Darstellung von $\lambda_{0.4}$ in Abb. 9 zeigt eine gute Übereinstimmung mit den isotherm gemessenen Werten, wie auch in $/ 1_{7}$ für das Bündel mit 9 Rohren festgestellt worden war.

4. Wärmeübergangsmessungen

Zusätzlich zu den fest eingebauten Thermoelementen ist bei diesem Rohrbündel zur Messung von Umfangstemperaturverteilung und Längsverteilung ein beweglicher Meßkopf eingesetzt, dessen Lage in der Teststrecke in Abb. 10 angegeben ist. Diese Meßmethode, beschrieben in $\sqrt{2}$, erlaubt die Bestimmung der Wandtemperatur über Umfang und Länge. Hierzu wird ein Meßkopf (Abb. 11) durch eine mechanische Fernbetätigung bewegt, wobei zwei Thermoelemente, die durch Federn an die Wand gepreßt werden, die Wandtemperaturen abtasten.

Die Auswertung der Wärmeübergangsmessungen ist in / 1_7 ausführlich beschrieben und wird wie folgt durchgeführt. Zu ermitteln ist für die zentralen Stäbe in der als Meßebene in Abb. 13 bezeichneten Stelle ausgebildeter Strömung die Nusseltzahl sowie die örtliche mittlere Reynoldszahl.

Es ist:

$$Nu = \frac{\mathcal{A} \cdot D}{k}$$
(14)

(15)

wobei:

Die Flächenleistung q wird aus der zugeführten Heizleistung Q_{Zu} bestimmt unter Berücksichtigung der Abhängigkeit des elektrischen Widerstandes von der Temperatur. Die mittlere Flächenleistung ist:

$$q = \frac{Q_{Zu}}{16\pi d L_{H}}$$
(16)

und die örtliche an der Stelle "M":

$$q_{M} = q \frac{1+\beta t_{WM}}{1+\beta t_{W}}$$
(17)

Die zugeführte Leistung berechnet sich aus der elektrischen Heizleistung minus Verluste:

$$Q_{Zu} = Q_{el} - Q_{Verl}$$
(18)

Die Verluste durch die Isolation werden abgeschätzt zu:

 $\alpha = \frac{q}{T_{W} - T_{P}}$

$$Q_{\text{Verl}} = k_{i} \frac{\widetilde{\Delta T}}{D_{2}S_{1} + D_{1}S_{2}} \cdot D_{1}D_{2} \cdot \widetilde{II} \cdot L_{H}$$
(19)

dabei hat k_i den Zahlenwert 0.2 kcal/m h^OC (Steinwolleisolation der Teststrecke), das Temperaturgefälle ist:

$$\overline{\Delta T} = \frac{T_A - T_E}{2}$$
(20)

Es ist $D_1 = 153$ mm mittlerer Durchmesser der Innenisolierung mit der mittleren Dicke $S_1 = 15$ mm. $D_2 = 225$ mm ist der mittlere Durchmesser der Außenisolierung mit $S_2 = 70$ mm. Die gemessenen elektrischen Leistungen für alle Meßpunkte sind in der Tab. A4 im Anhang zusammengestellt. Die Wärmebilanz zeigt Abweichungen bis zu 14,7%, die auch in $/ 1_7$ aufgetreten sind und zurückgeführt werden auf Fehler in der Gastemperatur-Messung.

Die zur Berechnung von « nötige "Bulk"-Temperatur des Kühlmittels an der "Meßebene" mit der Längenposition X wird aus gemessener Eintrittstemperatur und zugeführter Wärme berechnet.

$$T_{\rm B} = T_{\rm E} + \frac{Q_{\rm Zu} \cdot \frac{\Lambda}{\rm E}}{G \cdot cp}$$
(21)

Diese Auswertung setzt konstante Gastemperatur über den Querschnitt voraus. Bei dem Rohrbündel mit 9 Rohren / 1 / 7 war diese Voraussetzung weitgehend erfüllt durch die Festlegung des Wandabstandes der Außenrohre zu w/d = 1.23. Hierdurch war erreicht worden, daß in den Unterkanälen sich ein der anteiligen Heizfläche entsprechender Massenstrom eingestellt hat, in den Zentralkanälen also 1/9 des Gesamtdurchsatzes strömte. Diese Auslegung erlaubte die Berechnung von Nusselt- und Reynoldszahl nur für die Zentralzelle.

