Januar 1973 KFK 1594
EUR 4730 ¢

institut fiir Reaktorentwicklung
Projekt Schneller Briiter

SEDAP
An Integrated System for Experimental Data Processing

M. Audoux, F. W. Katz, W. Olbrich, E. G. Schiechtendahl

Als Manuskript vervielfsltigt o

Fir diesen Bericht behalten wir uns alle Rechte vor -

GESELLSCHAFT FUR KERNFORSCHUNG M.B. H.
KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 1594
EUR 4730s

Institut fir Reaktorentwicklung

Projekt Schneller Briter

‘ SEDAP
An Integrated System for Experimental Data Processing

M. Audoux *)
F. W. Katz
W. Olbrich
E. G. Schlechtendahl

Mr.

: L]
| Gasellschaft filr Kernfarschung m. b. . Rarisrune

Gesellschaft fir Kernforschung mbH, Karlsruhe

*) delegated from EURATOM

SEDAP - Ein integriertes System zur MeBwertverarbeitung

Zusammenfassung

SEDAP (System for Experimental Data Procsssing) ist ein viel-

f8ltig einsetzbares Programmsystem zur Verarbeitung und Reduk-
tion experimentell gewonnsner Daten. SEDAP wurde in FORTRAN IV
programmiert und auf den Datenverarbeituhgsanlagen vom Typ IBM
360 und 370 der Gesellschaft flr Kernforschung, Karlsruhe, im-

plementiert.

Das System erlaubt die schrittweise Verarbeitung von MeBdaten-
dateien, sogenannter "Experimental Records”, mit der M&glich-
keit der freizigigen Kombination von Standard-Operationen (wie
- Integration, Erstellen von Diagrammen usw.) Eine der Grund-
ideen in SEDAP war, dem Experimentator die Mdglichkeit zu
geben, den AuswerteprozeB seiner MeRdaten mit Hilfe einer, in
ihrer Struktur sehr ginfachen aber trotzdem médchtigen und spe-
ziell auf seine Anliegen zugeschnittenen Sprache, selbst pro-
grammieren zu kdnnen, ohne durch EDV-Probleme von seinen Ver-

suchsproblemen abgelenkt zu werden.

Der Bericht beschreibt das gewdhlte Verfahren zur Lésung der
Probleme des Datenauswertungsprozesses und erldutert den Be-
griff: "Experimental Record”. Detaillierte Angaben zum Pro-
grammsystem beschreiben die Datenspeicherverwaltung, das
Steuerprogramm, die verschiedenen Operatoren, die Subsysteme
(Transfer, Input/Output, Service) und die Fehlerinterpreta-
tion. Der ndchste Abschnitt enth< eine ausflihrliche Liste
aller Sprachelemente (Kommandos) zusammen mit verschiedenen
Beispielen, die eine rasche Einarbeitung in die Benutzung von
SEDAP erlauben.

SchlieRlich folgen noch einige Hinweise lber mdgliche Weiter-
entwicklungen.

SEDAP - An Integrated System for Experimental Data Processing
Abstract

SEDAP (System for Experimental Data Processing) provides the
scientist with a powerful tool to process various digital data
which are sampled during an esxperiment. SEDAP is a software
package based upon FORTRAN IV and implemented on the IBM 360
and 370 installations of the Karlsruhe Nucléar Research Center.
The system insures the modular processing of so-called "expe-
rimental records” and provides a straightforward way to use
standard operators (integration, conversion, plot ... etec. ..J).
The leading principle in designing SEDAP was to allow experi-
menters who are not familiar with a programming language to
conduct their own data reduction with the help of a very simple
processing language. The report explaihs the approach which was
selected to solve the problem of the experimental data proces-
sing and introduces the concept of "experimental record”. The
detailed description of the system includes the storage manage-
ment, the main program, the various operators, the different
subsystems (transfer, input-output and serviee) and the inter-
pretation of errors. The different elements of the language

are listed with different examples which allow any prospective
user to become rapidly familiar with all the features of

SEDAP. The last part of the report gives a tentative evalua-
tion of the system together with some guidelines for further
developments.

SEDAP - Systéme de programmes inté@gres pour le traitement de
mesures expérimentalas

Résumé

SEDAP (System for experimental data Processing) permet & un
experimentateur de réduire un ensemble de donn&es num&riques
acquises pendant le déroulement d'une expérience scientifi-
que. SEDAP est un systé@me de software qui utilise exclusive-
ment le FORTRAN IV et qui a &t& mis au point sur les ordina-
teur systémes IBM 360 et 370 du Centre Nucléaire de Karlsruhe.
Le systéme permet le traitement modulaire de "records expéri-
mentaux” et fournit la possibilité de combiner librement la
plupart des opérations usuelles (intégration, différentia-
tion, conversion, filtrage, transformation de Fourier, plot,
etc. «..). L'idEée matltresse de SEDAP est de permettre &
l'expérimentateur d'effectuer lui-m&me la réduction de ses
données numériques gr&ce & un langage approprié. La simpli-
cité de ce langage est telle qu’elle ne nécessite aucune
connaissance prélable dans le domaine de 1'Informatiqus. Le
rapport explique la méthode suivie pour aborder le probleme

de la réduction des donnges numériques st introduit la notion
de "record expérimental”. Il fournit une description détaillgée
du systéme: gestion des ensembles-mémoires, programme princi-
pal, structures d’appui (Entréges-Sorties, Transfert, service),
routines de calcul et interprétation des erreurs. Les &léments
constitutifs du langage SEDAP sont expliqués en liaison
Btroite avec de nombreux exemples qui permettent & l'utilisa-
teur Bventuel de se Familiafiser rapidement avec le maniement
du systéme. La derniére partie du rapport est consacrée &
1'évaluation sommaire du systéme et indique certaines des

améliorations susceptibles d'8tre apportées au systéme.

Contents

Abstract, Rasuméd, Zusammenfassung

1.

THE
1.1

1.2

1.3

SEDAP APPROACH

Basic principles of the experimental data pro-
cessing

Guidelines for the development of SEDAP

The cdnéept of "Experimental Records”

PROGRAM SYSTEM DESCRIPTION

2.1

2.2

2.4

Storage-management
2.1.1 The warehouss
2.17.2 The catalog
2.1.3 The dumping file

The main program

2.2.1 Initialization of SEDAP

2.2.2 Command interprstation and executiph
2.2.3 End of the job '

Transfer-subsystem
2.3.1 Computing arrays

2.3.2 Transfer from the warshouse to the compu-
ting arrays

2.3.3 Transfer from the computing arrays to the
warshouse

2.3.4 Remarks about the use of ths transfer sub-
routines .

Error interpretation

Service subroutines
2.5.1 Command file transfsr (Subroutine DAKA)

2.5.2 Status of the warehouse and the command
list (Subroutine STATUT)

2.5.3 Destruction of records (Subroutine LAGER)

2.5.4 Gensration of simulated data (Subroutine
DAGEN)

18
18

18

32

33
40
47
47

47
52

56

2.5.5 Record delimiting by values or time
units (Subroutine WERT)
- 2.6 The input-output subsystem

2.8.1 Conversion of experimental data recor-
ded by the ERA data acquisition system
(SUBROUTINE ERAKON)

2.6.2 Processing of data on paper tape (Sub-
routines PAPTAP, PCHCK, RECO, PDUMP)

2.6.3 Restoring of data files (Subroutine
HOLE)

2.6.4 Printed data output (Subroutine PRINT)

2.6.5 Graphical output (Subroutine GRAPH w1th
entry GRAPH1)

2.6.6 Dump of the warehouse (Subroutine DUMP)

2.7 Operators

2.7.1 Sorting the channels of a multiplexed
record {(Subroutine SORTIK)

2.7.2 Standard operations (Subroutine OPERA)
2.7.3 Smoothing package (Subroutine FILTER)
2.7.4 Differentiation and 1ntegrat10n (Sub-
routine DIFINT)
2.8 The FOURIER package

