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ABSTRACT

The analysis of reactor kinetics experiments is, for historical reasons,
based on models more appropriate to thermal than to fast systems. We
propose that kinetics experiments analyses be carried out using only

the ordinary multigroup operators, and that no effort be made to intro-
duce parameters such as neutron lifetime, effective delayed neutron
fraction, etc. The resulting analysis is simpler and less likely to
produce confusion. Period measurements and pile oscillator experiments
are discussed, with variational principles being suggested for the
analysis.

ZUSAMMENFASSUNG

Die Auswertung von Reaktorkinetikexperimenten erfolgt - aus historischen
Griinden - unter Verwendung von Modellen, die sich eher fiir thermische als
——fiirschne i i

Kinetikexperimenten ledigliich mit den gewohnlichen Multigruppenoperatoren
durchzufiihnren und nicht zu versuchen, Parameter wie z.B. Neutronenlebens-
dauer und effektiven Anteil verzigerter Neutronen einzufiihren. Eine soliche
Auswertung ist einfacher und weniger verwirrend. Fiir die Analyse von
Periodenmessungen und Pileoszillator-Experimenten werden Variationsprin-

zipien vorgeschlagen.

Zum Druck eingereicht: 26. Juli 1972
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- On the Kinetics Equations
for Fast Reactors

P. F. Zweifel

I. Introduction

It is perhaps too well known to require comment that the simplified form

of the reactor kinetics equations which are valid for thermal reactors

cannot be applied to fast systems. As an example, the idea of a reactivity--
density transfer function is common in thermal reactors, 1 in which the
density can be measured by a 1l/v-detector. Since there is no convenient way

to measure the density in a fast assembly, if the concept of transfer function
is to be applied, a different transfer must be used, e.g. reactivity-power.
tven then, the calibration of the oscillating reactivity in a pile oscillator
experiment requires some care.

The situation is similar with regard to other measurements in fast systems--
period measurements, rod drops, etc. The usual (i.e. thermal system)
analysis of these experiments is based, in effect, on the inhour equation
of point reactor kinetics which is only valid for thermal systems. Fischer
has extended the inhour equation to a general system described by a
multigroup operator, hié analysis involving "flux-adjoint" weighting of
various kinetic parameters. His procedure actually is a special, but
particularly practical, case of the general transport-theoretical, energy
dependent kinetic equations obtained, for example, in Reference 1.

2

Fischer's procedure is, in fact, correct, and shouid, if appiied properiy,
lead to a satisfactory analysis on the time behaviour of fast reactors.
However, we feel that the attempt to retain point reactor kinetics equations
in the “standard" form is 111 advised, introducing confusion and diffi-



culty into the analysis of kinetics phenomena. For this reason, we present
an analytical description of the period measurement based strictly on
multigroup caiculations. It is, in effect, equivalent to Fischer's treat-
ment, since his method requires multigroup calculations to be carried

out in order to obtain the "flux-adjoint" weight functions. The main merit
of our treatment is that it begins to discard the "conventional" form of
the kinetics equations and, as a result, leads to a considerably simpiified
analysis. We then go on to apply a similar method to pile oscillator
experiments, using the so-called Rossopolous Variational Principle. (The
analysis of period measurements, incedentally, is based on the Ritz
Variational Principle.) The results obtained there are, we believe, new,
and should lead to a much improved analysis of pile oscillator experiments.

(In the same section wevconsider the transfer function for fast systems.)

Before ;onsidering these topics (in Secs. III and IV) we discuss, in Sec. II,
some general properties of the kinetics operator and its adjoint.

II. The Reactor Kinetics Operator and its Adjoint

Consider first a one-speed diffusion equation

(=3 = D7+ }o(r)=S{r)

o~
[\
S

which we write in the form
Le=S. (2)
The Tinear operator L shall be referred to as the "diffusion operator".

We shall represent the scalar product of two functions, ¢ ([) and v (r)

as (¢(r), w(r) ), or simply (¢,¥). In one-épeed theory

(9) = [ o(r) ¥ (r) dr, - (3)



where y means the complex conjugate of y. % 1n multigroup theory this
definition of scalar product must be extended to include a summation
over groups, i.e.
N _ 3
(¢59) = 2 [ o5 (r) wy(r) d°r, ~ (4)
i=1 - -
where the subscript i refers to the i-th group, and N is the total number
of groups. The integration, incidentally, is taken over the reactor
volume.