$$D_{\infty} = \frac{4(p^2 - \frac{\pi d^2}{4})}{\pi d}$$
(22)

ergeben sich:

Mit:

$$Nu_{B} = \frac{d \cdot D_{\infty}}{k}$$
(23)

und für das 9-er Bündel war:

$$\operatorname{Re}_{B-9} = \frac{(fw) D_{\infty}}{M} = \left(\frac{G}{9}\right) \cdot \frac{4}{\sqrt{u \operatorname{Td}}}$$
(24)

für das 16-er Bündel ergibt sich:

$$\operatorname{Re}_{B-16} = \frac{(fw) \quad D_{\infty}}{\mu} = \left(\frac{G}{16}\right) \cdot \frac{4}{\mu \text{ ff d}}$$
(25)

Im Falle des 16-er Bündels ist aber nur w/d = 1.27, das heißt der Wandabstand außen ist geringfügig größer. Dadurch wird ein größerer Anteil des Massenstromes durch die Außenkanäle fließen, in den Zentralkanälen also entsprechend weniger. Der Einfluß auf die Meßergebnisse soll nun diskutiert werden. Zunächst ist ein schnellerer Anstieg der Gastemperatur in den Zentralkanälen gegenüber den in (21) berechneten Werten zu erwarten. Also wird durch diesen Effect die rechnerische Temperaturdifferenz $T_W^{-T}_B$ zu groß, & nach Gl.(15) und damit die Nusseltzahl aber zu klein berechnet werden.

Ebenso wird hierdurch die Reynoldszahl beeinflußt, die für die Zentralkanäle zu klein berechnet wird. Zur Auswertung wurden wie in $/ 1_7$ die in Abb. 14 gezeigten Stoffwerte benutzt.

Ergebnisse der Messungen

Die Meßergebnisse sind im Anhang in den Tabellen A5 und A6 zusammengestellt. Eine Darstellung zeigt Abb. 15. Zum Vergleich ist eingezeichnet die von L. Prandtl für das Kreisrohr abgeleitete Gleichung, siehe $\sqrt{-1}$.

$$Nu = \frac{\lambda/8 \text{ Re Pr}}{1+\Psi(Pr-1)} \text{ mit } \varphi = 1.5 \text{ Re}^{-1/8} \text{Pr}^{-1/6}$$
(26)

Diese Gleichung gibt die Ergebnisse des 9-er Bündels wieder. Alle Meßwerte des 16-er Bündels liegen unter dieser Kurve. Man erkennt eine Tendenz der Meßpunkte, mit zunehmenden T_W/T_B weiter von der Vergleichskurve abzuweichen.

Diese Tendenz ergibt sich klar in Abb. 16,in der die Größe $\frac{Nu}{Re_B^{O.75}}$ dargestellt ist. Während sich für das Bündel mit 9 Rohren keine Abhängigkeit von T_W/T_B zeigte, tritt hier eine deutliche Abhängigkeit auf. Die Streuung der Meßpunkte ist ähnlich groß wie in $/1_7$ dargestellt. Für kleine T_W/T_B erreichen die ermittelten Nu/Re^{O.75} die beim 9er-Bündel gefundenen Werte.

Zusammengefaßt kann gesagt werden, daß die Ergebnisse der Wärmeübergangsmessungen die in $/ 1_7$ gefundenen Resultate weitgehend bestätigen. Allerdings zeigt sich ein überraschend großer Einfluß des nur geringfügig erhöhten Wandabstandes. Die Strömungsverteilung ist verändert; in den Zentralkanälen tritt eine geringere Geschwindigkeit und eine stärkere Erwärmung des kompressiblen Kühlmittels auf, was eine Verdrängung des Kühlmittels nach außen bringt, die mit zunehmender Heizleistung (T_W/T_B größer) größeren Einfluß bekommt, das heißt, die hier mit der mittleren Gastemperatur berechnete Nusseltzahl nimmt mit T_W/T_B ab. Dieses Ergebnis zeigt, daß weitere Unter-

suchungen insbesondere der Strömungsverteilung notwendig sind, um eine hinreichend gute Berechnung der Temperaturverteilung in einem gasgekühlten Rohrbündel durchzuführen.

