

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Juli 1972

KFK 1642

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Untersuchungen der Turbulenz- und Schubspannungsverteilung an einem Kreisrohr mit einem Hitzdraht-Anemometer

K. Rehme

GESELLSCHAFT FUR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

Juli 1972

KFK 1642

Institut für Neutronenphysik und Reaktortechnik

Projekt Schneller Brüter

Untersuchungen der Turbulenz- und Schubspannungsverteilung an einem Kreisrohr mit einem Hitzdraht-Anemometer

von

K. Rehme

Gesellschaft für Kernforschung mbH., Karlsruhe

and a second A second secon

.

and the second second

Zusammenfassung

Um ein DISA-Hitzdraht-Anemometer für experimentelle Untersuchungen der Schubspannungs- und Turbulenzverteilungen bei turbulenten Strömungen zu verwenden, wurde ein Eichversuch mit einem Kreisrohr durchgeführt. Für Kreisrohre kann die Schubspannungsverteilung theoretisch ermittelt werden, außerdem sind eine Reihe von Arbeiten bekannt, in denen über Meßergebnisse von Turbulenzgrößen berichtet wird. Zur Auswertung wird eine von B. KJELLSTRÖM entwickelte Methode $\langle \vec{17} \rangle$ verwendet. Die Untersuchungen wurden für Reynoldszahlen zwischen $2 \cdot 10^4$ und $2 \cdot 10^5$ für eine Rohrlänge von 75 Rohrdurchmesser durchgeführt. Die experimentellen Ergebnisse der Schubspannungsverteilung sind in ausgezeichneter Übereinstimmung mit den theoretischen Werten; die gemessenen Turbulenzgrößen stimmen sehr gut mit den in der Literatur verfügbaren Werten überein.

Abstract

To use a DISA hot-wire anemometer for the experimental investigation of shear stress and turbulence of turbulent flow a test was performed in a circular channel. For circular tubes the shear stress distribution can be obtained theoretically and, besides, a number of papers is known in the literature communicating the measurements of turbulence intensities. For the evaluation of the data a method developed by B. KJELLSTRÖM $/\overline{17}$ is adopted. The measurements were conducted for Reynolds numbers ranging between $2 \cdot 10^4$ and $2 \cdot 10^5$ at a position of 75 tube diameters. The experimental results of the shear stress distribution are in excellent agreement with the theoretical values; the experimental turbulence intensities are in very good agreement with the data published in the literature.

<u>l. Einleitung</u>

In den letzten Jahren hat es sich gezeigt, daß die Gesetzmäßigkeiten für turbulente Strömungen, die an symmetrischen Strömungen (Kreisrohren und parallelen Platten) gewonnen wurden, nicht ohne weiteres auf nichtkreisförmige Kanäle übertragen werden können. Insbesondere zeigte eine Analyse experimenteller Ergebnisse mit asymmetrischen Strömungen, daß eine Koinzidenz von Geschwindigkeitsmaximum und Nullschubspannung im Gegensatz zu symmetrischen Strömungen nicht vorliegt $\sqrt{2}$. Da die vorliegenden experimentellen Untersuchungen nicht ausreichen, um die Besonderheiten asymmetrischer Strömungen zu beschreiben und da es darüber hinaus erforderlich zu sein scheint, die in den hoch entwickelten Rechenprogrammen zur Berechnung der Strömungs- und Temperaturverteilung in nichtkreisförmigen Kanälen enthaltenen Annahmen über die Transporteigenschaften /3,4,5,67 der turbulenten Strömung experimentell zu überprüfen, wurde entschieden, diese Untersuchungen mit einem Hitzdraht-Anemometer durchzuführen. Damit die Genauigkeit der mit dem Hitzdraht-Anemometer ermittelten Ergebnisse abgeschätzt werden kann, wurden Eichversuche an einem Kreisrohr durchgeführt. Das Kreisrohr eignet sich für einen Eichversuch besonders gut, da es eine Reihe von Veröffentlichungen gibt, in denen über experimentelle Ergebnisse an Kreisrohren berichtet wird. Außerdem läßt sich bei Kreisrohren die Schubspannungsverteilung analytisch ermitteln.

2. Experimentelle Anordnung

2.1 Versuchsanlage

Die Versuche wurden an einem offenen Luftkreislauf (Abb.1) durchgeführt. Ein GHH-Schraubenverdichter liefert 1000 Nm³/h Luft mit einem Druck von 0.4 MPa. Über einen Luftkühler, der eine Temperaturregelung der Luft gestattet und einen Wasserabscheider gelangt die Luft in eine Blendenmeßstrecke. Von dort tritt die Luft über ein Filter, in dem Partikel größer als 1 Mikron ausgeschieden werden und einen Schalldämpfer in die Teststrecke ein. Am Eintritt zu dieser Teststrecke liegt ein Strömungsgleichrichter, der im wesentlichen aus einer Lochplatte und einem Drallzerstörer in Form paralleler Röhrchen besteht.

Die eigentliche Teststrecke besteht aus einem Kreisrohrkanal aus gezogenem Messing mit einem Durchmesser von d = 99.97 mm und einer Länge von 7500 mm. Die gesamte Länge ist aus drei Schüssen von je 2500 mm zusammengesetzt. Unmittelbar am Eintritt ist ein 80 mm langes Rohrstück mit Rechteckrippen künstlich aufgerauht, um die Ausbildung des Geschwindigkeitsprofils zu beschleunigen. Die Meßebene liegt am Ende des Rohres, wo die Luft in die Umgebung offen austritt. Abb.2 zeigt ein Bild der Gesamtanlage, Abb.4 zeigt den Rohraustritt.

