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Abstract

A widely used method for the representation of germanium
resistance thermometer characteristics consists in a least
square fit of the calibration points with high-degree
polynomials over the entire working range. Instead of this
expensive method a strict interpolation of the calibration
points is proposed, using simple formulas with two or four
parameters, e.g. spline polynomials. The accuracy of the
interpolated values were improved by an additive parabolic
correction.

The two parameter calculations can be made with the aid of
a desk calculator. The method is applicable to other inter-
polation problems, e.g. the representation of platinum
thermometer characteristics.



Zusammenfassung

Zur Darstellung der Kennlinién von Germanium-Widerstands-
thermometern werden ublicherweise Fitpolynome benutzt, die
an die Eichpunkte im gesamten Arbeitsbereich der Thermome-
ter angepaBt werden. Stattdessen wird vorgeschlagen, die
Eichpunkte in kleineren Bereichen mittels zwei- oder vier-
parametriger Interpolationsfunktionen, z.B. mittels Spline-
polynomen, zu interpolieren. Bei dem gingigen Abstand der
Eichpunkte ist die Genauigkeif der Interpolationsmethode
mit der der Ausgleichsmethode vergleichbar, insbesondere
nach Reduzierung der Modellfehler durch parabelfdrmige

Korrekturfunktionen.

Das beschriebene Verfahren ist auch fiir andere Interpolations-
aufgaben, z.B. zur Darstellung der Kennlinien von Platin-
Widerstandsthermometern, geeignet.
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1. Introduction

One of the most favorable instruments allowing to measure
temperatures in the range from 1 to 100 deg. Kelvin is the
germanium thermometer. This is due to its sensitivity as well
as its reproducibility of some millidegrees, even after
repeated cycling between working and room temperatures.
Furthermore, both thermal capacity and response time of ger-
manium sensors are small according to their small dimensions
(Cob3).

Unfortunately, the relation between the electrical resistance
of doped germanium and temperature cannot be expressed accurately
by an analytical formula. Therefore, the characteristics of
such thermometers have to be determined by calibration points
not too widely separated. Moreover, fitting or interpolation
must be performed with special care. In literature a variety
of approximation formulas is given which are based on up to

ten or fifteen parameters. The idea underlying all these
efforts is to cover a temperature range as wide as possible so
that the calibration points can be fitted by a single formula.
As an example we mention the proposal of Blakemore et al.(B170)

who recommended a polynomial
n

log R =.Z Aj ¥ (log T)j, n=6...9, (1)
Jj=0

which represents the calibration over the entire 1 - 100 K
range with an accuracy of about 0.3 %; by splitting the whole
working range into two fit intervals - the first having an upper
limit at about 20 K and the other a lower limit at about
15 K - the relative deviations %; are reduced by a factor of
ten.
In general, any fit function oscillates around the real
characteristic defined through point-by-point calibration
(Fig. 6); the sign of the deviations alternates as often as
indicated by the degree of the fit polynomial or even more
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frequently. The accuracy can neither be improved by doubling
the numerical precision nor by reducing the gaps between the
calibration points. When the order of the polynomial is in-
creased, the least sums of squared differences reach a mini-
mum and soon diverge, i.e., there is an optimum degree of the
fit polynomial. In order to overcome some of the inconveniencies
mentioned above, we propose to substitute the commonly used
approximation method, which may be justified in the presence
of marked statistical errors, by a simple but somewhat re-
fined interpolation method. The deviations can then be re-
duced below any limit provided that the distances between the

calibration points are reduced adequately.

2. Choice of Interpolation Functions

In order to interpolate an unknown value between two neighbou-
ring values of a given tabulated function, an interpolation
function must be defined which reproduces exactly the neigh-
bouring values. The number of parameters on which the inter-
polation formula is based must then be equal to the number of
base points assumed. We now postulate that the number of base
points on the left side should be the same as the number of
base points on the right side. Therefore, we shall look for
interpolation formulas having two or four parameters only.
Besides, we restrict ourselves to the relation T(R) and not

to the reciprocal one: R(T).

