
Mai 1972

Zyklotron-Laborator ium

Interpolation of Germanium Thermometer
Characteristics

J. Buschmann

W.Decker
Max-Planck-Institut für Metallforschung, Stuttgart

KFK 1601



Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FüR KE RN FORSCHUNG M. B. H.

KARLSRUHE



KERNFORSCHUNGSZENTRUM KARLSRUHE

Mai 1972 K F K 1601

Interpolation of Germanium Thermometer

Characteristics

by

J. Buschmann

Zyklotron-Laboratorium, Karlsruhe

and

w. Decker

Max-Planck-Institut für Metallforschung, Stuttgart

Gesellschaft

Karlsruhe





Abstract

A widely used method for the representation or germanium

resistance thermometer characteristics consists in aleast
square fit of the calibration points with high-degree
polynomials over the entire working range. Instead of this
expensive method a strict interpolation of the calibration
points is proposed, using simple formulas with two or four
parameters, e.g. spline polynomials. The accuracy of the
interpolated values were improved by an additive parabolic
correction.

The two parameter calculations can be made with the aid of

a desk calculator. The method is applicable to other inter­
polation problems, e.g. the representation of platinum
thermometer characteristics.



Zusammenfassung

Zur Darstellung der Kennlinien von Germanium-Widerstands­

thermometern werden üblicherweise Fitpolynome benutzt, die

an die Eichpunkte im gesamten Arbeitsbereich der Thermome­

ter angepaßt werden. Stattdessen wird vorgeschlagen, die

Eichpunkte in kleineren Bereichen mittels zwei- oder vier­

parametriger Interpolationsfunktionen, z.B. mittels Spline­

polynomen, zu interpolieren. Bei dem gängigen Abstand der

Eichpunkte ist die Genauigkeit der Interpolationsmethode

mit der der Ausgleichsmethode vergleichbar, insbesondere
nach Reduzierung der Modellfehler durch parabelf6rmige

Korrekturfunktionen.

Das beschriebene Verfahren ist auch für andere Interpolations­

aufgaben, z.B. zur Darstellung der Kennlinien von Platin­

Widerstandsthermometern, geeignet.
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1. Introduction

One of the most favorable instruments allowing to measure

temperatures in the range from 1 to 100 deg. Kelvin is the
germanium thermometer. This is due to its sensitivity as well

as its reproducibility of some millidegrees, even after

repeated cycling between working and room temperatures.

Furthermore, both thermal capacity and response time of ger­

manium sensors are small according to their small dimensions

(C063).

Unfortunately, the relation between the electrical resistance
of doped germanium and temperature cannot be expressed accurately
by an analytical formula. Therefore, the characteristics of

such thermometers have to be determined by calibration points

not too widely separated. Moreover, fitting or interpolation

must be performed with special care. In literature a variety

of approximation formulas is ,given which are based on up to

ten or fifteen parameters. The idea underlying all these
efforts is to cover a temperature range as wide as possible so

that the calibration points can be fitted by a single formula.

As an example we mention the proposal of Blakemore et al.(B170)

who recornrnended a polynomial
n

log R = l A. ~ (log T)j, n = 6 ••. 9, (1)
j=O J

which represents the calibration over the entire 1 - 100 K

range with an accuracy of about 0.3 %; by splitting the whole

working range into two fit intervals - the first having an upper

limit at about 20 K and the other a lower limit at about

15 K - the relative deviations ~T are reduced by a factor of

ten.

In general, any fit function oscillates around the real

characteristic defined through point-by-point calibration

(Fig. 6); the sign of the deviations alternates as often as

indicated by the degree of the fit polynomial or even more
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frequently. The accuracy can neither be improved by doubling

the numerical precision nor by reducing the gaps between the

calibration points. When the order of the polynomial is in­
creased, the least sums of squared differences reach a mini-
mum and soon diverge, i.e., there is an optimum degree of the

fit polynomial. In order to overcome some of the inconveniencies

mentioned above, we propose to substitute the commonly used

approximation method, which may be justified in the presence

of marked statistical errors, by a simple but somewhat re-

fined interpolation methode The deviations can then be re-

duced below any limit provided that the distances between the

calibration points are reduced adequately.