Zur Umfangstemperaturverteilung

Der in das Rohrbündel eingebaute Meßkopf ist mit zwei Miniaturmantelthermoelementen ausgerüstet, die an der Spitze auf 0.35 mm Durchmesser ausgezogen sind, Abb. 11. Dadurch wird eine kurze Ansprechzeit erreicht. Wie durch Vorversuche geklärt, ist mit dieser Einrichtung eine Reproduzierbarkeit <0,5°C zu erreichen, was für derartige Messungen völlig ausreicht. Leider hat sich beim Betrieb der Meßeinrichtung gezeigt, daß die vorgesehene mechanische Verstellung des Meßkopfs einem längeren Betrieb nicht gewachsen war. Immerhin ist die Hauptaufgabe, die Messung der Umfangsverteilung, erfüllt worden. Hierzu wurde ein spezieller Versuch (12a) gemacht, dessen Hauptdaten in Tab. A4 angegeben sind. Die Umfangsverteilung wurde gemessen, indem der Meßkopf in der in Abb. 17 angegebenen Weise verstellt wurde. Die in Abb. 17 aufgetragenen Meßwerte zeigen keine signifikante Abhängigkeit, die Streunng 2° C mithin ist festzustellen, daß bei p/d = 1.283 die Umfangsist temperatur um weniger als + 1°C schwankte, wobei die Temperaturdifferenz Wand-Gas etwa 55°C betrug.

In der Literatur finden sich nur wenige Angaben über Umfangstemperaturmessungen.

Nach der Berechnung von Deissler and Tayler $/\overline{11}/$ würde bei p/d = 1.283 und quadratischer Anordnung der Parameter M, der wie folgt definiert ist:

$$M = \frac{S \cdot k_{W}(t_{W_{max}} - \overline{t}_{w})}{q \cdot \left(\frac{d}{2}\right)^{2}}$$
(27)

den Zahlenwert M_{1.283} = 0.028 annehmen. Dies führt mit S = 0.12 cm $\frac{d}{2}$ = 0.87 cm, q = 12.2 $\frac{W}{cm^2}$ und bei der mittleren Wandtemperatur von 302°C mit der Wärmeleitfähigkeit des Rohrwandmaterials von k_W = 0.18 $\frac{W}{cm^{\circ}C}$ zu der folgenden Temperaturdifferenz:

$$t_{W_{max}} - \overline{t}_{W} = 12^{\circ}C.$$

Wie die Meßergebnisse zeigen, ist dieser Wert mit Sicherheit viel zu hoch. Dingee und Chastain $\sqrt{7}$ $\sqrt{7}$ finden ebenfalls keine signifikante Änderung der lokalen Nu-Zahl am Umfang, allerdings ist bei der in / 7 7 beschriebenen Teststrecke aus Cupronickel auch der nach Deissler $\sqrt{11}$ berechnete Wert von t_{w,max}-t_w klein (etwa 3^oC) und so nur schwer meßbar. Miller, Byrnes, Benforado /127 finden ebenfalls keinen Umfangseffekt bei p/d = 1.46; Re = 10^5 . Palmer und Swanson $\overline{137}$ messen die lokale Wärmeabfuhr am Umfang sehr eng gestellter Stäbe. Es ergeben sich mit zunehmender Re-Zahl abnehmende Unterschiede von der lokalen q zur mittleren Flächenleistung q. So ist bei p/d = 1.015 und Re = etwa um den Faktor 3,3 kleiner als nach Deissler <u>q</u>e 60 000 (1q /Messung $\overline{117}$ berechnet würde. Für p/d = 1.71 und Re = 75 000 geben Hoffmann, Wantland, Stelzmann $\sqrt{1}\frac{4}{4}$ einen Meßwert $\frac{t_w \text{ max}}{t} = 1.024$. Die Auswertung wtw max-tw entspricht, die zeigt, daß dies einer Temperaturdifferenz um einen Faktor 10 unter der nach Deissler $\underline{\overline{11}}$ berechneten liegt.

Zusammenfassend kann gesagt werden, daß die Berechnung der Umfangstemperaturverteilung nach Deissler Werte liefert, die weit über den Meßwerten liegen und daß für größere Abstandsverhältnisse, wie sie hier mit p/d = 1.283 vorliegen, keine nennenswerten Temperaturunterschiede am Umfang der Stäbe zu erwarten sind, es sei denn an den Randstäben, die an Unterkanälen unterschiedlicher Temperatur angrenzen.