2.2 Meßanordnung

2.2.1 Durchsatzmessung

Der Durchsatz wurde mit einer Normblende $\langle \overline{27} \rangle$ mit einem Rohrdurchmesser von D = 83 mm und einer ungestörten Einlauflänge von 60 Durchmessern bestimmt. Die zu messenden Absolut- und Differenzdrucke wurden je nach Größe mit Rohrfedermanometern Kl 0.1 (Wallace u. Tiernan), einschenkligen Quecksilbermanometern (Manoskop) oder mit einem Betz-Manometer ermittelt (Abb.3). Zur Berücksichtigung der Luftfeuchtigkeit wurden die relative Luftfeuchtigkeit und die Temperatur im Ausgangszustand gemessen. Die Lufttemperatur an der Meßblende wurde durch ein Quecksilberfederthermometer bestimmt.

- 2 -

2.2.2 Messung der Geschwindigkeits- und Turbulenzverteilungen

2.2.2.1 Einstellvorrichtung

Zum Einstellen der Meßsonden (Pitotrohr bzw. Hitzdrahtgeber) wird ein Kreuzsupport benutzt, durch den die Meßsonden in zwei zueinander senkrechten Richtungen senkrecht zur Strömungsrichtung verfahren werden können. Auf dem Kreuzsupport ist ein Höhensupport montiert, der das Verfahren der Sonde in Strömungsrichtung gestattet (Abb.4). Der Kreuzsupport ist auf 0.01 mm einstellbar. Die Position der Meßsonden relativ zum Kreisrohr wird mit Hilfe eines Meßmikroskops (Fa. Zeiss) mit einer Genauigkeit von \pm 0.005 mm festgelegt. Gleichzeitig wird mit diesem Meßmikroskop der Winkel gemessen, den der Hitzdraht mit der Strömungsrichtung bildet.

2.2.2.2 Pitotrohr

Der zeitliche Mittelwert der Strömungsgeschwindigkeit wird mit einem Pitotrohr gemessen. Dazu werden Injektionsnadeln aus Edelstahl von $d_a = 0.5$ mm Außendurchmesser und $d_i = 0.3$ mm verwendet. Die Pitotrohre sind am Meßquerschnitt sehr sorgfältig plangeschliffen und entgratet worden. Der statische Druck im Meßquerschnitt wird über eine Wandanbohrung von d = 0.6 mm Durchmesser bestimmt. Die beiden Drucke werden über ein Schrägrohrmanometer (Fa. Lambrecht, Göttingen) (Abb.3) gegeneinander geschaltet. Zur Bestimmung der Dichte der Luft im Meßquerschnitt werden der statische Druck, ebenfalls über ein Schrägrohrmanometer, und die Lufttemperatur mit einem geeichten Quecksilberthermometer gemessen. Die gemessene Verteilung des zeitlichen Mittelwerts der Strömungsgeschwindigkeit wird zur Eichung der Hitzdrahtgeber benutzt.

2.2.2.3 Hitzdraht-Anemometer

Als Hitzdraht-Anemometer wird ein Konstant-Temperatur-Anemometer der Fa. DISA verwendet (Abb.3). Das Gebersignal wird dem Anemometer (55DO1) zugeführt, von dort über ein Hilfsgerät (55D25) zur Messung der Ausgangsspannung an ein 4-Digit Digitalvoltmeter (Phillips) bzw. zur Messung des Effektivwertes des Wechselspannungsanteils über ein Effektivwertvoltmeter (55D35) ebenfalls an das Digitalvoltmeter (Abb.5).

Zur optimalen Einstellung des Verstärkerkreises wird ein Oszillograph – RM15 – (Rohde u. Schwarz) benutzt. Die Bedienung wird nach der Gebrauchsanweisung der Fa. DISA vorgenommen $\sqrt{8}$.

Als Geber werden Miniaturgeber (DISA) verwendet, gerade Geber 55F31 und schräge Geber zur Messung unter 45[°] zur Strömungsrichtung 55F32, die in einem Geberhalter 55A21 eingebaut sind.

3. Auswertungsverfahren

Die Ergebnisse wurden mit einem Rechenprogramm ermittelt. Die Grundgleichungen sollen hier kurz aufgeführt werden.

3.1 Geschwindigkeitsprofil

Der zeitliche Mittelwert der Geschwindigkeit u ergibt sich aus den Pitotrohrmessungen zu

$$\bar{u} = \sqrt{\frac{2\Delta p}{\rho_{f}}}$$
(1)

mit Δp als dem Differenzdruck und ρ_f als der Dichte der feuchten Luft. Diese Dichte wird nach $\sqrt{97}$ ermittelt zu

$$\rho_{f} = \rho_{tr} + \varphi \cdot \rho_{WD}$$
(2)

mit der Dichte ρ_{tr} der trockenen Luft, die mit einem Rechenprogramm nach /10/ aus dem Druck der trockenen Luft (p- φ p_{WD}) und der Lufttemperatur T_L bestimmt wird, der relativen Feuchte φ und der Dichte des Wasserdampfes ρ_{WD} , die sich ergibt aus

$$\rho_{WD} = \frac{P_{WD}}{R_{WD} T_L}$$
(3)

mit R_{WD} als der Gaskonstanten für Wasserdampf.

