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Abstract

A few preliminary results about the influence of fission neutron spectra on

important integral quantities of fast critical assemblies were reported in

preceding papers L 1-3_1. The scope of those studies was limited for two

reasons:

i) only a small number of integral quantities for a few assemblies

had been studied,

ii) the different forms used previously for the energy dependence

of the fission spectrum were of limited accuracy.

In the present work the forms of the fission spectra are taken from the KEDAK

and ENDF/B library respectively. The different forms are compared with each

other and with our "standard" fission spectrum generally used in our calcu­

lations which belongs to v=2.8 of the Russian ABN-set of group constants L-4_1.
The influence of the different forms on calculated integral quantities for

fast critical assemblies and on important characteristics of large fast

power reactors is investigated. Some implications for the pro grams used to

calculate flux distributions are outlined. Important conclusions of the

present study are sumnlarized at the end of the paper.

Zusammenfassung

In früheren Berichten L 1-3_/ haben w~r bereits einige vorläufige Resultate

über den Einfluß des Spaltneutronenspektrums auf wiChtige integrale Kenn­

größen schneller kritischer Anordnungen veröffentlicht. Der Umfang dieser

Arbeiten und der darin enthaltenen Ergebnisse war beschränkt, da

i) nur wenlge Kenngrößen für elne kleine Anzahl von Anordnungen

untersucht wurden,

ii) die Genauigkeit der verschiedenen Darstellungen, die für die

Energieabhängigkeit des Spaltneutronenspektrums verwendet wurden,

nicht ausreichend war.

In der vorliegenden Arbeit werden die Spaltspektren der beiden Kerndaten­

bibliotheken KEDAK und ENDF/B benutzt. Sie werden untereinander, sowie mit

dem von uns üblicherweise benutzten "Standard"-Spaltspektrum verglichen,

das aus dem russischen ABN-Gruppenkonstanten-Satz L 4 1 übernommen wurde.



Der Einfluß der verschiedenartigen Energieabhängigkeit des Spalt spektrums

auf berechnete integrale Parameter schneller kritischer Anordnungen llnd

auf wichtige, charakteristische Kenngrößen großer schneller Leistungs­

reaktoren wird ermittelt. Einige mögliche Auswirkungen auf Programme

zur Berechnung der Neutronenflußverteilungen werden angedeutet. Die

wichtigsten Schlußfolgerungen sind am Ende der Arbeit zusammengefaßt.
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I) Comparisop of different fission-neutron spectra

The different forms of the fission spectra have been taken fram two

evaluated nuclear data files. the KEDAK- and ENDF/B-library respectively.

The KEDAK-fission spectra are described by a "Watt"-type expression:

X(E) = c • exp(-aE) • sinh J bE

wi th the normalization constant c gi ven by

c = 2a la/Tfb • exp(-b/4a)

(see also /-5 7).- -
The parameters on the library are for U235 and Pu239 respectively:

Material 1/a a b

U235 0.965 1.036269 2.29

Pu239 1.0 1.0 2.0

(see L-5_7 p. 16, L-6.7 p. H40 for U235. L-5.7 p. 20 and

/-6 7 p. J.42 for Pu239)- -
The ENDF/B-fission spectra are described by a Maxwellian

The parameter 0 depends on the energoj E t er the neut.ron which induces

the fission. but for our purpcses we may use the parameters gi ven

for thermal fission because for all cases considered here the median

energy of the fission inducing neutrons is below about 0.5 MeV and the

inc:rease in (3 with increasing energy !:J.0/!:J.E' is onlyabout 1%/1MeV

(see /-6 7 p. H41). The follo\ting values have been used:- .
for U235: 0 =1.30 MeV. for Pu239: 0 = 1.41 MeV



For U238 ve have used a value of e = 1.35 MeV. This vakue has been

deduced from the measurements of BARNARD et al. /-7 7 who determined- ...
the e-values at incident neutron energies of 2.086 and 4.908 MeV

respectively. As in the work of BARNARD we assumed a linear dependence

of e on V. the average number of neutrons per fission. We applied

our values of V. taken from KEDAK. For most of the assemblies considered

in this sttldy the average value of :j(U238) ~ 2.85. An interpolation

of BARNARD's results /-7 7 gives e(U238)~ 1.35 MeV. From TERRELL's... -
formllla for e(given in the report of BARNARD ("7 7)- -

one would obtain e =1.344. The good agreement with the value which we

have ehosen may be fortuitou~.

these parameters the var-Lous fission spectra have been calculated

x· =::I.

For the application in multigroup calculations the group values

E. 1
l-

I
E.

1

have been determined. They aze gi yen in Table 1 together with our

normally use d "standard" fission spectrum which belongs to v = 2.8

cf the Russian ABN-set /-4 7. In our calculations of group values X.
- - 1

the neutrons emitted with energies above 10.5 MeV have been included

in group 1 and those wi th energies below 10 keV in group 11 for the

sake of simplicitYe

In Fig. 1 the ENDF/B fission spectrum for U235 is shown. A comparison

with the corresponding KEDAK fission spectrum is also given. In the

lewer part of this figure the group values X. determined from the
1

ENDF jB- and KEDAK-data are compared wi th those of our ABN-"standard"

fission spectrum belonging to \I liII 2.8. FiS- 2 shows the anal.cgous

figures for Pu239.