2.8.1 The algorithm of the Fast Fourier Trans-
form (FFT)

2.8.2 Implementation of the FFT in SEDAP (Sub-
routine FOUR)

2.8.3 Real valued Fourier series and the com-
putation of amplitude and phase (Sub-
routine BEFA)

2.8.4 Evaluation of power spsctra (Subroutine
MEPODE)

2.9 User defined SEDAP commands (extending of
SEDAP

3. USING SEDAP

3.1 Running a SEDAP job
3.1.1 Description of the files
3.1.2 System initialization
3.1.3 The BEDAP commands
3.1.4 Programming of the. tasks

59

64

65

77

80
80

83
88

88

88
94
98

127
128

129

136

137

151

161

161
161
161
162
162

Abstract,

1.

THE
1.1

1.2

Contents

Résum&, Zusammesnfassung

SEDAP APPROACH

Basic

principles of the experlmental data pro-

cessing

Guidelines for the development of SEDAP

1.3 The concept of "Experimental Records"”

PROGRAM SYSTEM DESCRIPTION

2.1 Storage-management

2.1.1
2.1.2
2.1.3

The warehouss
The catalog
The dumplng file

The main program

2.2.1
2.2.2
2.2.3

Initialization of SEDAP
Command interprstation and execution
End of the Job

Transfer-subsystem

2.3.1
2‘3.2

2.3.3

2.3.4

Computing arrays

Transfer from the warehouse to the compu-
tlng arrays

Transfer from the computing arrays to the
warehouss

Remarks about the use oF the transfar sub-
routines

Error interpretation

Service subroutines

2.5.1
2.5.2

2.5.3
2.5.4

Command file transfsr (Subroutine DAKA)

Status of the warehouse and the command
list (Subroutine STATUT)

Destruction of records (Subroutine LAGER)

Censration of simulated data (Subroutine
DAGEN)

(ep

0w N OO,

13
16

18
18

18
32
33
40

47
47

47
52

56

2.5.5 Record delimiting by values or time
units (Subroutine WERT)
2.6 The input-output subsystem

2.6.1 Conversion of experimental data recor-
ded by the ERA data acquisition system
(SUBROUTINE ERAKON)

2.6.2 Processing of data on paper tape (Sub-
routines PAPTAP, PCHCK, RECO, PDUMP)

2.6.3 Restoring of data files (Subroutine
HOLE)

2.6.4 Printed data output (Subroutine PRINT)

2.6.5 Graphical output (Subroutine GRAPH with
entry GRAPH1)

2.6.6 Dump of the warehouse (Subroutine DUMP)

2.7 Operators

2.7.1 Sorting the channels of a multiplexed.
record (Subroutine SORTIK)

2.7.2 Standard operations (Subroutine OPERA)
2.7.3 Smoothing package (Subroutine FILTER)
2.7.4 Differentiation and integration (Sub-
routine DIFINT)
2.8 The FOURIER package

2.8.1 The algorithm of the Fast Fourier Trans-
form (FFT)

2.8.2 Implementation of the FFT in SEDAP (Sub-
routine FOUR)

2.8.3 Real valued Fourier series and the com-
putation of amplitude and phase (Sub-
routine BEFA)

2.8.4 Evaluation of power spsctra (Subroutine
MEPODE) ‘

2.9 User defined SEDAP commands (extending of
SEDAP ‘

3. USING SEDAP

3.1 Running a SEPAP job
3.1.1 Description of the files
3.1.2 System initialization
3.1.3 The S8EDAP commands
3.1.4 Programming of ths tasks

Page

59
64

65

77

80
80

83
88
88
88
94
98
116
127

128

129

136

137

151

161

161
161
161
162
162

- III -

3.2 Description of the commands

3.3 Some special features in the reduction of
data series

3.3.1 Synchronism of two records
3.3.2 The sampling freqguency
3.3.3 Complex values
4, EVALUATION OF SEDAP

4,1 The command interpreter

4,2 Type dependent operations

4,3 Size of the system

4,4 Data management

4.5 Conclusion

Refersencas

Appendix A: Job Control Cards for SEDAP

Appendix B: Example

Page

163

218
218
222
224
225
226
227
228
228

230

231

234

235

Figures

Principle of the catalog

MAIN (general structure)

MAIN (command zone)

MAIN (command check and catalog retrieval)

Subroutine

Computing arrays in SEDAP (size and equivalence)
Transfer scheme (ADDEIN) with two modes

OPEIN

ADDEIN transfer with overlapping

Entry ADDEIN in subroutine OPEIN

Subroutins

OPAUS

Entry ADDAUS in subroutine 'OPAUS

Error handling with RETURN scheme

Subroutine
Subroutine
Subroutine
Entry CTLG

Subroutine

Transfer scheme for subroutine WERT

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

Subroutine

DAKA
STATUT
LAGER

DAGEN

WERT (call by values)
ERAKON

PAPTAP

PCHCK

RECO

PBUMP

HOLE (restore)

PRINT

GRAPH

Entry GRAPH1 in subroutine GRAPH

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

Subroutine

DUMP
SORTIK
OPERA
FILTER
FIL13
FIL15

in subroutine LAGER (éystematic catalog search) 55

100
102
104

Subroutine FIL35
Subroutine FILVAR
Subroutine FILHAN
Subroutine DIFINT
Subroutine TRAP
Subroutine SIMP
Subroutine DIF3

Subrou

tine FOUR

Subroutine BEFA

Subrou
Subrou
Illust

Illustration of the mixingalgorithm in subroutine MIWIBU

Subrou

tine MEPODE
tine MEPODE (continued)

ration of record segmentation

tine EXTSED (sxample 2)

Tables

Cross
Error
Table
Table
Format

reference list of subroutine and
code list

of valid commands

of valid modifiers

of the SEDAP command language

function calls

106
112
114
118
120
122
124
132
134
1386
138
144
150
156

17
45
164
165
166

1. THE SEDAP APPROACH

1.1 Basic principles of the experimental data processing

Because of their reliability and their accuracy the digital
data acquisition systems are more and more widely used to
record the different phases of modern technological experi-
ments. The rational organization of such systems calls for

a two-sided approach which involves the two following close-
ly related fields:

1) The data acquisition

The acquisition of the data requires a signal amplification
with appropriate filtering as well as a multiplexed analog
to digital conversion. Many of the off-line systems record
the converted data on magnetic tapes which are processed
during a further task performed by a large size computer.
Initially the adaptation between the analog to digital con-
verter and the tape requiring a block segmented transfer
was provided by a buffer memory and its associated circuit-
ry. The recent evolution of the relatively low priced small
size computers has radically changed the situation. The
minicomputers provide the interface with the tape units, a
buffer memory and a programmable operating mode which gives
such a versatility to the modern data acquisition systems
that they can be adapted to different types of experiment

by only typing in a few instructions on a keyboard.