Alle Geschwindigkeitsmessungen sind korrigiert worden nach Mac Millan /117 wegen des Zähigkeitseinflusses auf das Pitotrohr an der Wand. Außerdem wurden die Geschwindigkeitsmessungen korrigiert wegen des Einflusses der Turbulenzintensitäten auf die Druckanzeige im Pitotrohr:

$$\frac{\overline{U}}{\overline{U}_{\text{pitot}}} = \sqrt{1 - \frac{\overline{u^{*2} + \overline{v^{*2} + w^{*2}}}}{\overline{U}_{\text{pitot}}^2}}$$
(4)

nach einer Angabe von EIFLER $/\overline{12}/$, die sich auf die Turbulenzintensitäten nach Messungen von LAUFER $/\overline{13}/$ stützt.

3.2 Turbulenzmessungen

Zur Berechnung der Turbulenzintensitäten und der Schubspannung in der Strömung wurde die von KJELLSTRÖM $\langle \overline{1}, 14 \overline{4} \rangle$ entwickelte Auswertmethode verwendet, die von DURST u.a. $\langle \overline{157} \rangle$ als sehr genaue Ergebnisse liefernde Methode bestätigt wurde.

Aus dem Gesetz für die Wärmeabfuhr von einem Draht von Collis und Williams $\overline{16}$ erhält man nach $\overline{17}$

$$\beta^{2} \overline{v'^{2}} = \frac{c^{2}}{\overline{u}^{2}} \left[\overline{u'^{2}} + \left(\frac{1 - k^{2}}{\tan \psi + k^{2} \cot \psi} \right)^{2} \overline{r'^{2}} + \frac{1 - k^{2}}{\tan \psi + k^{2} \cot \psi} \right]^{2}$$
(5)
$$2 \frac{1 - k^{2}}{\tan \psi + k^{2} \cot \psi} \overline{u'r'} \right]$$

wobei V' die Schwankungsgröße der angelegten Spannung \overline{V} , u' und r' die Schwankungsgeschwindigkeiten in axialer bzw. radialer Richtung, Ψ der Winkel, unter dem der Draht gegen die Strömung angestellt ist und c der Exponent des Gesetzes von Collis und k ein Koeffizient für die Richtungsempfindlichkeit ist. Mit der angelegten Spannung \overline{V}_{O} bei Geschwindigkeit gleich null ist

$$\beta = \frac{2\overline{V}}{\overline{V}^2 - \overline{V}_0^2}$$
(6)

Die Messung mit einer geraden Sonde (Ψ = 90⁰) ergibt die Turbulenzintensität in axialer Richtung zu

$$\overline{u'}^{2} = \frac{\overline{u}^{2}}{c^{2}} \left(\frac{2\overline{v}}{\overline{v}^{2} - \overline{v}_{0}^{2}}\right)^{2} \overline{v'}^{2}$$
(7)

Wird mit einer schrägen Sonde mit je einem Anstellwinkel Ψ_a und Ψ_b gemessen, so kann die radiale Turbulenzintensität und die Schubspannung ermittelt werden aus:

$$2 \overline{u'r'} + \frac{1 - k^2}{\tan \Psi_a + k^2 \cot \Psi_a} \overline{r'^2} =$$

$$\frac{\tan \Psi_a + k^2 \cot \Psi_a}{1 - k^2} \left[\frac{\overline{u}^2}{c^2} \beta_a^2 \overline{v_a'^2} - \overline{u'}^2 \right]$$

$$2 \overline{u'r'} + \frac{1 - k^2}{\tan \Psi_b + k^2 \cot \Psi_b} \overline{r'^2} =$$

$$\frac{\tan \Psi_b + k^2 \cot \Psi_b}{1 - k^2} \left[\frac{\overline{u}^2}{c^2} \beta_b^2 \overline{v_b'^2} - \overline{u'}^2 \right]$$
(9)

In der Regel macht man die Messungen mit der gleichen Sonde, wobei sie um 180° gedreht wird. Ist im Idealfall $\Psi_{\rm B} = 180^{\circ} \Psi_{\rm a}$, so ergibt sich aus (8) und (9)

$$\overline{r'^{2}} = \left(\frac{\tan \Psi + k^{2} \cot \Psi}{1 - k^{2}}\right)^{2} \left(\frac{\overline{u}^{2}}{2c^{2}} \left(\beta_{(+)}^{2} \overline{v_{(+)}^{*2}} + \beta_{(-)}^{2} \overline{v_{(-)}^{*2}}\right) - \overline{u^{*2}}_{-}^{-} \overline{7} (10)$$

und

$$-\rho \overline{u'r'} = \frac{\rho \overline{u}^2}{4c^2} \frac{\tan \Psi + k^2 \cot \Psi}{1 - k^2} \sqrt{\beta_{(+)}^2} \sqrt{v_{(+)}^2} - \beta_{(+)}^2 \sqrt{v_{(+)}^2} \sqrt{1}$$
(11)

wobei (+) und (-) jeweils zu den Anströmwinkeln ¥ bzw. 180⁰-¥ gehören.

Der Exponent des Gesetzes von Collis c wurde über eine Eichkurve der jeweiligen Sonde bestimmt. Dazu wurden jeweils die Geschwindigkeitsverteilungen mit dem Pitotrohr benutzt. Man erhält einen Wert c_e für eine bestimmte mittlere Geschwindigkeit \bar{u}_e . Die Abhängigkeit von der Anströmgeschwindigkeit wird nach Kjellström <u>/1</u> berücksichtigt durch

$$c = c_{\rho} - 0.0007782 \rho_{f} (\bar{u} - \bar{u}_{\rho})$$
 (12)

Für die Richtungsempfindlichkeit wurde die ebenfalls von Kjellström $\underline{/1/}$ stammende Beziehung

$$k^{2} = 0.0505 - 0.000415 \rho_{f} \bar{u}$$
 (13)

verwendet.

