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Zusammenfassung

Die Theorie der Wechselstromverluste von gepulsten Typ 11
Supraleiter und supraleitender Magnete ist präsentiert. Die
berechneten Verluste in Magneten sind mit gemessenen Werten
verglichen. Verschiedene Verlustmessmethoden sind beschrieben.

Abstract:

The theory and calculation of a.c. losses in type 11 superconduc~

ting materials and superconducting coils are presented. The
calculated losses are compared to loss-measurements in solenoids
performed by several laboratories. Methods of loss measurements
are described.
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1. A.C. Losses in superconducting pulsed magnets

1.1 Introduction

Alternating current losseshave been subject to investigation
in the past f'ew years, since the developement of new multi­
filament conductors became reality and the possibility of
using them in pulsed synchrotron-magnets became feasible.

In solenoids field changes in the order of 1 T/s have been
achieved. In pulsed synchrotron magnets which have more com­

plicated coil geometries field changes of about 6 T/s have
been obtained without generating excessive dissipative lösses.
Depending on the field amplitude superconducting magnets can
be pulsed at frequencies ~ 1Hz. One öf the main reasonsof these
low duty cycle operations are a.c. losses generated in the
superconductor and the normal metal substrate, which produces
local heating and may lead to degradation of the superconduc­
ting material.

Differing fröm the ideal type II superconductor the inhomoge­
neities in a nonideal superconductor (dislocations, precipi­
tations, grain boundaries) lead to a spatial variation of the
free energy of a vortex 11;) which is shown in Fig. (1.1).
In 11r) ,the interaction with the neighbouring fluxoids,as weIl
as the line tensi~n of a.curved fluxline,is to be included.
A Lorentz force f L can be regarded as an additional contribution
to the free energy

or:
-+- -+-.... ..

:TI (r) = 9:"'(r) + (JT x 41
0
>. r (1.2)

..
with 41

0
the f'luxquantum in the direction of the vortex.
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The fluxoids are trapped in the potential m1n1ma of r'and
remain stationary until fL exceeds the maximum pinning force
... .-+
f p = max (V~(r» and a minimum in ~t does not exist further:
Dissipative fluxflow occurs at the "critical current" J • The

...... c
derivation of fand thus J from the individual fluxoid-defect

p c ...
interaction is extremly complicated by the fact that ~(r) is
not rigid but dependent on the interfluxoid distance. Thus
interaction with the neighbouring fluxoids has to be taken into
account. A theoretical approach to get an effective average...
pinning force <f > per unit length of fluxoids is given by

1) P
Labusch •

... ...... ...
The value of J_ with <f_> = J_ x ~_ can not be exactly determined,

c p c v

as due to thermal activation a number of fluxoids can move out...
of the potential minima at smaller currents than J c• This leads
to a (strongly current and temperature dependent) "flux creep"­
voltage 2 ) expressed by

U -v exp (c I I kT) •

Usually Je is related to a fixed fluxflow resistivity ego

~F = 10 -12 Ohm.cm.

Up to now the external force per vortex unit length was ex­
pressed by f L = jT x ;0. This assumption leads to a total
force on a conductor of volume V,

f .. -+- ... ... ... ]Jl B(r) x JT(r)

"
(1.4)

where we used
obviously not
the conductor

... ...
B = n ~ and n = Fluxline density. This iso
identical with the classical magnetic force on

located in a uniform field ~oHext:

... -+

= 1.1"H.:IIv~·I".,·L
v "'"'~" ..

...
with H the external field.ext'



/
/
I
Ix.

I-

s::s:$~:s::::s:::::s::~~

Fig. 1.1



Hmax Hmax Hmax

r I ! t I
XJ-

• I

x x x

a b c

Fig.12



- 3 -

+ +

As B (r) in the conductor differs from Hext' the resulting
difference must be attributed to the following additional
effects:

The density gradient of flux lines leads to a net force on a
fluxoid as the interfluxoid forces do not cancele
For probes with a demagnetii'ation factor D ~ 0, the persistent
supercurrents lead to a distortion of the magnetic field in­
side and outside the superconductor. The curved shape of flux­
lines inside the superconductor gives an additional line ten­
sion force acting on the pinning centres.

From the free enthalpy G (T,H), Friedel, de Gennes and Matricon
l

)

have derived an expression for the correction to the force on a
fluxline

=
'aH(B)

-aB (1.6)

where H(B) denotes the external field necessary to generate an
internal equilibrium induction B in the ideal (unpinned) super­
conductor. Eq. (1.6) must fail at least f'or low fields, H+H l'
where ~~(B)+O. c

In principle the electromagnetic force must result from the
Maxwell tensor which is not known, as it presumes detailed
knowledge of the internal field.

We suggest to set for the total volume force acting on the flux­
line lattice, the relation:

(1. 7)

The effective pinning force density Fp counteracting FL is thus

- + . + +
n<f > = Fp = llo [ J c x Hext] (1.8)p
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Without the need for a detailed analysis of interfluxoid
forees and of the line tension, these effeets should automatieally
be ineluded. The only assumption made here for simplicity is,
that the magnetie forees act on the fluxoids alone.

For supereonduetor geometries regarded here (thin filaments)

the eondition of B ~ Hext is always fulfilled.
... ...

Using Maxwells law,eurl H = J, the Eq. (1.7) ean be written as

... ... ...
FL = "e : [eurl H x Hext J

...
Here H is the loeal maeroseopie field in the supereonduetor,
where the mieroseopie field variations due to the vortex
eurrents are averaged out.

Assuming the field and thus the vortex axis are in the
z-direetion, J is in the y-direetion, Maxwells equation reduees
to J y = dUz/dx. The expression for Fp(B,T) as a material eonstant
of the individual super-eonduetor defines a "eritieal field
gradient"

dH I =äX erit Je

If Je and thus ~Ierit is exeeded, fluxlines
overeome the pinning barriers and move in the
to the fluxoid density gradient dn/dx, with:

(1.10)

or fluxline bundles
opposite direetion

dn I
dx erit

llO·= ·0
dHz .,

dx erit (1.11)

until a new stable fluxoid arrangement in obtained.

Due to the same electrodynamic arguments which lead to the skin
effeet in anormal eonduetor, any change in the currents and
thus the associated magnetic field always eommenee from the sur­
face into the bulk supereonductor.
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In order to maintain the critical field gradient, (assuming a
dH

quasistationary case of slow ~~t; the rising external field
Hext pushes the whole fluxfront into the superconductor as
illustrated for a slab placed parallel to the field in Fig. (1.2a)
for the simple (but unrealistic) case of field independent J c'
The interior of the superconductor is ßcreened by supercurrents

flowing in a layer of thickness xp = Hext/Jc'

Reducing H t below the peak value causes the fluxlines to moveex
out of the superconductor, leading to an inverse critical field
gradient and associated critical current density in the opposite
direction. This condition is shown in Fig. (1.2b) for subsequent
values of Hext after a maximum value Hmax with a penetration
depth x ,p

I\nax • xp

has been reached. A subsequent field rise yield a new pattern
Fig. (1.2c) which is different from the initial behaviour shown
in Fig. (1.2a).

This model for the magnetic behaviour of imperfect type 11 super­
conductors was first formulated by BEAN ) as critical state
model. It postulates that depending on the history of the exter­
nal field, the current density can only be zero in regions where
never flux has penetrated, or it attains the critical value ! J c'
Different to anormal conductor, regions of opposite flowing
currents can coexist stationary in a superconductor.
For H t· cycled between +H and - Ha the corresponding fieldex max -~ x
patterns are given in Fig. (1.3). If a transport current is im-
pressed on the superconductor, the fields at both sides of the
conductor are essentially different and the current pattern is
displaced such that a net current I T remains, as illustrated in
Fig. (1.4).

In the case of full field penetration i.e. if J c'd/2 >Hmax is
greater than the thickness d of the conductor, no field and
current free regions exist.
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1.2 Flux profiles

For a real type 11 superconductor the critical current density
J c is a function of Hand T. The flux profile H{x), (in the one
dimensional case), is expressed as the solution of the differential
equation

dH{x) = + J (H{x»
dx - c (1.11)

where the (z) sign depends on the direction of J c •
For constant J c the linear field profile given in Fig. (1.2) and (1.3)
(BEAN-model) is obtained.

A better approximation to the distribution of the current
density in a real type 11 superconductor is given by using the
KIM s ) model, which relates the critical current density in the
superconductor, to the local magnetic field by:

where J and H are material constants.o 0

Combining Eq. (1.11) and Eq. (1.12), we obtain:

(1.12 )

dH
dx (1.13)

Integrating Eq. (1.13) and noting, that at x = 0, H{o) = Hext'
we get the equation for the field profile in an imperfect type 11
superconductor

(1.14)
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The distanee from the surfaee at whieh H has dropped to zero
is given by:

(1,15)

Fig. (l.S) illustrates the field profile in a slab ror inereasing
and deereasing external magnetie fields parallel to the surfaee
of the slab.

1.3 Thin supereonduetors

For superconducting probes with a small thickness d, the external
field penetrates into the whole eonduetor and is sereened only
partly in the middle of the conduetor by an amount 6H =~ Je.

Thus H(o) = H t + ~Hex

If the eondition

AH «Hext

holds, i.e. the eonduetor thiekness is

,

then Je (H) can be replaced by Je (Hext) and the approximation to
a linear field profile in the supereonduetor is valid.