To check the interpolation method proposed we examinea a ger-
manium thermometer*) calibrated by the manufacturer between
4.25 and 100 K at 26 temperatures; see Table 1, cols. 1 and 2,
and Fig. 1. Part of the calculations were performed at the IBM
installation, Karlsruhe Nuclear Research Center, using the
fitting subroutines VA$1A (Sc69) and RATFIT (FiT72).

As outlined above, the base points - apart from rounding errors -
are reproduced exactly by every interpolation function. There-
fore, the interpolation deviations appear only when part of

the calibration points are used as control points. For com-

*
)CryoCal Inc., Riviera Beach, Florida, fabrication number 2790
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parison of various interpolation formulas every second calibra-
tion point only will be taken as a base point. By this method

the deviations would evidently be greater than with the use of
the full information. To evaluate alsoc the deviations for this
latter case, we will investigate first how much the deviations
increase by doubling once or twice the distances between the base
points. Then the deviations at reduced distances may be estimated

by extrapolation.

With the distances between the base points fixed, the deviations
depend on the special interpolation formula chosen. For our test

thermometer a linear function
T = A +# BXR (2)

and even a cubic polynomial
T = A + B¥R + C*¥R2 + D*R> (3)

(Fig.2a) were found to give relative high deviations AT.In
searching more suitable formulas only heuristical principles will
apply. For instance, the observation (Fig.1) that the relation
between log R and log T is nearly linear led us to the two-

parametric formula
T = A % RP (4)

(Fig. 2b). We attempted to improve the formula (4) by intro-
ducing two additional parameters which either take into account

the curvature of the log T (log R)-relation, Fig. 1, or allow

a translation of both the log R-axis and the log T-axis.but frequently it
happened that the iterative search for the four free parameters
failed to converge. An essential improvement was achieved by

using a polynomial with at least one negative exponent

T = AxR > + 3 + C R + D=xR® (5)

(Fig. 2c¢). Such a formula was inspired by the hyperbolic-like
dependence of T on R (Fig. 1). '

Besides this method of stepwise interpolation, using formulas
(1) to (5), we also tested the capacity of a different technique
known as'spline interpolation (Bu68). Once more, the given

base points are represented by third order polynomials. An



additional condition, however, is that at each base point the
two adjacent polynomials should have the same first and second
derivatives.For the calculation of the coefficients (Sp68),

the entire set of the base points is required and not only the
immediate neighbouring ones, as in the case of the interpolation
formulas cited so far.The result is shown in Figs. (2d) and (2e).
Compared with Figs. (2a) to (2c¢), the deviations are smaller
here. This is a consequence of the continuousdifferentiability
of the spline function. Indeed, below 80 K, the deviations do
not reflect an inaccuracy of the spline interpolation but of

the experimental calibration, as it will be shown in the next

section.

In spite of the almost satisfactory results achieved by formula
(5) and by spline interpolation, we shall now attempt how to
remove the remaining deviations at all. In order to show the
principle of our procedure which holds for every interpolation
function, the following discussions are limited to the two-
parametric formula (4) which can be treated easily with the aid
of a desk calculator.

As stated above, the amplitudes of the deviations depend
strongly on the distances of the base points. As shown in Fig.3,
they are always reduced by a factor of about four when the
distances of the base points are divided by two. Extrapolating
these findings, we expect the relative deviations due to formula
(4) to be lowerthan 5 - 10"
the test thermometer, provided the complete set of calibration

over the whole working range of

points is used.

3. Smoothing of Statistical Fluctuations

The differences between the interpolated points and the control
points, as shown in Figs. 2 and 3, are affected by experimental
and/or rounding errors occuring in the determination of the cali-
bration points. The experimental errors may be of a systematic
nature - and under this condition they cannot be recognized in the
diagrams referred to above - or of a statistical nature that

means independent of point to point. The interpolation method
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would proof itself to be good if it would be possible, as in
fitting procedures, to handle such statistical errors more
quantitatively and eliminate them.