4. Ergebnisse

4.1 Druckverlust

Der Druckverlustbeiwert λ ist definiert zu

$$\lambda = \frac{\Delta p / \Delta L}{\frac{\rho_{f}}{2} \ \bar{u}_{m}^{2}}$$
(14)

mit \overline{u}_m als der über den Strömungsquerschnitt gemittelten Strömungsgeschwindigkeit.

Die Reynoldszahl errechnet sich über die Beziehung

$$Re = \frac{\rho_f \bar{u}_m d}{n}$$
(15)

wobei n die dynamische Viskosität bedeutet.

- 8 -

Der statische Druck wurde für verschiedene Längen gemessen. Nachdem die Meßergebnisse für den Druckverlustbeiwert λ anfänglich eine Streuung von ± 10 % aufwiesen, konnte durch mehrmaliges sorgfältiges Bearbeiten der Druckanbohrungen die Ursache für diese Streuung, Grate der Druckmeßstellen, beseitigt werden. Die dann erhaltenen Resultate sind für drei verschiedene Differenzlängen in Abb.6 dargestellt. Die Meßwerte stimmen innerhalb ± 3% mit der von MAUBACH $\langle \bar{1}\bar{2}\bar{7} \rangle$ angegebenen Beziehung

$$\frac{1}{\sqrt{\lambda}}$$
 = 2.035 lg Re $\sqrt{\lambda}$ - 0.989 (16)

für Kreisrohre überein.

4.2 Geschwindigkeitsprofil

Zur Prüfung, ob das Geschwindigkeitsprofil voll ausgebildet ist, wurde der zeitliche Mittelwert der Strömungsgeschwindigkeit auf verschiedenen Radien bestimmt. Als Beispiel sind in Abb.7 für zwei um 180[°] versetzte Radien die Profile aufgetragen. Die Übereinstimmung der beiden Meßreihen und damit die Symmetrie des Geschwindigkeitsprofils ist ausgezeichnet, so daß eine voll ausgebildete Strömung vorausgesetzt werden kann.

Abb.8 zeigt gemessene Geschwindigkeitsprofile in dimensionsloser Form für verschiedene Reynoldszahlen. Mit der Schubspannungsgeschwindigkeit u

$$u^* = \sqrt{\frac{\tau_w}{\rho_f}}, \qquad (17)$$

gebildet mit der Wandschubspannung τ_w , ergibt sich die dimensionslose Geschwindigkeit u⁺ zu

· 9 -

$$u^+ = \frac{\overline{u}}{\frac{\pi}{2}}$$

für den dimensionslosen Wandabstand y⁺

$$y^+ = \frac{\rho y u^*}{\eta}, \qquad (19)$$

wobei y der Wandabstand ist.

Zum Vergleich wurde in Abb.8 das sogenannte Wandgesetz nach Nikuradse $\overline{18}$ miteingetragen. Die Übereinstimmung der Meßwerte mit diesem Gesetz ist ausgezeichnet, wenn man von dem für die Kernströmung charakteristischen Buckel, den auch die Messungen von Nikuradse aufweisen, absieht.

In Abb.9 sind die gemessenen Geschwindigkeitsprofile in Form des sogenannten Mittengesetzes als $(u_{max}^+ - u_m^+)$ über dem relativen Wandabstand aufgetragen. Sie werden verglichen mit der Gleichung, die von Reichardt $\sqrt{19}$ angegeben wurde:

$$u_{\text{max}}^{+} - u_{\text{m}}^{+} = 2.5 \ln \frac{1 + 2(\frac{r}{R})^2}{1 - (\frac{r}{R})^2}$$
 (20)

wobei u_{max}^{+} die dimensionslose Geschwindigkeit im Zentrum des Rohres (Maximalgeschwindigkeit) darstellt. Die Beziehung von Reichardt liefert im allgemeinen etwas höhere Werte als die Messungen; das gleiche Resultat ergab sich ebenfalls bei den Messungen von Kjellström $\overline{/1/}$.

Alle Geschwindigkeitsprofilmessungen wurden etwa 40 mm vor dem Austritt (0.4 d) durchgeführt. Eine Kontrollmessung 5 mm vor dem Austritt (0.05 d) ergab keine Abweichung der Ergebnisse von denen an der normalen Meßposition.

10

(18)

4.3 Turbulenzintensität

Die axiale Turbulenzintensität, bezogen auf den zeitlichen Mittelwert der Strömungsgeschwindigkeit in Rohrmitte $\sqrt{u'^2/u_{max}}$, ist in Abb.10 über der Reynoldszahl Re_{max}, gebildet mit der Maximalgeschwindigkeit $\overline{u_{max}}$, dargestellt. Im Vergleich mit den verschiedenen Literaturangaben zeigt sich, daß die Meßwerte gut mit den Meßergebnissen anderer Autoren übereinstimmen. Zum Vergleich werden die Meßergebnisse von Laufer $\langle \overline{137} \rangle$, Patel $\langle \overline{20,217} \rangle$, Newman und Leary $\langle \overline{227} \rangle$, Pike, Jackson, Bourke und Page $\langle \overline{237} \rangle$, Goldstein und Kreid $\langle \overline{247} \rangle$, Pennell, Sparrow und Eckert $\langle \overline{257} \rangle$ sowie die Meßergebnisse von Kjellström $\langle \overline{1,267} \rangle$ und Sandborn $\langle \overline{277} \rangle$ verwendet. Man erhält auf diese Weise Meßwerte über einen Reynoldszahl-Bereich von $3 \cdot 10^3$ bis $1,5 \cdot 10^6$. Es zeigt sich, daß die relative Turbulenzintensität mit steigender Reynoldszahl sinkt. Die von Sandborn $\langle \overline{277} \rangle$ vorgeschlagene Beziehung

$$\frac{\sqrt{u'^2}}{\bar{u}_{max}} = 0.144 \text{ Re}_{max}^{-0.146}$$
(21)

gibt zwar die Sandbornschen Meßergebnisse gut wieder, jedoch nicht die zahlreichen neuen Meßergebnisse.

