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Erratum

In fig. 1 and fig. 2 the slope of the theoretical curve between o
and 10 % porosity is convex with respect to the top of the figures
caused by an error in the drawing. It should be slightly concave,

which results in an even better agreement with the experimental values.
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A critical consideration is given to equations used in
several papers to describe the dependence of thermal
conductivity on porosity. It is shown that the only
method of derivation justified physically is that
starting from the general field equation. In this way
following the methods of Maxwell, Bruggeman and
Niesel two equations have been derived, the calculated
values of which agree closely with the experimental
values of the thermal conductivity for porous UOs
and UN. In these equations two clearly defined
stereometric factors appear, which take into account
the effect of the shape and the orientation of the pores
on the thermal conductivity. These factors can be
caloulated by using stereometric data measured in the
microstructural sections. The reason one obtains two
equations lies in the fact that two types of porosity
oceur: closed isolated as well as interconnected poro-
sity. The equations and their means of derivation are
explained.

Une étude critique des équations utilisées dans
plusieurs articles pour déerire les relations entre
conductivité thermique et porosité des combustibles
nucléaires est présentée. On montre que la seule
méthode de dérivation justifiée physiquement est
celle basée sur 'équation générale du champ. De
cette maniére, en s’inspirant des méthodes de Maxwell,
Bruggeman et Niesel, deux équations en ont été
déduites et les valeurs calculées & partir de celles-ci
s’accordent de prés avec les valeurs expérimentales de

‘la. conductivité thermique dans le cas des combusti-

1. Theoretical background

During the last two years there have been
several contributions in this journal considering
how the thermal conductivity of UOg, (UPu)Oq,
UN and (UTh)Os depends on porosity 1-6). In
some of these publications attempts were made
to compare the experimental values with those
theoretically calculated. The starting point for
theoretically conceiving therelationship between

bles poreux UO; et UN. Dans ces équations apparais-
sent deux facteurs clairement définis qui prennent en
compte 1’effet de la forme et de I'orientation des pores
sur la conductivité thermique. Ces facteurs peuvent
étre calculés en utilisant les données stéréométriques
mesurées sur les coupes de la microstructure. La raison
pour laquelle on obtient deux équations repose sur le
fait que deux types de porosité se produisent: des
pores fermés aussi bien que des pores interconnectés.
Les équations et la facon de les dériver sont explicités.

Die in verschiedenen Arbeiten verwendeten Glei-
chungen zur Beschreibung der Abhéingigkeit der
Warmeleitfahigkeit von der Porositét werden kritisch
behandelt. Es wird gezeigt, dass der physikalisch
begrindete Weg der Ableitung nur derjenige sein kann,
der von der allgemeinen Feldgleichung ausgeht.
Auf diesem Wege lassen sich mit Anséitzen von Max-
well, Bruggeman und Niesel zwei Gleichungen ableiten,
die die experimentellen Werte flir poréses Uran-
dioxid und poréses Uranmononitrid richtig beschrei-
ben. Sie enthalten physikalisch klar definierte Stereo-
metriefaktoren, die den Einfluss der Porenform und
-orientierung auf die Leitfdhigkeit wiedergeben.
Diese Stereometriefaktoren sind aus Messungen am
Gefuge rechnerisch bestimmbar. Zwei (Gleichungen
ergeben sich deshalb, weil der Einfluss geschlossener
Poren anders ist als derjenige offener Poren. Die
Gleichungen und der Weg ihrer Ableitung werden
erlautert.

the thermal conductivity (k) and the porosity
(P) is Maxwell’s equation?). Frequently this
equation is also attributed to Kucken 2. 4-6,10)
owing to an erroneous quotation by Kingery 9).-
Kucken himself did not derive this equation
but quoted Maxwell and used his equation for
calculating the thermal conductivity of binary
phase mixtures. For the case of closed porosity
formed by isolated spherical pores of low
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concentration, which do not conduct any heat,
the Maxwell equation is

1-P
b=k 55 W
where k¢ is the thermal conductivity of the
nonporous material.

