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Zusammenfassung

Die Amplitude fiir den Aufbruch von Deuteronen durch Protonen wird
unter EinschluR der Coulomb-Endzustandswechselwirkung in allen
Partialwellen analytisch berechnet. Die Rechnung basiert auf der
Annahme einer Zweistufenreaktion, wobei der Aufbruchsmechanismus
mit einer zero range-N&Zherung erfasst wird. Bei der Berechnung der
"nuklearen Komponente" der Endzustandswechselwirkung wird unter
Verwendung der gleichen Niherung nur der s-Zustand berilicksichtigt.
Der Vergleich mit den experimentellen Ergebnissen zeigt, daf das
Modell dem urspriinglichen Watson Migdal-Ansatz klar liberlegen ist.

Abstract

The amplitude for deuteron break-up in deutercn-proton-collision
including Coulomb final state interaction (in all partial waves)

is derived analytically. The calculation is based on the assumption
of a two-step reaction with break-up mechanism of zero range.
Nuclear final state interaction is taken into account under the same
approximations in s-waves. Comparison with experiments indicates

a clear improvement compared to the Watson-Migdal theory.






1. Introduction

It is well known that in consequence of the long range of the
Coulomb potential low energy proton-proton scattering cannot be
described suitably by a partial wave expansion. As the pure

Coulomb scattering amplitude can be evaluated analytically, the
appropriate method is a partial wave expansion of the difference

of exact and pure Coulomb scattering amplitudes |[1|. This difference
is conventionally referred to as "nuclear" scattering amplitude.

The relative proton-proton state that occurs after a deuteron
break-up induced by a deuteron-proton-collision contains much fewer
higher partial waves than a plane wave. The subsequent proton-
proton scattering (proton-proton final state interaction) at low
relative energies can therefore be described in fair approximation

by pure s-wave scattering |[2|. However, scattering in higher
partial waves is apparently more important than for the analogous
neutron-neutron or proton-neutron final state interactions.
Deviations of the experimental cross section |3| from the results
of pure s-wave final state scattering calculations |4| indicate a
non-negligible Coulomb scattering in higher partial waves.

It is demonstrated below that the amplitude for deuteron break=up
by protons with pure Coulomb final state interaction - in analogy
to Rutherford scattering - can be calculated analytically if

a) the break-up is assumed to be a two-particle
mechanism of zero range,

b) Coulomb interaction is neglected in the incoming

channel, and

c) the deuteron wave function is described by & Hulthén-type

wave function.

The "nuclear" final state scatterir

ot

i
again by partial waves.

The results describe a slightly asymmetric final state peak structure
as well as a proton-spectator peak. They have therefore a much

wider kinematical range of applicability than the pure s-wave
(Watson-Migdal) theory. Nonetheless, they are still analytical.



2. Method of Calculation

Specific reaction mechanisms for three particle reactions are
known to be dominant in different kinematical regions. Fig. 1
for instance illustrates the mechanism responsible for deuteron
break-up in the reaction d+p-+p+p+n in regions of large neutron
angles and large relative neutron-proton final-state momenta.
This diagram is .defined as representing a matrix element of the’
following type.
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The matrix element is given here in the rest system of the free
proton before scattering. ?, 5, gn and k are wave

the incoming deuteron, the final proton-proton center of mass,
the outgoing neutron and the final proton-proton subsystem. ¢d is
the deuteron wave function. xig) denotes the proton-proton

scattering wave. is the k proton-neutron scattering operator.

T23
The graph given by fig. 1 includes both mechanisms conventionally
referred to as quasifree scattering (QFS) and final state inter-
action (FSI) by assuming the reaction to proceed via two steps.
The validity of such a two step mechanism has been verified

experimentally for a limited kinematical region |5].
The special kinematical conditions quoted above are expected to
guarantee that there is nc considerable contribution from p-p QFS
and n-p FSI., Of course, the applicability of the model is not
restricted to this special case. Similar calculations may be

performed in all cases where complementary conditions are met.