Als neue Beziehung wird deshalb

$$\frac{\sqrt{u'^2}}{\bar{u}_{max}} = 0.1128 \text{ Re}_{max}^{-0.106}$$
 (22)

vorgeschlagen. Diese Gleichung gilt für Re_{max} von $3 \cdot 10^3$ bis $2 \cdot 10^6$ und stellt einen guten Mittelwert aller Meßergebnisse dar.

11 -

Abb.11 und 12 zeigen die axiale bzw. radiale Schwankungsgeschwindigkeit, bezogen auf die Schubspannungsgeschwindigkeit. Als Vergleichskurve wurden die Ergebnisse von Laufer $\overline{/13}$ eingetragen. Abgesehen davon, daß die Messungen etwas höhere Werte liefern, da die Turbulenzintensität offensichtlich mit kleinerer Reynoldszahl steigt, ergibt sich qualitativ eine sehr gute Übereinstimmung für die Verteilung über den Querschnitt.

In Abb.13 wird schließlich die gemessene Schubspannungsverteilung mit der theoretischen Schubspannungsverteilung aufgrund der gemessenen Druckverlustbeiwerte λ dargestellt. Die Übereinstimmung ist gut, bis auf die Punkte in unmittelbarer Wandnähe. Die Standardabweichungen für die axiale bzw. radiale Schwankungsgeschwindigkeit und die Schubspannungsverteilung aus den 6 Meßreihen bei Re = 2,3 \cdot 10⁵ zeigt Abb.14. Sie wurden ermittelt mit der bekannten Beziehung

$$\sigma_{\rm X} = \sqrt{\frac{\Sigma \left(\bar{\rm X} - \bar{\rm X}\right)^2}{n-1}}$$
(23)

Alle gemessenen Turbulenzintensitäten und Schubspannungen sind in Tab. 1 gelistet.

5. Schlußfolgerungen

Die dargestellten Meßergebnisse sind in guter Übereinstimmung mit den Literaturwerten. Daraus kann geschlossen werden, daß die verwendete Meßeinrichtung richtig arbeitet und glaubwürdige Resultate liefert. Es zeigt sich außerdem, daß das Auswerteverfahren von Kjellström auch für kleinere Reynoldszahlen als bei den Kjellströmschen Messungen vorhanden ($\text{Re} > 2 \cdot 10^5$) mit gutem Erfolg verwendet werden kann. Für die erwünschten Messungen der Geschwindigkeits- und Turbulenzverteilung in

- 12 -

13 -

Den Herren E. Mensinger und G. Wörner sei für ihre wertvolle Mitarbeit beim Aufbau der Versuchsanlage, bei der Durchführung der Versuche und deren Auswertung, Herrn A. Roth für die Anfertigung der Diagramme sehr gedankt. Symbole

c	Exponent im Gesetz von Collis
đ	Rohrdurchmesser
D	Blendendurchmesser
k	Koeffizient der Richtungsempfindlichkeit
р	Druck
Δp	Differenzdruck
r	radiale Geschwindigkeitskomponente
R	Rohrradius
т	Temperatur
u	axiale Geschwindigkeitskomponente
* u	Schubspannungsgeschwindigkeit
v	Spannung
vo	Spannung bei ū = 0
У	Wandabstand
ņ	dynamische Zähigkeit
λ	Druckverlustbeiwert
ρ	Dichte

: *

φ	relative Feuchte
Ψ	Winkel gegen die Strömungsrichtung
ťw	Wandschubspannung
σ	Varianz
Re	Reynoldszahl

15 -

Indizes

WD	Wasserdampf
tr	trocken
f	feucht
L	Luft
e	Eichung
m	über den Querschnitt gemittelt
max	maximal
+	dimensionslos
-	zeitlicher Mittelwert
· · · · · · · · · · · · · · · · · · ·	Schwankungsgröße
a(+) b(-)	zum schrägen Geber gehörig

16 -

17 -

Literatur

- <u>/1</u>/ B. KJELLSTRÖM and S. HEDBERG Calibration Experiments with a DISA Hot-Wire Anemometer, Report AE-338 der Aktiebolaget Atomenergie, Stockholm (1968)
- <u>Z</u>/K. MAUBACH and K. REHME Negative Eddy Diffusivities for Asymmetric Turbulent Velocity Profiles?, Int. J. Heat Mass Transfer <u>15</u>, pp.425-432 (1972)
- <u>/3</u>/ F. HOFMANN Geschwindigkeits- und Temperaturfelder in Brennstabbündeln symmetrischer und asymmetrischer Geometrie, Dissertation TU Karlsruhe (1972)
- W. EIFLER und R. NIJSING
 Berechnung der turbulenten Geschwindigkeitsverteilung und
 Wandreibung in exzentrischen Ringspalten,
 ATKE <u>18</u> (2), 133-142 (1971)
- <u>V. EIFLER und R. NIJSING</u> Berechnung der turbulenten Geschwindigkeitsverteilung und Wandreibung in asymmetrischen Stabbündeln, ATKE <u>18</u> (3), 189-197 (1971)
- <u>/67</u> D.J. BENDER, D.M. SWITICK Turbulent Velocity Distribution in a Rod Bundle, 89th Winter Annual Meeting, 3rd Energy Systems Exposition, Am. Soc. of Mechanical Engrs. New York, N.Y. (1968), paper 68-WA/HT-36