Maxwell derived his equation by considering
a homogeneous field in a single-phase dense
material, which is changed if parts of the
material are replaced by spherical particles of
a second phase. The resulting field is formed
by the interference of the original field and
the stray field, caused by the inclusions. In the
case of thermal conductivity a temperature
field results which governs the thermal conduc-
tivity of the two-phase material. Assuming the
limiting case that the thermal conductivity of
the second phase becomes zero, eq. (1) follows
and is valid for porous materials.

To avoid the superposition of stray fields
caused by different pores, the pores should be
separated by a certain distance. This is the
reason why eq. (1) is only valid for low
porosities. In addition to the total amount of
pores, their distance is also dependent on their
gsize. This follows quantitatively from the
equation for the mean free distance (1) derived
by Fullman 8):

A=L——. (2)

In the equation the mean intercept length
(L) has been taken as a measure of the pore
size. At a given porosity the mean free distance
between the pores increases with their size.
Hence eq. (1) can be used up to a higher
porosity for larger pores than for smaller ones.
Therefore it is not sufficient to relate the limit
of validity of eq. (1) only to the amount of
porosity. ‘

In order to overcome the restriction to
spherical pore shape several authors modified
Maxwell’s equation by inserting a so-called
“geometrical factor” 413-15). The modified
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equation is of the type

1-P
IG= ]CO m? 3 (3)
where f is the geometrical factor. Assuming
an ellipsoidal shape of the pores, both Fricke
and, Marino determined the geometrical factor
as a function of the axial ratio of the ellipsoid
as well as of the conductivities of the pores
and of the matrix material4 15). However,
Ohm’s law was used in the mathematical
treatment by Fricke and this may lead to
doubtful results. The reason for this statement
is most clearly demonstrated by considering the
equation of Kampf and Karsten, which is
totally based on Ohm’s law19). A correct
mathematical procedure following the method
of Kédmpf and Karsten would lead to two
different equations16):

k=ko(1—P¥), (4)
1—p%
b= ko s (5)

This result implies that the same porous
material under given conditions could have two
different conductivities. Powers had already
pointed out this contradiction 27). The reason
lies in the fact that Ohm’s law is an integrated
form of the general field equation, restricted
to special presuppositions not fulfilled in the
present problem 12.16), Therefore the use by
Marino and Kikuchi et al. of Fricke’s equation
together with eq. (8), in order to correct the
thermal conductivity of nuclear fuels for pores
is questionable. In addition the ‘“‘geometricsi
factor” in eq. (3) is not only dependent on
stereometric quantities: it can also depend on
the density as well as on the temperature of
the measured specimen3 4. 6). Consequently f
has to be determined empirically or semi-
empirically. For this reason these geometrical
factors are useless if the physical understanding
of the porosity dependence of thermal conduc-

tivity is desired. Consequently it is only worth
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considering those ways of derivation which use
the general field equation as a basis, as
Maxwell did.

Bruggeman followed the physically correct
method of Maxwell with the aim of overcoming
the restriction of eq. (1) to small pore concen-
trations. For this purpose he differentiated
eq. (1) with respect to the porosity (P) to
obtain the variation of the thermal conductivity
for small increases in porosity. The integration
between a conductivity zero—for ‘“total”
porosity —and the conductivity for the dense
material leads to an equation without a
restriction to low pore concentration 16-18,20),
However, this equation is only valid for
isolated closed pores as stated by Maxwell. To
obtain a corresponding equation valid for open
interconnected porosity another ‘‘thought-
experiment’ is necessary ; this too was proposed
by Bruggeman 16-18, 20} Starting with a material
consisting of interconnected pores in a bulk
body, one can use Maxwell’s equation if only
a small amount of porosity is added. In the
next step the concentration of the solid phase
is increased such that the original conductivity
is obtained. Again eq. (1) can be used to
calculate the resulting thermal conductivity.
By repeating this procedure until both phases,
the pores and the solid phase achieved inter-
connected structure at the desired concen-
tration, Bruggeman got a second equation valid
for interconnected and open porosity without
any restriction on the concentration range of
the pores.