2. Choice of Interpolation Functions

In order to interpolate an unknown value between two neighbou­

ring values of a given tabulated function, an interpolation

function must be defined which reproduces exactly the neigh­
bouring values. The number of parameters on which the inter­

polation formula is based must then be equal to the number of

base points assumed. We now postulate that the number of base

points on the left side should be the same as the number of

base points on the right side. Therefore, we shall look for

interpolation formulas having two or four parameters only.

Besides, we restriet ourselves to the relation T(R) and not
to the reciprocal one: R(T).

Ta check the interpolation method proposed we examined a ger­
manium thermometer~) calibrated by the manufacturer between

4.25 and 100 K at 26 temperatures; see Table 1, cols. 1 and 2,

and Fig. 1. Part of the calculations were performed at the IBM
installation, Karlsruhe Nuclear Research Center, using the

fitting subroutines VA~lA (Sc69) and RATFIT (Fi72).

As outlined above, the base points - apart from rounding errors _

are reproduced exactly by every interpolation function. There­

fore, the interpolation deviations appear only when part of

the calibration points are used as control points. For corn-

*)crYOCal Inc., Riviera Beach, Florida, fabrication number 2790



- 3 -

parison of various interpolation formulas every second calibra­

tion point only will be taken as a base point. By this method

the deviations would evidently be greater than with the use of

theful l information. To evaluate also the deviations for this

latter case, we will investigate first how much the deviations

increase by doubling once or twice the distances between the base

points. Then the deviations at reduced distances may be estimated
by extrapolation.

With the distances between the base points fixed, the deviations

depend on the special interpolation formula chosen. For our test
thermometer a linear function

T = A + B * R (2)

and even a cubic polynomial

T = A + B ~ R + C * R2 + D lt R3 (3)

(Fig.2a)were found to give relative high deviations äT.ln

searching more suitable formulas on1y heuristical principles will

apply. For instance, the observation (Fig.1) that the relation

between log Rand log T is nearly linear led us to the two­
parametrie formula

(Fig. 2b). We attempted to improve the formula (4) by intro­

ducing two additional parameters which either take into account

the curvature of the log T (log R)-relation, Fig. 1, or allow

a translat ion of both the log Rr-axds and the log T-axis .bu t freepently it

happened that the iterative search for the four free parameters

failed to converge. An essential improvement was achieved by

using a polynomial with at least one negative exponent
_1 2

T=A*H"'+ß+CA<R+D~R (5)

(Fig. 2c). Such a formula was inspired by the hyperbolic-like

dependence of T on R (Fig. 1).

Besides this method of stepwise interpolation, using formulas

(1) to (5), we alsotested the capacity of a different technique

known as spline interpolation (Bu68). Once more, the given

base points are represented by third order polynomials. An
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additional condition, however, is that at each base point the
two adjacent polynomials should have the same first and second

derivatives.For the calculation of the coefficients (Sp68),

the entire set of the base points is required and not only the

immediate neighbouring ones, as in the case of the interpolation
formulas cited so far.The result is shown in Figs. (2d) and (2e).

Compared with Figs. (2a) to (2c), the deviations are smaller

here. This is a consequence of the continuousdifferentiability

of the spline function. Indeed, below 80 K, the deviations do

not reflect an inaccuracy of the spline interpolation but of

the experimental calibration, as it will be shown in the next

section.

In spite of the almost satisfactory results achieved by formula

(5) and by spline interpolation, we shall now attempt how to

remove the remaining deviations at all. In order to show the

principle of our procedure which holds for every interpolation

function, the following discussions are limited to the two­

parametrie formula (4) which can be treated easily with the aid

of a desk calculator.

As stated above, the amplitudes of the deviations depend
strongly on the distances of the base points. As shown in Fig.3,
they are always reduced by a factor of about fOur when the

distances of the base points are divided by two. Extrapolating

these findings, we expect the relative deviations due to formula

(4) to be lowerthan 5 . 10-4 over the whole working range of

the test thermometer, provided the complete set of calibration

points is used.

3. Smoothing of Statistical Fluctuations

The differences between the interpolated points and the control

points, as shown in Figs. 2 and 3, are affected by experimental

and/or rounding errors occuring in the determination of the cali­

bration points. The experimental errors may be of a systematic

nature - and under this condition they cannot be recognized in the
diagrams referred to above - or of a statistical nature that

means independent of point to point. The interpolation method



- 5 -

would proof itself to be good if it would be possible, as in

fitting procedures, to handle such statistical errors more

quantitatively and eliminate them.