- [87] Gebrauchsanweisung und Servicehandbuch für Typ 55D01 Anemometer Grundgerät, DISA Elektronik A/S, Herlev, Dänemark (Juni 1969)
- /IO/ G. VARADI
 Thermodynamische Stoffwerte von Luft,
 Report TM-IN-411 des Eidgenössischen Instituts für Reaktorforschung Würenlingen, Schweiz (1969)
- /ll/ F.A. MAC MILLAN
 Experiments on Pitot-Tubes in Shear Flow,
 Report and Memoranda No. 3028 Ministry of Supply (AIR) London
 (February 1956)
- $\langle 12\overline{2} \rangle$ W. EIFLER Über die turbulente Geschwindigkeitsverteilung und Wandreibung in Strömungskanälen verschiedener Querschnitte, Dissertation TH Darmstadt (1968)
- $\sqrt{137}$ J. LAUFER The Structure of Turbulence in Fully Developed Flow NACA TN 1174 (1954)
- <u>/14</u>/ B. KJELLSTRÖM und S. HEDBERG Die Eichung eines DISA Hitzdrahtanemometers und Bestätigung der Eichung durch Messungen in einem zylindrischen Kanal, DISA-Information Nr. 9, S. 8-21 (1970)
- <u>/15</u>/ F. DURST, A. MELLING and J.H. WHITELAW The interpretation of hot wire signals in low turbulence flows, Report ET/TN/B/5 des Imperial College of Science and Technology, London (January 1971)

- 18 -

- /167 D.C. COLLIS and M.J. WILLIAMS
 Twodimensional convection from heated wires at low Reynolds
 numbers, Journal Fluid Mech. 6, pp. 357-384 (1959)
- /17/ K. MAUBACH
 Reibungsgesetze turbulenter Strömungen, Chemie-Ing.-Technik
 42 (15), S. 995-1004 (1970)
- $\sqrt{187}$ J. NIKURADSE

Gesetzmäßigkeiten der turbulenten Strömung in glatten Rohren, Forschungs-Arbeiten auf dem Gebiet des Ing.-Wesens, VDI-Forschungsheft No. 356 (1932)

/197 H. REICHARDT

Vollständige Darstellung der turbulenten Geschwindigkeitsverteilungen in glatten Leitungen, ZAMM <u>31</u>, No.7, p.208-219 (1951)

$\sqrt{207}$ R.P. PATEL

Measurement of the Reynolds Stresses in a circular pipe as a means of testing a DISA constant temperature Hotwire Anemometer Technical Note 63-6, Mechanical Engineering Research Lab., Mc Gill University, Montreal (1963)

 $\sqrt{217}$ R.P. PATEL

Reynolds Stresses in Fully Developed Turbulent Flow Down a Circular Pipe, Report No. 68-7, Mechanical Engineering Research Laboratories, Mc Gill University, Montreal (1968)

 $\sqrt{227}$ B.G. NEWNAN and B.G. LEARY

The measurement of the Reynolds stresses in a circular pipe as means of testing a hot-wire anemometer, Department of Supply, Aeronautical Research Labs., Report A.72 (1950)

- (237 E.B. PIKE, D.A. JACKSON, P.J. BOURKE and D.I. PAGE Measurement of turbulent velocities from the Doppler shift in scattered laser radiation, J. Scient. Instrum. 1, pp. 727 (1968)
- ZAT R.J. GOLDSTEIN and D.K. KREID Fluid velocity measurement from the Doppler shift of scattered laser radiation, Heat Transfer Laboratory, Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota, Report No. 85 (1968)
- (257 W.T. PENNELL, E.M. SPARROW and E.R.G. ECKERT Turbulence intensity and time-mean velocity distribution in low Reynolds number turbulent pipe flows, Int. J. Heat Mass Transfer 15, pp. 1067-1074 (1972)
- $\sqrt{267}$ B. KJELLSTRÖM and S. HEDBERG On Shear Stress Distribution for Flow in Smooth or Partially Rough Annuli, Report AE-243 of AB Atomenergi, Stockholm, Sweden (1966)

 $\sqrt{277}$ V.A. SANDBORN

Experimental Evaluation of Momentum Terms in Turbulent Pipe Flow, Report NACA 3266 (1954)

- 20 -

Tabelle 1

Gemessene Geschwindigkeits- und Turbulenzverteilungen

Bedeutung der Symbole:

RER	Reynoldszahl
ROM	Dichte der feuchten Luft
QM	Durchsatz
UQAVM	mittlere Geschwindigkeit
YREL	relativer Abstand von Rohrmitte
UQ	zeitlicher Mittelwert der Strömungsge- schwindigkeit /m/s/
UREL	relative axiale Turbulenzintensität
VREL	relative radiale Turbulenzintensität
TAUREL	auf Wandschubspannung bezogene Schubspannung
SIGU	Standardabweichung UREL
SIGV	" VREL
SIGTAU	" TAUREL

