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Abstract

The SINEX code allows the design of sodium/sodium intermediate heat
exchangers for the steady-state reference operating. The novel feature
of the program system consists in the combination of thermal and
mechanical calculations. A graphical output has been incorporated,
A simplified cross section of each heat exchanger calculated can be
plotted. In parameter calculations the influence of the different
parameters can also be plotted automatically in diagrams. As an
example of the application of the program system, sodium/sodium
intermediate heat exchangers, made out of three different grades
ef austenitic steel, are compared with each ether in terms of cost.

Zusammenfassung

Das Programmsystem SINEX erlaubt die Auslegung von Natrium/Natrium
Zwischenwärmetauschern für den stationären Auslegungsfall. Die Neu­
artigkeit des Programmsystems besteht darin, daß die Berechnungs­

methoden der thermischen Auslegung mit den Methoden der festigkeits­
mäßigen Auslegung kombiniert wurden. Das System macht von den Mög­
lichkeiten der graphischen Ausgabe Gebrauch. Die errechneten Abmes-
sung-e-n ··e-i-nes-Wä-I'me-tausche-I's--können--d-i-r'.ek-t- v-on. -de-I' -MRs-chine-in--e-i-ne­

einfach maßstäbliche Zeichnung umgesetzt werden. Daneben lassen sich
die verschiedensten Abhängigkeit einzelner Auslegungsgrößen automa­
tisch in Diagrammform darstellen. Um die Fähigkeiten des Systems zu
veranschaulichen, werden in einem Beispiel Natrium/Natrium-Zwischen­
wärmetauscher aus drei verschiedenen austenitischen Stählen wirt­

schaftlich miteinander verglichen.
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Introduetion

'I'h-e-he-a--ee-x-e-h-a-n-g-ers int-h-e pr-rmary system cf are-actar fäc iTityaTe

among the eomponents which have a decisive influenee on availability,

safety and economy of a nuclear power station.

Safety and economy are requirements not easily made eompatible.

It is a matter of fulfilling, in an eeonomieally bearable way, the

sometimes very stringent safety provisions imposed upan the plant

by licensing authorities. This requires special methods of seleetion

allowing the optimum solution to be found for eaeh specific ease

from among a large number of possible variants. However, from

experience it is known that these methods require eonsiderable
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computational efforts whieh, usually, ean be eoped with only hy

moans of eleetronic da ta proeessing systems, provided that adequate

program systems are availahle.

The snmx /1/ program s ys t em (~odium intermediate he a t ~~chanRer)

is such a program system. It allows the dosign of sodium/sodium

intermediate heat exchangers for steady-state d~sign conditions.

Tho novol feature of the program consists in tho comhination of,

mostly,standard methods of caleulation for the thermal and meehani-

cal design. As far as the heat exehanger is eoneerned, this mORns

a thermal design of the tube bundle and a simple moehanical dnsi~n

of the most important heat exehanger components.

Tho relatively simple input and the elear and oasily intorrretn~

011tr)1.1t mak e the system s u i t ab l e also for pe r ame t e r s t u d i e s and

optimization ealculations. In addition to tho usual print outpitt

thc rcsults calculated may be plotted. A simplified cross seetion

of cach heat exehanger cäleulated can be plotted. This drawing

11 also list the main design parameters. In addition, the tem-

perature eurves of the coolant or the heating surface ean he plottod

in diagrams versus power and the temperaturo eurves ean he plotterl

vcrsus tho heating surface.

In parameter caleulations the influence of thc different parameters

can also be plotted automatieally in diagrams hy thc machine.

Thc high flexibility of the modular program system will casily nl101~

an extension to other types, different eoolants or other mcthods

cf ealculation. This will ensure the possibility of adapting the
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system to individual requirements in many cases.

Description of Heat Exchanger

The type presently implemented is shown in Fig. 1. The heat ex­

changer has a straight or helical tube bundle, operates by the

counter flow principle and is variable with respect to the flow

paths. The primary, that is, the hotter coolant may flow both

on the tube side or on the shell side of the exchanger tubes. In

this way, the natural free convection flow is retained as much as

possible. The tube bundle is located between two tube plates. It

is penetrated by a multilayered central tube and surrounded by

a flow skirt on the outside. The top tube plate is clamped between

the vessel flanges. The battom tube plate is part of the lower

plenum construction which is movable in the vertical direction and

thus can follow the thermal expansions of the tube bund1e.

Description of Program System

The schematic diagram of the program system is shown in Fig. 2. Thc

main contro1 'program controls the program sequence, assigns

standard values to the input data and stores the data in a tempora­

ry f i Ie after each individual computation step.

The remaining section of the system can be subdivided into four main

parts:

- In the first part, the tube bundle is geometrically subdivided
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and the thermal design calculation is performed. This i5 followed

by the calculation of the pressure drop.