2) The data reduction

An efficiernt data acquisition system must rely upon a good
software package in order to obtain the best possible infor-
mation from the values stored on the magnetic tape. It is
quite unfortunate that one often does not take advantage of
the great flexibility achieved by the modern data acquisi-

tion systems because of the rigid structure of the software

Zum Druck eingereicht am 21.12,72

support. It has been often observed that an undesirable gap
exists between the planning and the recording of an experi-
ment on one side and the data reduction and the interpreta-
tion of the results on the other side. Many times the exi-

sting subroutines have to bs modified to take into account

the latest changes in an experimental set-up and the situa-
tion can be worsened by a lack of communication between the

experimenter and the scientist in charge of the softwars.

All these considerations have led the Institut fdr Reaktor-
- entwicklung to develop an experiment oriented software
package called SEDAP (System for Experimental Data Proces-
sing).

1.2 Guidelines for the development of SEDAP

SEDAP was developed according to the following guidelines:

a) SEDAP should provide a rationalization of the data reduc-
tion. In other words a better efficiency should be ob-

tained from the available resources in different domains.

b)

For the user the system should be easy to learn and should

offer real advantages concerning service and comfort.

For the programmer, a careful planring of the task and the

deliberate attempt to implement a modular system should
save many of the manhours which would be necsssary to per-
form the modifieations of small programs.

For the installation, the integration of the system should

save some of the computing time, not only by the optimi-
zation of the programs but also by the reduction of abor-
ted runs which are avoided by a good documentation of the

errors

SEDAP should be large enough to satisfy mast of the
wishes of a users group which were invited to influence
the specifications of the options to be implemented. The
frame of the system should not be restricted to a special
branch of engineering sciences but should however full-

fill the basic requirements of the IRE program (thermo-

dynamics, vibration analysis, sodium boiling etc. +..)
and similar experiments and should be relatively easy to

extend.

c) SEDAP should provide a computer assisted data reduction
without impeding the scientific aspects of the task. A
good interface between man and machine requires a basic
study of the assisted activity in order to offer a more
comfortable and more efficient solution without radically
changing the methods which are applied in the current
state of art.

A basic study of the data reduction in our present context
has shown that the data acquisition system was used as a
kind of recording center for a wide range of technological
experiments and that the number of channels, the range of
frequencies as well as the recording time could considerably vary
from one type of experiment to the other. Furthermore, it
was determined that the data reduction was a part of the
research work and could be considered as an iterative pro-
cess. This process receives the sampled values as input and
should deliver, after suitable treatment, numerical values
or curves which are suitable for interpretation and adsquate
to document the scientific aspects of the experiment. To
direct such a process, nobody is more qualified than the
scientist in charge of the experiment. The flexibility
should be provided by a set of commands which he can use in
many different combinations to perform his own data reduc-
tion. The system should be conceived as a tool which enables
the scientist to addapt the data processing to the task he
performs. The shape of a cross-correlation curve for in-
stance can lead to new investigations which are easy to
perform if a sufficient modularity has been implemented in

the system.

As a consequence of the very general guidelines of SEDAP,
the system is not restricted to experiments of a specific

technical or scientific area (e. g. mechanical engineering).

However, the system should be very suitable for the investi-
gation of all experiments, which may be characterized by the
following attributes

- the expected information from the experiment is con-
tained (maybe hidden) in the evolution of a number of
measured signals over a period of time

- the algorithms which are suitable to make the impor-
tant sxperimental information svident, are not comple-
tely known beforehand, but must rather be developed or
selected iteratively during the data analysis and inter-
pretation process

- the number of signals should not exceed 64

- the total number of sampled data ‘should not exceed a

faw millions.

1.3 The concept of "Experimental Records”

Once a technological experiment has been brought into a de-
sired initial state the active part of the experiment can be-
gin and a number of state variables are recorded by an appro-
priate instrumentation over a certain period of time (from
milliseconds to hours). These sampled signals are assigned

to channels and contain the basic information related to the
experiment. Within the frameword of SEDAP, the digital re-
presentation of such a signal is called an "experimental
rgcord”. The experimental records are generally a sequence

of equispaced numerical values sampled at ‘constant frequency

and which are the basic quantities of data considered for

the process.

The following parameters are associéted with the definition

of an experimental record:

a) the name is any combination of four valid alphanumeric
characters used to address the experimental record.

b) the length is the number of points covered by the experi-
mental record. The length is not stored as a formal para-
meter but can be calculated from the three following para-

metsrs.
c) the first pointer is the absolute address of the first

storage block in the storage file.
d) the last pointer is the absolute address of the last

storage block in the storage file.

g) the filling factor takes into account the fact that the
last block may be incompletely filled.

f) the frequency is the sampling frequency which determines
the time interval between two consecutive points.

g) the date (day, month, year).

h) the time (seconds).

Since SEDAP was conceived as a processor of experimental
records, the concept of experimental record is fundamental to

understand the organization of the system.

2. PROGRAM SYSTEM DESCRIPTION

2.1 Storagse-management

The vast amount of data which can be processed by SEDAP has
required the use of a large storage capability and the storags

management is one of the most important features of the system

2.1.1 The warehouss

The main storage area is called the LAGER or the WAREHOUSE.
The warehouse is a direct access file created by a special
subroutine call during the system initialization. The state-
ment defining the file is of the following typs:

DEFINE FILE 40 (5000,512,U,IA)

which calls for the following remarks.

1) The index assigned to the file is 40 and requireé a con-
cording BD card with the proper space allocation.

2) The number of blocks or physical records is 5000. Since
this argument cannot be represented by a variable integer
like ISIZE in the described system and since it is reason-
able to allow the user to specify the dimension of his
storage file, different defining calls are provided with-
in SEDAP. During the initialization of SEDAP the smallest
of the seven options which can satisfy the storage nesds
specified by the user is selected after some straightfor-
ward computation.

3) The size of the physical rscords or blocks is 512 words.
This choice has been motivated by two considerations:

- 0.5 K is a good compromise for the medium-sized expe-
rimental records and is compatible with the output of
the presently used data acquisition system which blocks
the recordsed data into 1 K physical records (1024
points) on the magnetic tape.

- A storage using records comprised of 2N is especially
suitable for the use of fast Fourier transforms algo-
rithm,

4) U indicates that READ and WRITE operations are performed

without format control. This mode achieves a faster trans-
fer speed and implies that the words will be moved or
copied back and forth without any transformation or inter-
pretation.

'5) IA is the integer variable also called associated variable
and points to the IA-th block when accessing the file.

8) The expression "experimental record” is derived from the

fact that we are concerned with data recorded in performing

an experiment and was greatly influenced by the concept of

"records” described by Hoare /1/. A possible confusion
exists when one refers to the physical records used in the
storage file. To avoid any confusion in the following
pages, the word record will be reserved for the experimen-
tal records while the physical records will be exclusively
called blocks. The reader should be aware that this prac-
tice is in contradiction with a current convention which

consists of grouping logical records into blocks.

