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Zusammenfassung

Die Theorie der Wechselstromverluste von gepulsten Typ II
Supraleiter und supraleitender Magnete ist prisentiert., Die
berechneten Verluste in Magneten sind mit gemessenen Werten
verglichen. Verschiedene Verlustmessmethoden sind beschrieben.

Abstract:

The theory and calculation of a.c. losses in type II superconduc-
ting materials and superconducting coils are presented. The
calculated losses are compared to loss-measurements in solenoids
performed by several laboratories. Methods of loss measurements
are described.
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1. A.C. Losses in superconducting pulsed magnets

1.1 Introduction

Alternating current losses have been subject to investigation
in the past few years, since the developement of new multi-
filament conductors became reality and the possibility of
using them in pulsed synchrotron-magnets becamé feasible.

In solenoids field changes in the order of 7 T/s have been
achieved. In pulsed synchrotron magnets which have more com-
plicated eoil geometries field changes of about 6 T/s have

been obtained without generating excessive dissipative losses.
Depending on the field amplitude superconducting magnets can
be pulsed at frequencies g 1Hz. One of the main reasonsof these
low duty cycle operations are a.c. losses generated in the
superconductor and the normal metal substrate, which produces
local heating and may lead to degradation of the superconduc-

ting material.

Differing from the ideal type II superconductor the inhomoge-
neities in a nonideal superconductor (dislocations, precipi-
tations, grain boundaries) lead to a spatial variation of the
free energy of a vortex F(r) which is shown in Fig. (1.1).

In 5??),the interaction with the neighbouring fluxoids,as well
as the line tensign of a .curved fluxline,is to be included.

A Lorentz force f. can be regarded as an additional contribution

L
to the free energy

Fr (7)) = F@) o+ ‘EL“E {i71)
or: F (r) = F(r) + (JT X ¢O)‘ r (1.2)

-
with ¢, the fluxquantum in the direction of the vortex.



The fluxoids are trapped in the potential minima of ?dand
remain statlonary until f exceeds the maximum pinning force

§p = max (V?Yr)) and a mlnlmum in F' does not exist further:
Dissipative fluxflow occurs at the "critical current" Jc. The
derivation of fp and thus J from the individual fluxoid-defect
interaction is extremly compllcated by the fact that 3"(1') is
not rigid but dependent on the interfluxoid distance. Thus
interaction with the neighbouring fluxoids has to be taken into
account. A theoretical approach to get an effective average
pinninglforce <§p> per unit length of fluxoids is given by
Labusch .

-> -> -+ >
The value of Jc with <fp> = Jc x ¢, can not be exactly determined,

as due to thermal activation a number of fluxoids can move out
of the potential minima at smaller currents than 30. This leads
to a (strongly current and temperature dependent) "flux creep"-
voltage?) expressed by

U ~v exp (¢I/kT). ( (1.3)

Usually Jc is related to a fixed fluxflow resistivity eg.

$p = 10 =12 ohm.enm.

Up to now the external force per vortex unit length was ex-

->
pressed by §L = 3T X ¢°. This assumption leads to a total
force on a conductor of volume V,
> fro -+ > >
F, = JlB(r) x J (r)] a’r (1.4)
L v T

> - -
where we used B = n ¢ and n = Fluxline density. This is
obviously not identical with the classical magnetic force on

the conductor located in a uniform field u Hext

- > <+
F.. = uoHext' f[JT(r)],dBr = ucHext—.ITrL (1.5)
v

->

with H the external field.

ext?
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<> > ->
As B (r) in the conductor differs from Hext’ the resulting

difference must be attributed to the following additional
effects: ' ' ' ’

The density gradient of flux lines leads to a net force on a
fluxoid as the interfluxoid forces do not cancel,

For probes with a demagneti%ation factor D # O, the persistent
supercurrents lead to a distorfion of the magnetic field in-
side and outside the superconductor. The curved shape of flux-
lines inside the superconductor gives an additional line ten-
sion force acting on the pinning centres.

s)

From the free enthalpy G (T,H), Friedel, de Gennes and Matricon
have derived an expression for the correction to the force on a

fluxline
e -> >
. _ JH(B)
fL = —s—B—-— [JT X ¢0] . (106)

where H(B) denotes the external field necessary to generate an
internal equilibrium induction B in the ideal (unpinned) super-

conductor. Eq. (1.6) must fail at least for low fields, H*H

3H(B)
35 0.

¢l?
where

In principle the electromagnetic force must result from the
Maxwell tensor which is not known, as it presumes detailed
knowledge of the internal field.

We suggest to set for the total volume force acting on the flux-
line lattice, the relation:

> -+ ->
FL = J x uO Hext (107)

The effective pinning force density Fp counteracting FL is thus

: +> L +
nsfp> = By o= [-Jc x Hext] : (1.8)
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Without the need for a detailed analysis of interfluxoid

forces and of the line tension, these effects should automatically
be included. The only assumption made here for simplicity is,

that the magnetic forces act on the fluxoids alone.

For superconductor geometries regarded here (thin filaments)

the condition of B ~ Hoxt is always fulfilled.

-> -+ »
Using Maxwells law,curl H = J, the Eq. (1.7) can be written as

> > > '
FL = M- [euri H x Hext-] (1.9)

->

Here H is the local macroscopic field in the superconductor,
where the microscopic field variations due to the vortex
currents are averaged out.,

Assuming the field and thus the vortex axis are in the
z-direction, J 1is in the y=-direction, Maxwells equation reduces
to Jy = de/dx. The expression for Fp(B,T) as a material constant
of the individual super-conductor defines a "critical field

gradient"

dH
dx 'crit =9 (1.10)

dH . . .
If Jc and thus Hi‘crit is exeeded, fluxlines or fluxline bundles
overcome the pinning barriers and move in the opposite direction

to the fluxoid density gradient dn/dx, with:

dH
dx btcrit ¢° dx erit °

until a new stable fluxoid arrangement in obtained.

Due to the same electrodynamic arguments which lead to the skin
effect in a normal condhctor, any change in the currents and
thus the associated magnetic field always commence from the sur-
face into the bulk superconductor.
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In order to maintain the critical field gradient, (assuming a

dH
quasistationary case of slow —-%%E; the rising external field

Hext peshes the whole fluxfront into the superconductorras
illustrated for a slab placed parallel to the field in Fig. (1.2a)
for the simple (but unrealistic) case of field independent Jge

The interior of the superconductor is screened by supercurrents

flowlng in a layer of thickness X, = Hext/Jc'

Reducing Hext below the peak value causes the fluxlines to move
out of the superconductor, leading to an inverse critical field
gradient and associated critical current density in the opposite
direction. This condition is shown in Fig. (1.2b) for subsequent

values of H after a maximum value Hhax with a penetration

denth ¥
vrv&‘ e

has been reached. A subsequent field rise yield a new pattern
Fig. (1.2c) which is different from the initial behaviour shown

in Fig. (1.2a).

This model for the magnetic behaviour of imperfect type II super-
conductors was first formulated by BEAN ) as critical state
model. It postulates that depending on the history of the exter-
nal field, the current density can only be zero in regions where
never flux has penetrated, or it attains the critical value # Jc.
Different to a normal conductor, regions of opposite flowing
currents can coexist stationary in a superconductor.

For Hext cycled between +Hmax and - Hmax the corresponding field
patterns are given in Fig. (1.3). If a transport current is im-
pressed on the superconductor, the fields at both sides of the
conductor are essentially different and the current pattern is
displaced such that a net current IT remains, as illustrated in

FPig. (1.4).

In the case of full field penetration i.e. if chd/E ;ﬁmax is

greater than the thickness 4@ of the conductor, no field and
current free regions exist.



1.2 Flux profiles

For a real type II superconductor the critical current density
Jc is a function of H and T. The flux profile H(x), (in the one
dimensional case), is expressed as the solution of the differential

equation

Q) = 45, (HED) (1.11)

where the (#) sign depends on the direction of Jc'
For constant Jc the linear field profile given in Fig. (1.2) and (1.3)
(BEAN-model) is obtained.

A better approximation to the distribution of the current
density in a real type II superconductor is given by using the
KIMS) model, which relates the critical current density in the
superconductor, to the local magnetic field by:

J H

o 0
JC - H+H0 (1012)

where Jo and Ho are material constants.

Combining Eq. (1.11) and Eq. (1.12), we obtain:

ad . , o0 (1.13)

Integrating Eq. (1.13) and noting, that at x o, H(o) = Hext’
we get the equation for the field profile in an imperfect type II
superconductor

1/2
H 2 2u,J,- |
H(x) = Ho{{(l + 5B ) —%ﬁ—fl - 1} (1.14)
(o) o)
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The distance from the surface at which H has dropped to zero
is given by: '

H
. ext 1 :
X * T H {2’Hext + Ho} (1,15)

oo
Fig. (1.5) illustrates the field profile in a slab for increasing

and decreasing external magnetic fields parallel to the surface
of the slab,

1.3 Thin superconductors

For superconducting probes with a small thickness d, the external
field penetrates into the whole conductor and is screened only

3 . . . d B
partly in the middle of the conductor by an amount AH = = Jc‘

Thus H(o) = H__, + AH

ext

If the condition

AH <<Hext:

holds, i.e. the conductor thickness is

2Hext
b}
Jc

d <<

then Jc (H) can be replaced by Jc (Hext) and the approximation to
a linear field profile in the superconductor is valid. '

This is always satisfied for multifilament wires, where fine
superconducting filaments (5...50um) are embedded in a normal
metal matrix; With typical values of d = 10um and J_ = 2-105 A/cm
we get AH = 100 A/cm, where as the external field
4 A/cm,

]
o enna%nnvln-!nc4-4 v on
& vuplilLuiliuuL vLliip

e
o S ¢

magnet is in the range of several 10
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1.4 Finite size slabs and cylindrical conductors located in a

transverse external field.

