

KERNFORSCHUNGSZENTRUM

KARLSRUHE

November 1972

KFK 1679

Abteilung Strahlenschutz und Sicherheit

Kontinuierliche Messung von Krypton-85 in Anwesenheit von Argon-41

H. Edelhäuser, H. Fessler, H. Michel

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK-1679

Abteilung Strahlenschutz und Sicherheit

Kontinuierliche Messung von Krypton-85 in Anwesenheit von Argon-41

H. Edelhäuser, H. Fessler und H. Michel Kernforschungszentrum Karlsruhe

🙀 jetzt: Bundesministerium für Bildung und Wissenschaft, Bonn

Gesellschaft für Kernforschung, Karlsruhe

Zusammenfassung

Es wird ein Verfahren zur Messung der Aktivitätskonzentration von 85 Kr in Luft bei Anwesenheit des Störstrahlers 41 Ar und von Umgebungsstrahlung beschrieben. Die Meßanordnung besteht aus Dreifachdurchflußzählrohren in Sandwichbauweise, unter Verwendung einer die beiden Meßzählrohre trennenden Absorberfolie, wodurch unterschiedliche Empfindlichkeiten für die β -Strahlungen von 85 Kr und 41 Ar erzielt werden. Für den Fall, daß nur die β -Strahlung des 41 Ar aus dem Meßvolumen kompensiert werden muß, ergibt sich mit der beschriebenen Anlage eine Nachweisgrenze für 85 Kr von 1,4 \cdot 10 $^{-8}$ Ci/m³. Bei Einfluß äußerer γ -Strahlung aus der 41 Ar-Wolke muß das Kompensationsverfahren so modifiziert werden, daß sowohl der Einfluß der γ -Strahlung als auch der β -Strahlung von 41 Ar kompensiert wird. Die Nachweisgrenze beträgt dann aber 12,5 \cdot 10 $^{-8}$ Ci/m³.

Abstract

Continuous measurement of ⁸⁵Kr in presence of ⁴⁵Ar

In this report a method for measuring the activity of 85 Kr in air in the presence of 41 Ar will be described. The detector system consists of three large area gas flow counters arranged as a sandwich. The two counters, which are provided for the measurement of the 85 Kr and 41 Ar- β particles are separated by an absorber foil to get different sensibilitys for the 85 Krand 41 Ar- β radiation. If there is no gamma-background from 41 Ar the lower detection limit for 85 Kr is $1,4\cdot10^{-8}$ Ci/m³. If 41 Ar- γ radiation from the environment can enter the detectors a modified compensation must be used, so that both gamma- as well as betaradiation from 41 Ar will be compensated. The lower detection limit will then increase to $12,5\cdot10^{-8}$ Ci/m³.

1. Aufgabenstellung

Eine wirtschaftliche Nutzung der Kernenergie ist nur dann möglich, wenn der in abgebrannten Brennelementen verbliebene Spaltstoff zurückgewonnen wird. Zum Zwecke der Rückgewinnung müssen die im Reaktor aktivierten Brennelemente zerkleinert und aufgelöst werden, wobei vorallem gasförmige Spaltprodukte zur Freisetzung gelangen. Durch die 1.SSVO sind für die Konzentration dieser Stoffe in Luft bestimmte maximal zulässige Werte vorgeschrieben, deren Einhaltung nachgewiesen werden muß. Hierbei ist der Nachweis des radioaktiven Edelgasisotops ⁸⁵Kr wegen seiner großen Halbwertszeit und der damit verbundenen Gefahr der Anreicherung in der Atmosphäre von besonderem Interesse.

Durch die Inbetriebnahme der Wiederaufarbeitungsanlage für Kernbrennstoffe im September 1971 in Leopoldshafen stellte sich die Aufgabe, die Aktivitätskonzentration von ⁸⁵Kr in Luft in Anwesenheit von Störstrahlern und von Umgebungsstrahlung zu messen. Als Störstrahler war vorallem das Edelgasisotop ⁴¹Ar zu berücksichtigen, das von den auf dem Gelände des Kernforschungszentrums Karlsruhe betriebenen Reaktoren in unmittelbarer Nähe der Wiederaufarbeitungsanlage in **d**ie Atmosphäre freigesetzt wird.

2. Kompensation des Einflusses von ⁴¹Ar auf die Messung von ⁸⁵Kr

Wegen seiner geringen γ -Emissionswahrscheinlichkeit von ca. o,4 % ist das ⁸⁵Kr praktisch ein reiner β -Strahler. Unter Berücksichtigung seiner maximalen β -Energie von o,67 MeV ist für eine empfindliche Direktmessung der Aktivitätskonzentration ein dünnwandiger β -Detektor erforderlich.