5. Zusammenfassung

Der Bericht gibt die Ergebnisse von Messungen des Druckabfalls und des Wärmeübergangs mit Helium an einem Bündel mit 16 Rohren an. Das Abstandsverhältnis der Rohre ist p/d = 1.283. Der Versuchsbereich war wie in folgender Tabelle angegeben:

Kühlmedium	Helium
Reynoldszahl	1,5·10 ⁴ < Re < 1,4·10 ⁵
Druck max.	43 ata
Temperatur Gaseintritt	220 ⁰ C
Temperaturfaktor	$1 < T_W/T_B < 1.4$
Durchsatz max.	1.2 kg/sec
Heizleistung	110 - 295 kW
Stableistung max.	- 105 W/cm
Flächenleistung	- 19 W/cm^2

Der ermittelte Reibungsbeiwert liegt knapp über den Werten für das glatte Kreisrohr (2%). Die Nusseltzahl des Zentralkanals liegt für kleine T_W/T_B nur wenig unter den Kreisrohrwerten.Die Temperatur am Umfang der Heizrohre zeigte keinen von der Strömung hervorgerufenen Effekt.

Die Verfasser danken den Herren Mensinger und Roth für ihre Mitarbeit.

<u>Anhang A</u>

Tabelle Al

Meßwerte zur Ermittlung von λ und K_E

Meßpunkt	G	ą	Ĩ	ΔP _D /L	10-5 5	λ	αΛ	ĸ
	(kp/sec)	(ata)	([°] K)	(kp/m^3)	10 • Ke	~	(kp/m^2)	те –
141	1 1261	42 04	207 4	1.60.6				
14.2	1.1201	42.04	207.4	1606	1.2814	0.0176	690.3	1.10
14.2	0.9809	43.72	209	1207	1.1135	0.0181	504.2	1.097
14.3	0.8404	43.50	209.5	934	0.9533	0.0190	390.8	1.153
14.4	0.72	43.23	209.5	709	0.8167	0.0195	288.2	1.15
14.5	0.6158	43.00	209.5	542	0.6985	0.0203	213.3	1.158
14.6	0.5281	42.55	211	403.5	0.6977	0.0203	172.2	1.251
14.7	0.4521	42.35	210	315.5	0.5124	0.0216	114.6	1.136
14.8	0.4022	43.29	207.5	237.2	0.4576	0.0211	90.1	1.158
14.9	0.3368	43.19	207.5	177.6	0.3832	0.0224	62.3	1.139
14.10	0.2897	43.09	207	148.7	0.3299	0.0254	42.8	1.057
14.11	0.2489	42.80	207	116	0.2834	0.0266	30.5	1.012
14.12	0.2133	42.70	206.7	90.5	0.2430	0.0282	22.3	1.005
15.1	1.0662	44.3	215	1360	1.1994	0.0173	640.2	1.18
15.2	0.9067	44.1	215	1035	1.02	0.0181	472.1	1,198
15.3	0.7803	43.9	214	785	0.8791	0.0185	377.8	1 291
15.4	0.6674	43.7	213	611.5	0.7531	0.0197	262.5	1.223
15.5	0.5714	43.4	212	467	0.6457	0.0204	197.7	1 251
15.6	0.4927	43.3	212	367.5	0.5568	0.0215	145 4	1.231
15.7	0.4224	43.2	211.5	277	0.4778	0 0221	104 6	1 207
15.8	0.4198	43.2	214	262.5	0.473	0.0211	104.0	1.207
15.9	0.3087	43.0	213	154	0.3/83	0.0211	57.4	1.132
15.10	0.2654	42.9	213	113.8	0.3405	0.0220	53./	1.151
15.11	0.2302	42.8	212	-113.0 03.6	0.2995	0.0227	41.1	1.189
15 12	0 1962	12 0	212	93.0	0.2601	0.0249	28.5	1.096
1.2.1.4	0.1902	42.0	212	65.7	0.2217	0.0240	23.4	1.237