-
In gﬁe one dimensional model stated above, curl H was expressed

by a—- and all the other contrlbutlons were assumed to be zero.
This is only true for an infinitely extended slab with a surface
parallel to the (uniform) external field. In all other conductor
conflguratlons the magnetlzatlon currents distort the field and
the current configuration in a compllcated manner and cannot be
treated by elementary methods, The case of a thin strip conductor
with igs face perpendicular to the field was evaluated by
Morgan ).

Clearly the one dimensional model as described, remains only

a good approximation, as long as the curvature of fieldlines
inside and outside of the conductor can be neglected, which is
true if the:scréening field fulfills the condition

. d

This coridition holds always for multifilamentary conductors used
for a.c. magnet applications.

1.5 Methods of calculating hysteretie losses due to
alternating fields.

For an imperfect type II superconductor located in a varying ex-
ternal field, the critical state model has the consequence of a
varying magnetic flux in the material. (Fig. 1.5)

The changihg flux must essentially penetrate the conductor surface
and generates "hysteretic losses™ due to the motion of flux lines.

The dissipative mechanism in a moving flux line is not well
understood, but as the energy loss results entirely from the
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magnetic field, loss computation is equivalent to evaluation of
the electromagnetic energy dissipated during cycling of the field.
Different approaches to solve this problem must esSentially

yield a unique result as they describe the same physical process:

-+ +> >
a) Integration of the poynting vector S = Est'gver the conductor

surface and one cycle. The electrical field Eg is given by the
induction law curl E = 53 . :

> -
b) Integrgtion of Joule's energy JC~E over the conductor volume
where E has the same origin as in (a).

c) Evaluation of the area under the magnetization curve for a
full cycle ¢ M(H) dHdV, where M is the magnetization due to

d) Volume integration of the mechanical work performed to the
moving flux line lattice by the Lgrentg fgrce. The*power loss
per volume is expressed by P, © (J x B) v, where v is the
velocity of the moving flux01ds and can be obtained by u81n§
the conservation law for the flux line density div (IBI v) =B,

1.6 Hysteretic losses in slabs

For the simplest case, that the critical current density is
independent of the magnetic field within the conductor, BEAN cal-
culated hysteretic losses in slabs parallel to the external
field. In his computation the transport current is not considered.

The field penetrates from both sides into the slab of
thickness d. Full field penetration is obtained at

= . d
H . =J % (1.16)
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For a probe exposed to a variable external field Hext’ cycled

between the two values of -Hmax and +Hmax’ we may distinguish
between two cases:

a) Incomplete fluxpenetration: Hmax <Hs;

Integrating the magnetization j{MdeV over one cycle, the
hysteretic losses can be expressed by

- . 2
W=, Vo3 T (1.17)

o % M, s (1.18)

With V the volume and A the area of the slab. In each half
section of the slab the losses Wh1/2 are dissipated.

b) Complete fluxpenetration: Hmax > Hs;

In this case no current free region exists in the slab.
Integration of the magnetization yields:

(1.19)

0 S8 max

wijro
(2>
n
 ——

whl = 2u_H H V-[ 1-

For field values: Hmax >> Hs this equation reduces to:

whl = uodJchaxV (1.20)



If however the external field is cycled between the values
0O and + Hmax we obtain:

whl T = J e H _V (1.21)

For real superconductors the case of Jc independent of field
is unrealistic. The more realistic model assumes the current

),

density being dependent of field according to Kim® :

J H
. 00
J (H) = :c3:8 (1.12)

For this particular case the field profile within the conductor
was given by the Eq. (1.14) and Fig. (1.5).

If the external field is swept in the range between H and

“'max
Hmin’ the corresponding field values within the superconductor
can be obtained from the equation:

'2 . - 2 - ° -
H™ + 2Ho H Hext 2HO Hext + ZJOHox = O,
and shown in Fig. (1.6) for ascending and descending Hext‘ The

relation between the local field H and the distance from the slab
surface is given by

x =1 7313_ [ (H + Ho)2 - (Heye * Ho)2]

o0

The two branches of the field extending from Hext on the surface

of the slab to P1 and P3 correspond‘to field values of
H > Hy ¢ {(Descending field)
H<H ( Ascending field)
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The penetration differences in the three regions I-III are given by:

8x1 = ETlﬁ- 2(H + Ho>2 - (Hoye * Ho)2 = (Hpay + Ho)2 ]

)2

1
AxII 2J H_ (Hmax + Ho

Ax

2(0 + H))2 - (H_ + B )Z - (H_, +H)? ]

exv

=)
[aa]
[
"
N
[N
=5

min

Introducing the abbreviations:

ext ext
1 1
.1 2 2,3, . . 1_ 2 2
hy= gz (hext * hpay )25 hy = VE (hmax * Bpin )2
1
_ 1 2 2
h3' 7; (hext * Bpin )2,

we may write for the irreversible part of the magnetization:

ext
2
§UOHG J[’ (2h hext hmax)dh + 20 H jf max ext)dh
1‘ hext
B3
1 2 2 2
+ W—-OHO (h hex‘c - hmin) dh
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which after integration and rearrangement is written in the

form:
AM = ol 2 3 V2 2 e )%’- 27 (h2_ +n2 . )%
- 2JOHo 3 Yext 3 ext max 3 ext min
v, 2 .2 3 . .2
T3 (hpax * Brin)2 = 2By © Moy (1.22)

As usual we calculate the hysteretic losses from

j&mx Fmax

- 1 MAFT = 1

"1 ® Mod,  M¥ext T Fo J  Man
min

hmin ext

and obtain the hysteretic losses per unit surface for a semi-

infinite slab.

Ho . AT 4(1 . A 1+dﬁ§f2

W1 = sy (Hpgn * H) L ; T Wz (14V3)f

5 1 refrer? y - 2

- (==

1e Wz 1+V2
Ji+f2 2 132 3 '
- (3£% - 332 4 20 - 5) ] )1.23)
6v2
with £ = omax + Mo
' Hoysn ¥ H

It may be pointed out that Eq. (1.22) is true only, if Hmax and

Hmin have the same sign, as the analytical expression for Jc(H)
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is valid only for H>o.

Eq. (1.22) is particulary useful to calculate losses in super-
conducting magnetic shields (incomplete penetration).

1.7 Application to multifilament conductors:

Superconductors used for a.c. applications have diameters in the
um range., For these superconductors the case of complete flux-
penetration is valid.

As seen in (1.2) the assumption of AH<<H_ . implies that linear
field penetration is valid and the equations derived from Bean's
model are correct for slabs of finite size as well as for
eylindrical conductors as shown in (1.2) and (1.3).

We regard a slap,located parallel to the external field Hext’
having a thickness d and a high b. A net transport current

IT is now admitted to pass through the slab. The electric center
of the slab' which was identical to the geometric center of the
slab for IT=O is displaced due to the transport current by a
distance:

_d . T

The displacement is illustrated in Fig. (1.4a,b) for increasing
and decreasing fields. At points of field reversal, the simple

field pattern is modified. These field perturbations modify the
hysteretic losses, as written in Eq. (1.18). The additional 1loss
contribution in this equation can be neglected only if AH<<Hma

Obviously for &x = % the critical current of the probe is

attained, beyond which steady flux flow occurs across the super-
conductor. The power density dissipated in the superconductor is
calculated for the case, that the external field changes with

f

x.

ext from

* The electric center is defined as a plane within the conductor
separating the two regions of opposite flowing Jc.
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-+ -+ -+
For our particular geometry, H = Hz H Jc = *Jy ;? L= FLx’ and
Maxwell's law for the electrical field curl E = -B yield

dE .
% ° Mo Hext ° (x-xe)

where the internal field change Hz(x) can be set approximately
as Hext for thin probes. As at the electrical center Xos the
fluxline velocity is gero, the axial electric field Ey(xe) must

vanish. Ey is obtained by simple integration with one boundary

belng Xg o

Ey(x) z - u_ H_

o ext ) (x-xe) (1.25)

The sign of Jy is given by the position and sense of the field

change

4 @

L
+ Jc for X<Xo3 H>o or X>X 3 H<o

o »
e’ H<o or X>X o3 H>o

- J_  for x<x
L c

Thus the energy dissipation rate per conductor length is given by:

d

EP_]:. = ¥ bJ H [(x-x ) dx : (1.26)

I ~ o e ext e *
O N

I
The integral yields after introducing Xg = % + 53%3, and the slab

volume V=beled, the conductor losses:

o’

”~~
[y
®
N
A

where I = b-d'Jc is the critical short sample current at the

corresponding field.
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Hysteretic losses are usually related to one cycle if Hext is

h i od 4 . .
changed periodically between field values Hmi and Hmax such as:

Hnax™H

n

H L] + 2 .
min min

The losses per cycle are independent of frequency and wave form,
the only material property entering the loss equation is the
JC(H)-dependence.

H
max
’ AW, = l‘.g.va f J, (H) {:1 + i—TéI—;; )2 dH (1.27)
' [¢]
Hmin

The term IT/Ic depends on the particular magnet and contributes
only at the peak current value to the losses in the high field
region of a coil. Usually the term is small and can be neglected.
Kim's model relating the critical current and field is a good
approximation for type II multifilamentary conductors, entering
Jc from Eq. (1.12) in Eq. (1.27), we obtain the well known
formula for hysteretic losses in superconductors with small

diameters:
uwJ HYV H + H
- .0 00 . max o Ws
whl = ———;——- deln ( E;Z;—__—— ) (E§EI€) (1.28)

V is the total volume, if Jc is referred to as the overall
current density of the conductor or it is the volume of the
superconductor, if Jc is the current density in the supercon-
ductor.