Taking into account spins and antisymmetrization leads to the
following expression for the differential cross section.
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Here, A is a pure kinematical factor. S, s and o are total spin,

and the spins of the final state proton-proton system and proton-
neutron scattering (2-3)-system, respectively. The matrix elements
M depend on ¢, because of the spin dependence of the scattering

80
operator TS}’ and on s by the antisymmetrization:
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The proton-proton scattering wave function x*(;) can be written as
k Cb

the sum of a regular Coulomb wave function X, and a correction
term Xﬁuc due to nuclear interaction
k
+ Cb -+ '\I
X, (r) = r) + ytuc
K X )0
(5)
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The parameter n is defined by n=(2kR)°1 with R=28.8 Fm, the proton
Bohr radius. For further definitions concerning the Coulomb wave
functions see [6|. Outside the range of nuclear forces the
correction can be expanded

ge1 10, 218

k (r)= - tﬁ(}-z (22+1)1 e (e

fonx (6)

X (Gﬁ(kr) + in(kr)) Pz(cps G)_lz ;)

Here 61 and o are the "nuclear" and the pure Coulomb phase shifts,

£
respectively.

According to eq. (5), also the matrix elements MSCr can be

decomposed into "Coulomb" and "nuclear" parts
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Msc and M .
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More precisely, MCb describes contributions without final state
interaction (i.e., essentially the spectator mechanism) and with
pure Coulomb final state interaction whereas MNuc contains nuclear
and mixed final state interactions. The "Coulomb" matrix element
MCb does not vanish for vanishing Coulomb céupling and therefore
will more appropiately be called "spectator" matrix element MSp

hereafter.

This spectator matrix element can be evaluated analytically if

TgB is replaced by a &§-function.
-0 _ -3 _+
Tys = Vod(r1 r2)
T23 = aoVO°6(r1—r2)

and if the deuteron wave function is represented by a Hulthén-type

function.

04(F) = N - (9)



with the normalization constant N given by
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This procedure is in the spirit of both the Watson-Migdal theory
and the usual impulse approximation,which assume that the
momentum dependence of the matrix element is essentially due to
the final state interaction or to the momentum distribution of the
deuteron respectively. As the results of this paper will be
applied to a larger kinematical range than the final state inter-
action region, the validity of the zero range approximation will
of course have to be tested anew. It is expected to hold in a
limited range of medium energies.

With the above assumptions the (unsymmetrized) spectator matrix
element assumes the form
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This leads to the following expression for the spectator matrix

element.
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where the relation
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has been used. The "Coulomb penetration factor" Co is defined
by Cl=2mn/(exp(2mn)-1)

According to eq. (8) one obtains

MSP = genSP

g=1 T Te=0 (12 ¢)

This matrix element describes a spectator peak at §=E modified by
Coulomb interaction. In particular it becomes zero for vanishing

relative proton-proton momentum. It should be noted, that the

e
angular dependence does not vanish for k+0 (n=+w), as
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Por n+o (k fixed) one obtains the well known expression valid for

neutron-deuteron scattering.

Nuclear final state interaction will be assumed here to be
relevant only in s-waves. We did not succeed in finding in
analogy to Equ. 11 a closed analytic expression for the radial

integral of
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This expression remains after substituting the lowest term of
expansion (6) into eq. (1) The power expansion of the spherical
Coulomb functions leads toc a series converging for K <‘}/q2 R 8?
For k >‘Vq2 + B2 the approximation (GQ+iFQ) = tkT may be used,
because in this region a) the parameter n is small, b) the

spectator matrix element predominates. One obtains in this case
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This approximation is valid for n<<1 and used for k > q” + B°.



Otherwise the power expansion |9]
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The parameter Yy is Euler's constant. The special function h(n) is

defined as
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They can be evaluated according to |10]
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For the "nuclear" matrix element one obtains
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This is valid for k < V 62+q2. In analogy to eq.[12¢) the matrix-
elements for the intermediate interaction occuring in the n-p
triplet and singlet state, respectively, are related by

ffuc | Hlue
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closely related to the original Watson-Migdal-Ansatz is sufficient.
Comparison with eq. (15) shows that the simple expression

e
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is valid as well for small as for large values of k.

it is notewbrthy that the method developed here can also be applied
easily to a deuteron-deuteron double break-up reaction with two-fold
final state interaction. Results which should be particularly
helpful for determining the neutron-neutron scattering length from
the reaction d+d-+p+p+n+n will be published by H. Thies.



3. Results and discussion

Fig. 2 shows the theoretical prediction for a kinematically
complete experiment. The deuteron bombarding energy of 52.3 MeV
and the detector angles of 6p-22 4° for the proton- and 6 =48 3°
for the neutron detector are chosen in accordance with an
experiment carried out pre"1oasly a* the Karlsruhe Isochronou
Cyclotron. The special choice of klnematlcal parameters should
warrant a poss;ble contribution of the neutron spectator mechanism
to be very small only.