From Fig, 1 it ean be seen that except for the region of very high energies

the KEDAK-spectrum for tJ235 is somewhat "harde r" than the corresponding

ENDF/B-speetrum and both are softer than our "standard" fission spectrum.

Fiß•. 2 shows that for Pu239 the KEDAK-spectrum is generally "softer" than

the "standard!:"fission spectrum whereas the ENDF/B-speetrum is defini tely

"harder". Thus. ror the most interesting energy range tltom 0.2 to 5.0 MeV,
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the ENDF/B spectra show the largest deviations compared to our standard

fission spectrum. that for U235 being the softest one and that for

Pu239 being the hardest one of the fission spectra studied here.

The differential fission neutron spect ra measurements of WERtE L-a_7
for thermal-neutron induced fission of U235 and Pu239 support the

ENDF/B description. Therefore, the ENDF/B fission spectra are

considered by us to be representative for the real difference betveen

the U235- and Pu239-fission spectra. The ratio of both fission spectra

is shown in the upper part of Fig. 3.

In the Russian ABN-set the fission spectrum is given for different values

of \). the average number er fission neutrons pez fission. For fast

critieals and fast power reactors the averge v is generally somevhat

belov 3.0 for Pu239 and somewhat higher than 2.4 for U235 (probably

even above 2.5). The lover part of Fi g. 3 gives the ratio of the ABN­

fission spectra belonging to \) =2.4 and v = 3.0 respectively. From

a comparison with the upper part of the same figure it can be concluded

that the difference between the U235- and Pu239 fission spectra is not

sufficiently well represented by the v-dependence as assumed in the

ABN-set.
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HA) InflU;nce. of d.ifferent fission-neutron, spe:~ra on palc~11'l'ted integral

guantities of fas;,t critical assembli;~

a) Influence on cri ticali ty
-----~~------~-----~-------
Table 2 gives the cri ti cality di fferences obtained by using instead

of the "standar-d" fission spectrum the KEDAK- and the ENDF/B-fission

spectra respectively. The results have been determined by fundamental

mode homogeneous diffusion calculations. As nuclear data basis we have

used the group constants of the MOXTOT-set ;-1 7. (Some few test- -
calculations have shown that the influence of the fission spectrum on

the criticality is even somewhat more pronounced in two-dimensional

calculations probably because the resulting change of the Leakage

probability or the space dependence of the !lux shape is not accounted

for by a corresponding change of the buckling in the fundamental mode

calculations.) The fission spectrum used corresponds in every case

to the main fissionable isotope of the special assembly consi.der-ed ,

With the ENDF/B data. the maximum criticality decrease is about 0.009.

the maximum criticality increase about 0.006. The criticaJ.ity difference

observed in Table 2 are generally of the same order of magnitude as

other corrections, e .g. heterogeneity- or transport corrections t which

are applled in order to determine best theoretical criticality values.

Thus the criticality correction caused by the deviation of the appropriate

fission spectrum from the "standard" fission spectrum is of the same

importance as other commonly applied corrections.

From Table 2 i t can be noted that replacing the "standard" fission spectrum

by the KEDAK fission spectrum si ves for p lutoni.um assemblles an opposite

sign of the criticality differences than that obtained upon areplacement

by the ENDF/B fission spectrum, This is due to the fact mentioned before

that for Pu239 the KEDAK fission spectrum is "softer" whereas the E'NüF!B

fission spectmm is "harder" than our "standard" fission spectrum.

The most pronounced difference occurs for the km-experiment ZPR III-55

where the criticality difference obtained when using the ENDF/B- instead

of the KEDAK-data amounts to about 0,01 in keff'

For a few test cases the influence of thefission spectrum of U238 has

also been studied. We have chosen such critical assemblies where the
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fission in u238 is of relatively large importance: for the uranium

assembly ZPRIII-25 about 27% of the neutron production stems fran

U238 and 73% from U235; for the plutonium assembly ZPR 1II-55 more

than 20% of the neutron production stems from U238. about 75% from

Pu239, the rest from U235 and the hi gher plutonium isotopes. The·

criticality values of the assemblies studied are known to be sensi-

ti ve to t,he form of the fission spectrum. As a modified fission

spectrum we have used a weigbted average of the corresponding fission

spectra: for ZPRIII-25 U235 (73%) and U238 (27%) and for ZPRIII-55

PU239 (75%) and U238 (25%) ('ehe contributions of U235 and the higher

plutonium. isotopes have been neglected in this cese ) , The criticality

differences & obtained with these modified fission spectra compared

to the results obtained wi th the corresponding pure fission spectra

of the appropriate main fissionable isotope are lIk =+0,0023 for

Z?RIII-25 and lIk =-0.0021 for ZPRIII-55. Even these criticality

di fferences are of the order of other more fa.mi.liar criticality

corrections. Thus for some particular assemblies even the effect of

the U238 fission spectrum haste be taken into account, for apreeise

criticality determination. This statement holds at least as long as

the differences in the temperatures for the Maxwell distributions are

as large as assumed at present: e(U235) = 1.30 MeV. e(U238) = 1.35 MeV,

e(Pu239) =1.41 MeV.

