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Erratum

In fig. 1 and fig. 2 the slope of the theoretical curve between 0

and 10 %porosity is convex with respect to the top of the figures

caused by an error in the drawing. It should be slightly concave,

which results in an even better agreement with the experimental values.
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A critical consideration is given to equations used in
several papers to describe the dependence of thermal
conductivity on porosity. It is shown that the only
method of derivation justified physically is that
starting from the general field equation. In this way
following the methods of Maxwell, Bruggeman and
Niesel two equations have been derived, the calculated
values of which agree closely with the experimental
values of the thermal conductivity for porous U0 2

and UNo In these equations two clearly defined
stereometric factors appear, which take into account
the effect of the shape and the orientation of the pores
on the thermal conductivity. These factors can be
calculated by using stereometric data measured in the
microstructural sections. The reason one obtains two
equations lies in the fact that two types of porosity
occur: cIosed isolated as well as interconnected poro­
sity. The equations and their means of derivation are
explained.

Une etude critique des öquations utilisees dans
pluaieurs articIes pour deorire les relations entre
oonductivite thermique et porosite des combustibles
nueleaires est presentöe. On montre que la seule
methode de derivation justifiee physiquement est
celle basee sur I'öquation genorale du champ. De
cette maniero, en s'inspirant des methodos de Maxwell,
Bruggeman et Niesol, deux öquat.iona en ont ete
deduites et les valeurs caleulees a partir de celles-ci
s'accordent de pres avec les valeurs experimentales de
'ta conducbivite thermique dans le cas des combusti-

bles poreux U02 et UNo Dans ces öqnations apparais­
sent deux facteurs clairement döflnis qui prennent en
compte l'effet de la forme et de l'orientation des pores
sur la conductivite thermique. Ces facteurs peuvent
etre calcules en utilisant les donnees störeomet.riques
mesuröos sur les coupes de la microstructure. La raison
pour laquelle on obtient deux equations repose sur le
fait que deux types de porosite se produisent: des
pores fermös aussi bien que des pores interconnectes.
Les öquaüions et la facon de les deriver sont explioites.

Die in verschiedenen Arbeiten verwendeten Glei­
chungen zur Beschreibung der Abhängigkeit der
Wärmeleitfähigkeit von der Porosität werden kritisch
behandelt. Es wird gezeigt, dass der physikalisch
begründete Weg der Ableitung nur derjenige sein kann,
der von der allgemeinen Feldgleichung ausgeht.
Auf diesem 'Vege lassen sich mit Ansätzen von Max­
well, Bruggeman und Niesol zwei Gleichungen ableiten,
die die experimentellen Werte für poröses Uran­
dioxid und poröses Uranmononitrid richtig beschrei­
ben. Sie enthalten physikalisch klar definierte Stereo­
metriefaktoren, die den Einfluss der Porenform und
-orientierung auf die Leitfähigkeit wiedergeben.
Diese Stereometriefaktoren sind aus Messungen am
Gefüge rechnerisch bestimmbar. Zwei Gleichungen
ergeben sich deshalb, weil der Einfluss geschlossener
Poren anders ist als derjenige offener Poren. Die
Gleichungen und der Weg ihrer Ableitung werden
erläutert.

1. Theoretical background the thermal conductivity (k) and the porosity
During the last two years there have been (P) is Maxwell's equation 7). Frequently this

several contributions in this journal considering equation is also attributed to Eucken 2,4-6,10),
how the thermal conductivity of U02, (UPU)02, owing to an erroneous quotation by Kingery 9).
UN and (UTh)02 depends on porosity 1-6). In Eucken hirnself did not derive this equation
some of these publications attempts were made but quoted Maxwell and used his equation for
to oompare the experimental values with those calculating the thermal conductivity of binary
theoretically calculated. The starting point for phase mixtures. For the ease of closed porosity
theoretically conceiving the relationship between formed by isolated spherical pores of low
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concentration, which do not conduct any heat,
the Maxwell equation is

equation is of the type

In the equation the mean intercept length
(L) has been taken as a measure of the pore
size. At a given porosity the me an free distance
between the pores increases with their size.
Hence eq. (1) can be used up to a higher
porosity for larger pores than for smaller ones.
Therefore it is not sufficient to relate the limit
of validity of eq. (1) only to the amount of
porosity.