2.1.2 The catalog

The management of the warehouse requires some elementary book-
keeping which gives an exact account of its content. This is
achieved by a catalog located in the COMMON storage area and

divided to provide a two level information:

a) The warehause level

The warehouse level is comprised of three parameters:

KDAT which indicates the number of records contained in the
warehouse

KEND which represents the value of the associated variable
pointing to the next unused block (i. e. the warehouss
contains (KEND - 1) blocks)

JRV carries the maximum number of blocks which can be stored
in the warehouse according to the specification given by
the user (limit = 5000)

b) The record level

All the records contained in the warehouse are tracked by the
following catalog parameters:

LEVEL 1 LEVEL 2
. NAME BEG. | END |FREQ.|DATE | TIME
KDAT = (3)
KEND = (1D)- REC 1 (A) | (D] (|100 c/s|260472f 20.00
JRV = 5000 REC 2 (B) 4 5 200 c/s|26 04 72| 65. 34
~— REC3 (C) | 6 10 ||200 c/s|26 04 72| 65. 34
T—APRIL 26,1972

WAREHOUSE

7 ///////;/_l -.
IS

>

s,
s,

/

A,
YIS

Z

v

o
L

—

%L LAST BLOCK

PRINCIPLE OF THE CATALOG

o

w co ~N D ar

]

5000

KPF

256

128

374

BENAM(K): contains the name of the record K (1< K < KDAT)
NANF(K): - points to the first block of the record K
NEND(K): points to the last block of the record K
WFREQ(K): stores the sampling frequency of the record K
ADAT(K): stores the coded expression of the date (260472 =
26 th day of April 1972) of the record K
BZEIT(K): stores the time corresponding to the first value
of the record K. The time is computed in seconds
and the time origin (0.0) corrssponds to the first
value recorded on a tape.
KPF(K): is the filling factor of the last block of a re-
cord where any value from 1 to 512 can be expec-
ted.

2.1.3 The dumping file

The warehouse is a direct access file which can only exist
during the execution of a job and which is destroyed after
the completion of the computer run. The user has the possi-
bility to dump a part or the totality of the warshouse on

a magnetic tape and to restore the records in a subsequent
job. This feature will be described in the following chap-
ters but should be mentioned here as an extension of the

storage.

2.2 The main program

The most important functions of the SEDAP process are per-
formed by the main program which '

- initializes the system

- receives the commands

- chacks the validity of the requests

- formulates the resulting tasks

- supervises their execution

- acknowledges their completion
and orderly closes the system when the process is terminated

or when a severs error has been detected.

2.2.1 Initialization of SEDAP

The program initializes the servicse variables, sets the job
timer to zero, and reads the first card which contains the
system identification (Name "SEDAP") and a eight character
title stored in ZNAM. If the identifier is not correct, the
initialization is stopped and the job is terminated with an
error code IERR = 11. The two next cards are read and the

160 characters reserved for the user’s comments are stored.

A full page is printed with the system heading and the

user's title by calling the special subroutine A8FORM /2/.

The two lines of comments are added at the bottom of the page.

The initialization is almost terminated but the fourth card
which is handled by the normal command interpreter (see 2.2.2)
belongs to the initialization. This card must be a SEDA card
with the parameters which are required to specify the size

of the warehouse and the possible options. If ths first
command card (it is the fourth of the deck) does not begin
with SEDA, the job will be terminated with an error code

IERR = 11,

The system sets the two options indicators KSTOP and KDUMP to
zero. KSTOP will be changed to +1 if the error test option
has been specified (this option is used by the system's pro-
grammer for testing purposes when programmed errors justify

a restart of the system after the error interpretation). If
the user has specified the automatic dump option, KDUMP will
be stored as +1 and the dump file number passed by INT(3)
will be stored by the integer KFILE for later use.

The size of the warehouse can bs selected between seven stan-
dard sizes comprised between 100 and 5000 blocks. This re-
quires seven similar subroutines where a corresponding DEFINE
FILE statement opens the file 40. The smallest size which
satisfies the number of blocks passed by INT(1) is called and
the real size of the warehouse is stored by IRV which is used
to detect a possible warehouse overflow (0OPAUS). If the user

ERROR

- 11

<D

INITIALIZE

VARIABLES

e /READ
ERROR CARD

ERROR=@&—

* €
4 th >
READ
COMMAND
SELEGT
SIZE OF
WAREHOUSE CATALOG
A SEARCH
CLOSE Y &
STEP GO 10
COMMAND
ZONE
(SEE NEXT
PAGE)
NORMAL
STOP
COMMAND
ERROR
INTERPRETATION+
CLOSE JOB
CLOSE PLOT
(OPTIONAL)
(FINAL sTOP)
MAIN (GENERAL STRUCTURE)

READ
COMMAND

STOP

CATALOG
SEARCH

GO TO

SPECIFIC
CHECK

SELEGT

OPTION

PRINT

THE TASK
(CLEAR TEXT)

(SEE PREVIOUS PAGE)

PREPARE
TRANSFER

GET THE
VALUES

COMPUTE
STORE

'SPECIFIC SUBROUTINE

OPEIN
OPAUS

(EXAMPLE.)

ADDEIN

(ARITHM.
STATEMENTS)

ADDAUS

ERROR
CODES

MAIN

(SEE PREVIOUS PAGE)

(COMMAND ZONE)

has requested more than 5000 blocks, the job is terminated
with an error code IERR = 17,

If a second SEDA command is received during any further phase
of the job, the card will be normally processed but a second
access to any of the DEFINE FILE subroutine will be protected
by an IF statement which verifies if the card index NZAE is
equal to one. This card will then only change the DUMP or
RESTART options and can allow an ON/OFF switching of the two

features during the execution of a job.

2.2.2 Command interpretation and execution

a) Preparation of the task

When the system has been initialized, the main program is
ready for the processing of the different tasks specified by
commands. This operation is organized according to a general
scheme, The command card is read and the task timer is reset
to zero. The validity of the command is checked by matching
the first word against ths keywords of the commands list. An
invalid command causes an interruption and the whole proces-
sing is stopped. A successful retrieval determines the index
of the command and the resulting KTYP parameter will be
later used to branch to the appropriate specific zone of the
main program. The card is then printed in his original punch-
ing format with a differentiated underlining pattern which
provides a clear contrast in the case of a shift due to a

punching error.

The second operation consists of systematically searching the
catalog to see if the three experimental record names which
can be associated to a command name match with names contai-
ned in the warehouse catalog. If a search has been unsuccess-
ful, the K index remains sgqual to -1 but if the name is
known, the K index will be replaced by the value correspon-
ding to the position of the name in the catalog. The search
is performed by the ENTRY CTLG for the first name with the
index K1, for the third name with K3 and for the second name

with K2. A special case is involved since the second name can

READ
THE CARD

CHECK
FOR FOURTH ———=» ERROR
CARD (SEDA)
|
INITIALIZE
STEP
(TIMER etc...)
r 4
DO COMMANDNYES .
LBOP FOqu :
T 1S
NO
< YES KDAT =0 NO
?
ERROR RETRIEVE Ki=-{
COMMAND FIRST _,
INVALID NAME ~ OR
¢ [CTLG) K1=K
I
RETRIEVE K3:-
STOP THIRD _,oR
NAME
(CTLG) K3:=K
|
{WAREHOUSE RETRIEVE K2=-1
IS EMPTY) SECOND _, 4p
NAME
CTLG) K2:=K
MAIN
(COMMAND CHECK AND O,S'é"wAL 0 101
CATALOG RETRIEVAL) COMMAND [—= !