This is always satisfied for multifilament wires, where fine
supereonducting filaments (S ••• SO~m) are embedded in anormal
metal matrix. With typieal values of d = 10~m and Je = 2.10S A/em2,

we get ~H = 100 A/cm, where as the external field in a supercondueting

magnet is in the range of several 104 A/cm.
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1.4 Finite size slabs and cylindrical conductors 10cated in· a
transverse externa1 ~ield.

..
In 8ne one dimensional model stated above, curl H was expressed
by dxZ and all the other contributions were assumed to be zero.
This is only true for an infinite1y extended slab with a surface
parallel to the (uniform) externa1 field. In all other conductor
configurations the magne~ization currents distort the field and
the current configuration in a complicated manner and cannot be
treated by elementary methods. The case of a strip conductor

with its face perpendicu1ar to the field was eva1uated by
Morgan

6
) •

C1early the one dimensional model as described, remains only
a good approximation, as 10ng as the curvature of field1ines
inside and outside of the conductor can be neg1ected t which is
true i~ the screening fie1d fu1fi11s the condition

This condition ho1ds a1ways for mu1tifi1amentary conductors used
for a.c. magnet app1ications.

1.5 Methods of ca1culating hysteretie losses due to
alternating fie1ds.

For an imperfect type II superconductor 10cated in a varying ex­
terna1 fie1d, the criticaL state model has the consequence.cf a
varying magnetic flux in the material. (Fig. 1.5)

The changing flux must essentia1ly penetrate the conductor surface
and generates "hysteretic losses" due to the motion of flux 1ines.

The dissipative mechanism in a moving f1ux 1ine is not weIl
understood, but as the energy 10ss results entire1y fromthe
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magnetic field, loss computation is equivalent to evaluation of
the electromagnetic energydissipated during cycling of the field.
Different approaches to solve this problem must essentially
yield a unique result as they describe the same physical process:.. .. ..
a) Integration of the poynting vector S = EsxH

surface and one cycle. The electrical field.. ..
induction law curl E = -~

over the conductor..
Es is given by the

.. ..
b) Integr~tion of Joule's energy J c· E over the conductor volume

where E has the same origin as in (a).

c) Evaluation of the area under the magnetization curve for a
full cycle j M(H) dHdV, where M is the magnetization due to
currents + I in the sampIe.

- c

d) Volume integration of the mechanical work performed to the
moving flux line lattice by the Lorentz force. The power loss.. .... ..
per volume is expressed by Pv = (Jc x B) v, where v is the
velocity of the moving fluxoids and can be obtained by usin~

-+ .. ~

the conservation law for the flux line density div (iBt- v)=~.

1.6 Hysteretic losses in slabs

For the simplest case, that the critical currentdensity is
independent of the magnetic field within the conductor, BEAN cal­
culated hysteretic losses in slabs parallel to the external
field. In his computation the transport current is not considered.

The field penetrates from both sides into the slab of
thickness d. Full field penetration is obtained at

(1.16)
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For a probe exposed to a variable external field Hext. cycled
between the two values of -~ax and +Hmax t we may distinguish
between two cases:

a) Incomplete fluxpenetration: Hmax <Hs;

Integrating the magnetization J6MdHdV over one cycle. the
hysteretic losses can be expressed by

3
Whl lJo V 2 Hmax= • 3' ~

3
Whl/A= lJo

4 Hma x
') • :r;-

(1.17)

(1.18)

With V the volume and A the area of the slab. In each half
section of the slab the losses Whl/2 are dissipated.

b) Complete fluxpenetration: Hma x ~ Hs;

In this case no current free region exists in the slab.
Integration of the magnetization yields:

For field values: Hma x » Hs this equation reduces to:

(1.20)
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If however the external field is eyeled between the values
o and + Hmax we obtain:

lJod
=~ · Je • H VCo max

For real supereonduetors the ease of Je independent of field
is unrealistie. The more realistie model assumes the eurrent
density being dependent of field aeeording to Kim

S
) :

(1.21)

(1.12 )

For this partieular ease the field profile within the eonduetor
was given by the Eq. (1.14) and Fig. (1.5).

If the external field is swept in the range between Hmax and
Hmi n, the eorresponding field values within the supereonduetor
ean be obtained from the equation:

and shown in Fig. (1.6) for aseending and deseending Hext. The
relation between the loeal field Hand the distanee from the slab
surfaee is given by

x =

The two branehes of the field extending from Hext on the surfaee
of the slab to P1 and P3 eorrespond to field values of

H > Hext (Descending field)

H < Hext (Aseending field)
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The penetration differences in the three regions 1-111 are given by:

1 [ 2(H + Ho)2
2

(~ax + Ho)2 ]= 2JoHo
- (H + H) -ext 0

= 1 r(Hma x
+ H )2 _ (Hext + Ho)2 ]2JoHo 0

Introducing the abbreviations:

1
h =1- (h 2 + h 2)20 h21 ~ ext max'

1 2 2 1
= 12 (hmax + hmi n )2

we may write for the irreversible part of the magnetization:

_ h 2 )dh + 1
"max 2J'oHo
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which after integration and rearrangement is written in the
form:

+ tf (h2 + hm
2.;n)~ 2h • h2

3 max • - ext max

As usual we calculate the hysteretic losses from

(1.22)

Hma x
= 11 f MdH t

o H. ex
m~n

and obtain the hysteretic losses per unit surface for a semi­
infinite slab.

1+J1+f2 •

(1+V2)f

5 1- (- --
12 4"12'

) 1. 23)

with f

Itmay be pointed out that Eq. (1.22) is true only, if H
max

and

Hmi n have the same sign, as the analytical expression for Jc(H)



(1.24)
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is valid only for H>o.

Eq. (1.22) is particulary useful to calculate losses in super­
conducting magnetic shields (incomplete penetration).

1.7 Application to multifilament conductors:

Superconductors used for a.c. applications have diameters in the
~m range. For these superconductors the case of complete flux­
penetration is valid.

As seen in (1.2) the assumption of ßH«Hext implies that linear
field penetration is valid and the equations derived from Bean's
model are correct for slabs of finite size as weIl as for
cylindrical conductors as shown in (1.2) and (1.3).

We regard a sla~ located parallel to the external field Hext'
having a thickness d and a high b. A net transport current
I T is now admitted to pass through the slab. The electric center
of the slab+ which was identical to the geometric center of the
slab for IT=O is displaced due to the transport current by a
distance:

d I T
ßX = 2 • r;

The displacement is illustrated in Fig. (1.4a,b) for increasing
and decreasing fields. At points of field reversal, the simple
field pattern is modified. These field perturbations modify the
hysteretic losses, as written in Eq. (1.18). The additional loss
contribution in this equation can be neglected only if ßH«Hma x•
Obviously for Äx = ~ the critical current of the probe is
attained, beyond which steady flux flow occurs across the super­
conductor. The power density dissipated in the superconductor is
calculated for the case, that the external field changes with

Hext from

.... ....
P = E· J

+ The electric center is defined as a plane within the conductor
separating the two regions of opposite flowing J c •
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For our particular geometry, H = Hz ; J c = ...J y ; ...FL = FLx' and. .
Maxwell's law for the electrical field curIE = -B y~eld

where the internal field change Hz(x) can be set approximatelY

as Hext for thin probes. As at the electrical center xe' the
fluxline velocity is zero, the axial electric field Ey(Xe) must
vanish. Ey is obtained by simple integration with one boundary

being xe.

The sign of J y is given by the position and sense of the field
change

• •
+ J c for x<x • H>o or x>x . H<oe' e'

J y =

• •- J for x<x ; H<o or x>x • H>o
c e e'

Thus the energy dissipation rate per conductor length is given by:

d

Hext f (x-xe) dx
o

(1.26)

is the critical short sampIe current at the

The integral yields after introducing d +
I T and the slabxe = ! 2'J'D'

volume V=b·l-d, the conductor losses: c

'tTT d ·1 Hext I· r~ -+ I
IT \21 (Watt) I~ ",.,\

PhI = lJo Yll • ') L~
\

~
J J \~·t:.'1

C

where I = b-d.Jc c
corresponding field.
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Hysteretie losses are usually related to one eyele
ehanged periodically between fieldvalues H. and

ml.n
H . +H +H.ml.n max ml.n·

if Hext is

l\nax such as:

The losses per eyele are independent of frequeney and wave form,
the only material property entering the loss equation is the
Je(H)-dependenee.

(1.27)

The term IT/Ic depends on the partieular magnet and contributes
only at the peak eurrent value to the losses in the high field
region of a coil. Usually the term is small and ean be negleeted.
Kim's model relating the eritieal eurrent and field is a good
approximation for type II mUltifilamentary eonductors. entering
Je from Eq. (1.12) in Eq. (1.27), we obtain the weIl known
formula for hysteretic losses in superconduetors with small
diameters:

(1.28)

V is the total volurne, if Je is referred to as the overall
eurrent density of the eonduetor or it is the volume of the
supereonduetor, if Je is the current density in the supercon­
ductor.

If field reversal oeeurs during the field sweep. i.e. if for
instance Hrni n is negative, the losses have to be split into two
parts: Losses in the region: o+Hmax+o and losses in the region
o+H . +0.m:Ln
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Thus the totallosses are given by:

1.8 Hysteretic losses in cylindrical shaped superconductors

The above loss calculations for slab geometries are simple, but not
correet when applied to magnets using composite conductors with
superconducting tapes embedded in normal metal strips. As the field
over the length of the tape is not always parallel to the surface
of the superconductor, this type of conductor is not utilized in
pulsed magnets due to enhanced dissipative losses.