In order to overcome the restriotion to
spherioal pore shape several authors modified
Maxwell's equation by inserting a so-called
"geometrieal faetor" 4, 13-15). The modified

where ko is the thermal conductivity of the
nonporous material.

Maxwell derived his equation by considering
a homogeneous field in a single-phase dense
material, which is changed if parts of the
material are replaced by spherical particles of
a second phase. The resulting field is formed
by the interference of the original field and
the stray field, caused by the inclusions. In the
case of thermal conductivity a temperature
field results whioh governs the thermal conduo­
tivity of the two-phase material. Assuming the
limiting case that the thermal conductivity of
the second phase becomes zero, eq. (1) follows
and is valid for porous materials.

To avoid the superposition of stray fields
caused by different pores, the pores should be
separated by a certain distanoe. This is the
reason why eq. (1) is only valid for low
porosities. In addition to the total amount of
pores, their distance is also dependent on their
size. This follows quantitatively from the
equation for the mean free distance (X) derived
by Fullman 8):

(5)

(3)

(4)

I-P
k=ko I + ßP'

I-pt
k= ko I-pt+P'

where ß is the geometrical factor. Assuming
an ellipsoidal shape of the pores, both Fricke
and Marino determined the geometrical factor
as a function of the axial ratio of the ellipsoid
as well as of the condnctivities of the pores
and of the matrix material 4, 15). However,
Ohm's law was used in the mathematical
treatment by Fricke and this may lead to
doubtful results. The reason for this statement
is most clearly demonstrated by considering the
equation of Kämpf and Karsten, which is
totally based on Ohm's law 10). A correct
mathematioal procedure following the method
of Kämpf and Karsten would lead to two
different equations 16) :

This result implies that the same porous
material under given conditions could have two
different conductivities. Powers had already
pointed out this contradiction s"). The reason
lies in the fact that Ohm's law is an integrated
form of the general field equation, restricted
to special presuppositions not fulfilled in the
present problem 12, 16). Therefore the use by
Marino and Kikuchi et al. of Fricke's equation
together with eq. (3), in order to correct the
thermal conductivity of nuclear fuels for pores
is questionable. In addition the "geometricst
factor" in eq. (3) is not only dependent on
stereometrio quantities: it can also dopend on
the density as well as on the temperature of
the measured specimen s- 4, 6). Consequently ß
has to be determined empirically 01' semi­
empirically. For this reason these geometrical
factors are useless if thephysical understanding
of the porosity dependence of thermal oonduo­
tivity is desired, Consequenbly it is only worth

(2)

(1)
I-P

k= ko1 +O.5P'
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[
1-cos 20;0 eos 20;p ]

x k(l-Fo)+koFo + ko(1-2Fo)+2kFo

_ P [1- cos
2

0;p + cos
2

0;p] = O· (7)
1-Fp 2Fp ,

pores Niesel had to take into aocount that
another factor exists besides the shape : the
orientation. Obviously the "orientation" of
spheres is always "statistieal". As a eonsequenee
the effeet of the stray field mentioned before
is now governed by two stereometrio para­
meters: the orientation faetor (cos- 0;) and the
form factor (F). Both faetors appeal' in Niesel's
equations related to two phase materials 16, 20).

From these equations, which are implieit,
simpler forms can be derived for the case of
noneondueting pores 20) :

eq. (6) is valid for isolated closed pores,
eq. (7) for interconnected porosity. The indices
are related to the matrix material (0) and the
pores (p). The stereometrie faetors eoncerning
the shape and the orientation ean be caleulated
generally and determined for a specific material
by measuring miorostructural quantities in its
plane of polish 20-24). The limiting cases of the
rotational ellipsoid are the dise and the cylinder
of infinitesimal thickness. In table 1 the stereo­
metrie faetors are given for these eases as well as
for a sphere, Also given are three sets of
orientation factors related to the statistical
orientation and to the orientation of the
rotational axis parallel 01' perpendioular to the
direction of the field.