b ) Influence on reaction rate ratios
~~~---~-------~----------------~~---
Besides the cz-i ticality one is also interested in the reaction rate

ratios for fast zero power assemblies because these quantities provide

additional possibilities for testing ~~e quality of the basic neutron

cross sections. Of course, one is mainly interested in those reaction

rates which are relevant for the neutron balance. 1..e. for neutron

production- or loss-processes. It is evident that a change in the

fission spectrum will cause the largest effect for those reactions

which have a threshold in the MeV-region. Here the fission process

in U238 is the most important ene , Replacing our "standard" ABN­

fission spectrum by the ENDF/B representations the fission rate ratio

R~/R~ decreased by about 5-6% for U-fuelled and increased by about
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2.5-3.5% for Pu-fuelled assemblies, Moreover. noticeable variations

of this ratio are even observed if the U238 contribution to the

fission spectrum is taken into account appropriately.

For ZPRIII-25, a mixed fission spectrum composed of U235 (73%) and

U238 (27%) leads to a 1% increase of the ration R~/R~ as compared to the

result obtained for a pure U235 fission spectrum. For ZPRIII-55 we used

a mixed fission spectrum composed of Pu239 (75%) and U238 (25%) instead

of' a pure Pu239 fission spectrum and obtained a deerease of 1% for the

R;/R~ ratio.

All other important reaction rate ratios remain nearly unchanged for

the presently considered ehanges of the fission spee"brum. Especially

for the important ratios a 5 =R5!R~t R8!R~, R~!R~, a 9 = R~/R~t
890909 e e

Rc/Rf. Rf/Rft Re/Rf the ehanges are smaller than 1% for the assemblies

eone i de reü here , This change is mueh smaller than that caused by the

uncertainties in the eor-respondi.ng baa i e nuclear data. Only ir those

errors in the above mentioned reaction rate ratios whieh are caused by

basic cross seetion uncertainties can be reduced below 1% the influence

of the fission spectra on these reactioD' rate ratios must be taken

into aceount,

e) Influenee on material worth- and substitution-experiments
------~--~----------~----~----------------------------------
For two assemblies (ZPRIII-25 and ZPRIII-48) we have studied the influenee

of the different forms of the fission neutron spectrum on the eentral

material worth. Such an effect may be important if the reactivity of a

plutonium (Pu239) sample in a uranium (U235) eore has to be determined

or vice versa that of a U235 sample within a Pu239 core. In both eases

the fission spectrum of the sample is different from that of the sur­

rounding medium, an effeet whieh usually has been negleeted up to now

and eannot be taken into aceount in most cf the existing perturbation

ccdes , The net perturbation effeet for the central material worth is

composed of three terms: production. absorption and degradation.

Dur test calculations have shown that the produetion term is changed

by about 2% for ZPRIII-25 and by about 1% for ZPRIII-48 if we used the

fission spectrum for Pu239 instead of that for U235 (both taken from

ENDF/B). For the assembly ZPRIII-48 the production term is luger than
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the net perturbation effect by a factor of about 1.5 for Pu239 and

about 2.0 for U235. Therefore we have to expect that errors cf

the order of a few per cent (probably up to 5%) may arise by neg­

lecting the difference between the fission spectrum of the sample

end that of the surrounding core material.

From the preceding discussion i t is evident that in the case of

substitution experiments errors cf the same order aSo for the material

worth may arise when the effect of differenees in the fission spectra

is negleeted. In these experiments e.g. a urenium zone is suecessively

replaced bya plutonium zone /-9 7. From the results of suecessive- -
substitution steps one tries to extrapolate to the results whieh

would eorrespond to a tull core wi th the composi tion of the substituted

z.one , Direct numerieal calculations to determine the reactivity effect

eaused by the differences in the fission spectra of the substituted

and the surrounding zone could not be performed up to nov because the

appropri ate codes were not available. However, from the criticality

caleUlations mentioned in seetion IIAa) one may Qonclude that for

the extrapolated t'esults of a tully substituted core criti cality errors

of up to 0.01 may arise i f the differenees in the fission spectra

of the substi tuted end the original eoze zone are neglected.

In L-2.7 it has been shown that the form. er the fission spectrum has

some infiuenee on the shape of reaetion rate traverses too, apart

from the infiuence on the absolute magnitude of eentral reaction rates

or eentral reaction rate ratios diseussed in section IIAb). The result

of the ea.rlier 'Work for the assembly S~iEAK 3A2 r2 7 is r-edrawn here
.. =

in Fig. 4. The FABRY.fission speetrum used for Fig. 4 is based on

results of integra.l measurements for the temperature of the U235

thermal neutron fission speetrum /-'0 7. This fission speetrum is- -
"harder" than our "standard" fission speetrum end therefore eonsiderably

harder then the ENDF/B U235 fission speetrum whieh in the present work

is considered to be the most rea.li:stic representation of the differential