The losscalculations are specifically applicable to cylindrical
shaped filamentary conductors. Coextruded superconductor and
copper wires result generally in superconducting filament shapes
having more or less circular cross sections. If the superconducting
filament is distorted during extrusion the use of the hydraulic
diameter (d =~) in the calculation is a good approximation to
obtain losses in superconductors, where Adenotes the cross section
and P the perimeter of the filament. With the restrietion to thin

filaments with a diameter of ~ «Hext and IT«Ic (valid for
nearly the whole field sweep), the integration of the product (J.E)
over a cylinder is performed byMOrgan 6

) incylindrical coordinates.
Starting with curl E= -~ dHext, in cylindrical coordinates (r,e),
we have 0 dt

1 aE aHrz
-~ •F rr- = -n-0

and:

aEz =
aHo

äT llo • '3t

(1. 31)
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Hr and He are expressed by Hext in the ease of asymmetrie flux
profile with ~x = o.

aH
With W =

• aH
sin (e) -Hext' and ~ = eos (e)-Hext

one obtains:

and:

1 aEz •
Te = -lJ sin (e). Hextr 0

aEz •
är :: }Jo eos (6 >- Hext

The solution of Eq. (1.34)

gives the field distribution within the eylinder.
The power loss is given by:

+ +

where Ez is always direeted along Jz = Z Je

SUbstituting Ez from Eq. (1. 35) in PhI we obtain for a eonduetor
of length 1

d/2

Hext· 1 J
o

n
.,[hl

+ Tf/2

f r 2eos(e)

-Tf/2

drde

With d the diameter of the supereonduetor and V its volume •
•
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The energy loss is given by the time integral of Eq~ (1.36).
Comparison with the corresponding Eq. (1.27) for a slab shaped
conductor shows that hysteretic losses in a cylindrical conductor
are less by a factor 8/3 11'.~ 0.85, than in a slab of' the same
volume i.e. the same current carrying capacity and thickne~s.

The factor 3: in Eq. (1.36) occurs in all loss equations for
cylindrical geometries.

At a low frequency field sweep (~ 1Hz), hysteretic lasses are the
main contributor among the losses encountered in the conductor.
To evaluate hysteretic los ses per cyclefor the entire coil
Eq. (1.29) must be integrated over the coil volume. As Hmax
and Hmi n occur in logarithrnic form, the losses per cycle
can be obtained with good accuracy (about 20%), if Hrna x and Hmi n
are replaced by the mean field values over the entire coil.

Fig. (1.7) illustrates calculated hysteretic losses f'or a pulsed
superconducting dipole magnet. The aperture field ef the magnet
is cycled from zero to 5T. The coil cross-section is an approxi­
mation of intersecting ellipses and the magnet has an aperture
of 8xll cm2 and a length of 100 cm. In the abscissa the term
JoHod contains all relevant conductor parameters.+ As for ~oHo

a typical value of lT is used in the calculation. The losses
for different peak current densities (at 5T) are represented by
the solid lines. As the conductor volume decreases with in­
creasing current carrying .capacity JoHo' we see that the total
losses proportional to JoHo are not a streng function of the JoHo
parameter for a given magnet.

Thisloss dependance is shown by the broken line with the
filament diameter d as a parameter, where we have aSBumed
that the current density at 5T attains just the critical value.

+ Twisted multifilament conductor is assumed.
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From the presented analysis and the curves of Fig. (1.7) it is
seen that the most promising attempt to reduce a.c. losses is
in using thin filaments in the conductor. NbTi filaments having
individual diameters of < 5~m are commercially available. Several-==
thousand of such filaments are drawn in a metallic matrix and
are twisted. A number of such conductors (calied composite con­
ductors, or strands) are transposed to form a cable or braid
for a.c. applications.

1.9 Hysteretic losses in coils using hollow superconductin~

filaments

~~ was poss~o~e to produce multifilament composits in long
lengths (>lkm) only by using NbTi. Nb

3Sn
and V

3
Ga has been

used in multifilament compösites of short length (100-300m).
The ß-tungsten series is brittle and production of composits
has been restricted to short lengths due to manufacturing
difficulties.

Alternate solution are sputtering of thin layers on glass
filament carriers or some other suitable material. The
losses of such a tubular conductor, having an inner diameter
d1, an outer diameter d2 are obtained from Eq. (1.37):

Dividing the losses by the volume of the superconductor

v = T (d 2
sc ~ 2

and referring to the same current carrying capacity in the

conductor, we find that Whl/ITmax depend only on the ratio
d 1/d2:
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Whl d2
3 - d1

3 1 - (C J.:l )3
"'"1 -2

-I-~ 2 2 = d2 2Tma x d 2 - d1 1 - (d1/d2)

Compared to a filament with d1=o, losses are increased by the
factor 1-(~)3 I 1_(~)2 for the same critical current density
and identical total current.

1.10 Losses . in Composite.s

Losses in superconducting coils, when exposed to time varying
magnetic fields have several origins:
-Eddy Current losses in the conductor matrix.
-Self field losses.
-Hysteretic losses.
-Auxillary losses due to nonuniform magnetic fields.

In section (1.6) and(1.7) we had treatedsofar hysteretic

losses. We diseuss in the following the origin and the magni­
tude of the other losses occuring in a.c. coils. We consider
however only twisted multifilament conductors.

1.11 Eddy Current losses in the conductor matrix:

.
In any metallic conductor eddy currents are induced if BilO.
In a composite conductor these induced currents are modified
by the superconductingfilaments, which do not admit (first
order observation) a resistive longitudinal component of the
electrical field.

To calculate eddy current losses, the matrix material, the
current distribution in the matrix depending on the eonductor
geometrY,a.nd the rate of field rise must be known. We assume
uniform distribution of filaments throughout the composite,
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and an external field perpendicular to the conductor axis,
as is usually the case in coils:

a) We regard for the time being, only the outer layer of
filaments embedded in a cylindrical composite. This layer
has a radius D/2 and the filaments are twisted with a pitch

of length lp.

The magnetic field B aeting in the cylinder is assumed to be
homogeneous and perpendicular to the axis of the composite+.
The field is composed of the external field Bext and an
additional field Be generated from induced currents in the
filaments.

B = B t + Bex e

The voltage induced in the conductor is obtained from the
contourintegral (over C) taken along the electric centers of
two oppositely placed filaments as shown in Fig. (1.8 ).

+ +f Eds =
e

•
- 0 = - 2Dsin (f!z). B~

p

This voltage must drop entirely in the two transverse passages

~ and ~ through the matrix. Relating the electrical poten­
tial V(z) of the filaments to the axis of the eomposite, it is
seen that at the crossover point A at z = Ip!4, the potential
V(z) must be a maximum. The voltage at z= 0 must be zero be­
cause of the antisymmetric condition at z = o.

At an arbitrary point the electrical potential is expressed by

V(z) D • 1 2= ~ B ~ sin (-!Z)
t:. 2"i" lp (1.40 )

+ The assumption ofa uniform magnetic field is justified
aeeording to Eq. (1.46).
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as the potential between the eonduetor axis and one filament is
just a quarter of the eontourintegral Eq. (1. 39).

z ean be expressed by the twist angle er p between the filament
axis and the plane perpendieular to B; i. e. Cf p = ± i1f

Z J where
the sign eorresponds to the sense of the twist. ThusP we get
for eaeh single filament:

V(z)
.~

: ± B 21f
.~

= + B 21f X (1.41)

if the sense of B is assumed to be in the x direetion.

Eq. (1.41) is valid for eaeh single filament in the outer layer.
If we approximate the layer of filaments by an infinitesimal
thin eylinder J then the boundary eonditions for Eq. (1.41) are.
met by an homogeneous eleetrie field in the eylinder in B-
direetion.

(1. 42)

The transverse eurrent density in the eomposite is thus:

1

Pe

From these equations we obtain the eddy eurrent losses per
volume oeeuring within the filament bundle of diameter D:

.
1 2 1 BI 2

P = =- E = -=- ( ~)
e ~e ~e

where Pe is the effective transverse resistivity of the
eomposite.

(1. 44)



- 24 -

b) Only the outer layer of filaments in the cylindrical
composite conductorwasconsidered above. Itwas seen how­
ever from Eq. (1.42), that the diameter of the filament layer
could be eliminated indicatingthat the electric field Ex
is independent of D. Thus we may fill the entire composite
cross-section with concentric layers of filaments and present
a realistic model of a twisted multifilament conductor. As I p
is unchanged for all layers, the field configuration in the inte-
rior of the composite is not altered. However the transverse
effective resistivity Pc must be averaged properly over the
conductor:

w
w-d

where d i8 the filament diameter J w the distance between the
centers of adjacent filaments.

It is assumed here,however, that the eddy currents flow through
the matrix material and do not cross superconducting filaments
due to the relatively high resistance of the interface layer

between superconductor and the matrix. Pmatrix is the resistivity
of the matrix material, including size effect, mechanical strain
effects and longitudinalmagnetoresistance.

In presently available composite conductors the filament bundle
is still surrounded by a layer of "pure" matrix material of
thickness C (see Fig. 1.9 ). The potential V(fp) in Eq. (1.41)
causes additional eddy currents in this part of the conductor
and the associate losses P'e/l per conductor length are given by

P' e
1 =f

o

c
Pmatrix

Eddy current losses for a cylindrical composite are thus given
by
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The surrounding layer (mean radius ~) can thus be taken into
account simply by a modified matrix resistivity.

Let us now assume, that no transport current I T flows through
the conductor. As the current density J t within the filament
bundle in the composite is homogeneous, there can be no net
induced currents along the inner filaments.