The adjoint operator, L*, is defined by the relation

(Losv) = (6,L%9) (5)

for every ¢ belonging to the domain of L and every y belonging to the
domain of LX. (The domain of an operator is the space in which it operates.)
Denoting domain of L by the ;ymbo? D(L, -we say that an operator L is

formally self-adJoint ifL=L% ; it is self-adjoint if, in addition,
D(L) D(L )

The domain of a differential operator is generally specified by the

boundary conditions. Let us derive the boundary conditions for L, re-
——stricting ourselves, f implicity, to the ca a-single space

dimension x. We also define u, the cosine of the angle between a neutron's

velocity vector and the x-axis. Then, in diffusion theory, the neutron

angular density E:is represented by the sum of two terms 3
- 1 3
Bxsw) = 7 6(x) + 5u d (x), (6)

where ¢(x) is the total flux and J(x) is the net current. The partial
currents, J , can be defined as follows:

% Usuall ly the operators and functions of reactor physics are real, and
the complex conjugation sign can be dropped. As we shall see, however,
in Sec. IV, this is not always the case.



1 —

Jp(x) = [ w g (xou) du s |  (7a)
0 —

Jo(x) = [ w¥ (xm) du . (7b)

J,(x) represents the number of neutrons crossing a unit area at x in the
+x direction, while -J_(x) represents the number crossing in the -x
direction. A straightforward integration yields the results

[
)

+-¢Mw+—un, (8a)

C
L]

--%¢u)+%un. (8b)

At a free surface, i.e. an interface between a diffusing medium and vacuum,
there are of course no neutrons reentrant into the diffusing medium in
any direction -1 < pu < 0. Since it is impossiblie to impose this condition

exactly in diffusion theory, the somewhat weaker condition is applied
that the net number reentrant, i.e. J_, should vanish. This gives as the
boundary condition at a point Xg of the surface
3 (xg) =50 (x) (9)
s 2 3
ing Fick's 1
Ay
)
J (x) = -j;' ax (10)
we find
d¢(xs) 3
X Ty #(xg). (1)
r

From this, it is easily seen that the flux linearly "extrapolates" to
zero at a point % t from the surface. This distance is commonly ca11ed

2 Y S Y P Sy P, . l. L PR R
that ¢(xs + §ﬂtr) = 0. However, transport theory yields a somewhat better

result for the extrapolation length, and it is customary to take



¢ (x, +0.71 ) =0 ' - (12)
as the diffusion theory boundary condition.

A1l this is well known. Now let us consider the boundary condition
obeyed by the neutron importance, or adjoint flux. Clearly, a neutron
leaving the free surface has zero importance, since it will never return.
Thus, if we represent by ¢* and J% the importance flux and current, the
proper physical boundary condition for the adjoint is

% _
3% = 0. o | (13)

From Eq. (8a) we find then

% 1l = |
IHx) = = 5 07 (x). (14)
We now use the adjoint of Fick's i’ﬁ:
& Aiw- d¢g
= ——— e (15)
J (x) + J dx \1 &

to obtain, in analogy with Eq. (11)

E,
do”(xg) 3 2

—
Putcd
[e)]

A

£ %
L0 W9 I
dx ZAtr s

In other words, the flux and adjoint obey the identical boundary condition.
Thus, D(L) = D(L*). It is easy to verify, by partial integration, that L = L*
(the boundary terms vanish by virtue of Eqs. (11) and (16)), Thus L is self-
adjoint.

We now construct a multigroup operator out of the L's corresponding to various
groups:



L1 0 0 . . 0
212 L2 0 . . 0
213 223 L3 0 . . . . . . 0
M= . . (17)
ZlN ZZN . ® * LN

(Here zij is the transfer cross section from group i to group j).
It would be tempting to construct the adjoint, M*, by interchanging rows and
columns of M (since each individual element of M is self-adjoint). However,
we now give an argument for the invalidity of such a procedure. The point is
that the multigroup diffusion operator is an approximation to the energy-
dependent diffusion operator. It is not correct to take the adjoint of an
approximation to some operator and assume it is the same as the approxima-
tion to the adjoint. In other words, the correct procedure to use in deriving
M* is not to take the adjoint of M, but rather to form a multigroup approxima-