+ LABEL

be specified as a modifier and if K2 remains equal to -1, the
matching of the second name will be extented to the modifiers
list with the resulting index K4 remaining -1 or being re-
placed by the position of the name in the modifiers list.
This points to one of the system limitations: the keywords
used as modifiers should never be used as experimental record
names. If the warehouse is empty all these tests are bypassed
with the exception of the determination of the index K4 which

is not bound to the contents of the warehouss.

b) Specific processing of a task

The value of KTYP which has been previously determined is
used to transfer the control to a region of the main program
which has been specifically designed to handle a given type

of command.

According to the type of commands, some preliminary checks
can be performed to select a given option or to insure that
the command has been formulated in a valid context. The
system has now to print a clear text interpretation of the
command which must transform the coded parameters into an
easily understandable statement. Different elements of for-
matted sentences can be concatenated in a modular way (with-
in the limits of FORTRAN IV) to provide a storage saving re-
duction of the text. '

The control is then passed to a specific subroutine which
will handle the task (The main program performs the execu-
tion of some simple tasks without external support for the
simpler cases like renaming a record or é¢learing the ware-
house). This subroutine can eventually complement the pre-
vious task formulation and initiates the transfer operations.
The transfer is described in details in the following pages
(2.3) and it is sufficient to explain that the input/output
requests specified by the command will be checked to see if
they are compatible with the situation of the warehouse.
This involves the examination of the parameters K1 to K4

and the test can be extended to the other arguments like the

sorting factor, the file numbers or other numerical values

which are described in relation with the specific subroutines.
If the request is valid, the task is performed and the control
is passed back to the main program. In the mean time the con-
trol could have been transferred if any severe error has been
detected, the minor errors cause only the printing of a warn-
ing.

c) End of the task

As it will be explained in the chapter concerning the error
handling, the error situation is immediately checked upon the
return into the main program. If an error has been detected,
the control is shifted to the error zone where a detailed in-
terpretation of the error is provided. If no error code has
been issued, the end of the task is acknowledged by the main
program which prints the value stored in the task timer and

the system is ready to process the next command.

2.2.3 End of the job

The normal termination of a SEDAP job is issued when proces-
sing the final command which is called STOP and which causes
the total time needed for the job te be printed. The control
can also be passed to the so-called STOP zone if a severe
error has been detected. In that case the FEHLER subroutine
is called to provide an interpretation of the error (see
error handling). Before jumping to the final STOP statement,
the MAIN program checks if an automatic dump of the warehouse
contents has been specified. This will cause a call to the
DUMP subroutine to secure the back-up copy of the warehouse.
The termination of ths job due to an error will be delayed

if the user has given a special password with the initial
system's call. In that case the system’'s programmer has the
intention to test the error system and the next card will be-
read after the srror code IERR has been reset to zero. Due

to the peculiarity of the Plot package used by SEDAP a call
ENDPLT (end of the plot) is required before the execution of
the last STOP to orderly close the PLOT file.

{

CROSS REFERENCE LIST OF SuB

ROUTINE AND FUNCTION CALLS

AL100
AL250
AL500
AL750
AL1000
AL2500
AL5000
ABFORM
BEFA
CTLG
DAGEN
CAK A
CATUM
N IF INT
JUMP
ERAKON
EXTSED

FEHLER

FILTER
FOUR
GRAPH
GRAPH1
HOLE
LAGER
MEPODE
OPERA
PAPTAP
PLOTC
PRINT
SORTIK
STATUT
WERT
TEIT

OPEIN AJDDEIN
OPEIN AJDEIN
OPEIN A2DEIN

OPEIN ADDEIN
OPAUS ADDAUS

OPEIN ALUDEIN
OPEIN AJDDEIN

OP AUS
OP AUS

OPAUS

0P AUS
0P AUS

(ENTRY GRAPHI1)

OPEIN AUDEIN
OPAUS AUDAUS

PLOTA

CLTG

(ENTRY CTLG)

OPEIN AUDEIN
OPEIN AJDEIN
OPAUS AUDAUS

DPEIN AUDEIN
OPEIN AJDDEIN

OPEIN ADDEIN

OP AUS
OP AUS
PCHCK
OP AUS

OPAUS

ADDAUS SQRT ATAN2
ADDAUS SIN COS RANDU

ADDAUS TRAP SIMP DIF3

ADDAUS FIL13 FIL15 FIL3S FILVAR FILHAN
ADDAUS FOUR1 SQRT

AMIN1 AMAX1 MINO MAXO MOD

ADDAUS FOURL PDOT2 HAGL MIWESU MIWIBU HYPER
ADDAUS TNICR2 CDVD# CMPY# S
RECO PDUMP MOD

ADDAUS CTLG MOD

ADDAUS

2.3 Transfer-subsystem

The handling of the expsrimental records by the different
parts of the program requires a continual transfer of data
back and forth between the core and the warehouss. The large
size of some types of experimental records and the modest
dimensions of the computing arrays make it necessary to
split the experimental records into working segments (or
pages) which correspond to the computing arrays of the dif-
ferent subroutines. This operation is controlled by the
TRANSFER subsystem which can be divided into two zones ac-
cording to the direction of the transfer.

2.3.1 Computing arrays

The transfer subsystem involves diFFerént computing arrays
which are stored in the COMMON arsa. The computing arrays are
basically the X, Y and Z fields, respectively dimensioned
with 10240, 10240 and 5120 points. The transfer can also in-
volve the XYZ array which is an equivalent (using an EQUIVA-
LENCE) form of the three previous fields. Since the use of
the XYZ field is subordinated to the buffer ZZ located at the
end of the Z array, the dimension of XYZ can be extended only
up to 25088 (25600 - 512). The three arrays X512, Y512 and
Z512 are used as buffers for the fast transfer mode and are
equivalent to the 512 first values of the X, Y and Z arrays.

2.3.2 Transfer from the warehouse to the computing arrays

2.3.2.,1 Preparation of the transfer

Before the transfer operations are performed, some prelimina-
ry checks are necessary to insure that the transfer will be
possible. Since the opseration presents some analogy with what
a computing system does when it opens a file, the initializa-
tion of the transfer has been called OPEIN (= Open-in).

The first step is to verify if the experimental record has
been found in the warehouse and this is materialized by a po-
sitive value of KN after a successful retrieval in the cata-

log. (See Description of the Main program). The validity of

1
[} 1
' COMMANDS: JOPEIN opens an experimental NAME = OPEIN
irecord stored in the warehouse,
ichecks its existence and the
ivalidity of the request. OPEIN

1

3

[}

t

t

None :
1

t

]

'returns the arguments needed | ENTRY = gge ADDEIN

1

1

[}

L}

1

1]

]

]

1

!

SYSTEM = TRANSFER

| for further access.

CALL OPEIN(KANW,KENW,RNAM,KN,KRAF,ZEYT,MAX,LKPT,FREQ,DAT)

LIST OF ARGUMENTS:

KANW 1is the first delimiter which.carries the relative ad-
dress of the first block to be read. KANW is returned
as the absolute address of the block in the storage
file.

KENW carries the address of the last block to be read and
is also returned as an absolute address.

RNAM is the name of the experimental record to be read.

KN is the index of the experimental record in the re-
cord list. If KN < 1, the record does not exist.

KRAF is the sorting factor which will be applied to the
input. If KRAF = 0, the default value KRAF = 1 is
applied, if the value is negative, the sign is
changed, but if KRAF > 100, the request is rejected.

ZEYT returns the time corresponding to the first trans-
ferred value.

MAX indicates the maximum of values which can be processed
by the task.

LKPT returns the total number of points which results from
the request expressed in blocks.