Tabelle	<u>A2</u>	Meßwerte	zur	Ermittlung	von	G
						•

Meßpunkt	G (kp/sec)	p (ata)	т (⁰ к)	$\frac{\Delta P_G}{(kp/m^2)}$	10 ⁻⁵ •Re	Уg
11.1	1.1767	42.3	210	130.73	1.3338	0.185
11.2	0.9915	42.0	209	90.21	1.1255	0.18
11.3	0.7901	41.8	208	64.35	0.8983	0.201
11.4	0.6245	41.54	207,5	38.77	0.7105	0.193
11.5	0.5009	41.51	208.7	25.02	0.5689	0.193
11.6	0.4034	41.51	208.7	14.93	0.4581	0.178
11.7	0.4014	41.48	208.2	13.06	0.4563	0.157
11.8	0.3194	41.37	208.2	8.3	0.3631	0.157
12.1	1.1133	43.5	214	98.73	1.2544	0.164
12.2	1.1835	43.5	220.5	117.58	1.3207	0.171
12.3	1.0264	43.5	221.5	84.73	1.1436	0.163
12.4	0.9327	43.4	221.5	75.08	1.0393	0.175
12.5	0.8583	43.4	22115	63.66	0.9564	0.175
12.6	0.7534	43.4	222	57.36	0.8389	0.205
12.7	0.6796	43.3	223	46.57	0.7556	0.203
12.8	0.5603	43.3	223	34.40	0.6230	0.221
12.9	0.4606	43.2	223	22.02	0.5121	0.209
12.10	0.4230	43.0	223	14.25	0.4703	0.159
12.11	0.3588	42.7	223	11.73	0.3990	0.181
	L	<u> </u>	<u> </u>			

Tabelle A3

Versuche mit Wärmezufuhr

Meßpunkt	G (kp/sec)	p _E (ata)	^Т 1 (^о к)	^Т 2 ([°] К)	∆p _{ges} (kp/m ²)	$\Delta P_R^{(kp/m^2)}$	$\overline{T}_{W}/\overline{T}_{B}$	10 ⁻⁵ •Re _B	λ_{B}	10 ⁻⁵ •Re ₉₄	λ0.4 -
11.13	0.5069	43.14	487	538	675	395.14	1.114	0.5503	0.0206	0.5094	0.0216
11.14	0.6422	43.00	487	538	1069.5	616.20	1.12	0.6971	0.0200	0.6428	0.0210
11.15	0.8395	42.97	487	535	1745	978.34	1.121	0.9133	0.0186	0.8415	0.0195
11.16	0.7263	43.11	487.7	566	1380	772.31	1.179	0.7727	0.0191	0.6857	0.0205
11.17	0.5482	42.77	486.5	565	835	483.63	1.172	0.5842	0.0209	0.5205	0.0223
11.18	0.3501	42.91	485.7	573	375	227.9	1.174	0.3713	0.0240	0.3304	0.0257
12.15	0.4067	43.60	485.5	533	430	249.42	1.109	0.4434	0.0206	0.4118	0.0215
12.16	0.7459	43.23	484.5	528.5	1355	760.99	1.116	0.8167	0.0186	0.7550	0.0195
12.17	0.4597	43.03	483	561.3	570	325.34	1.166	0.4924	0.0202	0.4403	0.0216
12.18	0.2501	42.70	482	567.8	184	107.60	1.155	0.2668	0.0223	0.2405	0.0237
12.19	0.2853	42.52	481.5	576.5	235	134.58	1.174	0.3027	0.0212	0.2694	0.0227
12.20	0.2152	42.50	481.5	644	153.5	88.91	1.262	0.2183	0.0231	0.1838	0.0255
12.21	0.2875	42.45	481.5	639.8	260	147.52	1.271	0.2924	0.0215	0.2447	0.0239
12.22	0.3632	42.41	483	634	400	224.45	1.274	0.3704	0.0206	0.3094	0.0229
12.23	0.2828	42.38	483	678.3	260	145.24	1.329	0.2803	0.0211	0.2264	0.0239
12.1	0.7365	42.70	481	529.3	1330	748.71	1.109	0.8045	0.0186	0.7475	0.0194
12.2	0.7210	41.90	479.8	528.5	1305.5	738.20	1.108	0.7876	0.0188	0.7321	0.0196
13.13	0.4851	43.30	484	541	600	342.27	1.095	0.5266	0.0196	0.4938	0.0203
13.14	0.6569	43.55	486.3	542.2	1055	587.89	1.099	0.7113	0.0184	0.6654	0.0191
13.15	1.0083	44.10	489.3	540.7	2280	1207.58	1.105	1.0907	0.0162	1.0160	0.0169
13.16	0.2497	43.43	484	648	193	109.52	1.241	0.2522	0.0215	0.2151	0.0236
13.17	0.3345	42.60	483	632.2	334	186.55	1.251	0.3414	0.0203	0.2922	0.0222
13.18	0.3880	42.58	488.5	636	442	243.61	1.238	0.3937	0.0195	0.3364	0.0214
		1									