If field reversal occurs during the field sweep. i.e. if for
instance Hmin is negative, the losses have to be split into two
parts: Losses in the region: o+H___+o and losses in the region

max
o+H_ . -o.
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Thus the total losses are given by:

J HV H +H
. d-1n ("max o)

H,

H . +H
é min o) (1.29)

1.8 Hysteretic losses in cylindrical shaped superconductors

The above loss calculations for slab geometries are simple, but not
correct when applied to magnets using composite conductors with
superconducting tapes embedded in normal metal strips. As the field
over the length of the tape is not always parallel to the surface
of the superconductor, this type of conductor is not utilized in
pulsed magnets due to enhanced dissipative losses.

' The loss calculations are specifically applicable to cylindrical
shaped filamentary conductors. Coextruded superconductor and

copper wires result generally in superconducting filament shapes
having more or less circular cross sections. If the superconducting
filament is distorted during extrusion the use of the.hydraulic \
diameter (4 = —%ﬂ) in the calculation is a good approximation to
obtain losses in superconductors, where A denotes the cross section
and P the perimeter of the filament. With the restriction to thin
filaments with a diameter of E%Q <<H,,¢ and Ip<<I, (valid for
nearly the whole field sweep), the integration of the product (J.E)
over a cylinder is gerformed by>Morgans) in c¢ylindrical coordinates.
Starting with curl E = ~H, dHext, in eylindrical coordinates (r,0),
we have dt

3E oH
z r (1.31)

1
i

and:

@
{11
Q?

(1.32)

3
1,
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Hr and He
profile with Ax = o.

are expressed by Hext in the case of a symmetric flux

3H 9H

With mz— = sin (8) *H_ ., and =— = cos (8)-H__,

oE

. 1 z _ _ . .
one obtains: 7 35 ° ~H, sin (8). Hext (1.33)
aEz .
and: 57— = H, cos (8). Hoyt (1.34)
The solution of Eq. (1.34)
E, = uo'r-cOS(e) *Hoyt (1.35)

gives the field distribution within the cylinder.
The power loss is given by:

> >
Phl = E,J.dV = EZ'Jc av

where EZ is always directed along Jz =+ Jc

Substituting E, from Eq. (1.35) in P, we obtain for a conductor

of length 1

d/2 + wn/2
. 2
Phl = 2|quc Hext'lf /r cos(8) drdé
o -N/2
D = 8 «: UT d - oY 11 16\
*n1 T 3% Yo'Ye T T Yext Vhe W

With d the diameter of the superconductor and V its volume:



- 19 -

The energy loss is given by the time integral of Eq. (1.36).
Comparison with the corresponding Eq, (1.27) for a slab shaped
conductor shows that hysteretic losses in a c¢ylindrical conductor
are less by a factor 8/3 w ~ 0.85, than in a slab of the same
volume i.e. the same current carrying capacity and thickness.

The factor 3% in Eq. (1.36) occurs_in all loss equations for

cylindrical geometries.

At a low frequency field sweep (< 1Hz), hysteretic losses are the
main contributor among the losses encountered in the conductor.
To evaluate hysteretic losses per cycle for the entire coil

Eq. (1.29) must be integrated over the coil volume. As Hmax
and Hmin ;

can be obtained with good accuracy (about 20%), if Hoax 20nd Hpso
are replaced by the mean field values over the entire coil.,

occur in logarithmic form, the losses per cycle

Fig. (1.7) illustrates calculated hysteretic losses for a pulsed
superconducting dipole magnet. The aperture field of the magnet
is cycled from zero to 5T. The coil cross-section is an approxi-
mation of intersecting ellipses and the magnet has an aperture
of 8x11 cm® and a length of 100 cm. In the abscissa the term
JoHod contains all relevant conductor parameters.*'As for uoHo

a typical value of 1T is used in the calculation. The losses

for different peak current densities (at 5T) are représented by
the solid lines. As the conductor volume decreases with in=-
creasing current carrying capacity JoHo’ we see that the total
losses proportional to JOHo are not a strong function of the JoHo
parameter for a given magnet.

This 1loss dependance is shown by the broken line with the
filament diameter d as a parameter, where we have assumed
that the current density at 5T attains just the critical value.

Twisted multifilament conductor is assumed.
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From the presented analysis and the curves of Fig. (1.7) it is
seen that the most promising attempt to reduce a.c. losses is

in using thin filaments in the conductor. NbTi filaments having
individual diameters of < 5um are commercially available. Several
thousand of such filaments are drawn in a metallic matrix and

are twisted. A number of such conductors (called composite con-
ductors, or strands) are transposed to form a cable or braid

for a.c. applications.

1.9 Hysteretic losses in coils using hollow superconducting

filaments

It was possible to produce multifiiament composits in long
lengths (>1km) only by using NbTi. NbSSn and V3 Ga has been
used in multifilament composites of short length (100-300m).
The B-tungsten series is brittle and production of composits
has been restricted to short lengths due to manufacturing
difficulties.

Alternate solution are sputtering of thin layers on glass
filament carriers or some other suitable material. The
losses of such a tubular conductor, having an inner diameter
d,, an outer diameter d, are obtained from Eq. (1.37):

= 3 3 m (o)
Wy, =g JH, 2g.(d -di)zn——+}-{; (1.37)

Dividing the losses by the volume of the superconductor

2 2

v ={'T(d - 4,91

sc¢ 2 sc

and referring to the same current carrying capacity in the
conductor, we find that whl/I depend only on the ratio

d1/d2:

Tmax
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3 3 - (o 13 y3
S R Ml M o Sl L (1.38)
I oy ~d2§ - d1§ 21 - (a,/4,)°

Compared to a filamegt with d1=o, losses are increased by the

d . » L
factor 1-(6%)3 / 1-(3%)2 for the same critical current density
and identical total current.

1.10 Losses in Composites

Losses in superconducting coils, when exposed to time varying
magnetic fields have several origins:

-Eddy Current losses in the conductor matrix.

-Self field losses.

-Hysteretic losses.

-Auxillary losses due to nonuniform magnetic fields.

In section (1.6) and (1.7) we had treated so far hysteretic
losses. We discuss in the following the origin and the magni-
tude of the other losses occuring in a.c. coils. We consider
however only twisted multifilament conductors.

1.11 Eddy Current losses in the conductor matrix:

In any metallic conductor eddy currents are induced if é#o.

In a composite conductor these induced currents are modified
by the superconducting filaments, which do not admit (first

order observation) a resistive longitudinal component of the
electrical field.

To calculate eddy current losses, the matrix material, the
current distribution in the matrix depending on the conductor
geometry and the rate of field rise must be known. We assume

uniform distribution of filaments throughout the composite,
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and an external field perpendicular to the conductor axis,
as is usually the case in coils:

a) We regard for the time being, only the outer layer of
filaments embedded in a cylindrical composite. This layer
has a radius D/2 and the filaments are twisted with a pitch

of length 1

p

The magnetic field B acting in the cylinder is assumed to be
homogeneous and perpendicular to the axis of the composite+.
The field is composed of the external field Bext and an
additional field B, generated from induced currents in the
filaments.

B = Bext + Be

The voltage induced in the conductor is obtained from the
contourintegral (over C) taken along the electric centers of
two oppositely placed filaments as shown in Fig. (1.8 ),

g -)' e (5 ® R 2" ® lD
f’Eds = - @ = =) dA = - 2Dsin (I—z). B T (1.39)
c p

This voltage must drop entirely in the two transverse passages
T1-2 and 3-T through the matrix. Relating the electrical poten-
tial V(z) of the filaments to the axis of the composite, it is
seen that at the crossover point A at z = lp/4, the potential
V(z) must be a maximum. The voltage at z = o must be zero be-

cause of the antisymmetric condition at z = o.

At an arbitrary point the electrical potential is expressed by

. 1
V(z) = 3 B xR sin (%) (1.40)
' : : P

* The assumption of a uniform magnetic field is justified
according to Eq. (1.46).
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as the potential between the conductor axis and one filament is
just a quarter of the contourintegral Eq. (1.39).

z can be expressed by the twist angle P_ between the filament

, P
axis and the plane perpendicular to B; i.e.‘fp =+ %32, where
the sign corresponds to the sense of the twist. Thus® we get
for each single filament:
V()=+1'3£E-P-sin(‘f)—+é}9-'x (1.41)
2/ = = m 2 p’ T - 2T V *

if the sense of B is assumed to be in the x direction.

Eq. (1.41) is valid for each single filament in the outer layer.
If we approximate the layer of filaments by an infinitesimal
thin cylinder, then the boundary conditions for Eq. (1.41) are
met by an homogeneous electric field in the cylinder in é-—
direction.

. 1
= = + B i
E E + B (2u) (1.42)
The transverse current density in the composite is thus:

1
=2)*B (1.43)

=7 -1
Jg = * Pe (w

From these equations we obtain the eddy current losses per
volume occuring within the filament bundle of diameter D:

Py = = E° = == ( mB) | (1.44)

where Ec is the effective transverse resistivity of the
composite.
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b) Only the outer layer of filaments in the cylindrical
composite conductor was considered above. It was seen how-
ever from Eq. (1.42), that the diameter of the filament layer
could be eliminated indicating that the electric field E,

is independent of D. Thus we may fill the entire composite
cross-section with concentric layers of filaments and present
a realistic model of a twisted multifilament conductor. As lp
is unchanged for all layers, the field configuration in the inte-
rior of the composite is not altered. However the transverse
effective resistivity Ec must be averaged properly over the
conductor:

S = . (—

Pe * Pmatrix ~ w-a >
where d is the filament diameter, w the distance between the
centers of adjacent filaments.

It is assumed here,however, that the eddy currents flow through
the matrix material and do not cross superconducting filaments
due to the relatively high resistance of the interface layer

is the resistivity

between superconductor and the matrix. P matrix i
i

of the matrix material, including size effect, mechanical strain

effects and longitudinal magnetoresistance.