FREQ returns the resulting frequency after application of
the sorting factor (default value: 1.0 Hz).

DAT returns the date of the record.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 4,5,6,8,16,20

i
i
|
I
' INDIRECT s
i
|
i
i
I
i

(ENTRY)

QDDElIN)

- .- v o w

(SEE PAGE 30)

s > > e m e m o m-

(RETURN)

- 20

(OPEIN)

FLOWCHART SUBROUTINE

OPEIN
RECORD DOES NOT EXIST
YES 1ERR =8

Y

INVALID DELIMITER

proy

L

YES IERR =16

INVALID RANGE

YES IERR=5

COMPUTE
ABS.ADDRESS

KST, KTER

USE
DEFAULT
VALUES

KTERSLIMIT
~OF RECORS

_RECORD LIMIT EXCEEDED _|
YES IERR=9

INVALID SORTING FACTOR

FREQ=0.

YES IERR =20

TIME=0.0
FREQ=1.0

COMPUTE
FREQ &
TIME

L

TOO MANY VALUES

YES IERR=6

KANW = KST

KENW = KTER

Q‘\’ETURN)

ERROR ZONE

1BLOCK ({512 POINTS)

—>
l X-ARRAY Y- ARRAY Z-ARRAY
10 240 10 240 5120
ZZ BUFFER (512)
\‘

XYZ - ARRAY [MAX. SIZE = 25088))

U 0 U o

Ffe——5120——={F F 5120 —— = F
(OF= OVERFLOW, UF = UNDERFLOW)}
XYZ - ARRAY WITH OVERLAPPING CONVENTIONS

<l X 512 <] Y512 - Z512 ZZ o

COMPUTING ARRAYS [N SEDAP
(SIZE AND EQUIVALENCE)

|

o0 o O O

- 22 -
SUBROUTINE JPEIN(KANNpKENHyRNAMoKNyKRAF:ZEYT,MAX,LKPT,FREQ,DAT!

COMMON X (10240} ,Y (10240):2 (5120},
1 BENAM{512), NANF(512),NEND(512) yWFREQ(512),ADAT(512),BZEIT (512},
2 KDAToKENDoNC sNP 9IA ¢ JRV 9X13X29Y15Y2,IERRy AERRyBERRy JERRyKERR
3 sKPF (512)
DIMENSION Xy 2(16384),22(512),X512(512),Y512(512},2512(512}
EQUIVALENCE (XYZ(1) ¢X(1)oX512(1))s(ZZ(1)+2(4097)),
1 (Y512(1)e¥ (1)), {2512(1),2(1))
VERIFY EXISTEN.E OF RECORD (ERROR CODE = 8)
IF{KNeLTol) GO TO 97
CHECK IF THE FiRST DELIMITER IS POSITIVVE (ERROR CODE = 16)
IF{KANW.LTa4) GO TO S5
CHECK THE POSIIIVE PROGRESSION OF DELIMITERS (ERROR CODE = 5)
IF(KENW.LT-XANW) GO TO 94
FIND THE ABSOLJUTE ADDRESS OF THE DELIMITERS
CHECK IF THE JPPER LIMIT OF THE RECORD IS EXCEEDED(E«Ce
KST = NANF{(KN) + KANW = 1
KTER = NANF(KN) + KENW - 1
IF{KTER.GT.NEND{(KN)) GO 7O 99 (
SET DEFAULT VALUES FOR AN INVALID SORTING FACTOR
IF(KRAF.EQe0) KRAF =1
IF (KRAF.LTo0) KRAF = =KRAF
IF(KRAF.GT.100) GO TO 93
COMPUTE THE RE>ULTING NUMBER OF POINTS ‘
KPT = 0 }
KBDIF = KENd = KANW + 1}
KPT = KBDIF % 512
IF (KTERsEWQes NEND(KN))} KPT = KPT=512+KPF{KN)
LKPT = KPT / KRAF
DETERMINE THE UATE,TIME AND THE FREQUENCY FOR THE SEGMENT
START = KANd = 1
FLOAT KRAF
FARK = KRAF
DAT = ADAT(KN)
IF(WFREQ(KN} sEQ. 0o} GO TO 13
FREQ = WFRE« (KN)/FARK
ZEYT = BZEIT(KN) + (START * 512 / FREQ)

4)

GO TO 14 (
13 ZEYT = 0.0
FREQ = 1.0

CHECK IF THE MaXe TRANFERABLE VALUE IS NOT EXCEEDED
14 IF (LKPT.GT.MAX) GJ TO 98

KANW = KST
KENW = KTER
RETURN

ENTRY ADDEIN (KANWsL KPT,LOEFsKRAFyKSHIFT,IMELD; IMENGE KXY Zs ISTAT,
1 TOFLOW, IUF.OWyKOFLOW, KUFLOW)

ID = 8

KSTORE = LKPT
IUFLOW = 0
IOFLOW = 0

GO TO (1094935402409 40)sKXYZ
IF NOT THE FIR>T PART OF SEGMENT AND IF U-FLOW REQUESTEDsSAVE IT
10 IF(KUFLOWeEd0) GO TO 12

IF (ISTAT.Ed.0) GO TO 12

DO 8 I= 1;KJUFLOW

IUl = KSHIFT =1 + 1

IU2 = KSHIFT + LOEF + 1 - 1
B XYZ{IU1l) = XYZ{ IU2)

IUFLOW = KUFLOW

C TRANSFER THE VALUE OF LOEF INTO JOEF FOR DECREMENTING

K3y

12 JOEF = LOEF
IX = KSHIFT + 1
I1Z = 1
15 1A = KANW
READ (40°'IA, ERR=96) Z1
KANW = KANd + 1
20 CONTINUE
XYZ {(IX) = ¢Z (I2)
LKPT = LKPT - 1
JOEF = JOEF - 1
I1Z = 1Z + KRAF
IX = IX + 1
CHECK IF ALL THE POINTS HAVE BEEN TRANFERRED
21 IF{LKPT.EQ.VU) GO TO 22
CHECK IF THE BJFFERING ARRAY IS FULL
IF(J0EF.EQ.u) GO TJ 24
CHECK TIF THE INPUT BUFFER IS DEPLETED
IF{IZ.LEs512) GO TO 20
1Z = 12 - 512
GO 7O 15
22 IMENGE = KSTORE
JSTAT = 2
GO T0 23
24 IMENGE = KSTORE = LKPT
JSTAT = 1
IF(KOFLDWeEL4 «0) GO TO 23
IREST = LKPT / KRAF
IF{IRESToGT. KOFLOW) IREST = KOFLOW
IA = KANW
READ(40' 1A, ERR=961Z1
DO 27 I = 1, IREST
101 = KSHIFT + LOEF + 1
102 = 1 ¢ (KRAF * {I-1))
27 XYZ(101) = LZ(102)
IOFLOW = IREST
23 IF(ISTAT.GT.0) GO TO 34
IF(IMELDeEW.0) GO TO 34
PRINT THE 8 FIRST VALUES FOR CONTROL PURPCSE
CHECK THE CASE OF A RECORD CONTAINING LESS THAN 8 VALUES
IFUIMENGESLT «ID) 1D = IMENGE
WRITE(NP, L0«) (XYZ(KSHIFT ¢ 1),y1 = 1, ID)
34 ISTAT = JSTAT
RETURN
FIND THE VALUE OF KSHIFT FOR THE FIRST VALUE OF X512,¥512 AND 1512