All transverse currents must be collected by the filaments
of the outer layer only. If there are N filaments in the outer
layer of diameter D, the induced current I F through each
filament is:

or:

2n
+ lp

.. sin

Lfp

= ±J dIF .. dtpp = + n .. J t •
depp N

0

~ D cos (f )
2n p

(1.45 )

The cos (~p) distribution of the induced currents generates a
homogeneous self field Be in the direction of the field Bext'
justifying the assumption of homogeneous B over the conductor.

B = 1 • JS = ~o I F (0) Ne 21'l'0 "2 nD

J t .~ ~
2 • ..

B = + ~o .. .. ~o • 1 .. (Bext + Be) (1 .. 46)e "2 = "2 (2n)
fe

The azimuthaI component of I F (fp ) produces a further component
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of B in the direction of the conductor axis. For Ip» D this
component can be neglected. The negative sign in Eq. (1.46)

reflects the fact, that the induced currents counteract the
change of the external field.

• •
If B is expressed by the change in transverse current density J t ,
one obtains the equation:

2
dJt 2 (21t'\
dt + '1.1

1-1 0 P
.;. (21t '\

+ 2 .J.Jext '1-1 1 I
o P

The homogeneous solution of Eq. (1.47) yields, after a sudden
change in Bex t occurs, an exponential decay for J t :

(1.48)

Where the time constant 't", is given by

1-10 1 2 1
1:- :E. (1.49)= "2 (21t)

f c

~ can be understood as the ratio of the inductivity of the'
filament loops and the matrix resistance. Fig. (1.10) illus­
trates for a triangular pulsed external field the transverse
current J t as weIl as the induced current I F throug the fil­
aments, and the field Be for two limiting cases of~« t o/2 and
<t» t o/2 wi th t o denoting the pulse length. With increasing ratio
of 1;/to the variation of the external fiEüd in the conductor is
shielded more and more by the induced currents in the filaments.
For<t"« t o/2 the losses in the matrix are modified only slightly
by the transient phenomena.

The current carrying capacity of thefilament is limited by
the critical current I c• Beyond this value flux crosses the
outer layer of filaments. Energy is dissipated, leading to a
longi tudinal vol tage drop. The next inner layer takes over the
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excessive part of the shielding currents and leads to a
partial coupling between filaments. By equating the induced
screening current I F UPp= 0) from Eq. (1.45),with the critical
current I c for a single filament, assuming no transport current
is flowing, we get a relation between field rise and the
"critical twist length" lc.

IF,max

I 2
= I = 1 · (~)c - c::rr

.fc
• rrD • BN

• •
The critical twist length lc is expressed for B~Bext' j .• e.
for't«t by:o

I 2
c

N
rrD

• 1!T"--
IBextl

This equation is different b) the
from the expression MORGAN 7 has
conductor model (TV-cable).

numerical factor (rr3!32)1!2

obtained for a two filament

~,,...,

For a sinusoidally varying field expessed by Bext=Bext +Bext·exp (jwt),
we consider only the variable part, and get from Eq. (1.47)

and obtain the losses per unit volume from:

J 2 ,.., 2 -2
t • Sc = (Bext) (1 + 1 (\.1) (1.52)Pe = "2 4~o 2 2)

w'l;

For w«i- (low frequencies), Pe is proportional to i.) 2.
This is different from the frequency dependence of hysteretic
losses , which are proportional to w !
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As Pe is also proportional to T, high resistivity matrix
materials and short twist pitch are recommended in contrary
to the dynamic stability criterion, which requires low elec­
trical resistivity materials.

With increasing frequency, eddy current los ses approach the
value of Pe = (~ext)2/4PoT. The field variation within the
composite decreases with increasing frequency due to shielding
currents.

-v '" '" '" ~From Bext = Bext + Bext exp (j~t), and Be = B-Bext =-T. B~ we
get for the alternating part of the field seen bythe filaments

-v
B = '"B •ext

This part induces the common hysteretic losses due to flux
movements in the superconductor. These losses depend only on
the maximum and minimum field values.

The inner filaments of a bundle which are not forced to carry
screening currents, see only the shielded field, and the dissi-
pated energy per cycle decreases with 1111+jwTJ. This means
that the average hysteretic loss rate approaches a constant
value with increasing frequencies. This conclusion may be of
interest for industrial (i.e. 50Hz) applications.

Qualitative confirmation of this effectwas obtained by

Mclnturff 8
) for the similar case of transposed braids with a

metallic insulation+ • At a field change of B ~ 4 T/sec)the
dissipation rate approached a constant value.

The above model is applicable to metallic insulated cables where
multifilament conductors are simply twisted. Transposed cables
and braids will show a more or less complicated internal eddy
current distribution pattern depending on the manuracturing

+ Metallic insulation referes to as solder of high electrical
resistivity such as Sn-Ag or Sn-In alloy or others.
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procedure. For this case the model developed here will be no

longer in quantitative agreement with the experimental data.

1.12 Self field losses

It may be pointed out, that in the treatment of losses up to

now the effect of field inhomogeneities on the conductor was not
considered. Specifically the self field effect due to transport

currents in the wirehas the same origin as the skin effect in
the normal conductor and tends to exclude current density changes
in the interior of the wire. This effect is not compensated by
simple twisting, but by transposition of filaments.

Flux changesinduced by the self fields in a suner-conduo t or- lead
to movement of fluxoids within the superconductor and thus to
dissipative losses. These losses are of electromagnetic nature

+ ......
and may be obtained by integrating the Poynting vector S=(ExH)
over the conductor surface. The irreversible part of this
energy, integrated over a cycle is dissipated as heat.

The component Sr of the Poynting vector, perpendicular to the
conductor surface is obtained from the azimuthaI component of

the self field B ~ (R) = ~oI/2nR and the axial component of the
electric field Ez at the conductor surface, when the flux
penetrates the surface.

From Fig. (1.8 ) we obtain the voltage for a closed loop C:

......
V = § Eds =

c
- i = - f ~ (r)dr • L = E . Lz

The electric field is zero on the conductor axis 1-2 and has no
contribution to 2-3 and 4=1. The electric field Ez is directed
such to exclude current changes from the interior of the conduc­
tor. Only if the critical current density is exceeded in the

superconductor,an associated longitudinal voltage drop is
generated. Theself field due to thetransport current can pene­
trate further intothe composite conductor.

Evidently, the critical state model, developed for a supercon-
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ductor located in an external field, is also valid for the
self field penetration produced by a transport current.

The model is still valid for a multifilament conductor, if the
integration path 1-2 and 3-4 of Fig.(1.11) are chosen along
the filaments. An external field can enter the matrix without
flux flow (if lp«lc) whereas for the self field the same
conductor behaves as a compact filament.+)

In magnets the external field is much higher than the self field
of the conductor. Thus J c is the same across the conductor and
the Bean-model, modified for a cylindrical geometry can be
applied. At a peak current I , the critical state currentmax
density J=J penetrates the conductor up to a radius r=r • This

c . - .. 2 2 . 0
current is given by Imax=Jcw (R -ro ), where R denotes the
radius of the composite conductor. The associated self field.... ....
H'f (r) is giYen by curl H = J, which in the cylindrical geometry
is expressed by

dH(p Hip
J z (1. 54)dr + =r

and has the solution:

H<f(r) = + rJ c + !! ( H
JcR

) (1.55)---
2 - r e 2

The (1) sign depends on the sign of J z = ! J c• The field He
denotes the self field H~(R) at the conductor surface. During
current cycling in the range between Imin and Imax' self field
patterns as shown in Fig. (1.12) are obtained. The nonlinear

field Hq(r) is the field generated of concentric tubes each
having a uniform current density ! J c•

+ForsimIÜification the filamentary structure of the conductor
is replaced by a single conductor having a mean current

density ~c.
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The change of the field B~ (r) in the conductor is linked to
the variation of the self field He = I/2~R by:

dBep(r)
=dt

dH(r) • dHe =
lJo dHe dt

lJ •
o (1.56)

-+

The dissipative part of S is obtained from the difference of i,
if the transport current I T is raised (field energy is entering
the probe) and then reduced (part of the field energy leaves the

probe) as illustrated in Fig. (1.11).

Thus from E = V/L, we obtain:z

- lJo

(1. 57)

The values of r 1 and r 2 are obtained from the relations:

r J R
= - -! I + ~ (H +~)z c r 1 e z

from which we calculate:

H He
1/2

R [ 1- max - ]r 1 =
JcR

and
He - H 1/2

[ 1- min ]r 2 = R
JcR

(1.58)

Self field losses per cycle can be calculated for a conductor
with a surface area of 2~RL by integrating (E t -E" ). He' over
half a cycle.
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To simplify calculations we have assumed that J c is independent
of the field:

t o / 2

Wsr = 21fR
2LJ He· (Ez' -E,.t)dt

o

which after integration is rearranged to the form:

'11"3 2R4L f H -H. [ Hrnax-Hrnin)Ws f = (1- rnax rn1n). tn(1- 4-c lJo J • R J Rc c.

H -H. ]
+ .! ~ -H )2}+ rnax rn1n ( ax min

J c R 2 J c R
(1. 60)

Modifying this equation for transport currents insteact, one uses
I c = 'll"R2Jc the critical short sampIe current, and introduces the
transport current difference 6I. This is the change in current
from the lowest to the peak value expressed by:

~ax - Hrn i n =

For
Eq.
for

a transport current cycled between the values +I o and -I ,
(1.60) is identical to the expression derived by Hancox9~
a cylindrical compact superconductor without external field.