The differential cross section divided by the phase space factor A
is shown as a function of the proton energy Ep. Because for .each
proton energy the energy of the coincident neutron may assume

two dlfferent values, the spectrum spllts up into two parts.

One part 1s domlnated by the p-p FSI whereas the other part

shows thé»typical shépe of the spectator peak. The contributions
arising from the pure "spectator“- and the pure'nuclear" matrix
elements are shown separately. Apparently the spectator

amplitude is very important even in the FSI-regicon, which is
characterized by a small relatlve mcmentum in the p-p subsystem.
Because of the strong interference of the "nuclear"- and the
"spectator” amplitude in this region the value of the p-p scattering
length app extracted from experimental data by using this theory
must be expected to differ considerably from those obtained by a
Watson-Migdal fit. Vice versa the "nuclear" matrix element is

still large at the spectator maximum although its influence is small
because of "accidential" neutron interference behaviour.

Wér the calculation of the matrix elements the standard parameters
S =0,23%2 fm -1 and 82'1 .202 fm -1 were used in the Hulthén function.
For the"nuclear" phase shift 6 the well known shape independent
effective range approximation '
1 i 1

s . . 1 ‘
kectg 6_ = [- - + =r k- -
’ o cg(n) " a 2

with scattering length app=-7.66 fm and the effecﬁive range
parameter r0=2.62 fm derived from p-p scattering data have been

used.,
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In order to derive conclusions from the experimental results it

is of particular interest to understand the dependence of the
theoretical results on these basic parameters. Fig. 3 demonstrates
how the spectrum given by fig. 2 is affected'by varying the
value‘of the scattering length or the efféctive range respectively.
For comparison also‘the result of calculation without Coulomb
forces but with fixed scattering length is shown. As a conséquénce
the characteristic p-p FSI minimum at zero relative energy is
replacéd by a maximum. On the other hand all these variations of
basic scattering parameter and the electromagnetic coupling
constant have only a small influence in the region of the
spectator peak.

Deviations of this theory from Watson Migdal are characterized
by fig. 4. It shows the spectra for some pairs of angles as a
function of the p-p subsystem wave number k together with the
prediction of the Watson-Migdal theory. In contrast to the
Watson-Migdal théory the spectra show an asymmetric shape with
respect to the origin of the relative momentum axis. This effect
is demonstrated for the spectrum at ap=22,u° and en=u8e3° by
mapping one FSI-peak onto the other.

The superiority of this theory compared to the original Watson-
Migdal-ansatz is demonstrated by fig. 5. Theoretical results
obtained after a scattering length fit are compared with
experimental data at scattering angles ep=22.u°, en=u8.3°. The
theory leads to a scattering length of ap ==7.7 fm whereas from

a slightly modified Watson Migdal fit lj}T a value of app=-8.8 fm
was obtained. These values have to be compared with a two particle
value of a_ =-7.66 fm. Former discrepancies between the two- and
three particle values derived from Watson Migdal fits therefore
seem to be resolved by the introduction of Coulomb-effects.

While on the one hand good agreement is observed in FSI region,
the agreement in the spectator region is a qualitative one. In fact
there remains a small deviation if the ekperimental and the
theoretical spectra are adjusted in the FSI region. These discre-
pances may be removed only by more sophisticated calculations
including Coulomb effects.
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Figure Captions

Fig. 3

Graph corresponding to the matrix element defined by eq. (1)

Theoretical prediction for a kinematically complete
experiment with Ed=52.3 MeV, 9p=22.u°,‘6n§48.30. The
cross section devided by phase space is given as function
of proton energy Ep. Contribution of "spectater'- and
"nuclear" matrix element are shown separately.

Influence of basic scattering parameters on the shape of

spectrum.

Comparision of theoretical prediction (this work: full curves)
for different angles with the prediction of Watson Migdal-
theory (hatched curve on the right sid) being independent of
angle. The hatched curve on the left side is obtained by
mapping the right hand side FSI-peak onto the left side in
order to demonstrate asymmetry.

Comparison with experimental results in FSI- and QFS-région.
Experimental points are shown only for that part of the
spectrum, which can be projected onto the Ep axis. The
differential cross section is shown in relative units.
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Fig., 2
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