For test purposes we started to generate a second series of

deviation amplitudes AT by exchanging the meaning of base

points and control poin?gf For two different temperature ranges
of equidistant divisioning both series are plotted in Fig. 4a
that shows the statistical fluctuations more clearly than

Fig. 2. After fitting the data points ATmax(T) of Fig.l4a by

a third degree polynomial the original (experimental) T-values
are corrected by adding half the differences between the de-
viation amplitudes before and after fitting. Half the diffe-
rences and not the entire ones are taken, since any correction
of a single calibration temperature would affect not only the
deviation amplitude at this point but also, with reversed sign
and reduced amount, the deviation amplitudes at the two neigh-
bouring points. If neccessary, this procedure may be repeated.
In Table 1, col. 3,the first order corrected temperatures are
noted. Fig. Ub shows the corresponding deviations. As it can
be shown, the interpolation parameters A and B of formula (4)
involve similar fluctuations to that of the deviation ampli-
tudes. Their plots (not presented) may be used to establish

a single curve to fit the deviation amplitudes over the entire
working range of the thermometer, regardless of the varying
distribution of the calibration points.

4, Reduction of Formula-Dependent Deviations

After smoothing of statistical fluctuations the deviations
(Fig. Ub) consist of systematic errors and of formula-dependent

deviations. According to Fip, 3. this latter component behaves

like parabolas suspended between successive base points. When
all calibration points are supposedto be base points, the
formula~dependent deviations are minimized. However, their
values are unknown and therefore not available for further
correction. For this reason we have resumed the idea to admit
only every second calibration point as a base point. The devia-

tions at the intermediate control points were used to determine
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the parameters of parabolas which were subtracted from the
interpolation curves for correction. To begin with, Fig. 5
shows the remaining deviations a) for every fourth and b)

for every eighth calibration point taken as a base point. This
method is applicable, even if the control point which defines
a parabola lies eccentrically between the neighbouring base
points. In general, the amplitudes of the reraining deviations
are five to ten times smaller than the deviation amplitudes
which would result from dividing into halves the distances
between the base points (Fig. 3). Being comparable to those
obtained with formula (5), Fig. 2c¢, they fluctuate unsystema-
tically due to remaining statistical errors.

For comparison with one of the commonly used approximation
methods we have fitted the logarithms of the calibration
values of our test thermometer (Table 1) by a fifth degree
polynomial in the two temperature ranges from 4.5 to 20 and
from 15 to 100 K (Fig. 6). The deviations in Figs. 5a and 6
are comparable. However, it should be realized that the re-
maining interpolation deviations would be reduced strongly

by reducing the distances of the base points. By use of every
second calibration point instead of every fourth they would
probably become smaller by a factor of three or even more than
those indicated in Fig. 5a. Evidently, a further improvement
can be achieved by starting with a more suitable interpolation
function than (4). This finally means that the accuracy ob-
tained by this method would be better than the experimental

accuracy given.
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Table 1

Calibration Points for the Germanium Thermometer CryoCal No.2790

B {K} & YOhmsl Tcorrected [K]

4.25 *0.005 859.3 T 0.01 %

4.5 764.9

4.75 684.4

5.0 615.1

5.5 0.01 502.6

6.0 415.9

6.5 348.0

7.0 294 .1

7.5 250.9

8.0 216.0

8.5 187.6

9.0 164.4

9.5 145.2

10.0 129.3

11.0 104.76

12.0 87.16

13.0 T4.17

14.0 0.01 64.32
15.0 56.68

16.0 50.60 15.999
17.0 45 .66

18.0 41.57 18.001
19.0 38.13
20.0 35.19 20.001
22.0 0.04 30.43 21.998
24.0 26.72 24.003
26.0 23.77 25.996
28.0 21.34 28.001
30.0 19.32 30.004
32,0 17.63 31.996
34.0 16.18 33,999
36.0 14.93 26.003%
38.0 1%.85 37.999
40.0 12.90
45.0 0.1 11.003 44.998
50.0 9.588 50.002
55,0 8.506 55.002
60.0 7.661 59.999
65.0 6.988 65.001
70.0 6.445 69.999
75.0 6.001 74.994
80.0 5.633 80.006
85.0 5.328 84.999
90.0 5.072 90.002
95.0 4.856 94.998

100.0 4.672
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