The logarithmic term in Eq. (1.60) is expanded in apower series,

and one obtains:
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rfL ~o [-L (llI )
3 1 III )

4
+ " ••• " ]Ws f = + 3=1i' ('lT 2·3 2I ~c

or:

Ws f
(llI)2 L~o -[ 1 (llI ) 1 (llI ) 2

+. " ." ]= B + Y1f1fi 2Ic ~

(1.61)

(1. 62)

As (6I)"L, (total~urrent multiplied by the length of astrand)
is constant ~or a coil of a given geometry, the self field losses

are proportional to llIand thus to the square of the diameter D

of the composite conductor.

For D -+-00 ~s fora slab), the only remaining term in Eq. (1.60) i5:

which is essentially the expression Bean obtained for hysteretic

losses in a slab with a surface area of 2'lTRL located in an
external field parallel to the 5ufface of the slab and cycled
between the field values Hmi n and Hmax •

1.13 Contribution of external fields

In the above calculation we had omitted the influence of a
superposed external field in addition to the self field in the
Poynting vector at the conductor surface, which will now be
rectified.

The axial field component (B t ) is parallel to Ez and doesex z
not contribute to WSf. The,transverse field component can be
expressedin the form of multipoles:
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.(:ext ''f).
ext,r

=

C>O

L
n=1

n-1
Bext,n· r .(eos(nf»)

sin(n~)
(1. 64)

All terms of the series with n>1 deseribe higher field multipoles.
As mentioned, hysteretie and eddy eurrent los ses ean be ex-

pressed bya Poynting veetor at the surfaee of theeonduetor due
to the eleetrie field E. t (Cf), for whieh a similiar harmoniez,ex
expansion as for B t m is valid with of n >1.ex ,1 =

Combined with the self
of Cf in the eylindrieal
pressed by:

fields Eo H w (whieh are independent,z, O'T
ease), the Poynting veetor ean be ex-

Stot integrated over the conduetor surf'ace givea only the contri­
bution of the external field and of the self field as evaluated
above, while the mixed terms yield no eontribution. This means
that the loss sourees ean be treated independently even in the
ease of a nonuniform external field.

1.14 Diseussion:

-The equations for self field losses were derived, assuming Je is
eonstant. If Je changes with the applied field (e.g. due to the
self field of a coil, where B tOC(I), Eq.(1.62) must be eorree-ex
ted by using J~ ( B~v~(I». The two integration boundaries r1

" ~A"

and r 2 must also be modified. Analytieal integration over one eyele
is no longer possible. Self field losses in a eoil ean be approx­

imated if one uses a Je value at an average field over the entire
coil and a complete cycle whieh is about a quarter of the aper­

ture peak field.
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For a zero external field, losses were measured for achanging

transport current in the range of -I +o++I for 5 sampIes aso 0
shown in Fig. (1.1~. Losses for I =I are denoted by triangles.o c
The broken line is calculated from Eq. (1.62) for ~I = 2I which

c
yields per unit conductor length the relation:

Wsf,max
11 0= 21T (1.65)

1.15 Comparison between self-field and hysteretic Losses

It was shown that the hysteretic losses are proportional to d,
the diameter of the individual filament and the self field
losses proportional to the square of the diameter D cf the
strand or composite conductor. For practically all superconduc­

ting magnets ~ic «1, thus we may neglect all higher terms in
Eq. (1.62). Assuming a constant critical current density as in

the case of Wsf' we may write for the hysteretic losses:

with V the conductor volume. ~H t is the maximum range of theex
changing external field in one cycle.

The self field losses are given approximately by:

3
Thus: Wsf n2 J (~I/Ic)c

w- = ;r ä7::
"hl .... ;;IV

~Hext

(1. 66)

(1.67)
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For a magnet with 6H t = 20xl03 Acm-1. J = 105 Acm-2ex I c '
(Jc(H) at one quarter of the peak field value) and 61/I = 0.5

c
one obtains

~ 0.65

where D is expressed in (mm) and d in (~m)!

Fig. (1.13) illustrates this relation for a pulse magnet
with a 5T peak field at 5Xl0 4 Acm- 2 overall current density.

1.16 Modification of the hysteretic losses, if the transport
current is not zero.

In section (1.6) it was shown, that the hysteretic losses in a
superconducting slab, carrying a transport current I T, is in­
creased by the factor,[l + (~T)1. Nearly the same factor is ex-

•• ' C
pected for cy11ndr1cal conductors.

As shown in the preceding chapters, according to Bean's critical
state model only the outer filaments in the penetration region
carry the transport current. This is particulary true in the low
field region of the coil due to the high current carrying
capacity of type II materials at low fields.

In addition even in the penetration region, ro-R (see ~1g. (1.11»,
the part r o-r1, respectively r o-r2, of filaments is not in its
critical state condition except near the current maximum. The
reason is that the individual current per filament, given by its
critical value at the field maximum is conserved at low field
levels, where as I c increases, such that the correction factor

( IT)2 . . . .1+ y- 1S zero or very small for a large port10n of f11aments
durini most time of thefield cycle. The overall correction,
which would be difficult to evaluate is expected to be small and

can be neglected in comparison with other error sources such as

in Jc(H), filament diameter, matrix resistivity, average field
over the coil etc.
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2. Additional effects in twisted JT'lultifilament Gonductors

2.1 Axial Giffusion of the self field

As shown, changes of the transport current can be accepted by the
innter filament circles only, if the flux density B produced by
the self field changes in the space between adjacent filaments.
This requires that

rf. ... -. •
yEdS = - <I> # 0 .

r

as shown,a voltage appears at the outer filament circle only if the
current exceeds the critical J c value and the vortices start to
move.

Even if the critical curent is not exceeded in the outer filament
circles, a voltage can appear accross matrix material as a
result of currents flowing between filaments.

In the followingthe derivation of the diffusion equation of the
self field B(r) inside a composite multifilament conductor is

f
given. Here the twist induced current density in the noncritical
inner part of the conductor is neglected temporarily but may be

added to the result as a first approximation. The conclusion of
this calculation may give one possible explanation of the
degradation phenomena observed in long conductors compared to
short sampIe values:

As shown, the self field

I(r)
211'r

describes also the acceptance of current by the inner filament
circles, where I(r) is the portion ofthe transport current,

which (in case of cylindrical geometry) flows within a cylinder
or radius r.
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We consider an area dF = dz • 6r between two filament circles J- --Fig. (2.1)J of radi rl and r1 + 6r = r 2• The paths 1-2 and 3-4
are located in the electrical center of the filaments J to avoid
potential differences over these passages.

The flux d. through dF depends on the current I(r1JZ) flowing
through filaments located within the cylinder with a radius rl:

d. = 11 dz 6r • I(rJz)
"'0 211'r

Eq. (2.1) is true only if 6r « r 1, r 2•

The induced voltages are given by:

(2.1)

au= äZ dz = - d4>

1dz= - }.I • 6ro 211'r
dI(r,z)

dt dz (2.2)

The voltage U(z) between filament circles generates radial
cross currents flowing through the matrix, i.e. the transport
current must be redistributed in the z coordinate between the
outer (r ~ r 1) and inner (r ~ r 1) filaments.

An external field (assumed homogeneous) produces a flux d~,

but the additional induced eddy currents are only small, if the
twist pitch is short enough and yields a sinewave modulation of
the current along the filament (see chapter (1.10».
If the electrical conductivity of the matrix material is 0,

the radial current density in the matrix can be given by:

= U(z)·o

6r

With 6r an averaged distance between filaments.
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Combining Eq. (2.2) and Eq. (2.4) weobtain the differential
equation for the current I(r):

2 aua I(r,z) 2'11'r 0

az 2 = äZI::..r

I::.. r . dI(r,z) (2.5)= -ll 0
0 I::..r dt

The self field penetration in the filament bundle and with it,
the current distribution (assuming there is no longitudinal
voltage drop along the superconductor, wich is trueror J < J c ) '
can so be accomplished axially according to a diffusion equation
with a diffusion constant:

Solution of I(r,z,t):

1) for a conductor extended infinitely in z-direction carrying
a transport current there 15 no z-dependent solution of the
current I(r,z,t):

aI(r,z,t) = 0
az

Self field flux and transport current can only penetrate
radially through the flux flow mechanism.

2) The multifilament conductor is connected at one end (z=o)
to anormal metal e.q. the superconducting coil winding to
the current lead.
The small change 1::..1 of the total transport current Itot=I(R,z,t)
independent of already flowing equilibrium currents Io(r) shall
at t=o be according to a step function:



- 40 -

I(R,o,t) = Io(r) + ßI 6(t)

f,0 for t < 0

6 =i
\1 for t > 0

If I <1e, the filaments at the outer eirele will earry at t = 0
the entire eurrent ßI. The eurrent in the inner filaments are
foreed radially outwards through the matrix by means or indueed
antieurrents at z ~ 0, as diseussed in (1.12)

As illustrated in Fig. (2.2) the initial situation is developing
aeeording to the solution of Eq. (2.5) with the
described boundary conditions at t = 0:

where ~
.. z z

~= 2"2 Dmt . t

(2.6)

In the ease of a nonideal joint (normal metal-supereonduetor)
the eurrent will flow even in the normal metal as illustrated
in Fig. (2.2) for z < o.