	ROM = QM = UQAVM =	1.2010 0.05548 5.8895	KG/M** KG/S M/S	3
YBEL	UQ	UREL	VREL	TAUREL
0.9612	4.5684 5.1786	2.2693	1,2985	1.1440
0.8010	5.7378	1.6916	1.3195	0.8842
0.7008	6.1588	1.5611	1.2689	0.7927
0.6007	6.4201	1.4270	1.1497	0.6159
0.5006	6.6907	1.3230	1.0452	0.5013
0.4005	6.9282	1.2041	0.9402	0.3708
0.3004	7.1050	1.0000	0.03/3	0.2174
0.1001	7 2207	0.9672	0.7007	0.0992
0.0	7,2722	0.8088	0.7724	0.0
0,1001	7.3343	0.8458	0.7911	-0.0883
0.2002	7.2232	0.9311	0.8717	-0.2147
0.3004	7.0846	1.0766	0.8876	-0.3162
0.4005	6.9245	1.2034	0.9397	-0.3704
0.5006	6.7296	1.2974	1.1039	-0.5072
0.6007	6.4282	1.4184	1.1677	-0.6174
0.7008	6.1799	1.5733	1.2624	-0.7982
0.8010	5.7650	1.6933	1.3365	-0.8926
0.9011	5.1836	1.8461	1.4303	-0.9976
0.9612	4,4527	2.4538	0.3605	-1.0864

RER = 0.387844E05

- 22 -

	RER =	0.912948E	05	
	ROM =	1.1984	KG/M**3	
	QM =	0.13049	KG/S	
	UQAVM =	13.8833	M/ 5	
MDEI		110 51		TAUDEI
YKEL	UQ	UKEL	VKEL	TAUKEL
0.9612	10.7694	2.3185	0.9630	1.1015
0.9011	12.2098	2.2150	0.8189	1.0184
0.8010	13.5263	2.0674	0.8597	0.9431
0.7008	14.3491	1.8849	0.8657	0.8147
0.6007	14.9887	1.7461	0.7918	0.6786
0.5006	15.5352	1.5341	0.8726	0.5902
0.4005	16.0225	1.4027	0.8113	0.4610
0.3004	16.4003	1.2476	0.7256	0.3103
-0.2002 -	16.7696	1.1123	0.7027	0.2300
0.1001	16.9704	0.9867	0.6903	0.1257
0.0	17.0623	0.9271	0.6720	0.0068
0.1001	16.9934	0.9666	0.6768	-0.0955
0.2002	16.8161	1.0588	0.6924	-0.1746
0.3004	16.5427	1.1994	0.7092	-0.2691
0.4005	16.1763	1.3281	0.7710	-0.3767
0.5006	15.7352	1.4938	0.7861	-0.4894
0.6007	15.1874	1.6765	0.7808	-0.5907
0.7008	14.5296	1.7987	0.8932	-0.7265
0.8010	13.6987	2.0117	0.8878	-0.9095
0.9011	12.3794	2.1980	0.8214	-0.9896
0.9612	10.8297	2.3083	0.9273	-1.0863

- 23 -

	RER =	0.232754E	06	
	ROM = QM = UQAVM =	1.1866 0.3366 36.1741	KG/M**3 KG/S M/S	
YREL	UQ	UREL	VREL	TAUREL
0.9603	29.0650	2.1651	1.1871	-0.9696
0.9003	32.9782	2.0966	1.2300	-0.9748
0.8002	35.8300	1.9131	1.1417	-0.8717
0.7002	37.6408	1.7379	1.1155	-0.7686
0.6002	39.1140	1.5592	1.1042	-0.6592
0.5002	40.3693	1.4376	1.0131	-0.5782
0.4001	41.4903	1.3035	0.9427	-0.4512
0.3001	42.3493	1.1532	0.9171	-0.3382
0.2001	43.0394	- 1.0131	0.8420	-0.2206
0.1000	43.4933	0.9311	0.7831	=0.1069
0.0	43.1434	0.0017	0.7014	-0.0150
0.1000	43.3003	0.9017	0.0130	0.00001
0.2001	42 5026	1 1078	0.8647	0.3124
0.4001	41.5692	1.2354	0.9435	0.4205
0.5002	40.5325	1.3859	1,0021	0.5328
0.5002	39,2837	1,5353	1.0551	0.6443
0.7002	37.8171	1.7030	1.1319	0.7766
0.8002	34.1183	1.7698	1.0976	0.7906
0.9003	33.1292	2.0839	1.2044	0.9614
0603	22 5282	2 4952	1 4444	1 2204