PN kg Amamsnrmis  Aaramdom addmd 4-

nto t o aniintdmn The nad affant 3
tion to the energy-dependent adjoint equation. s

ihe net effect is that, whereas
the group constants in M are obtained by averaging over a flux spectrum, the
group constants in m* must be obtained by averaging over an adjoint spectrum.
Thus, the operator M*, in addition to being transposed, has elements that

differ somewhat from the elements of M due to the different weighting pro-
cedure, ®

Numerical verification has been given by Kiefhaber 4

However, the following simple example should be enough to convince the most

% In the perturbation matrices, 6k, introduced in Sec. IIl, the group constants
must be obtained by bilinear weighting, i.e. the product of flux times adjoint.
This follows since the multigroup perturbation formula is an approximation to
an exact formula which invoives the product of energy-dependent flux with
energy-dependent adjoint. See Reference 4.



skeptical. Consider the one-speed, one dimensional neutron transport equation
with isotropic scattering:

1
A LY = ?i J Y(X,u')du' + S{x,u).
-1
If we were to expand the angular density, as in Eq. (6)

Y(X,u) = %-(¢(x) + 3ud(x)) + . . . (19)

and insert into Eq. (18), we would obtain the P1 approximation which, in one
speed, is equivalent to diffusion theory:

dd _
Lo+ % = Sp (20a)
%gg +5d=5, (20b)
1, .
where S, = [ u'S(x,u)du . (21)
In matrix forﬁ this becomes
d
*a dx ¢ %
= . : (22)
1d
R U AR
The adjoinf tfansport equation is
1
T x s % %
- u.a_;(_.+ Zr‘i’ = 1‘!’ (xsu')du' + S7(x,u). | | (23)
A similar P1 expansion leads to an adjoint set
d | & %
/Za T\ /"\ /So\»
I I L] | (24)

o | | =
EET SN B P AN

If we compare Eqs. (22) and (24), we note that the adjoint P, transport '



operator is not obtained from the P1 flux operator by interchanging rows

and columns and taking the adjoint of each element. The reason for this
dicrepancy is that the P1 equations are approximations to the exact transport
equation. One cannot take the adjoint of an approximation by the usual rules
and expect to get the same result as if he had approximated the exact adjoint.
From now on, we assume the various group constants have been obtained as we
recommend, and that adjdints can be formed for all operators which we discuss.

Let us now modify the multigroup operator M to include delayed neutron effects.
M operates on a column vector where N elements Yps Wps oo 0 o o Yy represent
the N-group neutron fluxes. Consider an N + I dimensional vector

"

¢ = (25)

Here Cl’ CZ’ . e e e CI represent the delayed neutron precursors; as usual we
denote by A and B the decay constant and fractional yield of the i-th
precursor group. Then the multigroup reactor kinetics equations can be combined
into a single equation for ¢:

¢
i;.f = V(F-A)e, (26)

where the matrices V, F, and A are defined as follows:

s ra - Y] - 2 ag [V a al . < . 2 J ¥ . T £
= eeDo oq .o = o < < e Vee = § N+ L < i1 < N¥* 1, 4
V¥l Vi T Ve 221 2T ii ’ b o\

In other words, V is a diagonal matrix where first N elements are the group



velocities vi and whose last I elements are 1.

A is an extension of the multigroup matrix M defined in Eq. (17):

L1 0 0 . . . 0
212 L2 0 . . . 0

IN Ian - . . 0 . . 0 (28)

0 0 0 . . 0 M 0 . 0
0 0 0 . . . 0 Ay 0

neutrons. We denote by xiP the fraction of prompt fission neutrons emitted
into the i-th group, and by xiD the corresponding quantity for delayed neutrons.
Then
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D ,
Vierxg (178)  vpZeoxg (1-8) v v woZang (1-8)  Apxp . apxg Axq
D
vlzflxz (1-B) v .« v v v v v v oo ., INEENX2 (1-8) AMXp o . . Arxo
\ D
leleN ................... s e s e 4 s e 0 s e s s s XN
Dl\)lZfl 61;\2sz ooooooo slszfN U o 6 o ¢ ¢ ¢ o o o o o o » 0
62\)1Zfﬂ 6 s e & & & & & s s & s s & BzszfN 0 & 8 & & & 2 & e & & & & = 0
BI\)lzfl .............. BIszfN 0 ............. 0




- 11 -

We denote by K the reactor kinetics operator

Q
>

|

Q2
o

Ke, (30a)

~
[}

V(F-M). (30b)

As we have already pointed out, k* is obtained not only by interchanging rows and
columns of K, but also by introducing individual elements into the transposed
matrix which have been averaged over the adjoint spectrum.