measurements. The ENDF/B U235 fission spectrum has been used to obtain

the results 01' FiS. 5.

Wi th the "harder" spectrum used for Fig. 4 all the three reaction rate

traverses studied (R (U238). R~(U235). R~(U238» show an increase o~c _ ...
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0.7% in the outer part of the core region (all traverses are normalized

at the core center). In the blanket region R
c(U238)

and R
f(U235)

are

increased by about 2% and R
f(U238)

by about 4%.

In Fig. 5 the corresponding results wi th the "softer" ENDFjB U235

fission spectrum are shovn , In the outer part of the core the three

reac:tion rate traverses studied are lower by about 0.7% than those

calculated wi th the "standard" fission spectrum. In the blanket region

the traverses for R
c

(U238) and Rf(U235) are decreased by about 2.5%

and for Rr(U238) by about 4%.

It is probably interesting to mention that even the discrepancies between

the shape of the traverses determined with the U235 ENDF/B- and U235

KEDAK-~ission spectrum, respectively, are not too small: for the case

studied here the traverses with the KEDAK-spectrum are in the outer

part of the core region about 0.5% and in the blanket region up to

'.5% higher than tho§e ealculated with the ENDF/B-spectrum.

The present results indicate that for the precise determination of the

reaction rate traverses including the power traverse it will be

necessary to take into ac count the appropriate form of the fission

spectrum if discrepancies in tl1~ sllape ~tween theory and experiment

of the order of 1% in the core region and/or several per cents in the

blanket region become relevant. The possible effect of using different

fission Ipectra in the core (U235) and blanket region (U238), respectively,

could not be studied because an appropriate code is not available at

the moment.
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IIB) Influence of o:~er nuclear data uneertainties on the criticality of

of fast eritieal assemblies

The importance of a precise knowledge of the appropriate fission

speetrum must be judged in the eontext cf the presently existing

other uncertainties in the nuelear data. We will diseuss here only

two examples of uncertainties namely the fission- and the inelastic

Icattering cross sections of U238.

The follswing results will show the sensitivity of the criticality

on certain changes in the nuclear data. AB a first change (CI) of

'fable 3 we study an increase of the U238 fission cross section by

5%. Then the inelastic scattering cross section of U238 is changed

from the values used in the MOXTOT-set /-, 7 to the ABN-values.- -
In the first step (CIl) for the energy range from 1.4-10.5 MeV

(groups 1-4) and in the second step (CIlI) fram 0.05-1.4 MeV (graups

5-9). In addition to the change of the inelastic scattering cross

section of U238 we considered also a change of the corresponding

scattering probabilities, i.e. of the energy distribution of the

neutrons scattered inelastically by U238. Instead of the probabilities

determined for the MOXTOT-set /-1 7 we use those of the ABN-set for....
the next two changes : Change CIV concerns the energy range between

1.4-6.5 MeV (groups 2-4) and CV the energy range between O.05-,.4MeV

(groups 5-9). For case CVI the changes CII and Cln are applied simul­

taneously, i .e. the ercss section for inelastic scattering by U238 is

changed in the whole energy range from the MOXTOT- 'to the ABN-values.

The same is done for the inelastic scattering probabilities in case

CVIIwhich is a combination er CIV and CV. For case CVIII, rinally, e1.1

data for the inelastic scattering on u238 are changed from the MOXTOT­

to the ABN-values.

Before discussing the results it is probably useful to mention that

the changes considered here are reasonably realistic. PITTERLE L-"_7
has inereased the U238 fission eross section by about 6% as compared

to his earlier evaluation ;-'2 7 for which a reasonable agreement with- -
the corresponding data of the MOXTOT-set exists. The modi ried data

are similar to the ABN-data. KALLFELZ et alt /-13 7 have shown that a

possible reduction of the inelastic scattering cross section by an

amount between 15% .. 30% would improve the agreement
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between theory and experiment for integral quantities as e.g. the

criticality or the fission rate ratio R~/R~ for aseries of fast

critical assemblies. PITTERLE 1-12 7 changed the parameter y , which- -
via. tbe "effective temperature" e =.jE/yA, determines the inelastic

scattering probabilities of U238. from y =0.099 MeV·1 /-12 7 to

06 -1 I· 7 - - 6 -1the new value 'Y = o. 85 MeV 11. For tbe MOXTOT-set y = 0.1 MeV. -
has been used to calculate the inelastic scattering probabili ties for

U238 in the "continuum" range of resi dual nucleus levels.

The difference in the inelastic scattering probabilities between the

MOXTOT-set and ABN-set data is similar to the difference which results
. 6 _1 v·1when the parameter 'Y lS changed from 'Y = 0.1 MeV to 'Y = 0.099 Me •

Therefore all changes considered here are vithin the range of' the

presently existing uncertainties Or:' within the range of suggested

mOdifications of the nuclear data.

All criticality differences ~k given in Table 3 are based on f\md.a­