· 24 -

KEK =	0.2200402	Vo	
ROM =	1.1853	KG/M**3	
UQAVM =	34.9284	M/S	
UQ	UREL	VREL	TAUREL
28,2684	2,2150	1.0811	-1.0024
31.9821	2.1159	1.0969	-0.9661
34.7943	1.9173	1.0735	-0.8403
36.6219	1.7358	1.0529	-0.7569
38.0488	1.5628	1.0197	-0.6222
39.1869	1.4111	0.9611	-0.5316
40.1438	1.2741	0.9002	-0.4207
40.9412	1.1457	0.8412	-0.3134
41.6081	1.0294	0.7764	-0.1975
42.0625	0.9313	0.7421	-0.1013
42+2322	0.0005	0.7271	-0.0112
42.0700	1 0007	0 7705	0 1776
41.0250	1 1265	0.8207	0.2000
40.2598	1.2544	0.8792	0.3924
39.2548	1.3955	0.9501	0,4999
38.1886	1.5454	1.0223	0.6233
36.6764	1.7017	1.1003	0.7606
34.7943	1.9059	1.0809	0.8390
31.8987	2.0910	1.1690	0.9771
28.2684	2.1814	1.1648	0.9678
	RCM = QM = QM = UQAVM = UQAVM = UQAVM = 28.2684 31.9821 34.7943 36.6219 38.0488 39.1869 40.1438 40.9412 41.6081 42.0625 42.2335 42.0780 41.7182 41.0850 40.2598 39.2548 38.1886 36.6764 34.7943 31.8987 28.2684	RER = 0.220040E ROM = 0.3247 UQAVM = 34.9284 UQAVM = 34.9284 UQ UREL 28.2684 2.2150 31.9821 2.1159 34.7943 1.9173 36.6219 1.7358 38.0488 1.5628 39.1869 1.4111 40.1438 1.2741 40.9412 1.1457 41.6081 1.0294 42.0625 0.9313 42.2335 0.8803 42.0780 0.9085 41.7182 1.0007 41.0850 1.1265 40.2598 1.2544 39.2548 1.3955 38.1886 1.5454 36.6764 1.7017 34.7943 1.9059 31.8987 2.0910 28.2684 2.1814	RER = 0.2203462 00 ROM = 1.1853 KG/M**3 QM = 0.3247 KG/S UQAVM = 34.9284 M/S UQ UREL VREL 28.2684 2.2150 1.0811 31.9821 2.1159 1.0969 34.7943 1.9173 1.0735 36.6219 1.7358 1.0529 38.0488 1.5628 1.0197 39.1869 1.4111 0.9611 40.1438 1.2741 0.9002 40.9412 1.1457 0.8412 41.6081 1.0294 0.7764 42.0625 0.9313 0.7421 42.0780 0.9085 0.7371 41.7182 1.0007 0.7795 41.0850 1.1265 0.8207 40.2598 1.2544 0.8792 39.2548 1.3955 0.9501 38.1886 1.5454 1.0223 36.6764 1.7017 1.1003 34.7943 1.9059 1.0809 31.8987

A z

	KEK =	U.231536E	06	
	ROM = QM =	1.1888	KG/M**3 KG/S	
	UQAVM =	35.5114	MZS	
YREL	UQ	UREL	VREL	TAUREL
0.9612	28,6461	2.2911	0.9346	-0.9820
0.9011	32.3880	2.1968	0.9627	-0.9630
0.8010	35.2540	2.0018	0.9286	-0.8761
0.7008	37.1432	1.8072	0.9777	-0.7845
0.6007	38.4776	1.6422	0.8906	-0.6386
0.5006	39.6671	1.4897	0.8444	-0.5188
0.4005	40.7193	1.3451	0.8075	-0.4287
0.3004	41.5297	1.2059	0.7678	-0.3166
0.2002	42.1854	1.0802	0.7198	-0.2031
0.1001	42,6169	0.9999	0.6676	-0.1057
0.0	42.8158	0.9428	0.6669	-0.0134
0.1001	42.6476	0.9719	0.6686	0.0675
0.2002	42.2628	1.0537	0.7129	0.1750
0.3004	41.6867	1.1627	0.7901	0.2890
0.4005	40.8954	1.3180	0.8312	0.3978
0.5006	39.8841	1.4708	0.8786	0.5144
0.6007	38.6326	1.5964	0.9493	0.5991
0.7008	37.2324	1.8011	0.9779	0.7716
0.8010	35.3669	1.9767	0,9992	0.8830
0.9011	32.4085	2.1983	0.9840	0.9850
0.9612	28.7155	2.2970	1.0291	1.0348

MI	TTELWER	RTE UND	\$1	TANDARDABWEICHUNGE	N

YREL	UREL	SIGU	VREL	SIGV	TAUREL	SIGTAU
0.9612	2.2724	•1178	1.1402	0.1752	1.0478	0.1407
0.9011	2.1304	0.0531	1.1078	0.1136	0.9712	0.0093
0.8010	1.9141	0.0806	1.0536	0.0767	0.8501	0.0346
0.7008	1.7478	0.0464	1.0594	0.0685	0.7698	0.0102
0.6007	1.5735	0.0395	1.0069	0.0762	0.6311	0.0209
0.5006	1.4318	0.0419	0.9416	0.0673	0.5293	0.0269
0.4005	1.2884	0.0412	0.8841	0.0564	0.4185	0.0214
0.3004	1.1503	0.0336	0.8336	0.0536	0.3099	0.0184
0.2002	1.0264	0.0361	0.7741	0.0508	0.1938	0.0194
0.1001	0.9408	0.0380	0.7300	0.0516	0.0904	0.0165
0.0	0.9005	0.0327	0.7216	0.0444	0.0134	0.0019

· 27 -

and the second sec

- 1. Verdichter (1000 ^{N m³}/_h, 4 bar, 80 KW)
- 2. Luftkühler
- 3. Wasserabscheider
- 4. Durchflußmessung
- 5. Bypass
- 6. Filter
- 7. Schalldämpfer
- 8. Gleichrichter
- 9. Teststrecke
- 10. Offener Austritt (Meßebene)

- P_{v} Druck am Verdichteraustritt
- t_{ν} Temperatur am Verdichteraustritt
- t_K Temperatur Kühleraustritt
- $\Delta_{\mathsf{PBI}}\mathsf{Wirkdruck} \ \text{ an der Blende}$
- P_{Bl} Druck vor der Blende
- t_{Bl} Temperatur an der Blende-
- P_A Druck am Verdichtereintritt
- t_A Temperatur am Verdichtereintritt
- ϕ_{A} rel. Feuchte am Verdichtereintritt

Abb.1

Versuchsanlage (schematisch)

<u>Abb.2</u> Gesamtansicht der Versuchsanlage

Abb.4 Meßebene

Abb.3 Meßplatz

Versuchsaufbauten zur Messung der Turbulenzintensität

Abb. 5

9. .

Abb.7

Gemessene Geschwindigkeitsprofile

..