In presently available composite conductors the filament bundle
is still surrounded by a layer of "pure" matrix material of
thickness C (see Fig. 1.9 ). The potential V(?p) in Eq. (1.41)
causes additional eddy currents in this part of the conductor
and the associate losses P'ell per conductor length are given by

am >

P! - av(e_) ny 2

=2 = [ Rag (=—P%) * & - 2.8 L
o Rdy, Pmatrix R Pmatrix

Eddy current losses for a cylindrical composite are thus given
by
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Pe T 2 élp 2 w=d + C. 1
T =175 D (2n ) ( W E) fmatrix

The surrounding layer (mean radius K) can thus be taken into
account simply by a modified matrix resistivity.

Let us now assume, that no transport current IT flows through
the conductor. As the current density Jt within the filament
bundle in the composite is homogeneous, there can be no net

induced currents along the inner filaments.

All transverse currents must be collected by the filaments

of the outer layer only. If there are N filaments in the outer
layer of diameter D, the induced current IF through each
filament is:

dly L28 . TF _2n.J . D. sin ()

s S A . .

3z I, ap, "N

OI’:.

1p aI 1

I = F * = . J ° D /‘.4

p(Pp) t‘f 7 Wy =t %+ Jg . D cos (P (1.45)

o D

The cos (Wp) distribution of the induced currents generates a
homogeneous self field Be in the direction of the field Bext’
Justifying the assumption of homogeneous B over the conductor.

B =1 .J =P I ()N
€  ZH, S 7z °F 7D
Ty 1y B lp” (E B_) (1.46)
B =+p, ._:_b..' ___Q ._B .1. B +B ,]946

%

The azimuthal component of Ig (fp) produces a further component
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of B in the direction of the conductor axis. For 1_3> D this
component can be neglected. The negative sign in Eq. (1.46)
reflects the fact, that the induced currents counteract the
change of the external field.

If B is expressed by the change in transverse current density Jt’
one obtains the equation:

aJ 2 .
—t,2 28y -89 _, 03 (2n__ (1.47)
dt o ‘1p c Y - “ext \uolp’ ‘

The homogeneous solution of Eq. (1.47) yields, after a sudden

change in B occurs, an exponential decay for J.:

ext

T (8) = 5,00 * &~ (1.48)

Where the time constant T, is given by

2

|

T = (1.49)

= ()

ol

c

T can be understood as the ratio of the inductivity of the’
filament loops and the matrix resistance., Fig. (1.10) illus-
trates for a triangular pulsed external field the transverse
current Jt as well as the induced current IF throug the fil-
aments, and the field B, for two limiting cases of T« t /2 and

T> t /2 with t denotlng the pulse length. With 1ncrea51ng ratio
of b/to the varlatlon of the external field in the conductor is
shielded more and more by the induced currents in the filaments.
For T« t /2 the losses in the matrix are modified only slightly
by the trans1ent phenomena.

The current carrying capacity of the filament is limited by

the critical current IC. Beyond this value flux crosses the
outer layer of filaments. ZEnergy is dissipated, leading to a
longitudinal voltage drop. The next inner layer takes over the
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excessive part of the shielding currents and leads to a

partial coupling between filaments. By equating the induced
screening current Iy (?p= 0) from Eq. (1.45), with the critical
current IC for a single filament, assuming no transport current
is flowing, we get a relation between field rise and the
"eritical twist length" 1e

1@ (1.50)

Ip max = Ie =

The critical twist length 1c is expressed for B:zBeXt, i.€.
for'ﬁ<<to by

2 _ 2 = A
1,7 = (2m) 8, I, ° =5 | (1.51)
ext

This equation is different b§ the numerical factor (n3/52)1/2
from the expression MORGAN 7 has obtained for a two filament
conductor model (TV-cable).

. . S LN .
For a sinusoidally varying field expessed by BextzBext +BeXt exp (Jwt),
we consider only the variable part, and get from Eq. (1.47)

-1
2 = 1
J, = * B * (1 + =
t ”olp ext Juwb

and obtain the losses per unit volume from:

2 g 2 -2
R R (W) (1.52)
(o) W ’C

For w«ji_- (low frequencies), Pe is proportional to 02.

This is different from the frequency dependence of hysteretic
losses, which are proportional tow!
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As Pe is also proportional to T, high resistivity matrix
materials and short twist pitch are recommended in contrary
to the dynamic stability criterion, which requires low elec-
trical resistivity materiails.

With increasing frequency, eddy current losses approach the

a
value of Pe = (Bext)zlhuot. The field variation within the
composite decreases with increasing frequency due to shielding

currents.

- " n N v
ext = Bext + Bext exp (jwt), and Be z B-Bext ==1, B, we

get for the alternating part of the field seen by the filaments

From B

1

v v jwt
B = B, © 3% (14jwT)”

t

This part induces the common hysteretic losses due to flux
movements in the superconductor. These losses depend only on
the maximum and minimum field values.

The inner filaments of a bundle which are not forced to carry

creening currents, see only the shielded field, and the dissi-
pated energy per cycle decreases with 1/]1+jwtr]. This means
that the average hysteretic loss rate approaches a cohstant
value with increasing frequencies. This conclusion may be of
interest for industrial (i.e. 50Hz) applications.

Qualitative confirmation of this effect was obtained by
McInturffs) for the similar case of transposed braids with a
metallic insulation® . At a field change of B 2 4 T/sec,the
dissipation rate approached a constant value.

The above model is applicable to metallic insulated cables where
multifilament conductors are simply twisted. Transposed cables
and braids will show a more or less complicated internal eddy

* Metallic insulation referes to as solder of high electrical
resistivity such as Sn-Ag or Sn-In alloy or others.
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procedure. For this case the model developed here will be no

longer in quantitative agreement with the experimental data.

1.12 Self field losses

It may be pointed out, that in the treatment of losses up to

now the effect of field inhomogeneities on the conductor was not
considered. Specifically the self field effect due to transport
currents in the wire has the same origin as the skin effect in
the normal conductor and tends to exclude current density changes
in the interior of the wire. This effect is not compensated by
simple twisting, but by transposition of filaments.

Flux changes induced by the self fields in a superconductor lead
to movement of fluxoids within the superconductorkand thus to
dissipative losses. These losses are of electromagnetic»nazuze
and may be obtained by integrating the Poynting vector S=(ExH)
over the conductor surface. The irreversible part of this
energy, integrated over a cycle is dissipated as heat.

The component Sr of the Poynting vector, perpendicular to the
conductor surface is obtained from the azimuthal component of
the self field B @ (R) = uoI/2ﬂR and the axial component of the
electric field EZ at the conductor surface, when the flux
penetrates the surface.

From Fig. (1.8 ) we obtain the voltage for a closed loop C:

-
v=§Eds=-<'b=—ff3(r)dr~L=Ez-L (1.53)
C
The electric field is zero on the conductor axis 1-2 and has no
contribution tokﬁ:g and §=1. The electric field EZ is directed
such to exclude current changes from the interior of the conduc-
tor. Only if the critical current density is exceeded in the
superconductor, an associated longitudinal voltage drop is
generated. The self field due to the transport current can pene-
trate further into the composite conductor.

Evidently, the critical state model, developed for a supercon-
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ductor located in an external field, is also valid for the
self field penetration produced by a transport current.

The model is still valid for a multifilament conductor, if the
integration path 1-2 and 3-4 of Fig.(1.11) are chosen along
the filaments. An external field can enter the matrix without
flux flow (if 1p<<lc) whereas for the self field the same
conductor behaves as a compact filament.+)
In magnets the external field is much higher than the self field
of the conductor. Thus Jc is the same across the conductor and
the Bean-model, modified for a cylindrical geometry can be
~applied. At a peak current I max’ the critical state current
“density J= J penetrates the conductor up to a radius r= =ry. This

current is glven by I -J o7 (R T, ), where R denotes the

max
radius of the composite gondgctor. The associated self field
Ii?(r) is given by curl H = J, which in the cylindrical geometry

is expressed by

dHy Hep
Tt ¢ I, (1.54)

and has the sélution:

&

(H-°R

Ho(r) = & ¢ ¢ e =) (1.55)

The (t) sign depends on the sign of J, = % J,. The field H,
denotes the self field H?(R) at the conductor surface. During
current cycling in the range between Imin and Imax’ self field
patterns as shown in Fig. (1.12) are obtained. The nonlinear
field H (r) is the field generated af concentric tubes each
having a uniform current density #+ J

+Forsimplification the filamentary structure of the conductor
is replaced by a single conductor having a mean current
density Tc.
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The change of the field BQ (r) in the conductor is linked to
the variation of the self field Hy = I/27R by:

dB, (1) dH
@ dH(r) . e . . g . _€ (1.56)

3t~ Mo aH_ ac Ho

->
The dissipative part of S is obtained from the difference of ¢,

if the transport current In is raised (field energy is entering
the probe) and then reduced (part of the field energy leaves the
probe) as illustrated in Fig. (1.11).