In reality the transient zone is not as weIl defined as assumed
for the idealized ease, but the general behaviour will be the same:

From the ends of the eomposite a zone of non-stationary current
distribution penetrates the eonduetor which is no longer deter­
mined by the critieal state model for the self field, but tends
for t +~ to equilibrium eurrent sharing between filaments as
given by the transition resistance between the current lead
(normal conductor) and eaeh single filament •

...
In a copper matrix with ~300 = 100, the magnetie diffusion con­

P4.2
stand has a value of



Fig.2.1
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Fig.2.2
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1 = 1.42 em2 see-1
-8 40.4 10 x56x10 x100

In Nb-Ti eomposite eonduetors a high resistive Cu-Ti interlayer
is present between filaments and eopper matrix, whieh does
deerease the effeetive matrix eonduetivity a and thus inereases

Dm eonsiderably.

3) A similar eurrent profile is to be expected as for (2), if a
disturbanee occurs over a short section of a long conductor.
We assume that a flux jump oeeurs inthe outer filament eireles
and with it a longitudinal voltage is generated. Apart of the
transport eurrent will be transferred to the next inner filament
eirele through the. matrix. Theeorresponding self field penetrates
through the resistive part into the spaee between filaments, from
where it is propagated axially to both sides aeeording to the

diffusion equation, even when the overloaded filaments earry again
stationary eurrents.

As the supereondueting properties are not eompletely homogeneous
along a eomposite eonduetor, it must be assumed, that ehanges
in transport eurrent and the related self field distribution
aeross the outer filament eireles by flux flow or flux jumps
usually oeeur in those "hot spots" and propagate from he re on

along the eonduetor.

With respeet to instabilities this situation is worse than at the
previous assumption of an uniformly penetrating front of eurrent
and self field, as the heating in the overeritieal filaments and
the eurrent earrying matrix is eoncentrated around thes~"hot spots"
in this dynamie model. The total self field flux and thus the
dissipated heat whieh must penetrate for a eertain 6IT to be
overtaken by an inner filament eirele, depends on the veloeity.
The penetrating self field gives the amount of eurrent transferred
to the inner part of the eonduetor and inereases until the
disturbed filaments reeover again. If the heat is rernoved insuf­

fieiently, the heated spot expands and a queneh oeeurs due to
"self field instability" even when the short sampIe current of
the eonduetor is not reaehed.
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Low magnetic diffusivity Dm' a high thermal conductivity of the
matrix and a good bond between matrix and filamentsjreduces
energy dissipation and favours recovery without quenche In
short sampIes self fields can penetrate through the ends to­
wards the middle of the wire in a reasonable time and a nearly
uniform current density across the conductor is obtained after
a few diffusion time constants, related to the half length.

This effect may give a possible explanation for the often ob­
served degradation of the critical current in coils compared
to Ic-values measured in short sampIes.

We apply a sudden current change AIT at t=o to a conductor of
length 2L. The corresponding current value AI(r,L) in the
middle of the conductor attains 50% of its final value at a
diffusion time for which

2 ~
1- - J

';:;0
0.25

is valid. (Penetration from both ends).

The appropriate diffusion time for a short sampIe with 2L = 10cm,
and magnetic diffusivity Dm = 1.42 cm2 s-1 is:

= 6.62 sec.

a time which may be considered small compared to the current
rise time during short sampIe measurements, giving the full
current carrying property of the composite.

On the other hand, if 100 m of this wire are wound into a coil,
the diffusion time, proportinal to the length square, yields,

= 6.62 106 sec
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In this easeeurrent penetration imposes self field f'lux flow and
quenehing may oeeur even if thesingle filament isstill stable

in the external field.

2.2 Extension of the self field model in twisted multifilament

conduetors

In eylindrieal multifilament eonduetors with twisted filaments,
the transport eurrent flowing through a filament has a serew
type path on a eylindrieal surface of radius rand forms a piteh
angle ~ with the conduetor axis. We may write for the piteh

p
angle:

(2.8)

with lp thelength of the twist piteh and r the distance to the
eonduetor axis.

The transport eurrent density has two eomponents: An axial
current density component J T, and due to the twist an azimuthal
eomponent Jtp. These two eomponents are related to each other by:

(2.9)

J,produees an additional solenoidal selffield within the eon­
duetor in axial direetion.

This field eouples the twisted filaments like a mutual induet­
ance and thus produees a modifieation of the transport eurrent

distribution:

We denote the self field eomponents by B~(r) and B~(r) in the
I U

eonduetor at a radius r, J(r) i5 the axialeomponent of the



- 44 -

transport eurrent flowing within a eylinder of radius r <R,
Bz is generated only from the eurrent (IT-I(r» outside r.
If I T is the total transport eurrent, then

(2.10)

B er is generated only from I (r) :

(2.11)

I(r) is determined from the boundary eondition, that no flux­
ehanges due to the self field ean oeeur through a plane
passing through any two arbitrary filament axis.

This means that in a simplified model, in whieh the hetero­
geneous eurrent pattern is smoothed out by averaged values,
the resulting self field must be parallel to the filament and
thus forrns an angle!f p with the eonduetor axis

From whieh we ealeulate I(r):

(2.12)

I(r) = = (2.13)

.
Integrating I(r) with respeet to time gives the value of

I(r,t):

I(r, t) (2.14)
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The magnetic coupling due to currents flowing through twisted
filaments forces the filaments at the inner conductor parts to
overtake apart of transport current without the condition that
accompanying self field has passed across the outer filaments

f
. 11)

by the lux flow mechan1sm •

Clearly in the calculated selffield formula the inserted
transport current Li1 is reducedby this fraction, which pene­
trates the conductor withoutenergydissipation.

Eq. (2.14) has been derived usingthe condition that the elec­
trical field along the filaments during the change 01' the trans­
port current is negligible. This is true only in the conductor
region, where the critical current in the filaments is not ex­
ceeded, i.e. in the interior cylindrical portion of the conduc­
tor, while in the outer region of self field penetration the
filaments carrythe critical current.

The average current densityis thlis given by:

J(r) 1= 21Tr
d1 (r) =
dr

I .
T (2.15)

(with 1(r,o) = 1T(o) = 0).

The self field B'(r) and. ~ . .for maX1mum and m1n1mum

in Fig.(2.3).

thecurrent densityJ(r) are illustrated

value of 1T = I and 1T = I. = 0max m1n
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3. Eddy current losses in metallic parts

3.1 Iron losses in the flux return path:

Por completion one has also to consider losses in metallic coil
reinforcements, in the metallic helium container and other
metallic parts surrounding the coil. In beam transport magnets
the iron shell is also placed within the helium container and
must be cooled by the helium. Eddy current los ses in all metallic
parts can be calculated in analogy to section (1.11). Iron
losses (without end effects) are given by:

0h and ae, are material constants due to hysteretic and eddy
current effects in iron. The exponent hvaries in the range
of 1.6-2, Gpe is the weight of the laminated core, f the
frequency of the pulsed field.

Core endlosses can be reduced either by shaping the core end~

section (Rogowski shapes) or by extending the iron yoke about
2 times aperture diameter over the coil ends.

4. Comparison of loss-calculation with experiments.

Comparison of results obtained from theoretical considerations
and experimental investigation requires the exact knowledge
of the location and distribution of superconducting filaments
within a single strand and in the cable or braid, the physical
properties of the matrix material, and the type of impregnation
used (i.e. metallic, intermetallic or organic) in the cable. It

includes the effect of various components mentioned. Difficulties
in manufacturing a.c. cables have lead to discrepancies between
theory and experiments (broken filaments, interturn, shorts, etc.).
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Published data on loss measurements B
, 1 2 , 1 3 ) agree reasonably

weIl with theoretical calculations only in special cases.
Generally due to lack of detailed information, experimental
data on a.c. magnets do not fit theoretical predictions. Good
agreement between theory and experiment is reported by labora­
tories in magnets, which they have build and all coil and
conductor data areavailable. Conductors used so far in pulsed
superconducting rnagnets are rnultistrand cables or braids, with
each strand consisting of twisted fine superconducting filaments
embedded in a two or bne component normal metal matrix+. The
strands are twisted or transposed and shaped to desired rectan­
gular configurations. The individual strands are either insulated
individually, or impregnated in a metallic or intermetallic
insulator.

The size of the individual strand in a cable or braid needed for
coil construction is determined by the type of conductor. In
cables containing individually insulated strands,it is desired
to use large size wires containing many superconducting filaments.
Larger strand sizes have also the advantage of ease of cabeling
and compacting without wire breakage. These types of conductor
have a higher packing factor (ratio of wire to insulation).
The largest conductors manufactured so far have a compacted
size of 0.5xO.5 cm and carry 5600 A at 4.5T, (RHEL).

Common shapes of conductors are 2000 A (at 5.0T) cables, havi,ng

a cross-sectional area of (2.6x2.1)rnm2, selected for the D2
dipole at Karlsruhe, thebraid selected by Siemens hasa cross­
section of (5xO.6)mm 2 and carries '" 1000 A at 5T. Saclay
chosen a 24 strand braid, with 0.4 mrn strand diameters each
braid having 1000 filaments. The conductor carries 1500 A
at 6.7T.

+The one cornponent matrix used in low resistivity copper
(generally OFHC) or alurninurn; two cornponent matrix used is
low resistivity copper and cupronickel~
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The size of each strand selected for different braids or cables
vary between 0.02-0.04 cm, but may exceed 0.1 cm diameter, as it

was found that self field effects are quite small as
shown in Eq; (1.62). Howeve~ the filaments should be decoupled
in order to eliminate additional losses. Decoupling is achieved
by adequate twisting and the use of cupronickel around individual
filaments or clusters of filaments. Standard cables consist of a
numberof twisted strands. These cables have the disadvantage
that concentric layers of strands within the cable are geometri-
cally displaced. The displacement of individual strands cause
nonuniform current sharing. Smithl~) reports that in a 7 strand
cable a negative currentwas observed in the central strand, when
the field was pulsed with a few second rise time. All strands
carried positive currents under d.c. conditions. Jüngst

1 5
) reports

negative currents at low field levels even in not fully transposed
cables.