Das als Störstrahler zu erwartende ⁴¹Ar besitzt eine maximale β -Energie von 1,2 MeV und wird von demselben Detektor wesentlich empfindlicher gemessen. Außerdem wächst bei V**ergr**ößerung des Meßvolumens die Empfindlichkeit für ⁴¹Ar stärker als für ⁸⁵Kr. Daher sollte das Luftvolumen, aus dem β-Teilchen in den Detektor gelangen können, relativ klein bemessen sein.

 41 Ar ist gleichzeitig auch γ -Strahler, mit einer γ -Energie von 1,29 MeV und einer γ -Emissionswahrscheinlichkeit von 99 %. Dies hat zur Folge, daß bei unabgeschirmten Meßanordnungen der Meßeffekt nicht nur durch die 41 Ar-Konzentration im Meßvolumen, sondern zusätzlich durch den äußeren Einfluß des 41 Ar aus der Abluftfahne erhöht wird.

Ein empfindlicher Nachweis von ⁸⁵Kr durch Direktmessung ist daher bei Anwesenheit von ⁴¹Ar nur dann möglich, wenn Maßnahmen getroffen sind, durch die die Einflüsse der ⁴¹Ar-Strahlung aus dem Meßvolumen und aus der Abluftfahne kompensiert werden können.

3. Beschreibung der Meßanordnung

Für Versuchsmessungen mit 85Kr und 41Ar wurde die in Abb. 1 dargestellte Meßanlage benutzt. Das quaderförmige Meßvolumen von ca. 50 l Größe wird an zwei gegenüberliegenden Flächen durch eine Kombination von großflächigen Detektoren begrenzt. Jede Kombination besteht aus drei Großflächendurchflußzählrohren in Sandwichbauweise, von denen eines als Schutzzählrohr durch eine Stahlplatte gegenüber den beiden Meßzählrohren abgeschirmt ist. Die Meßzählrohre wurden durch Absorptionsfolien unterschiedlicher Dicke voneinander getrennt, während das dem Meßvolumen zugewandte Endfenster aus einer aluminiumbedampften Kunststoffolie von o,9 mg/cm² Dicke bestand. Die Impulsausgänge der Meßdetektoren waren in Antikoinzidenz zum Ausgang des Schutzzählrohrs geschaltet. Die Zählrate N₂ des mittleren Detektors wurde zusätzlich in Koinzidenz zur Impulsfolge des an das Meßvolumen anschließenden Detektors 3 gebildet. Bei geeigneter Absorptionsfolie zwischen den beiden Meßdetektoren ist mit dieser Anordnung - aufgrund der unterschiedlichen Maximalenergien - eine getrennte Messung der

- 2 -

 β -Strahlungen von ⁴¹Ar und ⁸⁵Kr möglich.

3.1_Messung_ohne_äußere_Einstrahlung_von___Ar

Im folgenden wird die Anwendung des Meßverfahrens zur Bestimmung von ⁸⁵Kr-Konzentrationen für den Fall beschrieben, daß keine äußere Einstrahlung von ⁴¹Ar vorliegt. Dies ist z.B. bei Messung in Abluftanlagen oder bei abgeschirmten Detektoranordnungen der Fall.

Für die mit der in Abb.1 dargestellten Anordnung gemessenen Aktivitätskonzentrationen A_K gelten dann folgende Beziehungen:

$$A_{K Kr} = \frac{1}{\eta^{\#} Kr} \cdot (N_3 - C_{Ar} \cdot N_2)$$

$$A_{KAr} = \frac{1}{\eta *} (N_2 - C_{Kr} \cdot N_3)$$

wobei
$$\eta_{Kr}^* = \frac{\eta_{3Kr}^{\eta_{2Ar}} - \eta_{2Kr}^{\eta_{3Ar}}}{\eta_{2Ar}}$$

$$n_{Ar}^{\#} = \frac{n_{3Kr}^{\eta} 2Ar}{n_{3Kr}} \frac{n_{2Kr}^{\eta} 3Ar}{n_{3Kr}}$$

$$C_{Ar} = \frac{\eta_{3Ar}}{\eta_{2Ar}}$$

$$C_{Kr} = \frac{\eta_{2Kr}}{\eta_{3Kr}}$$

N_i = β-Nettoimpulsrate des Detektors i (i = 2,3) η_{iAr} = β-Empfindlichkeit des Detektors i für ⁴¹Ar η_{iKr} = β-Empfindlichkeit des Detektors i für ⁸⁵Kr Die Nachweisgrenze für 85 Kr ist durch den mittleren statistischen Fehler σ (A_K) des Konzentrationswertes gegeben, der sich aus den mittleren statistischen Schwankungen σ (N_{io}) der Nullraten ⁺⁾ der Meßdetektoren wie folgt errechnet:

$$\sigma(A_{K Kr}) = \frac{1}{\eta *_{Kr}} \sqrt{[\sigma(N_{30})]^2 + C_{Ar}^2 \cdot [\sigma(N_{20})]^2}$$

Mit der in Abb.2 dargestellten Anordnung wurden Versuchsmessungen mit den Edelgasen ⁸⁵Kr und ⁴¹Ar durchgeführt, um die Empfindlichkeiten bei verschieden dicken Absorptionsfolien zwischen den Detektoren 2 und 3 zu bestimmen. Aus diesen Werten wurden die in Abb.3 dargestellten Nachweisgrenzen für ⁸⁵Kr errechnet.