Thus from Ez = V/L, we obtain:
dH
- - R - [R &
E,# - E b= - u [ j[r dr j[r dr]}dt |

2l R e (22 (1.57)

]
1
=
o}
[oF
ct
>

The values of r, and r, are obtained from the relations:

1
- r 3 R r., - 3 R
_ 17 R . _c I § R c
H(rq) = g7 J, + Fl(Hmax z ) = z Ic * Fi(He t 3 )
from which we calculate:
, 1/2
H _H
rycRr [1- mex-e ] (1.58)
J R
c
and H -H . 1/2
rp =& [1- =——min ] (1.59)
J R

Self field losses per cycle can be calculated for a conductor
with a surface area of 27RL by integrating (E%-E+ )*Hg, over
half a cycle.
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To simplify calculations we have assumed that Jc is independent
of the field:

t,/2
_ 2 . _
W.p = 27R L/ Hy (Ez‘} Efdt
le]
H
max
-H - H -H_.
= nRZLuo f H [z 1- -m—""i—-‘i) - n (1- —%—Hl"—l-ﬁ)}dﬂ
- JR J R e
in ¢

which after integration is rearranged to the form:

- H__. -H H . _H .
W . o= mg ZRMLu { (1--Dax mln) [}2n(1 max- miny 4
sf
Jc- R Jc R

2
H . "H .
+ mEx mln‘] + % ( Hmix min )‘} (1.60)
Jc R _ Jc R

Modifying this equation for transport currents instead, one uses
Ic = ﬂRch the critical short sample current, and introduces the
transport current difference AI. This is the change in current

from the lowest to the peak value expressed by:

For a transport current cycled between the values +I° and -I_,
Eq. (1.60) is identical to the expression derived by Hancox®
for a cylindrical compact superconductor without external field.

The logarithmic term in Eq. (1.60) is expanded in a power series,

and one obtains:



3 4
. 127 MO 1 AI 1 AT
iy * 7L 22 [ o zr) * 33 (oT) *] (1.61)
or.
W, = D2 e o[ (51 ) 417 + (1.62)
sf ° T L 73 T G Ao ‘

As (AI)°L, (total current multiplied by the length of a strand)
is constant for a coil of a given geometry, the self field losses
are proportional to AI and thus to the square of the diameter D
of the composite conductor.

For D »» @s for a slab), the only remaining term in Eq. (1.60) is:

Wsr "Wy " BT ¢ (Bpax - Hpin (1.63)

which is essentially the expression Bean obtained for hysteretic
losses in a slab with a surface area of 2wRL located in an
external field parallel to the sufface of the slab and cycled

between the field values Hmin and Hmax

1.13 Contribution of external fields

In the above calculation we had omitted the influence of a
superposed external field in addition to the self field in the
Poynting vector at the conductor surface, which will now be
rectified.

The axial field component (Bext)z is parallel to Ez and does
not contribute to st. The: transverse field component can be

expressed in the form of multipoles:
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. o)
ext, _ cos(n®)
¥ ; Boyt n-rn 1 ( _ ) (1.64)
B , sin(n¥)
n=1

ext,r

All terms of the series with n>1 describe higher field multipoles.
As mentioned, hysteretic and eddy current losses can be ex-
pressed by a Poynting vector at the surface of the conductor due
to the electric field Ez,ext(q)’ for which a similiar harmonic

expansion as for B ¢ 1is valid with of n 21.

ext,

Combined with the self fields Eo z Ho @ (which are independent
9 s
of ¥in the cylindrical case), the Poynting vector can be ex-

pressed by:

Stot = (Eext,z * Eo,z) f (Hext,¢ * Ho,?)

Stot integrated over the conductor surface gives only the contri-
bution of the external field and of the self field as evaluated
above, while the mixed terms yield no contribution. This means
that the loss sources can be treated independently even in the
case of a nonuniform external field.

1.14 Discussion:

The equatlons for self field losses were derived, assuming J is
constant. If J changes with the applied field (e.g. due to the
self field of a coil, where B W(I), Eq.(1.62) must be correc-

ted by using J ( B__.(I)). The two integration boundaries rq

and r, must also bec;;dified. Analytical integration over one cycle
is no longer possible. Self field losses in a coil can be approx-
imated if one uses a 3c value at an average field over the entire
coil and a complete cycle which is about a quarter of the aper-

ture peak field.
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For a zero external field, losses were measured for a changing
transport current in the range of -Io-ro*+Io for 5 samples as
shown in Fig. (1.12). Losses for IO=Ic are denoted by triangles.
The broken line is calculated from Eq. (1.62) for AI = 21c which
yields per unit conductor length the relation:

=

2
_ o
wsf,max =7 Lo (1.65)

1.15 Comparison between self-field and hysteretic Losses

It was shown that the hysteretic losses are proportional to 4,
the diameter of the individual filament and the self field
losses proportional to the square of the diameter D of the
strand or composite conductor. For pracfically all superconduc-
ting magnets %%E <<1, thus we may neglect all higher terms in
Egq. (1.62). Assuming a constant critical current density as in

the case of Wyp, We may write for the hysteretic losses:

[}

W = U JC_VAHex

(o)
N

t

with V the conductor volume. AHext is the maximum range of the

changing external field in one cycle.

The self field losses are given approximately by:

4= 2 g
D'J °L 3 DIV 3

} e AL,” _ e’ AT

Wse = Mo T 197 (T = ¥, 155 (—I_c) (1.66)
_ 3
Thus: W 2 J (AI/1 )
f
== = 2 o% < (1.67)
"hl A JV AH

ext
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For a magnet with AH_ . = 20x10° Aem™®, J_ = 10° Aem 2,

(JC(H) at one quarter of the peak field value) and AI/Ic = 0.5
one obtains

=,
(]
)

2
2 0.65 o

=

hl

where D 1s expressed in (mm) and 4@ in (um)!

1.16 Modification of the hysteretic losses, if the transport

current is not zero.

In section (1.6) it was shown, that the hysteretic losses in a
superconducting slab, carrylng a transport current I is in-
creased by the factor, [1 + (_Z)%I Nearly the same factor is ex-
pected for cylindrical conductors.

As shown in the preceding chapters, according to Bean's critiecal
state model only the outer filaments in the penetration region
carry the transport current. This is particulary true in the low
field region of the coil due to the high current carrying
capacity of type II materials at low fields.

In addition even in the penetration region, r, -R (see Fig. (1.11)),
the part rorys respectively ro=Tos of fllaments is not in its
critical state condition except near the current maximum. The
reason is that the individual current per filament, given by its
critical value at the field maximum is conserved at low field
levels, where as I increases, such that the correction factor

( ) is zero or very small for a large portion of filaments
durlng most time of the field cycle. The overall correction,
which would be difficult to evaluate is expected to be small and
can be neglected in comparison with other error sources such as
in.IC(H), filament diameter, matrix resistivity, average field
over the coil etc.
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2. Additional €ffects in twisted Multifilament econductors

2.1 Axial diffusion of the self field

As shown, changes of the transport current can be aécepted by the
innter filament circles only, if the flux density B produced by
the self field changes in the space between adjacent filaments.
This requires that

‘ﬁﬁﬁg =-¢ £0 ;

as shown,a voltage appears at the outer filament éircle‘only'if the
current exceeds the critical Jc value and the vortices start to

move.

Even if the critical curent is not exceeded in the outer filament
circles, a voltage can appear accross matrix material as a
result of currents flowing between filaments.

In the following the derivation of the diffusion equation of the
self field Qér) inside a composite multifilament conductor is
given. Here the twist induced current density in the noncritical
inner part of the conductor is neglected temporarily but may be
added to the result as a first approximation. The conclusion of
this calculation may give one possible explanation of the
degradation phenomena observed in long conductors compared to
short sample values:

As shown, the self field

- I(r)
B<€ (r) =u, %

describes also the acceptance of

(¢ ]

urrent by the inner filament
circles, where I(r) is the portion of the transport current,
which (in case of cylindrical geometry) flows within a cylinder

or radius r.
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We consider an area dF = dz « Ar between two filament circles,

Fig. (2.1), of radi rq and rq + Ar = r,. The paths 1-2 and S:E

are located in the electrical center of the filaments, to avoid
potential differences over these passages.

The flux d¢ through dF depends on the current I(rq,z) flowing

through filaments located within the cylinder with a radius rq:

I(r,z)

d¢ = u, dz Ar * F=22L ' ’ (2.1)

Eq. (2.1) is true only if Ar << rys Toe

The induced voltages are given by:

_ oU -~ A
Uyy = Upg = 35 dz = - ¢
1dz dI(r,z) dz (2.2)

Mt opp AT dt

The voltage U(z) between filament circles generates radial
cross currents flowing through the matrix, i.e. the transport
current must be redistributed in the z coordinate between the
outer (r > ri) and inner (r < rl) filaments.

An external field (assumed homogeneous) produces a flux dé,

but the additional induced eddy currents are only small, if the
twist pitch is short enough and yields a sinewave modulation of
the current along the filament (see chapter (1.10)).

If the electrical conductivity of the matrix material is o,

the radial current density in the matrix can be given by:

J.(r,z) = HL%%LE (2.3)
AT

With Ar an averaged distance between filaments.
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Combining Eq. (2.2) and Eq. (2.4) we obtain the differential
equation for the current I(r):

2
3 Igglz) = 2mr -2 - U
9z Ar z
.., Ar, al(r,z) | -

The self field penetration in the filament bundle and with it,
the current distribution (assuming there is no longitudinal
voltage drop along the superconductor, wich is true for J < Jc),
can so be accomplished axially according to a diffusion equation
with a diffusion constant:

. Ar 1
Dm - uooAr & H,O

Solution of I(r,z,t):

1) for a conductor extended infinitely in z-direction carrying
a transport current there is no z-dependent solution of the

current i(r,z,t):

Bl(gzz,t) -0
z .

Self field flux and transport current can only penetrate
radially through the flux flow mechanism.