More detailed information is given in the
literatute 16,20). The stereometrie faetors used
here are Independent of temperature and their
physical sense is clear. The shape factor stands
for that ellipsoid which is the best approach
to the average of the real pores. The orientation
factor is determined by the angles (0;) formed
by the rotation axes of the ellipsoidal pores

(6)
cos 20;p

k=ko (l-P) 2Fp

(l-P) (ko-k)

considering those ways of derivation which use
the general field equation as a basis, as
Maxwell did.

Bruggeman followed the physieally correet
method of Maxwell with the aim of overcoming
the restriotion of eq. (1) to small pore eoneen­
trations. For this purpose he differentiated
eq. (1) with respect to the porosity (P) to
obtain the variation of the thermal eonductivity
for small inereases in porosity. The integration
between a eonductivity zero - for "total"
porosity - and the oonduetivity for the dense
material leads to an equation without a
restrietion to low pore concentration 16-18,20).

However, this equation is only valid for
isolated elosed pores as stated by Maxwell. To
obtain a eorresponding equation valid for open
intereonneeted porosity another "thought­
experiment" is neeessary ; this too was proposed
by Bruggeman 16-18,20). Starting with a material
eonsisting of interconnected pores in a hulk
body, one can use Maxwell's equation if only
a small amount of porosity is added, In the
next step the concentration of the solid phase
is inoreased such that the original conductivity
is obtained. Again eq. (1) can be used to
calculate the resulting thermal conductivity.
By repeating this procedure until both phases,
the pores and the solid phase aohieved inter­
eonneeted strueture at the desired coneen­
tration, Bruggeman got a secend equation valid
for intereonneeted and open porosity without
any restrietion on the coneentration range of
the pores.

Further progress was made by Niesel w), He
used the two equations, valid for isolated olosed
pores and interconneeted porosity, assuming
an ellipsoidal shape of the pores. His mathe­
matical treatment led to two equations free
of the restrietion to spherioal pores. The
advantage of ellipsoidal pores as an approaoh
to the real pore shape is the possibility of
varying the axialratios of the ellipsoids in an
unrestricted range. By doing this, many ir­
regular shapes ean be approximated by ellip­
soids, having the same volume and similar mean
size CL). Leaving the assumption of spherieal
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TABLE 1

Values of the stereometrie factors for special casos

IShape factor I I Orientation factor
Geometry (F) Orientation (cos2 !X)

Infinite thin disc F --+ 0 perpendicular to the fleld 0

Sphere 0.33 statistical 0.33

Infinite thin cylinder F --+0.5 parallel to the field 1

and the field direction. In sect. 2 an attempt
will be made to compare experimental results
taken from the literature with the theoretical
values calculated by the equations given above.

Fig. 1. The dependence of normalized thermal con­
ductivity on porosity. Experimental values: I: U02

after Craeynest and Stora, r: (Uo.SPUO.2)02 after
Craeynest and Stora, l: U02 after Müller, -: theore-

tical curve,

2. Comparison between theoretical and
experimental results

The literature data used in this seetion are
taken from papers whieh at least gave a clue
about the stereometrie mierostructure of the
speeimens measured. In fig. 1 the measured
thermal eonduetivities of U02 and (UPU)02
are normalized by dividing them by the
measured value of the nonporous material at
the eorresponding temperature. The margin of
error, given in fig. 1 for each porosity, is eaused
by the fact that the values measured at different
temperatures differ statistieally. Aceording to

eqs. (6) and (7) the normalized thermal
eonductivities as functions of porosity do not
vary with temperature, but only with the shape
and orientation of the pores. Fig. 1 also contains
values for the thermal conduetivity of U0 2

whieh have been taken from normalized
average values in the literature 26).

The information given in the Iiterature about
the speeimens mierostructure allows the
assumption of spherieal porosity for ealeulating
a theoretieal ourve. It was also possible to
assess the ranges for elosed (P< 12%) and for
interconnected porosity by analysing mioro­
structural photographs given in the papers.
Therefore the first part (P< 12%) of the eurve
in fig. 1 is ealeulated using eq. (6), (Fp=0.33;
cos'' iXp = 0.33) whilst eq. (7) was used for the
seeond part. The interconnected porosity was
thought to be built up by eylindrieal pores
(Fp=0.5; eos2 iXp=0.33) and the dense material
was thought to be construeted by dense
cylindrical partioles of that phase (F o=0.5;
COS2iXO= 0.33). The special reason for this
assumption is explained elsewhere 30). A detailed
consideration of eq. (7) shows that the influenee
of the shape factor (F) on the thermal eonduo­
tivity in a eertain region (t <: F <:t) is small
in the ease ofintereonneeted phases 28). Further­
more, there is a eertain lack of aceuracy in the
determination of the stereometrie factors in
such a case 20).