III. Analysis of Period Measurements; the In-hour Equation.

To solve Eq. (30a), we seek solutions of the form ¢(r,t) = A(r)ewt. This yields
the eigenvalue equation

n
%
o
[T ]
Py
S

The operator K has as its domain space the Hilbert space LZ(E)xLZ(E)x N xL2(£),
the Cartesian product taken N+I times. Thus the spectrum of K will consist,

in general, of a point spectrum, a continuous spectrum and, perhaps, even a
residual spectrum. However, in all practical cases the multigroup kinetics
operator K is further approximated by the use of finite differences to re-
present the derivatives. Thus, the actual K one deals with is an operator

on a finite dimensional Hilbert space, and so its spectrum consists entirely
of eigenvalues. The largest e1genva1ue wy is the inverse reactor period, 1/T
and we wish to calculate it and to relate it to the reactor reactivity (i.e.
to derive an in-hour equat1on) ‘

This is most conveniently carried out through first-order perturbation heory.
We note that for a critical reactor wy = 0. Let KO represent the kinet
operator of the critical reactor, and K0 the corresponding adJo1nt
Then '
' K0¢0 =0 ' | ’ ' © (32a)
and
Ko %y = 0, (32b)
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where we represent the adjoint flux by the symbo]_@o*.

If

K=K, + 6K, (33)

0

where 8K represents the insertion of a reactivity sample, then to first order
o, %, Ko

Lo o) | o (34)

| (2972p) |

This perturbation expression is highly accurate,'because it is based on a

variational principle (the Ritz Variational Principle). 5 This means that

theAerror in wg is proportional to the product of the errors in flux and

adjoint. Loosely speaking, if the spatial dependence of the asymptotic flux

and adjoint in the perturbed reactor differ from the corresponding quantities

in the critical reactor by 10% each, we should expect the above expression

to give Wy to within 1% = 10% x 10%. Of course % and ¢0* are to be computed

by the usual multigroup codes. This method, incidentally, should be expected

to yield the dominant eigenvalue with no probiem since it caiculates the

perturbation of that eigenvalue.

6m0 = wo

We now wish to connect wg with the reactivity. The simplest way to do this
is to calculate, from Eq. (34), wy as a function of an artificial perturba-

tion,
y

Vi T avg, » (35)
where .o is some non-negative constant. As is well known this "perturbation"
causes a reactivity

o = (1-a). , | (36)

In this way, a curve of p Versus uw, could be plotted even before the period .
measurements are carried out. This curve represents the in-hour equation
for the particular reactor configuration being used, and is applied to the

eriod measurements in that particular assembly.

Because of the form of the operator K, it is actually not necessary to solve
the complete set of equations (32) to determine % and @0*, as Fischer has
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already pointed out. In particular, the equations decompose, leading to

N v, Ip, ¥
Cig = 85 I —t® :K e (37a)
K=1 i
and N ,
x D, %
Cio = z=1 xg Yko ; (37b)

Thus, if the fluxes and adjoint fluxes are calculated, the preéursor and
adjoint precursor concentrations can be found immediately. Then the complete
vectors ¢, and ¢O* can be constructed in order to evaluate Wy

This concludes our discussion of period measurements. We next turn to the
question of pile-oscillator experiments.

IV. Pile Oscillator Experiments

The usual analysis of pile oscillator experiments is based on point kinetics
equations involving time derivatives of the neutron and precursor densities;

the analysis is usually carried out in terms of reactor transfer functions. 1

—For-reasons outhine
somewhat for fast reactors.