Das Ergebnis zeigt, daß die beschriebene Meßanordnung bei einer Absorptionsfolie von 70-80 mg/cm² Dicke eine untere Nachweisgrenze für ⁸⁵Kr besitzt, die – unter Zugrundelegung einer Meßzeit von 1 min – ohne Anwesenheit von ⁴¹Ar etwa 4,4·10⁻⁸Ci/m³ beträgt. Bei allseitiger Abschirmung der Detektoranordnung durch 7 cm Blei läßt sich die Nachweisgrenze auf etwa 1,4·10⁻⁸Ci/m³ senken.

3.2_Messung_bei_äußerer_Einstrahlung_von_41Ar

Bei Meßanordnungen, die zur Umgebungsüberwachung mit wechselnden Standorten – beispielsweise in Meßfahrzeugen – eingesetzt werden sollen, läßt sich der Einfluß äußerer γ-Strahlung aus der ⁴¹Ar-Wolke durch Abschirmung aus Gewichtsgründen nicht mehr vermeiden. Hierfür wären nämlich bei der beschriebenen Anlage etwa 1 bis 1,5t Blei erforderlich.

Unter Berücksichtigung des Einflusses der äußeren γ-Strahlung aus der ⁴¹Ar-Wolke ändern sich die im Abschnitt 3.1 genannten Beziehungen wie folgt:

$$A_{K Kr} = \frac{1}{\eta *_{Kr}} \cdot E(N_3 * N_3\gamma) - C_{Ar} \cdot (N_2 * N_2\gamma)$$

$$A_{KAr} = \frac{1}{\eta_{Ar}^{*}} \cdot \left[\left(N_{2} + N_{2\gamma} \right) - C_{Kr} \cdot \left(N_{3} + N_{3\gamma} \right) \right]$$

wobei N_{iγ} = γ -Nettoimpulsrate des Detektors i (i = 2,3) für äußere Strahlung aus der ⁴¹Ar-Wolke

Der Einfluß der ⁴¹Ar-Wolke auf die ⁸⁵Kr-Messung läßt sich jedoch unterdrücken, wenn die Meßanordnung so verändert wird, daß $N_{3\gamma}/N_{2\gamma} = C_{Ar}$ ist. In diesem Fall sind die ⁴¹Ar-Kompensationsfaktoren für β-Strahlung aus dem Meßvolumen und γ-Strahlung aus der Wolke gleich groß.

Hinsichtlich der Nachweisgrenze für 85 Kr bleiben jedoch die statistischen Schwankungen der durch die 41 Ar-Wolke bedingten γ -Zählraten von Bedeutung. Die Nachweisgrenze für 85 Kr ist demnach gegeben durch die mittlere statistische Schwankung

$$\sigma(A_{K Kr}) = \frac{1}{\eta_{Kr}^{*}} \cdot \sqrt{\left[\sigma(N_{30} + N_{3\gamma})\right]^{2}} c_{Ar}^{2} \cdot \left[\sigma(N_{20} + N_{2\gamma})\right]^{2}$$

4. Empfindlichkeit der Meßanordnung für eine homogene ⁴¹Ar-Wolke

Um prüfen zu können, wann die in Abschnitt 3.2 genannte Bedingung zur Kompensation des Einflusses der γ -Strahlung aus der ⁴¹Ar-Wolke, $N_{3\gamma}/N_{2\gamma} = C_{Ar}$, erfüllt ist,müssen die Empfindlichkeiten der Meßdetektoren für diesen Fall bei verschiedenen Absorptionsfoliendicken bestimmt werden. Hierzu wurde angenommen, daß sich die Detektoranordnung im Mittelpunkt einer halbkugelförmigen Wolke von 200 m Durchmesser befindet, die eine homogene ⁴¹Ar-Konzentration A_K Ar besitzt. Der aus einer Halbkugelschale mit den Radien r_i und $r_i + dr_i$ stammende Zählratenanteil eines Meßdetektors läßt sich dann ausdrücken durch

$$dN_{\gamma}(r_{i}...r_{i}+dr_{i}) = \frac{2\pi r_{0}^{2}}{A} \cdot A_{K} Ar^{\cdot dr_{i}} \int^{90} N(r_{i},\phi) \cdot \sin\phi \cdot d\phi$$