For test purposes we started to generate a second series of

deviation amplitudes ßTma x by exchanging the meaning of base

points and control points. For two different temperature ranees

of equidistant divisioning both series are plotted in Fig. 4a

that shows the statistical fluctuations more clearly than

Fig. 2. After fitting the data points 6T (T) of Fig.4a bymax
a third degree polynomial the original (experimental) T-values

are corrected by adding half the differences between the de­

viation amplitudes before and after fitting. Half the diffe­

rences and not the entire ones are taken, since any correction

of a single calibration temperature would affect not only the

deviation amplitude at this point but also, with reversed sign

and reduced amount, the deviation amplitudes at the two neigh­

bouring points. If neccessary, this procedure may be repeated.

In Table 1, co1. 3, the first order corrected temperatures are

noted. Fig. 4b shows thecorresponding deviations. As it can

beshown, the interpolation parameters .A and B of formula (4)

involve similar fluctuations to that of the deviation ampli­

tudes. Their plots (not.presented) may be used to establish

asingle curve to fit the deviation amplitudes over theentire

working range of the thermometer, regardless of the varying

distribution ofthe calibration points.

4. Reduction of Formula-Dependent Deviations

After smoothing of statistical fluctuations the deviations

(Fig. 4b) consist of systematic errors and of formula-dependent

deviations. According to Fig. 3, this latter component behaves

like parabolas suspended between successive base points. Whpn

all calibration points are supposedto be base points, the

formula-dependent deviations are minimized. However, their

values are unknown and therefore not available for further

correction. For this reason we have resumed the idea to admit

on1y every second calibration point as a base point. The devia­

tions at the intermediate control points were used to determine
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the parameters of parabolas which were subtracted from the

interpolation curves for correction. To begin with, Fig. 5

shows the remaining deviations a) for every fourth and b)

for every eighth calibration point taken as a base point. This

method is applicable, even if the control point which defines

a parabola lies eccentrically between the neighbouring base

points. In general, the amplitudes of the rerraining deviations

are five to ten times smaller than the deviation amplitudes

which would result from dividing into halves the distances

between the base points (Fig. 3). Being comparable to those
obtained with formula (5), Fig. 2c, they fluctuate unsystema­

tically due to remaining statistical errors.

For comparison with one of the commonly used approximation

methods we have fitted the logarithms of the calibration

values of our test thermometer (Table 1) by a fifth degr~e

polynamial in the twa temperature ranges fram 4.5 to 20 and

from 15 to 100 K (Fig. 6). The deviations in Figs. 5a and 6
are comparable. However, it should be realized that the re­

maining interpolation deviations would be reduced strongly

by reducing the distances of the base points. By use of every
second calibration point instead of every fourth they would

probably become smaller by a factor of three or even more than

those indicated in Fig. 5a. Evidently, a further improvement

can be achieved by starting with a more suitable interpolation

function than (4). This finally means that the accuracy ob­

tained by this method would be better than the experimental

accuracy given.
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Table 1

Calibration Points for the Germanium Thermometer GryoCal No.2790

T (K) R LOhms1

4.25 + 0.005 859.3 + 0.01 %-
4.5 764.9
4.75 684.4
5.0 615.1
5.5 0.01 502.6
6.0 415.9
6.5 348.0
7.0 294.1
7.5 250.9
8.0 216.0
8.5 187.6
9.0 164.4
9·5 145·2

10.0 129.3
11.0 104.76
12.0 87.16
13.0 74.17
14.0 0.01 64.32
15.0 56.68
16.0 50.60
17.0 45.66
18.0 41.57
19.0 38.13
20.0 35.19
22.0 0.04 30.43
24.0 26.72
26.0 23.77
28.0 21.34
30.0 19.32
32.0 17.63
34.0 16.18
36.0 14·93
38.0 13.85
40.0 12.90
45.0 0.1 11 .003
50.0 9·588
55.0 8.506
60.0 7.661
65.0 6.988
70.0 6.445
75.0 6.001
80.0 5.633
85.0 5.328
90.0 5.072
95.0 4.856

100.0 4.672

Tcorrected [K1

15,·999

18.001

20.001
21·998
24.003
25.996
28.001
30.004
31·996
33.999
36.003
37.999

44·998
50.002
55·002
59·999
65.001
69 .. 999
74·994
80.006
84·999
90.002
94.998
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