2) The multifilament conductor is connected at one end (z=0)
to a normal metal e.q. the superconducting coil winding to
the current lead. , |
The small change AI of fhe total transport current I,ot
independent of already flowing equilibrium currents Io(r) shall

1

at t=0 be according to a step function:

=I(R,z,t)
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I(R,0,t) = Io(r) + AI 6(t)

{0 for t < O

i1 for t >0

If I <Ic’ the filaments at the outer circle will carry at t = 0O
the entire current AI. The current in the inner filaments are
forced radially outwards through the matrix by means of induced
anticurrents at z > O, as discussed in (1.12)

As illustrated in Fig. (2.2) the initial situation is developing
according to the solution of Eq. (2.5) with the
described boundary conditions at t = O:

£ _.2
(I(r,0,0)-I(r)) [1- —%.\ of e du] (2.6)

/u o
where £ = z = 0
2 Dyt , &

In the case of a nonideal Joint (normal metal-supefconductor)
the current will flow even in the normal metal as illustrated

I(r,z,t)-Io(r)

]
ol

in Fig. (2.2) for z < o.

In reality the transient zone is not as well defined as assumed
for the idealized case, but the general behaviour will be the same:

From the ends of the composite a zone of non-stationary current
distribution penetrates the conductor which is no longer deter-
mined by the critical state model for the self field, but tends
for t += to equilibrium current sharing between filaments as
given by the transition resistance between the current lead
(normal conductor) and each single filament.

| 5 ‘
In a copper matrix with 290 . 100, the magnetic diffusion con-

Py, 2
stand has a value of



)

Fig. 2.1
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D = E T = 1.42 cm® sec }

m 5.4 10" 9%56x10 %100

In Nb-Ti composite conductors a high resistive Cu-Ti interlayer
is present between filaments and copper matrix, which does
decrease the effective matrix conductivity o and thus increases
Dm considerably. |

~
i

3) A similar current profile is to be expected as for (2), if a
disturbance occurs over a short section of a long conduct .

We assume that a flux jump occurs in the outer filament circles
and with it a longitudinal voltage is generated. A part of the
transport current will be transferred to the next inner filament
circle through the matrix. The corfesponding self field penetrates
through the resistive part into the space between filaments, from
where it is propagated axially to both sides according to the
diffusion equation, even when the overloaded filaments carry again

stationary currents.

As the superconducting properties are not completely homogeneous
along a composite conductor, it must be assumed, that changes

in transport current and the related self field distribution
across the outer filament circles by flux flow or flux jumps
usually occur in thoSe "hot spots" and propagate from here on
along the conductor.

With respect to instabilities this situation is worse than at the
previous assumption of an uniformly penetrating front of current
and self field, as the heating in the overcritical filaments and
the current carrying matrix is concentrated around these "hot spots"
in this dynamic model. The total self field flux and thus the
dissipated heat which must penetrate for a certain AIp to be
overtaken by an inner filament circle, depends on the velocity.
The penetrating self field gives the amount of current transferred
to the inner part of the conductor and increases until the
disturbed filaments recover again. If the heat is removed insuf-
ficiently, the heated spot expands and a quench occurs due to
"self field instability" even when the short sample current of

the conductor is not reached.
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Low magnetic diffusivity Dm’ a high thermal conductivity of the
matrix and a good bond between matrix and filaments, reduces
energy dissipation and favours recovery without quench. In
short samples self fields can penetrate through the ends to-
wards the middle of the wire in a reasonable time and a nearly
uniform current density across the conductor is obtained after
a few diffusion time constants, related to the half length.

This effect may give a possible explanation for the often ob-
served degradation of the critical current in coils compared
to Ic-values measured in short samples.

We apply a sudden current change AIT at t=o to a conductor of
length 2L. The corresponding current value AI(r,L) in the
middle of the conductor attains 50% of its final value at a
diffusion time for which

[ 3 2

2 -u“du L

1= —<—- [ e = 1- ¢ (.____._) = 0.25 (2.7)
To 2EDI'(’I.T'SS

is valid. (Penetration from both ends).

The appropriate diffusion time for a short sample with 2L = 10cm,

2 -1

and magnetic diffusivity D, = 1.42 em© s7+ is:

TSs = 6,62 sec.

a time which may be considered small compared to the current
rise time during short sample measurements, giving the full
current carrying property of the composite.

On the other hand, if 100 m of this wire are wound into a coil,
the diffusion time, proportinal to the length square, yields,

_ 6
TLS = 6.62 10° sec
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In this case current penetration imposes self field flux flow and

quenching may occur even if the single filament is still stable
in the external field.

2.2 Extension of the self field model in twisted multifilament

conductors

In cylindrical multifilament conductors with twisted filaments,
the transport current flowing through a filament has a screw
type path on a cylindrical surface of radius r and forms a pitch
angle ¢p with the conductor axis. We may write for the pitch
angle:

tan:(ép) z 2ﬂr/lp ; o (2.8)

with lp the length of the twist pitch and r the distance to the
conductor axis. o ' ) :

The transport current density has two components:’An axial
current density component JT, and due to the twist an azimuthal

component J¢. These two components are related to each other by:

T : Jp tan (@) (2.9)

Jq,produces an additional solenoidal self field within the con-
ductor in axial direction.

This field couples the twisted filaments like a mutual induct-
ance and thus produces a modification of the transport current

distribution:

We denote the self field components by B,(r) and B_(r) in the
H 4
conductor at a radius r, I(r) is the axial component of the
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transport current flowing within a cylinder of radius r <R,
B, is generated only from the current (IT-I(r)) outside r.
if IT is the total transport current, then

Ip _ I(r) :
Bz(r) = Ug ———I;———— (2.10)
B(Pis generated only from I(r):
- I(r)
B@(r) =¥ Swr

I(r) is determined from the boundary condition, that no flux-
changes due to the self field can occur through a plane
passing through any two arbitrary filament axis.

This means that in a simplified model, in which the hetero-
geneous current pattern is smoothed out by averaged values,
the resulting self field must be parallel to the filament and
thus formsan angle‘Fp with the conductor axis

[

B 2 1
= HE) . P -tnman(f) = 2 (2.12)
BZ IT = I(P) p
From which we calculate i(r):
t o
] T Iy |
I(r) = T 5 = > (2.13)
1+ (EEF) 1 + cotan (?;)

Integrating i(r) with respect to time gives the value of
I(r,t):

In(t) - I,(0)
1+ cotanz(?p)

I(r,t) =

(2.11)

+ I(r,0) (2.104)
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The magnetic coupling due to currents flowing through twisted
filaments forces the filaments at the inner conductor parts to
overtake a part of transport current without the condition that
accompanying self field has passed across the outer filaments
by the flux flow mechanismkl’.

Clearly in the calculated self field formula the inserted
transport current AI is reduced by this fraction, which pene-
trates the conductor without energy dissipation.

Eq. (2.14) has been derived using the condition that the elec-
trical fiéld along the filaments during the change of the trans-
port current is negligible. This is true only in the conductor
region, where the critical current in the filaments is not ex-
ceeded, i.e. in the ihterior cylindrical portion of the conduc-
tor, while in the outer region of self field penetration the
filaments carry the critical current.

The avefagé current density is thus given by:

2
brl
< 1 dI(r) p
J(r) = : =~ = I, (2.15)
err  dr o T (4ﬂ2r2 + 1p2)2 ,
(with I(r,0) = IT(o) = 0).

The self field %ér) and the current density J(r) are illustrated
for maximum and minimum value of IT = Im and In =0

ax = Imin
in Fig. {(2.3).
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3. Eddy current losses in metallic parts

3.1 Iron losses in the flux return path:

For completion one has also to consider losses in metallic coil
reinforcements, in the metallic helium container and other
metallic parts surrounding the coil. In beam transport magnets
the iron shell is also placed within the helium container and
must be cooled by the helium. Eddy current losses in all metallic
parts can be calculated in analogy to section (1.11). Iron

losses (without end effects) are given by:

= 24 2
p = Gpe (0 f7By

hy
core

+ othm (3.1)

Gh and O, are material constants due to hysteretic and eddy
current effects in iron. The exponent hvaries in the range
of 1.6-2, GFe

frequency of the pulsed field.

is the weight of the laminated core, f the

Core endlosses can be reduced either by shaping the core end-
section (Rogowski shapes) or by extending the iron yoke about
2 times aperture diameter over the coil ends.

I, Comparison of loss-calculation with experiments.

Comparison of results obtained from theoretical considerations
and experimental investigation requires the exact knowledge

of the location and distribution of superconducting filaments
within a single strand and in the cable or braid, the physical
properties of the matrix material, and the type of impregnation
used (i.e. metallic, intermetallic or organic) in the cable. It

not possible, to intro
includes the effect of various components mentioned. Difficulties
in manufacturing a.c. cables have lead to discrepanciées between

theory and experiments (broken filaments, interturn, shorts, etc.).

. .
]
troduce a simple unive
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Published data on loss measurementsa’lz’ls)
well with theoretical calculations only in special cases.
Generally due to lack of detailed information, experimental
data on a.c. magnets do not fit theoretical predictions., Good

agree reasonably

agreement between theory and experiment is reported by labora-
tories in magnets, which they have build and all coil and
conductor data are available. Conductors used so far in pulsed
superconducting magnets are multistrand cables or braids, with
each strand consisting of twisted fine superconducting filaments
embedded in a two or one component normal metal matrixt. The
strands are twisted or transposed and shaped to desired rectan-
gular configurations. The individual strands are either insulated
individually, or impregnated in a metallic or intermetallic
insulator.

The size of the individual strand in a cable or braid needed for
coil construction is determined by the type of conductor. In
cables containing individually insulated strands,it is desired

to use large size wires containing many superconducting filaments.
Larger strand sizes have also the advantage of ease of cabeling
and compacting without wire breakage. These types of conductor
have a higher packing factor (ratio of wire to insulation).

The largest conductors manufactured so far have a compacted

size of 0.5x0.5 cm and carry 5600 A at 4,5T, (RHEL).