Further progress was made by Niesel19). He
used the two equations, valid, for isolated closed
pores and interconnected porosity, assuming
an ellipsoidal shape of the pores. His mathe-
matical treatment led to two equations free
of the restriction to spherical pores. The
advantage of ellipsoidal pores as an approach
to the real pore shape is the possibility of
varying the axial ratios of the ellipsoids in an
unrestricted range. By doing this, many ir-
regular shapes can be approximated by ellip-
soids, having the same volume and similar mean
size (L). Leaving the assumption of spherical
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pores Niesel had to take into account that
another factor exists besides the shape: the
orientation. Obviously the ‘“orientation” of
spheres is always “‘statistical”’. As a consequence
the effect of the stray field mentioned before
is now governed by two stereometric para-
meters: the orientation factor (cos?«) and the
form factor (¥). Both factors appear in Niesel’s
equations related to two phase materials 16 20),
From these equations, which are implicit,
simpler forms can be derived for the case of
nonconducting pores 20):

cos’ap  1—cosap 6
k=ko (1—P) 28y Fy—1 > (6)
(1—P) (ko— )
1—cos2g cos2x, ]
]Cl—Fo)—l—]CoI’o k0(1~2F0)+2kF0
1— cos2uyp cos2o¢p:| e
P[ 1— Iy 2F, =% (7)

eq. (6) is valid for isolated closed pores,
eq. (7) for interconnected porosity. The indices
are related to the matrix material (0) and the
pores (p). The stereometric factors concerning
the shape and the orientation can be calculated
generally and determined for a specific material
by measuring microstructural quantities in its
plane of polish 20-24), The limiting cases of the
rotational ellipsoid are the dise and the cylinder
of infinitesimal thickness. In table 1 the stereo-
metric factors are given for these cases as well as
for a sphere. Also given are three sets of
orientation factors related to the statistical
orientation and to the orientation of the
rotational axis parallel or perpendicular to the
direction of the field.

More detailed information is given in the
literature 16, 20), The stereometric factors used
here are independent of temperature and, their
physical sense is clear. The shape factor stands
for that ellipsoid which is the best approach
to the average of the real pores. The orientation
factor is determined by the angles (x) formed
by the rotation axes of the ellipsoidal pores
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TaBLE 1

Values of the stereometric factors for special cases

Geometry Shape factor Orientabion Orientation factor
() (cos? «)
Infinite thin disc F—-0 perpendicular to the field 0
Sphere 0.33 statistical 0.33
Infinite thin eylinder| F — 0.5 parallel to the field 1
and the field direction. In sect. 2 an attempt eqs. (6) and (7) the normalized thermal

will be made to compare experimental results
taken from the literature with the theoretical
values calculated by the equations given above.

2. Comparison between theoretical and
experimental results

The literature data used in this section are
taken from papers which at least gave a clue
about the stereometric microstructure of the
specimens measured. In fig. 1 the measured
thermal conductivities of UOy and (UPu)O.
are mnormalized by dividing them by the
measured value of the nonporous material at
the corresponding temperature. The margin of
error, given in fig. 1 for each porosity, is caused
by the fact that the values measured at different
temperatures differ statistically. According to
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Fig. 1. The dependence of normalized thermal con-

ductivity on porosity. Experimental values: I: U0,

after Craeynest and Stora, I: (Up.sPuo,2)Oz after

Craeynest and Stora, °1 U0 after Miiller, —: theore-
tical curve.

conductivities as functions of porosity do not
vary with temperature, but only with the shape
and orientation of the pores. Fig. 1 also contains
values for the thermal conductivity of UOg
which have been taken from mnormalized
average values in the literature 26),