40 KSHIFT = 10240 * (KXYZ - 2)
KUFLOW = 0
KOFLOW = 0

IF(KRAF.EQeL) GO T3 48
IF THE SORTING FACTOR IS NOT 1 DOWNGRADE KXYZ TO 1(NORMAL CASE)
LOEF = 512
KXYZ = 1
48 IA = KANW
GO TO (10,5060, 70) sKXYZ

50
60

70
80

26

93

S0
94

S5

96

97

98

99

102

READ(40" A, cRR=96)X512
GO TO 80
READ(40'TA,cRR=96)Y512
GO TO 80
READ(40' IA, ERR=96)2512
KANW = KANW + 1
IF(LKPT<GT«512) GO TO 26
LKPT = 0
GO TO 22
LKPT = LKPT - 512
GO TO 24
IERR = 20
JERR = KRAFF
JERR = KRAF
RETURN
IERR = 5
AERR = BENAM (KN)
JERR = KANW
KERR = KENW
GO TO 90
IERR = 16
JERR = KANd
GO TO 90
IERR = 3
JERR = 40
KERR = KANW
GO TO 90
IERR = 8
AERR = RNAM
60 TO 90
IERR = 6
JERR = LKPT
KERR = MAX
GO TO 90
1ERR = 4
AERR = RNAM
KERR = KENW
JERR = NEND (KN) = NANF (KN) + 1
GO TO 90
FORMAT (* KONTROLLWERTE INPUT

END

24

8(E12.641X))

— T
WAREHOUSE (LAGER) AB,C,D ARE
EXPERIMENTAL
RECORDS
_%
& A

512 B {_sv

C { 52

512

D{ 512

FOR KXYZ =2,3,4
A SHORT WORK-
ING ARRAY (512
KXYZ =1 POINTS) IS DI -

: RECTLY USED AS
INPUT BUFFER

CASE
KRAF=3 %NPUT BUFFER (SEDAP)
P A
2z {512
n.
i~
v)
FE - s
XYZ
KSHIFT WORKING ARRAY=
LOEF
KXYZ =2 X512 (512)
(xm)
X¥z i Y 512 (512)
KXY=3
LIAMGLEN
(Y(1))
XYz ozl 55, (512)

TRANSFER SCHEME (ADDEIN) (z m)
WITH TWO MODES (4 KXY OPTIONS) XYZ (20481)

the two parameters KANW and KENW which delimit the selected
ségment must undergo the following tests:

KANW must be positive

KENW cannot be smaller than KANW

KENW must not exceed the limit of the experimental record.

The values of KANW and KENW which were provided by the command
card and which were related to the experimental record are
then replaced by their absolute value as pointers of the
storage file.

Since the sorting factor KRAF must be comprised bebween 1 and
100 (both values included), the request is rejected for any
value larger than 100 and the default value KRAF = 1 is auto-

matically selscted when the value is negative or squal to zero.

The frequency of the experimental record is divided by the
sorting factor to become the new sampling frequency of the
selected segment. If the origin of this segment is not the
origin of the experimental record from which it has been
extracted, the new time origin is shifted abcordingly. If the
frequency stored in the catalog is zero, this compltation is
not possible and the segment will be transferred with a time
origin equal to zero associated with a sampling frequency of
1.0 Hz. The number of points involved in the transfer is com-
puted and matehed against a maximal limit set for MAX before
returning the control to the calling program.

2.3.2.2 Execution of the transfer

The basic transfer method consists of moving the stored
‘values into XYZ array by a successsion of elementary trans-
fers until the input request has been satisfied. This opera-
tion requires a succession of ADDEIN (Add-in) calls. ADDEIN
is an ENTRY in OPEIN and starts by reading the block pointed
by KANW into the ZZ buffer. The LKPT values are transferred
one by one into the XYZ array startimg at the address imme-
diately following the index KSHIFT and during this operation
some values are dropped or skipped if a sorting factor has

been specified. When the total number of points has bsen

reached, LKPT is down to zero and the transfer is complsted.
If in the msan time the working quantity (= LOEF and always
a multiple of 512) has been exhausted, the control is re-
turned to the calling program to perform the specified com-
putation and the process continues. Any of these operations
can be shortly interrupted as soon as the input buffer is
depleted and is resumed after the reloading with the next
512 values. The pointsr KANW is incremented after svery READ
and does not need to be tracked by the calling subroutine,
this remark is also applicable to LKPT which indicates the
number of points transferred by an ADDEIN call is always
equal to LOEF except for the last call (the first can be the
last if it is the only one) and is given by the parameter
IMENGE.

Furthermore, the parameter ISTAT carries an information
about the status of the transfer. ADDEIN begins the transfer
with a value of ISTAT which should be set te zero by the
calling program before executing the first call. ADDEIN
changes ISTAT to 1 if a continuation is expected or to 2 if
the termination is acknowledged. If ADDEIN receives a mes-
sage indicator IMEL = 1 from tha calling program, the first
available values (up to eight) of the transfer will be
printed to provide the SEDAP user with a control of the
operation. This featurse requires the conjunction of IMEL=

1 with ISTAT = 0,

The necessity of segmenting the records into working gquanti-
ties alsoc called computing arrays can be a handicap when the
computation involves not only the instantaneaous value but

other adjacent values. The case is illustrated by the follow-

ing widely used 5 point smoothing algorithm:
Y(I) = 0.2 % (X(I-2) + X(I-1) + X(I) + X(I+1) + X(I+2))

This mathematical expression will handle all the values from
the third to the (n-2)th and a special treatment generally
performed by a degenerated form of the previous algorithm
will be required for the two first values as well as for the

10 BLOCKS(5120)-

X(513) = XYZ (513)

OR Y[513)=XYZ (10753)

AL L L

EXTRA READ+SORTING

I. ISTAT=0 NORMAL TRANSFER
IOF =3
IUF =0 ,
sy / /// /S S S S S
GET OVERFLOW
7= (
W \ .
S S S N
SAVE UNDERFLOW
SOUOIOISONANANNSNNNANNT
II.IOF =3 NORMAL TRANSFER
IUF =3 ‘
NN \
GET OVERFLOW
e = <
= N\
a’
LAST SAVE UNDERFLOW
I0F =0
IUF =3 END
NORMAL TRANSFER
ADDEIN TRANSFER WITH OVERLAPPING

(CASE SHOWN WITH KOF =3, KUF=3)

two last values. To avoid this corner effesct at the junction
of two segments, provision has besn made in the SEDAP concept
to insure the uniform continuity of any computation which
doss not excesd five adjacent values in both directions. Ths
limit is theoretically 512 values in both directions if a
sorting factor of 100 were not to be guarantesd. In the pre-
vious example, an intermediary segment (for instance the se-
cond if there are at least three segments) should exhibit,
besides his own values, the three last values of the pre-
vious segment and the three first values of the next ons, to
satisfy the condition of continuity. By analogy with the dyna-
mic behaviour of a register, the five previous values are
~considered as an underflow area, while the five anticipated
values will be stored in a so-called overflow area. From the
pravious considerations, it is obvious that the first seg-
ment can have only an overflow area, the last one only an
underflow whils any intermediary segment will have both of
them. The over/underflow requirements of a segmented trans-
Ffer are functioms of the selected algorithm, and this is spe-
cified by the two parameters KUFLOW and KOFLOW (alias KOF and
KUF) which can take any value from 0 to 5. ADDEIN fullfills
the request whenever it can bs carried out and stores the
number of values effectively present in the two parameters
IUFLOW and IOFLOW before returning the control to the calling
program. To make the computations easier in the subroutines
using the overlapping featurss of ADDEIN, the following non
imperative rules have been adopted in such cases:
= The size of tha computing array is specified as 10 blocks
(LOEF = 5120)
- The value of the array starting index (KSHIFT) is 512 or
10752 according to the choice between the X and the Y zons.