mental mode homogeneous diffusion calculations using the MOXTOT-set as

nuclear data basis. The results should be campared with those given in

Table 2.With respect to the absolute &-values each of the changes CI...._ wm

through CV of Table 3 haa about the same importance a1> the di f'ferences

in the fission speotrum representations. From the cases CVI anel CVI!

it can be seen that the uncertainties in the magnitude of the inelastic

scattering cross section as well as that of the inelastic scattering

probabilities are somewhat more important with respect to the criticality

then the changes in the formof the fission spectruIne Especially aase VIII

demtll.nstrates the large effect of the inela.stic scattering date. for

U238 on the criticality of most of the fast assemblies included in

OUr study. If the uncertainties assumed for oase VII are realistic then

apreeise determination cf the inelastic scattering date. of U238 is of

hi gh priority.
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IIIA) In~luenceof' the dif:t:eren=. !}.s~io,.n ne.u::,ron speetra ,o,n...i.mportan~

caleulated quantities 01' large fast power reactors
, • I I

a) Influence oncritieality and eritical mass
-------------------------------------~-------
Besides the influence 01' different fission neutron speetra on the

ealculation 01' fast eritical assemblies discussed before it i5 im­

pOrtMt to stucly the influence on the calculation 01' large fast

power reactors, As test example 01' a large fast power reaetor we

have chosenthe simpli fi ed model suggested byBAKER whieh was used

for a worldwide intercomparison study. The details 01' the spec:i fi­

cations may be found in the recently published report /-14 7 on- -
the results of this intercomparison 01' nuclear reaetor calculations.

The main features 01' the reactor model are 80S folIows: spherical

model with a core radius 01' 84,196 em and a spherical annular

blanket 01' 45.72 cm thi ckneas t The fue L is mixed Pu0
2=U02,

Sodium 1S used

as eoolant and stainless steel for the structure and eladdine; material.

Three versi ons have been studied wi th somewhat di fferent fUel cem­

positions:

(A) only Pu239 and U238, no fission pr-odue ts , no higher plutonium

isotopeS

(B) Pu239 plus U238 plus 10% fission product pairs. no higher plu­

tonium isotopes

(e) Pu239. Pu240 end U238 plus 10% fission product pairs, Pu239:

Pu240 = 1;o.5•

In the first column of Table 4 the criticality differenees are given. _.
which arise if the fission spectra for U235 and Pu239 respectively

(ENDF/B-form) are used instead of our "standard" fission spectrum.

The reactor eomposition has been kept constant in this ease. Then

the fuel enriehment has been adjusted in such Go manner that the

original criticality value keff = 1.0000 is attained. The correspondi.ng

absolute changes in critieal mass of fissile material (Pu239) are

given in the second column. The third column shows the relative

changes of the cri tical fissile mass which have been necessary in

order to reestablish the criticality.
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The largest absolute criticality change is about 0.007 which causea

a change of the critical mass of somewhat more than 1% corresponding

in this case to about 11 kg er Pu239. This change occured if we use

the U235 fission speetrum instead of our standard fission spectrum.

Using the Pu239 fission spectrum which is more appropriate in this

case because the fissionable material is plutonium and whieh is eloser

to our standard fission spectrum than the U235 fission spectrum the

resulting ehanges are smaller in absolute magnitude although er

alternate signa For this more realistic change the criticality

difference is about 0.003, the change in critical mass about 0.6%,

equivalent to somewhat less than 6 kg of Pu239 for these simp1.ified

casea wi th about 1000 kg total fissile mass , The main reason for the

eriticality differences is the change of the fission- and production

rate in the fertile materials U238 and Pu240 with fission thresholds

in the high energy range.

The most important quantity next to the critical mass is the breeding

performance of apower reactor. Column 4 of Table 4 'shows that changea

in the breeding ratio cf up to 0.015 may be caused by ehanges in the

form of the fission spectrum. The change er the breeding ratio is mainly

caused by the adjustment of the enrichment which is necessar,y to bring

the reactor with modified fission spectrum back to criticality. The

ratio of reaction rates per atom R~ /R~ is changed by at most 0.5%

upon changing the fission spectrum. For the corresponding fission

rate ratio R~/R~ changes similar to that mentioned in section IIAb)

for the fast critical assemblies have been observed , i.e. -5.3% for

the U235 fission spectrum and +2.3% for the Pu239 fission spectrum.

The adjustment of the enrichment causes ver:! small variations in the

reaction rate ratios per atom, generally one order of magnitude smaller

than the variations caused by using di ffennt forms cf the fission

spectrum.



- 13 -

IIIB) ~ffuenc~E o!.?~~er nuclear data_UPFcertainti~s.f>1l cri ti calit~1 critical

!Uass and breed~n§.E,erforma.E.:!

The influence of nuclear data uncertainties on critieality and breeding

performance may be judged on the basis of the intercomparison study

by BAKER and RAMMOND ;-14 7 already ment i oned , Excluding those sets of- -