Transposed cables, in which each strand occupies all positions
within the cable cross-section, eliminate the above disadvantages
but they have a low packing factor ("- 40 - 50%) and a large
number of cross over points. Strand breakage is observed, when
a large number of them are used in the cable and compacted to
specified cable sizes.

It was mentioned earlier that wire motion in the coil due to time
variable Lorentz forces caUse heat. The conduction of
heat away from the superconductor to the bath may limit the
coil current carrying capacity and generate conductor training.
Two constructions to prevent wire motion are given below:

a) The cable is impregnated with In(Sn) or Ag(Sn) solder with
an addition of Bi 1 2

) , or another eutectic. These impregnants have
a relatively higher resistivity at 4.2K (>10-60hm. cm) and coupling
losses measured are only about a factor of two higher than in
insulated cables.

b) Potting. the cable in suitable thermosettings. In this case
the individual strands are insulated with a layer of copperoxide
or a thermosetting, compatible to the final potting mixture.
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Fully insulatedstrands and cables, if potted, (type b) exhibit

training after the first cool down. After each succesive cool
down training effects have been observed in some cases, in

others no training effects have been oberved, whence the coil
was cooled repeatedly.l.)

In soldered cables or braids (AgSn, or InSn) no training effects have

been reported. Soldered cables have also the advantage of retaining
their shape within the specified tolerances when bend overtight

radii. This fact is important ifrefused field tolerances within
the useful aperture of the magnet are stringent_ But even soldered
conductors must be refrained from motion due to magnetomechanical
forces, either by proper reinforcement, or potting in suitable
epoxies,which bave practically the same thermal contraction
coefficient as the conductor and do not crack when cooled down
thermally cycled and magnetically pulsed.

Metallic impregnated cables (type a) have operated better und er
pulsed conditions than not impregnated ones (type b). Thereason
may be found in the better heat transfer properties cf the solder
and the rigidity of the cable. One difficulty arising from the
use of metallic insulated cables is the coupling between strands.
This is the same phenomenon which causes also eddy current losses
in the individual twisted strand. Additional eddy current losses
occur in the cable depending from its twist rate. Induced eddy
currents give an additional contribution to the irreversible

•sample magnetization which increases with Band the twistlength.

Fully insulated strands are totally decoupled. If the cable is
coupled to any degree, say because of shorts between strands,
or in metallic insulated cables due to the use of high
resistivity solders, higher than about 20% of the total coupled
case, cross-currents flowing through the high resistivity layers
between strands generate losses far beyond the individual strand
contribution and dominate the coil losses.

•Fig. 4.1 gives the losses per cycle versus B for solenoid using
metallic insulated cables. It may be noted that losses per cycle. .
are increasing with frequency in the low B range and decreas~ng

with frequency at high B region as shown in Eq. (1.52), where
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.
the factor 1/11+jwTldetermines the shielding of B in the
interior of the conductor.

While theoretical predictions agree qualitively with experimental
results, quantitative agreement between measurement and theory is
found in solenoid type coils. Measurements do agree with theory
within a factor of two in race track shape coils (dipoles etc.).
In tables 4.1, 4.2 and 4.3 losses measured in solenoids are
compared to the theoretical predictions. No systematic measure­
ments on a.c. los ses were available on dipole magnets to enable
a detailed comparison with theory.



Table 4.1

Cornparison between ealeulated and rneasured a.e. losses
• • 16)ln solenolds

Coil Geornetry

2a1 = 6 ern 2a1 = 2.4 ern 2a 1 = 2.4 ern

2a 2 = 9 ern 2a 2 = 8.4 ern 2a 2 = 6.5 ern

2b = 5.6 ern 2b = 5.3 ern 2b = 5.3 ern

N = 2990 N = 5650 N = 6125

Conductor
., "- AIRCO: 361 fil.~ 13 ~rn VAC: 61 fil.a 34 ~rnIMI: 61 fll. a 42 um

IoHo = 650 AT IoHo = 285 AT I H = 650 ATo 0

Ho = 1 T Ho = 1 T HO = 1 T

1 = 705 m 1 = 958 rn 1 = 856 rn

Veond = 112 ern3 Vcond = 152 ern3 V = 82.4 eIn 3eond
D = 0.045 ern D = 0.045 em D = 0.033 eIn

Matrix Cu: r = 180 Cu: r = 70 Cu: r = 100

Pe
-8

Pe
-8

Pe = 10-10-8Ohrn.ern= 4~7 -10 Ohm.ern = 7 -10 Ohm. ern

lpiteh = 2.5 ern lpiteh = 0.4 ern lpiteh = 0.6 ern
T = 21.10- 35 T = 1.45-10-35 T = 0.57-10- 35



Bm(T) 4.2 I 3.6 I 5.2

Hysteretic. losses Whl = 9.23 Whl = 1.6 Whl = 10.3
(Ws/cycle) Eq.(1.28) l\I = 74 A l\I = 36 A l\I = 95 A

I = 325 (at lT) I = 150 A (at 0.9T) I = 370 A (at 1.25)c c c

Self field losses I Wsf = 7.3-10-3 Wsf = 2.5-10-3 Wsf = 16.5-10-3

(Ws/cycle) Eq.(1.62)

Field rise time J 5.6 8.77 15 25 I 2.5 4 5 6.5 10 11 1.8 3.6 6.25 10
t

o
/ 2 ( s )

Eddy Current lo:sses , 8.44 5.06 3.0 1.7811.2 0.76 0.61 0.5 0.3 i 0.752 0.38 0.22 0.135
(Ws/cycle)Eq.(1.52)

Total calculated ~7.7 14.31 12.25 11.03 12.8 2.36 2.21 2.1 1.9 111.5 10.7 10.52 10.44
losses (Ws/cycle)

Total measured ~1 15.8 10.8 10.0 13. 75 2.16 1.5 1.25 1.2 t 10.5 10.1 10 10
losses (Ws/cycle)



Table 4,,2

Comparison between ealeu~ated and measured a.e. losses
in so Lenodds! 7)

Coil Geometry 2a 1 = 5 em 2a 1 = 5 em 2a 1 = 5 em
2a 2 = 9 em 2a 2 = 9 em 2a 2 = 9 em
2b = 7.5 cm 2b = 7.5 em 2b = 7.5 em

N = 4000 N = 4000 N = 4000

Conduetor: VAC: 61 file a 34 ~m ~ 61 file a 34 ~m VAC: 61 file a 34 ~m--
IoHo = 840 AT IoHo = 840 AT IoHo = 840 AT
Ho = 1 T Ho = 1 T Ho = 1 T
1 = 780 m 1 = 780 m 1 = 780 m
Veond = 67 em3

Vcond = 67 em3 V = 67 em3
eond

D = 0.033 em D = 0.033 em D = 0.033 em

Matrix: Cu: r = 100 Cu: r = 100 Cu: r = 100-,

- -8 - -8 -8
Pe = 10.10 Ohm.em Pe = 10.10 Ohm.em Pe = 10.10 Ohm.em

lpiteh = 0.2 em 1 °t h = 0.3 em 1 °t h = 0.6 emp i. e -3 p:L e
T = 0.07·10-3s T = 0.14.10 s t = 0.57.10- 3s

I
I



Bm(T) 4 4 4

Hysteretic losses Whl = 9.5 Whl = 9.5 Whl = 9.5
(Ws/cycle) Eq.(1.28)

Self field losses 10-2 10-2 10-2

(Ws/cycle) Eq.(1.62)

Field rise time 1 2 5 10 0.5 1 2 5 0.5 1 2 5
t o/2 (s)

Eddy current losses 70xl0-3 35xl0-3 14xl0-3 7Xl0-3 0.32 0.16 0.08 0.032 1.28 0.64 0.32 0.13
(Ws/cycle) Eq.(1.52)

Total calculated 9.57 9.53 9.51 9.5 9.82 9.66 9.58 9.53 10.78 10.14 9.82 9.63
losses (Ws/cycle)

Total measured 9.8 9.8 9.8 9.8 13.2 11. 8 10.9 10.1 13.8 12.2 10.7 9.0
losses (Ws/cycl&)



Table 4.3

Comparison between ealeulated and measured a.e.losses
. 1 . 16)l.n SO eno1.ds

Coil Geometry I 11 111

2a1 = 2.16 cm 2a1 = 2 em 2a1 = 2.12 em
2a 2 = 4.76 cm 2a2 = 4.25 em 2a2 = 8.99 em
2b = 8.64 cm 2b = 5 em 2b = 8.64 em

N = 5177 N = 2376 N = 1698

Conduetor IMI: 61 file a 28 ~m IMI: 61 fil.a 28 ~m §upercon 16x400 fil.a7.5 ~m

IoHo = 300 A'1~ I H = 300 AT IoHo = 1400 ATo 0

Ho = 1 T HO = 1 T Ho = 0.7 T

1 = 563 m 1 = 223 m 1 = 296 m

V = 39.5em3 V = 15 6 em3 V = 150 em3
eond eond • eond

D = 0.03cm D ;r o. 03.cm 16 strand transposed eable

Matrix Cu: r = 180 Cu: r = 180 cu : r = 100
-8 -8 = 7.10-8Ohm.em

Pe = 4.7.10 Ohm.em Pe = 4.7·10 Ohm.em 1>e
1 ·t h = 0.25 cm lpiteh = 0.25 em Ipiteh = 0.2 emp1. e
T = 0.2.10- 3s T = 0.2.10- 3s T = 0.2.10- 3s