Tabelle A4 Wärmebilanz

	[]	The second se				ور فروار التربية وروان المراجع عن الكاملونين المقال		1		1	1
Meßpunkt	G	P_{E}	v 1	v_2	Q	U	Ĵ	Q _{el}	Q verl	Q _{zu}	Q _{zu} -Q _G
_	(kp/sec)	(ata)	(⁰ C)	(⁰ C)	(KŴ)	(V)	(A)	(KW)	(KW)	(KW)	Q ₇₁₁
											(%)
11.13	0.5069	43.14	214.0	265.0	134.41	66.63	2112.5	140.75	0.0793	140.67	+ 4.5
11.14	0.6422	43.00	214.0	265.0	170.28	73.5	2316	170.23	0.0793	170.15	- 0.08
11.15	0.8395	42.97	214.0	262.0	209.50	81.17	2572.5	208.81	0.0746	208.74	- 0.37
11.16	0.7263	43.11	214.7	293.0	295.67	97.1	3026	293.83	0.1217	293.71	- 0.67
11.17	0.5482	42.77	213.5	292.0	223.74	86.0	2685	230.91	0.122	230.79	+ 3.1
11.18	0.3501	42.91	212.7	300.0	158.9	72.9	2270	165.48	0.1357	165.34	+ 3.9
12.15	0.4067	43.6	212.5	260.5	101.50	58.9	1875	110.44	0.0746	110.37	+ 8.0
12.16	0.7459	43.23	211.5	255.5	170.63	75.9	2410	182.92	0.0684	182.85	+ 6.7
12.17	0.4597	43.03	210.0	288.3	187.14	78.2	2445	191.20	0.1217	191.08	+ 2.1
12.18	0.2501	42.7	209.0	294.8	111.57	59.8	1875	112.13	0.1333	112.0	+ 0.38
12.19	0.2853	42.52	208.5	303.5	140.91	66.4	2065	137.12	0.1476	136.97	- 2,9
12.20	0.2152	42.5	208.5	371.0	181.81	76.5	2330	178.25	0.2525	178.0	- 2.1
12.21	0.2875	42.45	208.5	366.8	236.62	86.8	2630	228.28	0.246	228.03	- 3.8
12.22	0.3632	42.41	210.0	361.0	285.14	95.5	2905	277.43	0.2347	277.2	- 2.9
12.23	0.2828	42.38	210.0	405.3	287.15	96.1	2870	275.81	0.3035	275.51	- 4.2
13.1	0.4851	43.3	211.0	268.0	143.76	63.75	2030	129.41	0.0886	129.32	- 11.2
13.2	0.6569	43.55	213.3	269.3	191.26	72.35	2305	166.77	0.087	166.68	- 14.7
13.3	1.008	44.1	216.3	267.8	269.90	86.6	2750	238.15	0.08	238.07	- 13.4
13.4	0.2497	43.43	211.0	374.8	212.65	81.4	2480	201.87	0.2545	201.62	- 5.5
13.5	0.3345	42.6	210.0	359.5	260.00	89.7	2742.5	246.00	0.2323	245.77	- 5.8
13.6	0.388	42.58	215.5	363.0	297.54	96.7	2910	281.40	0.2292	281.17	- 5.8
12a.1	0.7365	42.7	210	256.3	176.2	76.35	2425	185.15	0.072	185.08	+ 4.8
		l									