group constants whieh still used the old KAPL-values for a (Pu239) in

the res onence region we found the following maximum deviations between

the most extreme cases al'pearing in the intercamparison. For the

criticality difference: Äk ~ 0.04. for the critical msss about 7.5%

equivalent to 73 kg of Pu239 and 0.10 for the physical breeding ratio.

For version B of the reactor modeL considered he re • the most extreme

values for the total breeding gain are 0.160 and 0,268 (see Table 21

of L-14_7) if those group-eonstant-sets still using the old and too

low KAPL-a (Pu239 )-values are excäuded , The corresponding average value

is 0.206 forthe total breeding gain of version B. which has the lowest

total breeding gain of the three versions which formed the basis of

the study by BAKER. The deviation from the average value of about

tO.05 for the extreme eases is much larger than the deviation caused

by ehanges in the fission spect.rum , The amount of ±0.05 represents

about 25% of the average value for the total breeding gain and will

lead to a similar deviation in the doubling time. i ,e. the time whieh

is neeessary for a reaetor to produce a surplus of fissile mass equal

to i ts own inventory. It should be menti oned that similar ehanges

of 0.12-0.15 for the breeding ratio or the breeding gain have been ob­

served at Karlsruhe upon using the recently established MOXTOT-set

instead of the formerly used SNEAK- or NAPPMB-set /-15 7. /-16 7.
_ ~.. .~ w.

From a comparison of the differences discussed in the l'reeeding setion

wi th those obtained when the fission spectrum is changed i t seems to

us that for the physies predictionof large fast power reactors the

form of the fission speetrum 1S not the most important uneertainty

whieh presently exists in the nuclear data field.
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IV) Implications for the computer programs used to calculate flux.....
distributions

• I

Table 2 illustrates the importance of taking into account the appro­

priate fission spectrum for each material composition. In order to

do this correctly it will be necessary to modify the diffusion

and transport codes in such a way that they are able to handle

at least a composi tion-dependent fission spectrum, Even more

desirable would be an isotope-dependent fission spectrum and as

ultimate refinement an isptope-dependent fission matrix which takes

into account also the dependence of the fission spectrum on the

energy of the fission-inducing neut.ron (probably most important for

U238). As a good first approximation a composition-dependent fission

spectrum is presumably sufficient. This may be obtained by a calcu­

latiofi prior to the fiux elaculation if reliable values for the neutron

production in the various isotopes are available. otherwise an

iteration procedure has to be applied. The indicated modification of

the codes calculating the flux distribution seems to be necessary

because otherwise one will not be able to calculate very accurately

the nuclear characteristics of e.g. an assembly like SNEAK 3B2 with an

inner plutonium zone and an outer uranium driver zone in the core

region.

For small cores reflected by natural or depleted uranium, i.e. mainly

U238. an influence 01' the different fission spectra in core and

blanket may be important too. It seems worthwhile to study if an

effect on the reaction rate traverses, e .g. the fission traverse er
U238, can be observed by using the appropriate different fission

spectra for different material compositions. If a cell arrangement

for a fast zero power assembly contains platelets of both U235 and

Pu239 of about equal amount or of enriched fuel and natural (er

depleted) uranium then also the heterogeneity codes like ZERA r17 7- -
shbuld probably be able to take into account a composition-dependent

fission spectrum.

An isotope-dependent fission spectrum may probably be desirable for

the calcula.tion of a power rea.ctor which a.t the beginning may' have

U235 as main fissionable isotope and durine; the power production

produces Pu239 according to i ts breeding properties although i t may
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turn out that in the burrr-up calculations an approximate treat­

ment of the variation of the form of the fission spectrum during

the reactor lifetime may be sufficiently accurate.

The implications for the codes used in perturbation calcul.ations have

already been mentioned in section IIAc.
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v) Conclusions

Our studies confirm the fact that the difference in the form of the fission

spectrum for U235 and Pu239 respectively, as obtained in differential

spectrum measurements cannot be represented reasonably well by the v­

dependence as given e.g. in TERRELL'S formula and as e.g. assumed in the

Russian ABN-set.

For the calculation of fast critical assemblies we have found criticality

changes of up to 1% upon changing the form of the fission spectrum from

our "standard" form to the forms which are more appropriate for the

individual assemblies considered.

The reaction rate ratios which are important for the neutron balance are

rather insensitive to the form of the fission spectrum with the only

exception of the fission rate ratio R
f(U238)/Rf(U235) or Rf(U238)/Rf(Pu239).