Bm(T) 1 2 3 4 1 2 3 1 2 3 4

Hysteretic losses 0.81 1. 38 1.83 2.2 0.32 0.5 0.7 0.69 1.15 1.5 1.76
(Ws/cycle) Eq.(1.28~

Field rise time I 2 I 2 I 2
t o/2 (s)

Bm(T) ~ 3 3

Eddy current losses I No frequency dependence obs , INo Frequency dependence obs , INo Frequency dependence obs ,

(Ws/cycle) Eq.(1.52 t We = 0.07

Bm(T) 4

We = 0.016

4

P.007 0.029 0.064 0.114

4

ld = 59A I c = 170A (at o•75i) lAI = 12A/strand
I c = 51A (at 1T )

Self field losses
(Ws/cycle) Eq.(1.62

AI = 57A I c = 150 (at 1T)

Wsf = 6x10-3 Ws f = 2.2.10-3 Wsf = 1.35.10-3

Total calculated
losses (Ws/cycle)

0.886 1.456 1.906 2.27 10.338 0.568 0.75 0.7 1.118 1. 56 1. 88

Total measured
losses (Ws/cycle)

0.58 1.1 1.5 1.85 10.27 0.5 0.7 0.73 1.26
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5. Methodsof Loss measurement

Methods to measure a.c. losses in superconductors can be implied
to test samples and specimen and t.o measure losses in coils
Popular methods to measure losses are the calorimetric method, in
which the additional helium boil off due to a.c. losses is measured
and the electric method at which instantaneous values of the
current and voltage are multiplied and integrated over the time.

5.1 Calorimetric method:

Fig. 5.1 illustrates the method of loss measurement of specimen
schematically. The specimen is wound bifilar and placed in a
calorimeter. The superconductor is energized from a pulse­
generator, or a variable current, low frequency (~ 50 Hz) source.
The helium boil-off due to a.c.losses is measured by means of a
gas flowrneter. The calorimeter is placed in a main liquid helium
dewar, such that current leads are located inside the main
cryostatprior to. entering the calorimeter.

The sensivity of the method ("-'1 mW) is moderate, if low frequency
pulsing is applied. The measurement accuracy isimproved by
increasing pulse frequency. The advantage of this method is its
independence on magnetic energy stored in the coil. Its main
disadvantage, the long time required until equilibrium conditions
are established to measure losse& Only magnets of moderate size
have been tested with this methode

5.2 Electric methods:

Several methods are used successfully and in the following a
description of few methods is given. The basic principle'of
this method is to generate a voltage which is proportional to
the power delivered to the coil and integrating it over one or
several cycles.
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The circuit shown in Fig. 5.2 is described by Gilbert
1 9

) and
is used to measure a.c. losses in superconducting sampIes and
coils. The circuit consists to two major parts:
A multiplying circuit to obtain instantaneous power rlow
between specimen (coil) and a powersupply and an integrator to
keep track or the energy delivered into the superconducting
magnet.

The multiplying circuit operates as folIows: It utilizes a Hall­
probe which generates an output voltage proportional to the
product of input current to the Hallprobe and the magnetic field
around the probe.The test magnet is connected to the Hallprobe
through a resistor by a pair of potential leads inserted into
the cryostat.Thus the input current to the Hallprobe is propor­
tional to the magnet voltage. The Halldevice is mounted in the
gap of a coil whichgenerates a magnetic field proportional
to the transport current of the coil, (Bs = K.I.). As this
coil is connected in series to the superconducting magnet to
be tested, the Halldevice is exposed to a magnetic field propor­
tional to the current flowing through the superconducting magnet.
The input to the Halldevice is thus proportional to the voltage
accross the superconducting magnet and to the magnet current. The
output voltage of the Halldevice is proportional to the in­
stantaneous value of the power into the superconducting magnet.

The integrator uses asolid state chopper operational amplifier
with a feed back capacitor C and aseries resistor H, such that

its output voltage is Uout =~ ~T Uin(t) dt.

The drift in the integrator circuit appears as an equivalent power
loss and must be kept small. (1mV-drift in 103 sec, with a
dynamic range of 10V).

The Hall voltage is integrated by means of an integrator.
The ou~put voltage is given by:
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= (5.1)

where Ware the losses to be measured, s is the sensitivity

and I s tha maximumcurrent through the Hallprobe; Bx,max is
the maximum fluxdensity determinedby the nonliniarity of the
Hallprobe. T is the time constant of the feed-back loop of

the integrator and Umax,Imax the maximum voltage and maximum
current resp., applied to the superconducting coil during the
cycle.

It is seen from the above relation, that the sensitivity of
the method is limited by the characteristics of the Hallprobe

(s, I s' Bs,max) and by the magnitude of the applied voltage and
current. The circuit has a moderate sensitivity of about
+ 5% at Q < 100.- . = .--.:

The sensitivity of the system is also limited by the drift of
the integrator, its nonlinearity and by the thermoelectric
voltage of the Hallprobe.

20)
To reduce the influence of the inductive term Umax' Hlasnik
and coworker have proposed its compensation by means of a linear
mutual inductance, whose primary side is in series to the super­
conducting coil and whose secondary side compensates the inductive
component of the coil voltage, as shown in Fig. 5.3. The voltage
Ud is essentially resistive component and can beampiified and
applied to the Hallprobe. The sensitivity of this method is
about a factor of 20 better than in the previous scheme. The
circuit is more susceptible for measuring losses in coil using
multifilament composite conductors.

The circuit proposed by Fietz
2 1

) is useful to obtain hysteretic
losses in specimen. The sampIe is inserted into the gap of one
of the two coils of identical cross sectional area and identical
number of turns placed side by side in the solenoid generating
the external field. (Fig. 5.4)
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As long as the sample is not superconducting, the output induced
voltage from the coils 2 and 3 are the same and cancel each
other in the circuit. A coarse and a fine potentiometer correct
for small voltage devations due to measuring coil erros.

The measuring coil 2 and 3 are designed to fit the specimen
closely such that a good inductive coupling between sample and
coil is obtained. The difference voltage from the coils (empty
coil and coil with specimen) is amplified by an operational
amplifier. The integrated voltage U_ is proportional to the

- - - 0 --

magnetization of the specimen. Tracing this voltage against
the integrated induced voltage in a pick up coil (proportional
to the external field) a magnetization curve such shown in
Fig. 5.5 for NbTi is obtained. The area of the magnetization
curve is proportional to the hysteretic losses for one cycle.

Error sources are due to deviations in the area or number of
turns of the measuring coils, the positioning of these coils in
the external field, unmatched flux densities (different Ampereturns
in the coils) and mainly errors due to the drift of the operational
amplifier. The circuit has been also used by Mclnturff 2 2

) to
measure magnetization losses of NbTi wires.

An apparatus to measure low frequency losses is described by
Sekula

2 3
) •

Another electric method to measure losses is given by Pech
2

: )
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Figure Captions:

1.1 Schematic representation of the spatial variation of free
energy of a flux line or a bundle of flux lines in areal
type II superconductor with and without impressed trans­
port currents.

1.2 Field penetration into a type II superconductor with
pinning.

1.3 Field and current distribution in a type 11 superconducting
slab with the external field parallel to the surface of the
slab, according. to Bean's critical state model.

1.4 Field and current distribution in an infinite sheet due
to the application of transport currents and external
fi~lds parallelto the sheet surface.

1.5 Field and current profiles in a type II superconducting
slab according to Kim ~odel.

1.6 Field penetration profile in a semi-infinite slab
(Kim Model).

1.7 Hysteretic losses vs. characteristic conductor parameters

JoBod for a 1m long dipole.

1.8 Schematic representation of a multifilament conductor with
twisted filaments.

1.9 Composite multifilament conductor.

1.10 Pulsed fields and induced currents.

1.11 Field profile in a type II superconducting cylinder.

1.12 Energy dissipation per unit length of specimen vs. peak
transport current.

1 0
) The 10ss at the critical current

for each specimen is indicated by a triangle. The dashed
line is according to Hancox

9
) expression.



1.13

2.1

Comparison between self field and hysterie losses for a
pulsed magnet with 5T peak field at 5x10 4 A/cm2 overall
eurrent density and vs. Composite.

Composite conduetor with twisted supereonducting filaments.

2.2 Axial diffusion of transporteurrents through anormal
joint into a eomposite eonduetor.
top: Current path.
bottom: Current distribution.

2.3 Self field and eurrent density pattern in a cylindrieal
eonduetor.

4.1 Energy dissipation vs. B. A flat fully transposed braid

used in·the solenoid with Id = 2.5 em; OD = 7.6 cm;
length = 4.75 em has 33 strands with 210 filaments eaeh.
Eaeh strand has a diameter of 0.02 em and the filaments
have a diameter of '" 12 m typieally. The matrix
is eopper.

8
)

5.1 Sehematie representation of the ealorimetrie method to
measure a.e. losses.

5.2 Sehematie arrangement of a.e. loss-measuring eleetrieal
methode

5.3 Eleetrical a.e. loss-measuring method using an induetive
eompensating eoil.

5.4 Circuit diagram aeeording Fietz
2 1

) .

1. SampIe
2. SampIe eoil
3. Bucking eoil
4. Field measuring coil
5. Fine and erude potentiometers

5.5 Typieal hysteresis curve measured for NbTi.
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