Tabelle A5 Ermittlung der Wärmeübergangszahlen

Meßpunkt	\overline{q} (w/cm ²)	τ (°C)	(°C)	q ₆₅ (W/cm ²)	$\frac{\frac{3}{4}(t_{wi}-t_{wa})}{\binom{OC}{2}}$	т _W (°к)	т _в (°к)	T _W -T _B (°C)	$\begin{pmatrix} \mathcal{L} \\ \frac{kcal}{m^2h \cdot c} \end{pmatrix}$	$\frac{10 \cdot K}{\left(\frac{\text{kcal}}{\text{m h} \cdot \text{c}}\right)}$
11.13	9.24	298	312.3	9.28	2.4	582.9	525	57.9	1378.4	1.961
11.14	11.18	301	315	11.23	2.8	585.2	523.3	61.9	1560.2	1.96
11.15	13.72	300	313	13.77	3.5	582.5	521.1	61.4	1928.7	1.954
11.16	19.3	348	369	19.42	9.4	632.6	543.1	89.5	1866.1	2.02
11.17	15.17	343.5	366	15.18	7.5	631.5	544.2	87.3	1495.4	2.022
11.18	10.86	348.5	372.5	10.87	5.3	640.2	550.4	89.8	1041.0	2.037
12.15	7.25	292	308.5	7.25	3.7	577.8	522.7	55.1	1131.6	1.958
12.16	12.02	292.2	307.3	12.07	3.1	577.2	518.1	59.1	1756.4	1.941
12.17	12.56	336	360	12.65	3.1	629.9	540	89.9	1210.1	2.007
12.18	7.36	333	356.5	7.41	1.8	627.7	543.4	84.3	755.94	2.02
12.19	9.00	348.2	375	9.07	2.2	645.8	547.3	98.5	791.90	2.027
12.20	11.7	437	479	11.84	2.6	749.4	594.8	154.6	658.63	2.147
12.21	14.98	439.5	481.5	15.16	3.3	751.2	590.2	161	809.79	2.136
12.22	18.21	438.5	480	18.42	4.1	748.9	587.6	161.3	982.10	2.13
12.23	18.1	498.5	550	18.36	3.8	819.2	616.5	202.7	778.96	2.2
13.1	8.50	288	304.5	8.54	2.2	575.3	520.5	54.8	1340.2	1.951
13.2	10.95	292	306	11.00	2.8	576.2	521.1	55.1	1716.9	1.954
13.3	15.64	296	308.5	15.70	3.9	577.6	521.7	55.9	2415.4	1.956
13.4	13.25	429	474	13.42	2.1	744.9	594.6	150.3	766.86	2.147
13.5	16.15	416	458	16.34	3.7	727.3	583.7	143.6	978.58	2.123
13.6	18.48	423	466	18.71	4.2	734.8	587.8	147	1094.6	2.13
12a.1	12.16	288	302.4	12.21	3.1	572.3	517.4	54.9	1912.7	1.939

Tabelle A6 Ermittlung von Nu und Re

· · · · · · · · · · · · · · · · · · ·					
Meßpunkt	^{Nu} B -	$\frac{10^5 \cdot \mu}{\left(\frac{kp}{m \text{ sek}}\right)}$	10 ⁻⁵ •Re _B -	$\frac{\frac{Nu_B}{Re_B^{0.75}}}$	[™] w_ [™] B
11.13	134.03	3.025	0.7664	0.0291	1.110
11.14	151.79	3.019	0.9729	0.0276	1.118
11.15	188.21	3.0	1.2798	0.0278	1.118
11.16	176.15	3.09	1.0750	0.0297	1.165
11.17	141.02	3.096	0.8098	0.0294	1.160
11.18	97.45	3.125	0.5124	0.0286	1.163
12.15	110.2	3.016	0.6167	0.0282	1.105
12.16	172.55	2.982	1.1440	0.0277	1.114
12.17	114.97	3.08	0.6826	0.0272	1.167
12.18	71.358	3.091	0.3700	0.0267	1.155
12.19	74.494	3.11	0.4196	0.0254	1.180
12.20	58.495	3.301	0.2982	0.0258	1.260
12.21	72.29	3.288	0.3999	0.0256	1.273
12.22	87.919	3.275	0.5072	0.0260	1.275
12.23	67.515	3.388	0.3818	0.0247	1.329
13.1	130.98	2.994	0.7410	0.0292	1.105
13.2	167.54	3.0	1.001	0.0298	1.106
13.3	235.47	3.007	1.5331	0.0304	1.107
13.4	68.107	3.3	0.3461	0.0268	1.253
13.5	87.893	3.26	0.4693	0.0276	1.246
13.6	97.99	3.276	0.5417	0.0276	1.250
12a.1	188.09	2.98	1.1303	0.0305	1.106

Liste der Symbole

A	Strömungsquerschnitt
p	Abstand der Heizrohrmittelpunkte
W	Abstand der Heizrohre vom Führungskanal
cp	spezifische Wärme
D,D _h	hydraulischer Durchmesser D = $\frac{4}{P}$
đ	Rohraußendurchmesser
g	Erdbeschleunigung
Ģ.	Durchsatz pro Zeiteinheit
k	Wärmeleitfähigkeit
К _Е	Eintrittsdruckverlustbeiwert
L	Teststreckenlänge
LA	unbeheizte Anlauflänge
$\mathbf{r}^{\mathbf{H}}$	beheizte Länge
M	Parameter
Nu	Nusselt-Zahl
NW	Nennwerte des quadratischen Kanals
Ρ	Umfang
Pr	Prandtl-Zahl
q	Wärmeleistung pro Flächeneinheit
Q	Heizleistung
Re	Reynolds-Zahl
R	elektrischer Widerstand
Ro	elektrischer Widerstand bei O ^O C
S	Wandstärke
n	Anzahl der Abstandshalter
t	Temperatur / OC_7