Common shapes of conductors are 2000 A (at 5.0T) cables, having
a cross-sectional area of (2.6x2.1)mm2
dipole at Karlsruhe, the braid selected by Siemens has a cross-
section of (5x0;6)mm2 and carries ~ 1000 A at 5T. Saclay

chosen a 24 strand braid, with O.4 mm strand diameters each
braid having 1000 filaments. The conductor carries 1500 A

at 6,.7T.

s Selected for the D2

*The one component matrix used in low resistivity copper
(generally OFHC) or aluminum; two component matrix used is
low resistivity copper and cupronickel.
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The size of each strand selected for different braids or cables
vary between 0.02-0.04 em, but may exceed 0.1 cm diameter, as it
was found that self field effects are quite small as

shown in Eq. (1.62). However, the filaments should be decoupled

in order to eliminate additional losses. Decoupling is achieved
by adequate twisting and the use of cupronickel around individual
filaments or clusters of filaments. Standard cables consist of a
number of twisted strands. These cables have the disadvantage
that concentric layers of strands within the cable are geometri-

P Y-S}

»
y displace rement ©

19 A Mo A4 1
caiary piacea. 1n€ aispaa

. . e 1 .
nonuniform current sharing. Smith v) reports that in a 7 strand
cable a negative current was observed in the central strand, when

£ T Ayt Al abwmarAdos aa
i 4iGQdiviUual ovialiiuo Cauosc

the field was pulsed with a few second rise time. All strands
carried positive currents under d.c. conditions. Jﬁngstls) reports
negative ecurrents at low field levels even in not fully transposed
cables, ‘ '

Transposed cables, in which each strand occupies all positions
within the cable cross=-section, eliminate the above disédvantages
but they have a low packing factor (v U0 = 50%) and a large
number of cross over points., Strand breakage is observed, when

a large number of them are used in the cable and compacted to
specified cable sizes.

It was mentioned earlier that wire motion in the coil due to time
variable Lorentz forces cause heat. The conduction of

heat away from the superconductor to the bath may limit the

coil current carrying capacity and generate conductor training.
Two constructions to prevent wire motion are given below:

a) The cable is impregnated with In(Sn) or Ag(Sn) solder with
an addition of Bilz), or another eutectic. These impregnants have

a relatively higher resistivity at 4,2K (>1O'6Ohm. cm) and coupling
losses measured are only about a factor of two higher than in

insulated cables.

b) Potting the cable in suitable thermosettings. In this case
the individual strands are insulated with a layer of copperoxide
or a thermosetting, compatible to the final potting mixture.
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Fully insulated strands and cables, if potted, (type b) exhibit
training after the first cool down. After each succesive cool
down training effects have been observed in some cases, in
others no training effects have been oberved whence the 0011
was cooled repeatedly.l“) '

In soldered cables or braids (AgSn, or InSn) no training effects have
been reported. Soldered cables have also the advantage of retaining
their shape within the specified tolerances when bend over tight
radii. This fact is important if refused field tolerances within

the useful aperture of the magnet are stringent. But even soldered
conductors must be refrained from motion due to magnetomechanical
forces, either by proper reinforcement, or potting in suitable
epoxies, which have practically the same thermal contraction
coefficient as the conductor and do not crack when cooled down
thermally cycled and magnetically pulsed.

Metallic impregnated cables (type a) have operated better under
pulsed conditions than not impregnated ones (type b). Thereason
may be found in the better heat transfer properties of the solder
and the rigidity of the cable. One difficulty arising from the
use of metallic insulated cables is the coupling between strands.
This is the same phenomenon which causes also eddy current losses
in the individual twisted strand. Additional eddy current losses
occur in the cable depending from its twist rate. Induced eddy
currents give an additional contribution to the irreversible
sample magnetization which increases with B and the twist length.

Fully insulated strands are totally decoupled. If the cable is
coupled to any degree, say because of shorts between strands,

or in metallic insulated cables due to the use of high
resistivity solders, higher than about 20% of the total coupled
case, cross-currents flowing through the high resistivity layers
between strands generate losses far beyond the individual strand
contribution and dominate the coil losses.

Fig. 4.1 gives the losses per cycle versus B for solenoid using
metallic insulated cables. It may be noted that losses per cycle
are increasing with frequency in the low B range and decreasing

with frequency at high B region as shown in Eq. (1.52), where
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the factor 1/[1+jwtldetermines the shielding of B in the
interior of the conductor.

While theoretical predictions agree qualitively with experimental
results, quantitative agreement between measurement and theory is
found in solenoid type coils. Measurements do agree with theory
within a factor of two in race track shape coils (dipoles ete.).
In tables 4.1, 4.2 and 4.3 losses measured in solenoids are
compared to the theoretical predictions. No systematic measure-
ments on a.c. losses were available on dipole magnets to enable

a detailed comparison with theory.



Table 4.1

Comparison between calculated and measured a.c. losses

in solenoidsls)
Coil Geometry
:2a1 = 6 cm 2a1 = 2.4 ecm 2a1 = 2.4 em
2a2 = 9 cm 2a2 = 8.4 cm 2a2 = 6.5 cm
2b = 5,6 cm 2b = 5.3 cm 2b = 5.3 cm
N = 2990 N = 5650 N = 6125
. b . Y . ~
Conductor IMI: 61 fil.a 42 um AIRCO: 361 fil.a 13 um VAC: 61 fil.a 34 um
IH, = 650 AT IH, = 285 AT IH, = 650 AT
Ho = 1 T HO = 17T Ho = 1 7T
1 = 705 m 1 = 958 m 1 = 856 m
- 3 - 3 1 - 3
Vcond = 112 em Vcond = 152 cm vcond = 82.4 em
D = 0,045 cm D = 0,045 cm D = 0.033 ecm
Matrix Cu: r = 180 Cu: r = 70 Cu: r = 100
5, = 4,7 10" %nm. em o, = 7-10'80hm.cm [ = 10+10"%0nm. cm
lpitch = 2.5 CT3 lpitch = 0.4 em ) lpitch = 0.6 em
T = 21.10 %s T = 1.45.10 s T = 0.57+10 s




Bpu(T) 4.2 3.6 5.2
Hysteretic losses whl = 9,23 whl = 1.6 whl = 10.3
(Ws/cycle) Eq.(1.28) AT = 74 A AT = 36 A AI = 95 A

Ic = 325 (’at 1T) Ic = 150 A (at 0.9T) Ic = 370 A (at 1.25)

° o - . —3 - ... -3 _ . -3

Self field losses st = 7.310 wsf = 2.5+10 st = 16.5+10
(Ws/cycle) Eq.(1.62)
Field rise time 5.6 8.77 15 25 2.5 4 5 6.5 10 1.8 3.6  6.25 10
t°/2 (s) | ‘
Eddy Current losses |[8.44 5,06 3.0 1.78 { 1.2 0.76 0.61 0.5 0.3 0.752 0,38 0.22 0.135
(Ws/cycle)Eq.(1.52) ' ' ‘
Totai calculated 7.7 14.31 12.25 11.03 | 2.8 2.36 2.21 2.1 1.9 11.5 10,7 10,52 10.44
losses (Ws/cycle)
Total measured ?1 15.8 10.8 10.0 3.75 2.16 1.5 1.25 1.2 | 10.5 10.1 10 10
losses (Ws/cycle)




Comparison between calculated and measured a.c. losses

Table 4,2

in solenoids!7?)

Coil Geometry

2a1 = 5 ¢cm
2a2 = 0 cm
2b = 7.5 cm
N = 4000

2a1 = 5 cm
2a2 = 9 ¢em
2b = 7.5 em
N = 40OO

[

5 ecm
9 cm
7.5 cm
4000

Conductor: VAC: 61 fil. & 34 um VAC: 61 £il. & 34 um VAC: 61 fil. & 34 um
I H = 840 AT = =
Tofto . I H, 840 AT I H, 840 AT
0 ) Hy = 1T H = 1T
1 = 780 m 5 1 = 780 m 1 = 780 m
= 3 =
Veond 67 cm Veond 67 cm Veond ® 67 cm>
D = 0.033 cm D = 0,033 cm D = 0.033 cm
Matrix: Cu: r = 100 Cu: » = 100 Cu: r = 100
Po = 10.10"S0nm. cm Pe = 10.10"S0nm. em e = 10.10" %0onm. em
pitch = 0.2 em 3 lpitch = 0.3 cm . 1pitch = 0.6 cm
T = 0.07.10 %% T = 0.14,107%s t = 0.57.107 %%




B (T) b Il L

Hysteretic losses Wy, = 9.5 Wy = 9.5 Wy q= 9.5

(Ws/cycle) Eq.(1.28) ~ o

Self field losses 1072 1072 1072

(Ws/cycle) Eq.(1.62)

Field rise time . 1 2 5 10 0.5 1 2 5 0.5 1 2 5
to/2 (s) :‘

Eddy current losses | 70x10™° 35x10™° 14x10™° 7x10”° | 0.32 0.16 0.08 0.032 | 1.28 0.64 0.32 0.13
(Ws/cycle) Eq.(1.52) ' '

Total calculated 9.57 9.53 9.51 3.5 9.82 9.66 9.58 9.53% 10.78 10.14 9.82 9.63
losses (Ws/cycle)

Total measured 13,2 10.1 13.8 12.2 10.7 9.0

losses (Ws/cycle)

9.8 9.8 9.8 9.8

11.8 10.9




Table 4,3

Comparison between calculated and measured a.c. losses
. . 16)
in solenoids

Coil Geometry I IT II
2a1 = 2.16 cm 2a1 = 2 em 2a1 = 2.12 cm
2a2 = 4,76 cm 2a2 = 4,25 em 2a2 = 8.99 cm
2b = 8.64 cm 2b = 5 cm 2b = 8.64 cm
N = 5177 N = 2376 N = 1698
Conductor IMI: 61 fil. & 28 um IMI: 61 fil.a 28 um Supercon 16x400 fil.47.5 um
IOHO = 300 AT IoHo = 300 AT IOHo = 1400 AT
Ho = 17 Ho = 1T . H0 = 0.TT
1 = 563 m 1 = 223 m 1 = 296 m
- 3 - 3 - 3
vcond = 39.5cm Vcond = 15,6 cm Vcond = 150 cm
D = 0,03¢cm D ¥ 0.03 em 16 strand transposed cable
Matrix Cu: r = 180 Cu: r = 180 Cu: r = 100
o -8 - -
Pe = 4.7.10 "Ohm.cm Pe = 4,7.10 80hm.cm Pe = T+10 8Ohm.cm
1pitch = 0,25 ch pitch = 0,25 CT lpitch = 0,2 cm
T = 0.2+10 78 T = 0.2+10 s T = 0,2+10 s




Bm(T) 1 2 3. h 1 2 3 1 2 3 b
Hysteretic losses - 0.81 1.38 1.83 2.2 - 0.32 0.5 0.7 0.69 1.15 1.5 1.76
(Ws/cycle) Eq.(1.28)

Field rise time 2 2 5

to/2 (s)

B, (T) y 3 3

Eddy current losses No frequency dependence obs. [No Frequency dependence obs. %o Frequency dependence obs.