- The second part includes a material properties library, which

contains,as a function of temperatures, all the thermodynamic

da ta required for thc calculation, the material data and

charactcristics, both for the coolant and for the steel grades

used.

- In the third part, the mechanical design of the vessel, the tube

plates and flanges, and of the other major components is carried

out. This part of the system is responsible also for the print

output of the calculated results.

- In thc fourth part, the data are processed for the plot output.

For this step, also information from thc temporary storage is

availahle.

The main parts outlined above are composed of a number of suh­

programs in which partial calculations are performed.

Method of Calculation and Relationships
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The shell side pressure drop for thecross flow tube bundle is

calculated according to GRIMISON 16/. If the flow is directed

diagonally to the tub e bundle the influence according to WIEMER

/7/ is taken into account. In tube bundles with parallel flow the

pressure drop is determined in accordance with MOODY /8/ on the

basis of studies by VON KARM..A.N and NIKURADSE, the friction factor

requiring correction in accordance withKAUL and VON KISS /9/. On

the tube side~ the applicable relationships are those of PRANDTL

and VON KARMAN and COLBROOK and WHITE /10/, respectively. If the

tubes are curved, the friction factor is corrected in accordance

with HAUSEN /11/.

In baffled tube bundles the shell-side pressure drop is calculated

according to BELL /12/, which supplies the best results compared

with other methods /13/.

For thc mechanical design of thc heat exchangers some basic

assumptions must be made. It is assumed that thc diameter Gf thc

vcssel is equal to the diameter of the flange. The diameter of

the central tube is determined on the basis of a given flow velocity.

The diameter of thc bottom plenum is assumed to be qqual to the

tube bundle diameter. The wall thickness of important components

is calculated in accordance with AD data sheets /14/. The calculated

values are limited at the lower end by a minimum wall thickness

givcn by manufactüring considerations.

The tube plates are designed in accordance with O'DONNEL and

LANGER /15/ by the method of equivalent elastic constants. The

perforated plate in this case must be calculated like an equivalent
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unperforated plate by thefamiliar relationships, but w i th

the elastic constants properly corrected.

The flangedesign is basedon work by SCHWAIGERER /16/ and on

the tentative DIN 2505 standard, respectively /17/. The mcthod

does not allow the flange dimensions to be calculateddircetly.

LIence, they are iterated until the calculated stresses in the

flange are within the permissible range. 1he permissible stress

has been reaehedif the following conditions have been fulfilled:

Simple safety relative to the yield point a or the 0.2°0 y ie l ds
s tren gth aO• 2 ' 1.5fold safety relative to the creep rupture st.rengrh

an/ 100 000' and simple safety relative to the time yield limit

al / l 0 0 000· In this ease, the three modes oE operation to be

taken into aecount are conditions of installation, test condition,

and operating condition.

As an example of the application of the program system, sodium/

sodium intermediate heat exchangers made of three different grades

of austenitic steel are compared with each other in terms of cost.

The design causing the lowest eosts is to be found. 1be different

materials are given in Fig. 4. The individual variants Were nssumed

to be made completely of the same material. The study takes into

account not only the different material prices and costs of

fabrication but also the different material characteristics.

The determination of the price 1s based on specific priees which are
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taken into account in DM/m2 for the raw bundle with internals and

tube plates and in DM/kg for the vessel including flanges. With

respect to these prices, it was assumed that all the costs of

materials, fabrication and testing were included, all fabrication

problems had been solved and that there were no increases in costs

due to costs of development.

The assumed cost per unit heating surface for the tube bundle is

shown in Fig. 5 as a function of the tube outside diameterwith the

tube wall thickness as a parameter. It should be added that no in­

formation is given here about the absolute level of prices.

The trend of the curves and their relation to each other is likely to

come close to the true curve for heat exchangers of thc size studied.

Tbe assumed cost per unit mass for the vessel is given in Fig. 6.

In most cases, the operating conditions are given from the overall

plant. Hence, they were initially kept constant in the example on

the basis of the assumptions shown in Fig. 7.

Results

The outside diameter of the exchanger tubes was varied in the range

between 12 and 36 mrn with wall thicknesses of 2.0, 1.5 and 1.0 mm.

Tbe results are shown in Fig. 8. Also the overall costs are plotted

over the outside tube diameter, the parameters being the material

and the tube wall thickness.

Tbe dash-dotted curves apply to 4436 grade steel, the dashed ones

to 4948 grade steel, and the solid lines to 4961 grade steel.
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The highest cost is obtained for 4436 grade steel, which 1S also

characterized by the highest specific prices. Although the specific

prices of 4948 steel are lower than those of 4961 steel, the capital

costs turn out to be higher. This is due to two reasons in this

case. On the one hand, 4961 steel has a higher thermal condl1ctivity,

on the other hand,it also has a higher strength.