This ratio is changed by several per cents if the form of the fission

spectrum is changed.

For some special assemblies it seems even important to take into account

the contribution of the U238 fission spectrum to the total fission

spectrum of the fuel mixture (either (U235+U238) or (Pu239+U238)).

Criticality changes slightly above 0.2% and changes of the fission rate

ratio Rf(U238)/Rf(U235) of about 1% have been found when the U238

contribution has been taken into account properly.

Generally the criticality changes which have been obtained when the form

of the fission spectrum lS changed within reasonable limits are of the

same order of magnitude as the criticality changes which result from

various usually applied corrections: e.g. transport-(SN)-correction,

heterogeneity correction etc. This fact shows that the form of the fission

spectrum is of the same importance as these corrections just mentioned

which need usually rather complicated and/or time-consuming computations.

Therefore the appropriate form of the fission spectrum should be taken

into account for accurate and reliable nuclear calculations.

At the present state of knowledge of the nuclear data it seems impossible

for us to draw definite conclusions from the analysis of fast critical

assemblies on the correctness of the fission spectra used for this analysis.

However, we have found that when using appropriately the ENDF/B-forms for

U235 and Pu239 instead of our "standard" fission spectrum the agreement



- 17 -

between theory and experiment for the criticality is improved. With our

"standard" form we have found in our analysis of aseries of fast

criticals uSlng the MOXTOT-set L-1 1 that U235-fuelled assemblies are

generally predicted supercritical whereas Pu239-fuelled assemblies are

predicted subcritical. These discrepancies are reduced by using the more

reasonable ENDF/B-forms of the fission spectra.

For fast power reactors the form of the fission spectrum is ln most cases

less important than for fast criticals. But the test of the nuclear data

and methods of calculations which should subsequently be used for the

calculation of power reactors can only be performed by comparing the

experimental results obtained in fast criticals with the corresponding

theoretical results. The reliability of the nuclear data used for the power

reactor design can therefore only be judged on thebasis of checking the

experimental results of a variety of different fast criticals. This fact

explains why the fission spectrum is more important for the calculation

of fast power reactors than one would assume from its direct influence

on the nuclear characteristics of fast power reactors.

The effect of nuclear data uncertainties on the design of large fast breeder

reactors has been studied by several authors (see e.g. L-18_1 L-19_/). One major

concern is for the design of the early-generation fast breeder power plants.

Here the uncertainties in the nuclear data and the resulting uncertainties

in the predicted reactor parameters as e.g. criticality or reactivity

coefficients will cause economic disadvantages. The costs of the power plant

will increase because of the increased flexibility of the core design which

is necessary in orderm counterbalance the effects of uncertainties in the

predicted reactor parameters. Probably at the same time the maximum total

power output can not oe attained because the optimum conditions for the

power production can not be reached. Futhermore an extrapolation from the

early demonstration power reactors to the large size power plants with a

power output of at least 1000 MWe will be affected by uncertainties in the

nuclear data (even if the results derived from critical assemblies are

taken into account). This leads us to the second concern: The uncertainties

in the nuclear data causes uncertainties in the long-term potential of fast

breeders as e. g. the doubling time or the Long-f.ei-m power generating cost s .

Usually a criticality uncertainty Äk of ± 1% caused by the combined effects

of all nuclear data uncertainties is considered to be tolerable at present.
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Table 4 shows that a criticality difference of about this magnitude is caused

just by replacing the Pu239 fission spectrum by the U235 fission spectrum

(ENDF/B-forms). If the uncertainty in the fission spectrum is only allowed

to cause a criticaly uncertainty smaller than ± 0.2%, which seems

reasonable for an accepted total criticality uncertainty of ± 1% caused by

a combination of all nuclear data uncertainties, this would mean that the

temperatures of the corresponding Maxwell-distributions of the fission

spectra have to be determined with an absolute uncertainty smaller than

± 0.02 MeV. This fact demonstrates more drastically than Table 4 or the

discussion in chapter 111 A) that the fission spectrum should be determined

with a rather high accuracy because it is only one out of a lang list of

important nuclear data.

It is probably worthwhile to mention that the form of the fission spectrum

lS also of some importance with respect to irradiation effects on fuel

elements and structural materials caused by high energy neutrons.

The studies presented in this paper have shown that the form of fission

neutron spectrum plays an important role for the neutron physics calculations