Thus the formal assumption about cylindrioal
elementary parts in the porous materials
eonsidered here is aeceptable. As ean be seen
in fig. 1 some experimental values do not touch
the theoretieal eurve, especially in the range
corresponding to intereonneeted porosity. These
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Fig. 2. The dependence of the normalized thermal
conductivity of UN on porosity: I: experimental

values of Kikuchi et al. , -: theoretical curve,

results indicate that for these values the
assumption of cylindrical shape and statistical
orientation for the pores as well as for the
solid phase was not justified. Other shapes can
be forrned easily by powder metallurgical
procedures Iike coextrusion 01' hot pressing
for example. These techniques can also lead
to oriented structures. Tagether, both the shape
and the orientation factor can change in such
a way that the right hand side of the curve
infig. 1 may be shifted to lügher 01' lower values.

There are same new measurements given in
the literature 29) which are not included in
fig. 1. The reason for this is the fact that the
stereometrie factars for the (U, PU)02 material
concerned are not given. On the other hand,
the assumption of spherical 01' cylindrical pores
would not be justified at all by the available
information. In this context it is worth,
mentioning that miorooracks can be considered
as oblate pores (lameIlae), so that their influence
on the conductivity can be calculated with the
equations given above.

In fig. 2 the same comparison between a
theoretical curve and experimental data is made
for UN. The data are taken from the work
of Kikuohi et al. 2), who also determined by
excellent measurements the portions of closeel
anel open porosity in their specimens 2). There­
fore the ranges of porosity for whioh either
eq. (6) (P< 10%) 01' eq. (7) had to be used
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were fixeel. In order to normalize the thermal
conductivities at different amounts of porosity
the values for elense UN were needed, They
were gained by extrapolation of the curves of
Kikuchi et al. showing the dependence of the
thermal conductivity on porosity at different
temperatures.

The extrapolated values agree closely with
those measured for aro-melted UN 3). Concerning
the pore form and orientation the same factors
were used as in the case of U02 (see fig. 1).
As shown in fig. 2 the agreement between
the experimental data and the theoretical
curve is good.

3. Conclusion

The equations proposed in order to calculate
the depenelence of the thermal conductivity
on porosity are useful to describe the slope of
thermal conductivity curves for nuclear fuels
containing nonconelucting pores. There is a
clear effect of the shape and the orientation
of the pores on the thermal conductivity. This
effect can be calculated for specific micro­
structures by using measured stereometrie elata
from the planes of polish 12,20,21,23). The

stereometrie factors concerning shape and
orientation of the pores in the proposed
equations are Independent of any parameters
such as temperature, density etc. except those
related to the geometry and geometrical
arrangement of the porous material.

Considering the case of conducting pores,
01' more generally the case of two-phase
materials, one has to return to the general
equations of Niesel 16,19,20,25). One of them is
valid for matrix-structured material corre­
sponding to closed, isolateel pores. The other
one is valid for penetration type struotured
material corresponding to interconnected
porosity. The equations considereel here are
valid either for nonconducting pores 01' two­
phase material, in which a large difference
exists between the thermal conductivities of
the phases (k1/k2 -+ 0). In the latter case a
successful comparison between the experimental
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and theoretieal data has already been performed
by using eermets as an example 25).

In addition to the shape and orientation
faetors there exist three other stereometrie
faetors: size, number and distribution of the
phase eonstituents present in the material 24).
Size and number are ineluded in the dependenee
of the thermal eonduetivity on eoneentration.
The distribution, however, was taken to be
statistieal and eonstant in all eases eonsidered
above due to the faet that no useful quantitative
eriteria for the degree of distribution exists in
theoretieal equations up to now,
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