It should he notedthat there is a significant influence of the \'lall

thickness of the tuhe upon the overaLl cast. This may bp explainea

by the fact that the heat rcsistance in thetube wall is 2.5 to 5

times higher as compared to the boundary ~ayer on the inner an~

outer siaes of the tube.

Fig. 9 shows three variants made of different grades of steel for

which the costs turn out to be aminimum; they are compared in

hasic diagrams true to scale~The lowest capital costs are shown

by the design made of 4961 steel shown in the center with dimensions

of the exchanger tubes of 18 x 1 rnrn. Although this vC1riant h;lS a

greater structural volume than the two others, it is lass expensive

at t.he specific prices assumed. The other t.wo designs have dimensions

of the exchanger tubes of 16 x 1 rnm and approximately the same

structural volurne; however, the 4948 design is the lass expensive

one.

Fig. 10 shows the heating surface plotted vcrs~s thc outside tube

diameter. Again, theparameters are the material ~nd thc wall

thickness of the tube. An incrase in the wallthickness of the tube

by 0.5 mrn leads to an increase in the heating surface by approximate­

2Iy 1 m /MW.
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Fig. 11 shows the inf1uence of the outside tube diameter 6n the

structura1 volume. Again, the parameters are the material and the

wall thickness of the tube. An increase in wa11thickness brings

about an increase in construction vo1ume by roughly 0.015 m3/MW.

These examp1es referred to tonstant operating data. Since the

program system takes into ac count all the functional relationships

concerning the heat exchanger, answering also any other question

is a mere matterof routine. Thefollowing figures are examples

of variations of the operating data. Theyinfluence of the pressure

drop on the overall cost and the structural volume is investigated

for the minimum cost variants.

Fig. 12 shows the influence of the primary pressure drop on the

overall costs with the material as a parameter. The curve behaves

as one would expect. An increase in the primary pressure drop resu1ts

in a decrease of the capita1 costs. The same trend is reflected also

in the influence upan the structural volume in accordance with foig.

13.

In Fig. 14 the influence of the secondary pressure drop on the

overall cost i5 shown. Here, the trend is reversed. An increase

in secondary pressure drop does improve the heat transfer on the

tubes side, but also increases the tube length. Since thc primary

pressure drop remains constant, heat transfer on thc shell side

will thus be reduced. The deterioration on thc shell side excecds

the improvement on the tube side. Hence, there is an increase in

the heating surface. Another increase in costs arises from the

increase in the height of the vessel. This also exceeds the slight
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reduction of the diameter of the vesse1. In this way, one can explain

why an increase in the secondary pressure drop results in an in-

crease in the overall costs.

Fig. 15 represents theinf1uence of the secondary pressure drop on

thc structural volume. Again, thc effect i~as described ahove.

1m increase in pressure drop will increase thc structural volume.

These examples show the tremendous advantages and the possibilities

inherent in the use of EDP systems in engineering design. The

app1ication of such program systems has made it possible to in-

crease the productivity of the planning engineer in a way never

experienced hefore. Since all the routine work, which • 1
15 SUC,l an

expense of time, is thus kept away from man, man has found time

again to devote his attention to thc braad outlines of a highcr

order. This allows hirn to pursue many problems that would have gone

unanswered in former times, also because of the tremendous amount

of expenditure involved in their solution.

Thc program system outlined above does not yet supply a detailed

design of the heat exchanger ready for fabrication. However, it does

makc available all the information whieh is neces~ary for funda-

mental decisions and analyses. The eoncept selected hardly imposcs

any limits on the extensibility of the s y s t em , Henc e , it wi l I be

possible in most eascs to adapt it ta specific situations anel

canditions.
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Nomenclature

Nu

Pe

Pr

t

References

Guter tube diameter

Nusselt number

Peclet number

Prandtl number

Pitch of tube

Eddy diffusivity for momentum transfer

Kinematic viscosity

Average value"of eddy diffusivity for he at transfer

to sM

[-, 7 H. SCHNAUDER , smsx ein Programrnsys tem zur thermodynamischen

und festigkeitsmäßigen Auslegung von natriumheheizten Zwischen­

l;ilifmetauschern,

Kernforschungszentrum Karlsruhe, KFK, to he puhlisherl
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NO. I DIN-$PECIFICATION DINI-NO. I AISI-NO.
-------------------- -------

1 I xe er Ni Nb 16 13 (1. ~r961 )
I

I --------- - - --

2 I xs er Ni Mo 18 12 (1.~~436) I 316
--

3 I X6 Clr Ni 18 '11 I (1. ~~948) I 304
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Thermal pd,wer
Primary inlet temperature
Primary cuttet temperature
Secondary ~nlet temperature
Secondary outlet tempercture
Primdry pressure drop
Secondnry jpressure drop
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Secondary .design pressure

250MW
550 -c
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340°C
53() -c
0.7 at
0.7 at
10 at
15 ct

\

Fig. 7 R,ference ()perating end Design Data
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