of fast critical assemblies and large fast power reactors.

At present, however, there exists one specific difficulty: most existing

codes for nuclear calculations assume that the fission spectrum lS the

same for all regions or comp0sitions of the reactor. Probably this assumption

is too crude and may give rise to difficulties in the interpretation of

material worth- or substitution-experiments as explained in more detail

in section IIAc). It may turn out that in special cases even in

heterogenity codes like ZERA L-17_7 it will be desirable to use different

fission spectra for the different fuel platelets.

In the analysis of fast critical assemblies and in the nuclear design

calculations of lar~e fast nower reactors a variety of important nuclear
- - - - - - ~ "'" - - -- - -.- - y-

data is involved. The fission spectrum is only one of several nuclear

data which are important in the high energy range and which are still

uncertain to some extent. Other uncertainties in the nuclear data field are

the inelastic scattering cross section and the fission cross section of

U238 for the calculation of criticality or critical mass and the capture

cross section of U238 for the determination of the breeding properties

of power reactors. In order to draw more definite conclusions with

respect to the reliability of these other data it is highly desirable to

know the form of the fission spectra of the different isotopes rather

accurately.
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Table 1. - Various forms of the spectrum of fission neutrons

i\)
o
I

E. 11-.-,
x· = J x(E)dE

1 E.
1

Group Energy range Standard n U235 Pu239 U235 Pu239 U238
fission
spectrum KEDAK KEDAK ENDF/B ENDF/B

1 6,5-10,5 MeV 0,018 0,016684 0,018076 0,018609 0,026561 0,02199

2 4,0- 6,5 MeV 0,095 0,08832 0,09056 0,08579 0,1021 0,09328

3 2 ,5- 1~,O MeV 0,188 0,1834 0,1840 0,1742 0,1862 0,1800

4 1,4- 2,5 MeV 0,269 0,2699 0,,2684 0.2625 0,2605 0.2619

5 0,8- 1.4 MeV 0,198 0,2023 0,2008 0,2045 0,1933 0,,1994

6 0,4- 0,8 MeV 0,137 0,1406 0,1397 0,1473 0,1352 0,1416

7 0.2- 0.4 MeV 0.059 0.06103 0,06078 0,06567 0,05921 0.06260

8 0,1- 0,2 MeV 0,023 0,,02388 0.02382 0,02610 0,02331 0,02477

9 46,5-100 keV 0,009 0,00939 0,009373 0,01035 0.009201 0.009799

10 21.5-46.5 keV 0.003 0.003069 0.003065 0.003397 0,003014 0,003213

11 10,0-21,5 keV 0.001 0,001427 0,001426 0,001584 0,001404 0,001448

- • I
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Table 2 Criticality differences 6k cauaed by using fission spectra

different from the IIstandard,1 fission spectrum,

(Results of fundamental mode diffusion calculations for homo­

geneous mixtures using the MOXTOT-set)

I SiIn

,I

•

Assembly Main keff(KEDAK) keff(ENDF/B)
fissionable

-keff(STANDARD) -keff (STANDARD )isotope

SUAR: U1B U235 -0.0033 -0.0054

SUAl( UH1B " -0.0013 -0.0011

ZPRIII ..10 " -0.0037 -0.0062

ZPRIII-25 " -0.0051 -0.0091

SNEAK-3Al " -0.0016 .0.0027

S1TEAK- 3A2 " -0.0013 -0.0021

ZPRIII-48 Pu239 -0,0015 +0.0030

ZEBRA-6A .~ -0.0011 +0.0024

SNEAK-5C " -0.0018 tO.0034I- - .ZPRIJ.I ..,5
____.-..I. "- l....._+_0_.0_06_4 _



Table 3 Criticality differences 6k e aused by changes in the nueIeaz data cf U238.. -

CI CI! CU! CIV CV CVI CVII CVIII-
Assembly °f·1• 05 0.. 1 o. 1 Pinel p. CII+ CIV+ CII+CIII+xne 1.ne lnel CIV+CVGlr.1-4 Gr.5-9 Gr. 2-4 Gr.5-9 CUI CV

MOXTOT MOXTOT MOXTOT MOXTOT
+ABN +ABN +ABN +ABN.............. ' ..

SUAK U1B +0.0064 +0.0038 -0.0055 +0.0019 -0.0065 -0.0016 -0.0048 -0.0059
SUAK UH1B +0.0049 -0.0023 -0.0032 -O.OO:;W ...0.0039 -0.0055 ..0.0060 -0.0112

ZPRIII-10 +0.0061 +0.0069 -0.0039 +0.0031 -0.0053 +0.0030 -0.0024 +0.0009

ZPRIII-25 +0.0073 +0.0146 +0.0019 +0.0071 +0.0004 +0.01:65 +0.0075 +0.0243

SNEAK-3A1 +0.001n +0.0015 -0.0010 +0.0005 -0.0013 +0.0006 -0.0007 -0.0001
SNEAK-3A2 +0.0036 +0.0009 -0.0011 +0.0002 ...0.0014 -0.0002 -0.0012 -0.0013
ZPRIII-48 +0.0037 +0.0027 -0.0001 +0.0016 +0.0002 +0.0026 +0.0018 +0.0043

ZEBRA-6A +0.0033 +0.0009 -0.0005 +0.0008 -0.0003 +0.0005 +0.0005 +0.0010

SNEAK-5C +0.0030 +0.00\35 +0.0004 +0.0017 +0.0005 +0.0039 +0.0022 +0.0060

ZPRIII-55 +0.0058 +0.0130 +0.0033 +0.0069 +0.0041 +0.0163 +0.0113 +0.0275

..... "

I

I\)
I\)
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Table 4 Differences in nuclear characteristics of large fast power

reactors caused by using fission spectra different from
11 ft • •the standard flsslon spectrum

« • • .
Changes in nuclear characteristics

Case Fission 6k 6M(Pu239) 6M/M 6BR
spectrum r% 7 /-kg 7 /-% 7- - - - - -

A U235 -0.060 +10.57 +1.10 -0.015

Pu239 +0.032 - 5.68 -0.59 +0.008
-

B U235 -0.057 +10.22 +0.98 -0.012

Pu239 +0.028 - 5.00 -0.48 +0.001

C U235 .0.067 +10.98 +1.14 .0.015

Pu239 +0.029 .. 4.72 .0.49 +0.007
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F'ig , 1: The fission spectrum. of U235

for thermal-neutron induced fission
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O. 5 E'X(E, Ei)

G = 1. 41 MeV ~ ENDF/B

Fig. 2: The fission spectrum of Pu239

for thermal-neutron induced fission
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Fig. 3:_ Comparison of different
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forms of the fission spectrum
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Fig. 4: Influence of FABRY's fission spectrum on the axial

reaction rate traverses in SNEAK ~A?
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