The information given in the literature about
the specimens microstructure allows the
assumption of spherical porosity for calculating
a theoretical curve. It was also possible to
assess the ranges for closed (P<129%,) and for
interconnected porosity by analysing micro-
structural photographs given in the papers.
Therefore the first part (P <129%,) of the curve
in fig. 1 is calculated using eq. (6), (#p=0.33;
cos? oy =0.33) whilst eq. (7) was used for the
second part. The interconnected porosity was
thought to be built up by cylindrical pores
(#p=0.5; cos? «p=0.33) and the dense material
was thought to be constructed by dense
cylindrical particles of that phase (Fy=0.5;
cos?og=0.33). The special reason for this
assumption is explained elsewhere 30). A detailed
consideration of eq. (7) shows that the influence
of the shape factor (#) on the thermal conduec-
tivity in a certain region (3<l'<3) is small
in the case of interconnected phases 28). Further-
more, there is a certain lack of accuracy in the
determination of the stereometric factors in
such a case 20),

Thus the formal assumption about cylindrical
elementary parts in the porous materials
considered here is acceptable. As can be seen
in fig. 1 some experimental values do not touch
the theoretical curve, especially in the range
corresponding to interconnected porosity. These
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results indicate that for these values the
assumption of cylindrical shape and statistical
orientation for the pores as well as for the
solid phase was not justified. Other shapes can
be formed easily by powder metallurgical
procedures like coextrusion or hot pressing
for example. These techniques can also lead
to oriented structures. Together, both the shape
and the orientation factor can change in such
a way that the right hand side of the curve
infig. 1 may be shifted to higher or lower values.

There are some new measurements given in
the literature®®) which are not included in
fig. 1. The reason for this is the fact that the
stereometric factors for the (U, Pu)O; material
concerned, are not given., On the other hand,
the assumption of spherical or cylindrical pores
would not be justified at all by the available
information. In this context it is worth,
mentioning that microcracks can be considered
as oblate pores (lamellae), so that their influence
on the conductivity can be calculated with the
equations given above.

In fig. 2 the same comparison between a
theoretical curve and experimental data is made
for UN. The data are taken from the work
of Kikuchi et al.2), who also determined by
excellent measurements the portions of closed
and open porosity in their specimens 2). There-
fore the ranges of porosity for which either
eq. (6) (P<109%,) or eq. (7) had to be used
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Fig. 2. The dependence of the normalized thermal
conduetivity of UN on porosity: I: experimental
values of Kikuchi et al.,, —: theoretical curve.
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were fixed. In order to normalize the thermal
conductivities at different amounts of porosity
the values for dense UN were needed. They
were gained by extrapolation of the curves of
Kikuchi et al. showing the dependence of the
thermal conductivity on porosity at different
temperatures.

The extrapolated values agree closely with
those measured for are-melted UN 3). Concerning
the pore form and orientation the same factors
were used as in the case of UO; (see fig. 1).
As shown in fig. 2 the agreement between
the experimental data and the theoretical
curve is good.

3. Conclusion

The equations proposed in order to calculate
the dependence of the thermal conductivity
on porosity are useful to describe the slope of
thermal conductivity curves for nuclear fuels
containing nonconducting pores. There is a
clear effect of the shape and the orientation
of the pores on the thermal conductivity. This
effect can be calculated for specific micro-
structures by using measured stereometric data
from the planes of polish12 20,21,23)  The
stereometric factors concerning shape and
orientation of the pores in the proposed
equations are independent of any parameters
such as temperature, density ete. except those
related to the geometry and geometrical
arrangement of the porous material,

Considering the case of conducting pores,
or more generally the case of two-phase
materials, one has to return to the general
equations of Niegel 16,19,20,25) Qne of them is
valid for matrix-structured material corre-
sponding to closed, isolated pores. The other
one is valid for penetration type structured
material corresponding to interconnected
porosity. The equations considered here are
valid either for monconducting pores or two-
phase material, in which a large difference
exists between the thermal conductivities of
the phases (ki/ks —>0). In the latter case a
successful comparison between the experimental
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and theoretical data has already been performed
by using cermets as an example 25),

In addition to the shape and orientation
factors there exist three other stereometric
factors: size, number and distribution of the
phase constituents present in the material 24).
Size and number are included in the dependence
of the thermal conductivity on concentration.
The distribution, however, was taken to be
statistical and constant in all cases considered
above due to the fact that no useful quantitative
criteria for the degree of distribution exists in
theoretical equations up to now.
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