т	Temperatur / OK_7
W	Gasgeschwindigk eit
x	Koordinate in Strömungsrichtung
æ	Wärmeübergangszahl
ß	Koeffizient des elektrischen Widerstandes
r	spezifisches Gewicht
λ	Reibungsbeiwert
8	Dichte
Ŷ	Gastemperatur
μ	Zähigkeit
ßG	Gitterdruckverlustbeiwert

Indices

1	Beginn Heizstrecke
2	Ende Heizstrecke
a	außen
A	Austritt
B B	Bulk
e	Gesamtkanal
Е	Eintritt
E _x	Expansion
G	Abstandshalter
R	Reibung
W	Wand
\sim	unendliche Anordnung
M A	örtliche Meßebene

Anhang C

Literaturverzeichnis

- [1] J. Marek, K. Maubach: Ergebnisse von Wärmeübergangs- und Druckverlustmessungen mit Helium an einem Rohrbündel, KFK 1482 (1971)
- [2] K. Maubach: Beschreibung einer Methode zur Messung der Wandtemperatur außenumströmter, direkt beheizter Rohre, (1966) unveröffentlicht
- [3] K. Rehme: Widerstandsbeiwerte von Gitterabstandshaltern für Reaktorbrennelemente, Atomkernenergie 15, 127 (1970)
- [4_7] P. Grillo, V. Marinelli: Single and twophase Pressure Drops on a 16-Rod Bundle, Nuclear Applications and Technology, Vol.9, p.682 (1970)
- / 5_/ K. Presser: Wärmeübergang und Druckverlust an Reaktorbrennelementen in Form längsdurchströmter Rundstabbündel, Jül-486-RB (1967)
- / 6_/ Le Tourneau, R.E. Grimble, J.E. Zerbe: Pressure Drops for Parallel Flow through Rod Bundles, Trans.ASME 79, 1751-58 (1967)
- / 7_7 D.A. Dingee, Chastain, J.W.: Heat Transfer from Parallel Rods in Axial Flow, TID 7529 Book 2 (1957)
- [8_7 D.J. Gunn, C.W. Darling: Fluid Flow and Energy Losses in Noncircular Conduits, Trans.Inst.Chem.Engrs., Vol.41, 163 (1963)
- / L.R. Galloway, N. Epstein: Longitudinal Flow between cylinders in Square and Triangular Arrays and in a tube with Squareedged Entrance, AICH-I.Chem.E.Symposium Series No.6, 3 (1965)
- <u>L.R. Galloway: Longitudinal Flow between Cylinders in</u> Square and Triangular Arrays, Univ.of Br.Columbia Ph.D. (1964)
- <u>/I1</u> R.G. Deissler, M.F. Taylor: Analysis of axial turbulent Flow and Heat Transfer through Banks of Rods or Tubes, TID 7529 (pt.1), 416 (1957)
- <u>/12</u> P. Miller, J.J. Byrnes, D.M. Benforado: Heat Transfer to Water flowing parallel to a Rod Bundle, A.I.Ch.E. Journal, p.226 (June 1956)
- <u>/13</u>/ L. Palmer, L. Swanson: Measurements of Heat Transfer Coefficients, Friction Factors, velocity Profiles for Air Flowing parallel to closely spaced Rods, 1961 Int.H.Transf.Conf. ASME (1961)
- <u>/147</u> M. Hoffmann, J. Wandland, W. Stelzmann, Heat Transfer with axial Flow in Rod Cluster, 1961 Int.H.Transf.Conf.ASME (1961)

. م

Darstellung der Eintrittsdruckverlustbeiwerte

Abb. 4

Darstellung der Reibungsbeiwerte (isotherm)

Vergleich der Meßergebnisse

Darstellung der Reibungsbeiwerte (thermisch)

Abb. 9 Darstellung der Reibungsbeiwerte (Bezugstemperatur T=0.4

Abb.lla Meßkopf mit Feder

Abb.11b Thermoelemente mit Meßspitze

Abb.llc Montierter Meßkopf

Abb. 11

Meßkopf

Druckverlauf schematisch

Schema Wand-Temperaturverlauf

Stoffwerte von Helium

Darstellung über dem Temperaturfaktor

Messung der Umfangstemperaturverteilung

and the second of the second second second second second

en 13