$$\phi=0$$

wobei $\frac{2\pi r_0^2}{A}$ = Normierungsfaktor

= Strahleneinfallswinkel

Zur Bestimmung der Zählraten $N(r_i,\phi)$ wurde die Anlage mit einer ⁶⁰Co-Quelle, die in Kugeln von annähernd luftäquivalentem Material eingebracht war (entsprechend einer Schichtdicke von 27, 70 und 85 m Luft), unter verschiedenen Einfallswinkeln kalibriert. Die mittlere γ -Energie des ⁶⁰Co von 1,25 MeV repräsentiert sehr gut die γ -Energie des ⁴¹Ar. Außerdem berücksichtigt diese Anordnung den effektiven Schwächungskoeffizienten einer kugelförmigen Luftschicht, der aufgrund von Streueffekten von dem einer ebenen Luftschicht erheblich abweichen kann.

Durch schrittweise Integration über die bei der Kalibrierung gewählten Einfallswinkel ϕ wurde der integrale Zählratenanteil N(r_i) einer Halbkugelschale erhalten, aus der sich die gesamte γ -Zählrate der Halbkugel zu

$$N_{\gamma} (200 \text{ m} \phi) = \frac{2\pi r_0^2}{A} \cdot A_{K} \cdot \int_{r_i=0}^{100 \text{ m}} N(r_i) \cdot dr_i$$

ergibt.

Die Ergebnisse dieser Bestimmung sind in Abb. 4 dargestellt. Durch Vergleich mit den ebenfalls eingetragenen β -Empfindlichkeiten für ⁴¹Ar-Strahlung aus dem Meßvolumen stellt man fest, daß für die beschriebene Anordnung die in Abschnitt 3.2 gestellte Forderung gleicher Kompensationsfaktoren für β - und γ -Strahlung bei einer Absorptionsfoliendicke von ca. 250 mg/cm² gegeben ist. Die Nachweisgrenze für ⁸⁵Kr allein beträgt hierbei jedoch nur 12,5 x 10⁻⁸Ci/m³ gegenüber 1,4 x 10⁻⁸Ci/m³ der in Abschnitt 3.1 beschriebenen Anordnung (Meßzeit 1 min.).

5. Diskussion

Da bei der Bestimmung der γ-Empfindlichkeit aus der ⁴¹Ar-Wolke nur die Winkelabhängigkeit aus einer Ebene senkrecht zur Längsausdehnung der Detektoren berücksichtigt wurde, ist das beschriebene Verfahren mit einer bestimmten Richtungsabhängigkeit versehen. Eine wesentliche Verbesserung läßt sich jedoch erzielen, wenn zur Begrenzung des Meßvolumens, sechs Großflächenzählrohre mit quadratischen Oberflächen zu einem Würfel zusammengebaut werden. Es konnte gezeigt werden, daß bei einer solchen rechwinkligen Anordnung benachbarter Detektoren die Richtungsabhängigkeit nur noch ±5% beträgt. Für die Abhängigkeit vom Radius der Wolke ergaben sich bei der Interpretation über den Halbraum ebenfalls keine größeren Abweichungen als ±5% innerhalb der ersten 100 m.

Trotz des labormäßigen Aufbaus kann die Eignung des beschriebenen Verfahrens für die Messung von ⁸⁵Kr hinsichtlich dessen maximal zulässiger Konzentration auch in Anwesenheit von ⁴¹Ar als gegeben angesehen werden. .

Abbildungen

- Abb. 1 Messanordnung zur analogen Registrierung der Zählraten
- Abb. 2 ⁸⁵Kr-Messanordnung, bestehend aus Detektoranordnung mit Kalibrierkreislauf und analog registrierendem Esone-Meßplatz
- Abb. 3 Nachweisgrenzen für ⁸⁵Kr in Abhängigkeit von der Absorberdicke bei verschiedenen ⁴¹Ar-Konzentrationen im Meßvolumen, einem Abschirmfaktor von 10 und einer Meßzeit von 1 min.
- Abb. 4 Detektorempfindlichkeiten in Abhängigkeit von der Absorberdicke

Abb. 1: MESSANORDNUNG ZUR ANALOGEN REGISTRIERUNG DER ZÄHLRATEN

Abb. 2: ⁸⁵Kr-Meßanordnung, bestehend aus Detektoranordnung mit Kalibrierkreislauf und analog registrierendem Esone-Meßplatz

Abb.3: Nachweisgrenzen für ⁸⁵Kr in Abhängigkeit von der Absorberdicke bei verschiedenen ⁴¹Ar-Konzentrationen im Meßvolumen, einem Abschirmfaktor von 10 und einer Meßzeit von 1 min.

Abb.4: Detektorempfindlichkeiten in Abhängigkeit von der Absorberdicke