A pile oscillator may be thought of as a perturbation to the reactor kinetics
operator with a sinusoidal time dependence. That is, we consider the kinetics
operator

&

39 _ iwte
=T = Ko @ + ke . . (38)

«t

We suppose that ¢(t) can be written as a sum of the stationary distribution,
or

of the critical reactor (K., = 0) and a small perturbation, K

[}
0’ 070 IR

® =y + 0 . : - (39)
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Then, substituting into Eq. 38 we find

1 Kno ¥+ ke'®t o (40
a = Kot 0° )

where a presumably small term, proportional to k@l, has been dropped. We
now assume a solution to Eq. (40) of the form

o = ve't | .. (41)
This gives the following equation for y:
(K0 - iw)Y = - k@o . (42)
In a pile oscillator experiment, one observes a reaction rate with a detector,
first in the critical system and then)in the perturbed system. In the critical
Ry = (2., ¢,) . (43)

However, the perturbed flux is not real, indicating a phase shift between
perturbation and response. Writing

¥y = ¥+ Yy (44)
we find easily, for the real part of ¢
Re ¢ = ¢4+ Reos(uwt+s) , (45)
where
= .7 + ¥..2
R= A2+ v 7, (46a)
¥
4 = fan-l _.].‘_I.. {AGh)
L a1 R W - \"UIJI
1R

Then the perturbed time-dependent reaction rate is given by
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R(t) = (zd, Re 2). (47) -
(In an actual experiment the phase angle & can also be measured,

and compared to calculation.)

It is of some interest to write down the equation obeyed by ¥ir and 1’

2 k
and KO
‘l’R = . ‘i'I . ‘ (48b)

Eqs. (48) can, of course, be solved directly to calculate the response to
a given oscillation. To calibrate the reactivity one can use the identical

procedure as in the period measurement analysis described in Sec. III. That is,
a theoretical oscillation of

Fal
1}

=0 N+l<icl (49b)

corresponds to a reactivity oscillation p = 1 - a. The appropriate reaction
rates can then be calculated as a function of reactivity in order to
calibrate the oscillator.

A somewhat more accurate calculation can be made. Recalling that Eq. (42)
is only approximate (a "small" term has been dropped) we can use the solu-
tion to (42) along with the adjoint solution to

(Ko™ + i) ¥ = 1 (50)
o R e
in the Rossopolous Variational Principle. = This principle states that

the following functional is stationary with respect to variations of the
trial functions ¥y and wl*
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% % .

JS = (zd, wl) + (wl s = kwo) + (wl R (KO-1m)w1) (51)
The stationary value of this functional gives the best estimate of (24 wl),
i.e. the response gf the detector to the flux perturbation. Then it follows,
again with ¥y = Re‘é, that

Re JS =,(Zd’ R)cos{wt + &) (52)

so that the perturbation in the counting rate is given by Re JS.

This use of the Rossopolous Variational Principle is optional, to obtain
higher accuracy. If less accuracy were acceptable, then Eqs. (48) could be
solved directly to obtain the response to a given oscillater perturbation
with the reactivity being related as described there. Incidentally, since
typical experiments are carried out with square waves, it would be necessary
to analyze the square waves intg its Fourier components, and to carry out a
type of calculation described above for each Fourier component.

. A transfer function is defined as the ratio of (Laplace Transform) input
to output. Usually, the reactivity is taken to be the input, while the output
is some type of reacﬁon rate. For example, if the output is neutron density,

ionrate—is thatof a 1/v detector. If the output, on the other hand,
is power, then the reaction rate is (theoretically) that of a fission counter.

For the purpose of stability analysis, it does not make much difference which
type of transfer function is measured, since if one oscillation is unbounded,
all others based on the same fundamental quantity (in this case neutron flux)
will also be unstable. In particular, for linear systems it follows that

no theoretical calibration, as described above, is necessary in the experimental
determination of the transfer function. To calculate the transfer function,

it is only necessary to proceed as described earlier in this section, computing

the response as a function of w to whatever input the experiment has used.

The situation is somewhat different for the nonlinear case in which the response
depends not only on the frequency but also on the amplitude of the input. In
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such a case reactivity calibration as described above might be necessary. to
insure that the entire experiment was carried out at constant amplitude.

V. Conclusion

We have tried to present a simplified and practical technique for treating
reactor kinetics measurements and calculations in fast reactors. We have
avoided the definition of a large number of parameters such as effective 8,
neutron lifetime, and so forth. Rather, we depend on variational principles
plus straight forward solution of the multigroup flux and adjoint equations.
We strongly recommend the use of Kiefhaber's "Case d" weighting in obtaining
the multigroup constants.

The way described here was suggested during some conversations with Drs.
Peter McGrath and Erhard Fischer concerning the discrepancy between measured
and calculated reactivity coefficients in fast critical experiments. 7 The
author is grateful to Drs. McGrath and Fischer not only for suggesting the
problem but for extensive and valuable conversations.
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