(Ws/cycle) Eq.(1.52 We = 0.07 We = 0,016 0.007 0,029 0.064 0,114
Bm(T) h y 4
AI = 57A Ic = 150 (at 1T) AI = K59A Ic = 170A (at 0.75) |AI = 12A/strand
Ic = 51A(at 1T)
. o -3 - 1n=3 - 10" D
Self field losses wsf = 6x10 ; wsf = 2.2+10 wsf = 1.35+10
(Ws/cycle) Eq.(1.62
Total calculated 0.886 1.u456 1.906 2.27 [(0.338 0.568 0.75 0.7 1.118 1.56 1,88
losses (Ws/cycle)
Total measured 0. 1.5 1.85 0.27 0.5 0.7 0.73 1.26

losses (Ws/cycle)

58 1.1
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5. Methods of Loss measurement

Methods to measure a.c. losses in superconductors can be implied

to test samples and specimen and to measure losses in coils

Popular methods to measure losses are the calorimetric method, in
which the additional helium boil off due to a.c. losses is measured
and the electric method at which instantaneous values of the
current and voltage are multiplied and integrated over the time.

5.1 Calorimetric method:

Fig. 5.1 illustrates the method of loss measurement of specimen
schematically. The specimen is wound bifilar and placed in a
calorimeter. The superconductor is energized from a pulse-
generator, or a variable current, low frequency (< 50 Hz) source.
The helium boil-off due to a.c. losses is measured by means of a
gas flowmeter. The calorimeter is placed in a main liquid helium
dewar, such that current leads are located inside the main
cryostat prior to entering the calorimeter.

The'sensivity of the method (v1 mW) is moderate, if low frequency
pulsing is applied; The measurement accuracy is improved by
increasing pulse/frequency. The advantage of this method is its
independence on magnetic energy stored in the coil. Its main
disadvantage, the long time required until equilibrium conditions
are established to measure losses. Only magnets of moderate size
have been tested with this method.

5.2 Electric methods:

Several methbds are used succeésfully and in the following a
description of few methods is given. The pasic principle-of
this method is to generate a voltage which is proportional to
the power delivered to the coil and integrating it over one or
several cycles,



- 52 -
The circuit shown in Fig. 5.2 is described by Gilbertlg) and
is used to measure a.c. losses in superconducting samples and
coils. The circuit consists to two major parts:
A multiplying circuit to obtain instantaneous power flow
between specimen (coil) and a powersupply and an integrator to

" keep track of the energy delivered into the superconducting
magnet .

The multiplying circuit operates as follows: It utilizes a Hall-

probe which generates an output voltage proportional to the
product of input current to the Hallprobe and the magnetic field
around the probe.The test magnef is connected to the Hallprobe
through a resistor by a pair of potential leads inserted into
the cryostat.Thus the input current to the Hallprobe is propor-
tional to the magnet voltage. The Halldevice is mounted in the
gap of a coil which generates a magnetic field proportional

to the transport current of the coil, (BS = K.I.). As this

coil is connected in series to the superconducting magnet to

be tested, the Halldevice is exposed to a magnetic field propor-
tional to the current flowing through the superconducting magnet.
The input to the Halldevice is thus proportional to the voltage
aceross the superconducting magnet and to the magnet current. The
output voltage of the Halldevice is proportional to the in-
stantaneous value of the power into the superconducting magnet.

The integrator uses a solid state chopper operational amplifier

with a feed back capacitor C and aTseries resistor R, such that
. o . . o1
its output voltage is U . = g7 gf Uin(t) dt.

The drift in the integrator circuit appears as an equivalent power
loss and must be kept small. (imV-drift in 103 sec, with a
dynamic range of 10V).

The Hall voltage is integrated by means of an integrator.
The output voltage is given by:
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S,max 5 W 7 (5.1)

where W are the losses to be measured, s is the sensitivity
and Is tha maximum current through the Hallprobe; Bx,max is
the maximum fluxdensity determined by the nonliniarity of the
Hallprobe. T is the time constant of ﬁhe feed4back loop of'
the integrafor and U, I . the maximum voltage and maximum
current resp., applied to the superconducting coil during the

cycle.

It is seen from the above relation, that the sensitivity of
the method is limited by the characteristics of the Hallprobe
(s, Is, Bs,max) and by the magnitude of the applied’voltage and
current. The circuit has a moderate sensitivity of about

+ 5% at Q < 100,

The sensitivity of the system is aiso limited by the drift of
the integrator, its nonllnearlty and by the thermoelectric
voltage of the Hallprobe,

Hlasnik =)
max® asni
and coworker have proposed its compensation by means of a linear

To reduce the influence of the inductive term U

mutual inductance, whose primary side is in series to the super-
conducting coil and whose secondary side compensates the inductive
component of the coil voltage, as shown in Fig. 5.3. The voltage
Ud is essentially resistive component and can beamplified and
applied to the Hallprobe. The sensitivity of this method is

about a factor of 20 better than in the previous scheme. The
circuit is more susceptible for measuring losses in coil using
multifilament composite conductors.

1)
losses in specimen. The sample is inserted into the gap of one
of the two coils of identical cross sectional area and identical

number of turns placed side by side in the solenoid generating
the external field. (Fig. 5.4)

The circuit proposed by Fietzz is useful to obtain hysteretic
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As long as the sample is not superconducting, the output induced
voltage from the coils 2 and 3 are the same and cancel each
other in the circuit. A coarse and a fine potentiometer correct
for small voltage devations due to measuring coil erros.

The measuring coil 2 and 3 are designed to fit the specimen
closely such that a good inductive coupling between sample and
coil is obtained. The difference voltage from the coils (empty
coil and coil with specimen) is amplified by an operational
amplifier. The integrated voltage UC is proportional to the
magnetization of the specimen. Tracing this voltage against
the integrated induced voltage in a pick up coil (proportional
to the external field) a magnetization curve such shown in
Fig. 5.5 for NbTi is obtained. The area of the magnetization
curve is proportional to the hysteretic losses for one cycle.

Error sources are due to deviations in the area or number of

turns of the measuring coils, the positioning of these coils in

the external field, unmatched flux densities (different Ampereturns
in the coils) and mainly errors due to the drift of the operational
amplifier. The circuit has been also used by McInturffzz) to
measure magnetization losses of NbTi wires.

An apparatus to measure low frequency losses is described by
23
Sekula ).

)

B . 24
Another electric method to measure losses is given by Pech .
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Figure Captions:

1.1

1.2

Y
L]
il

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

Schematic representation of the spatial variation of free

energy of a flux line or a bundle of flux lines in a real
type II superconductor with and without impressed trans-

port currents,

Field penetration into a type II superconductor with
pinning.

Field and current distribution in a type II superconducting
slab with the external field parallel to the surface of the
slab, according to Bean's critical state model.

Field and current distribution in an infinite sheet due
to the application of transport currents and external
fields parallel to the sheet surface.

Field and current profiles in a type II supefconducting
slab according to Kim Model.

Field penetration profile in a semi-infinite slab
(Kim Model).

Hysteretic losses vs. characteristic conductor parameters
JoBod for a im long dipole.

Schematic representation of a multifilament conductor with
twisted filaments.

Composite multifilament conductor.
Pulsed fields and induced currents.,
Field profile in a type II superconducting cylinder.

Energy dissipation per unitylength of specimen vs. peak
[i] .

transport current.1 ) The loss at the critical current

for each specimen is indicated by a triangle. The dashed

)

- » > 9 o
line 1s according to Hancox expression.



1.13

2.3

5.2

5.3

5-’-‘

5.5

Comparison between self field and hyster%c losses for a
pulsed magnet with 5T peak field at 5x10 A/cm2 overall
current density and vs. Composite., '

Composite conductor with twisted,superconducting filaments.

Axial diffusion of transport currents through a normal
joint into a composite conductor. '

top: Current path.

bottom: Current distribution.

Self field and current density pattern in a cylindrical
conductor.

Energy dissipation vs. é. A flat fully transposed braid
used in: the solenoid with Id = 2.5 cm; OD = 7.6 cm;
length = 4.75 cm has 33 strands with 210 filaments each.
Each strand has a diameter of 0.02 c¢m and the filaments
have a diameter of » 12 m typically. The matrix

is copper.a)
Schematic representation of the calorimetric method to
measure a.c. losses.

Schematic arrangement of a.c. loss-measuring electrical
method. ' ' '

Electrical a.c. loss-measuring method using an inductive
compensating coil.

Circuit diagram according Fietzzx).
1. Sample ' :

2. Sample coil

3. Bucking coil

4, Field measuring coil
5. Fine and crude potentiometers

Typical hysteresis curve measured for NbTi.
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