The transfer of valuss with this general mode is flexible bs-
cause it allows an overlapping of the segments, reduces the
number of values by a user specified sorting factor and storss
the values into the XYZ array with a variable starting address.
These advantagses have to be paid by a larger amount of exe-
cuted instructions especially in the case of a straightforward

- 30 -

(ADDEIN) FLOWCHART ENTRY
I

ADDEIN
INITIAL.
////1£\\\\
YES kxyz =1 H-NO
\'_/ . |
KSHIFT =...
IS
I NO KRAF =1
DOWNGRADE e
KUF & KOF =0 |
LOEF =512 »
KXYZ =1 KXYZ =2 KXYZ=4
g
INITIAL READ READ READ READ
‘ ERROR ¥ | X 512 Y512 2512
READ BUFFER ——>'§§§0‘3R L 1l 1
KANW=KANW+1
INCREMENT
AND
TRANSFER
'ONE VALUE
LKPT = 0 T
=1 LKPT - 512
IMENGE =
KSTORE
JSTAT =2
- 4—@
IMENGE =
KSTORE-LKP
JSTAT =1

VALUES

e - D 0 D D R D D e D R D R e MR D R e D MR D G D W MR D G e D RO G a6 D e D e e e R D D D S

4
| COMMANDS:

None

ADDEIN performs the successive! NAME = ADDBEIN
transfers of numerical valuss
from the warshousse into the

working arrays

SYSTEM = TRANSFER

an ENTRY

H

]

1

}

}

]

t

'

t

]

! ENTRY = ADDEIN is
1

1

: into OPEIN
)

i

1

]

]

|

- —— D - D D D R D D R N R R D D ED AR D AR AD T S R AR D R W M D D M D R G AR e G D G e WD e e e S MDD e R M S D D R D D e R D e GO D 00 e e @

CALL ADDEIN(KANW,LKPT,LOEF,KRAF,KSHIFT,IMELD, IMENGE,KXYZ, ISTAT,
IOFLOW, IUFLOW, KOFLOW, KUFLOW)

LIST OF ARGUMENTS:

KANW 1is the absolute address of the record to be read and
is updated to be ready for the next call.

LKPT is the number of points still to be read, the value
is updated and returned to be ready for the next call.

LOEF is the number of points to be returned by a call
(N % 512)

KRAF is the sorting factor

KSHIFT 1is the index of the word preceding the first address
of the XYZ array where the values will be stored.

IMELD =1 causes the first sight values to be printed for
control. (No action if IMELD = 0).

IMENGE 1is the number of points transferred by the call
(IMENGE < LOEF).

KXYZ must be equal to 1 for the transfer on the whole XYZ
array. The values 2,3,4 indicate a fast transfer of
512 values starting at X(1),Y(1), and Z(1).

ISTAT must be zsro for the first call of a transfer, the
value is updated to 1 if a continuation is expected
and to 2 if the request is terminated (LKPT = 0}.

IOFLOW, IUFLOW give the number of values ADDEIN has stored
in the overlapping zones.

KOFLOW, KUFLOW give the number of values requested for the
overlapping features (possible only if KXYZ = 1).

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 3

INDIRECT :

transfer. This is the reason why a second mode of transfer was
introduced in ABDEIN. The method uses the 512 first values of
the X, Y or Z arrays as input buffer for the READ statement
and returns immediately to the calling program. The choice
between the three arrays is specified by setting KXYZ equal to
2, 3 or 4 (KXYZ = 1 refers to the first transfer mode). The
second type of transfer is obviously more effective and is
often used because in the case of a sorting factor greater

than one, it is automatically downgraded to the gensral case.

2.3.3 Transfer from the computing arrays to the warshouse

2.3.3.1 Preparation of the transfer

Like in ths previous case, the exscution of the transfer de-
pends upon the‘succeséful.completion of some validity tests.
These tests are performed by OPAUS (= OPEN-OUT). The first
step is to verify that the name proposed by the user for the
new record is not already known to the catalog (KN must be
equal to -1). OPAUS verifies also that the addition of the
new name does not exceed the size of the catalog (512 names).
The catalog is then updated but the warehouse endpointer KEND
as well as the number of records KDAT are modified only at the
end of the subroutine, once it has been verified that the end
pointer of the new record will not exceed the limit of the

storage file. The sorting factor KRAF is not used during the

transfer from the computing arrays to the warehouse (OPAUS),

because no sorting is done during this process.

2.3.3.2 Exscution of the transfer

The transfer to the warehouse is simplified by the fact that
there is neither sorting operation nor provision for an over-
lapping of the segments like in the ADDEIN case. The basic
mode of ADDAUS (ADD-0OUT) transfers the values of the XYZ array
starting at the location KSHIFT + 1 into the ZZ buffer. The
contents of the buffer are then moved into the warehouse

block indicated by the pointer KPOINT. This value must be -
initially supplied by the calling program and is easily ob-
tained by storing the warehouse end pointer KEND before the

OPAUS call. The value of KPOINT is then updated to be ready
for the next access to the following warehouse block. The
parameter ISTAT must be passed as Zero for the first call
and if the message indicator IMEL is equal to 1, the first
transferred valuss (up to eight if available) are printed
for control purposes and the creation of the new expsrimen-
tal record is acknowledged. ISTAT is then updated to 1. The
loading and unloading operations on the buffer are continued
until the LKPT points have been transferred. If the transfer
requires several ADDAUS calls, the value of LKPT must be a
multiple of 512 with the exception of the last call.

This general transfer mods is performed for the case KXYZ =
1. By setting KXYZ equal to 2,3 or 4 one obtains a faster
mode which can be used with the 512 first values of the X,
Y or Z arrays like in the ADDEIN cass.

2.3.4 Remarks about the use of the transfer subroutines

The transfer subroutines are one of the central features of
SEDAP and care must be taken to provide them with the proper
arguments. One must be aware that many parameters which were
initially passed by the calling program will be updated in
such a way that it does not need to track them or to care
for their incrementation. For instance, KANW is given as
first integer in the command card and can be directly passed
to OPEIN which transforms its relative pointer address into
an absolute address ready for the ADBEIN call. The same
ADDEIN will update the value of the pointer for the next
call without any single action from the side of the calling
program. This comfortable situation can become a disadvantags
if one does not consider the evolution of the arguments when
several transfers are parallel or nested. Such a situation

arises when the following operation is performed:

A =B+ C (A, B, and C are experimental records).

FLOWCHART SUBROUTINE
OPAUS

RECORD ALREADY EXISTS (IS NOT NEW)
YES IERR =7

TOO MANY NAMES
YES 1ERR =10

USE
DEFAULT NO

VALUES
I o

UPDATE
THE
CATALOG

UPDATE
THE KPF

FILLING

FACTORS

THE WAREHOUSE«.__ STORAGE EXCEEDEg‘

ENTRY LIMIT EXCEEDED” yES 1IERR =9
(abbaus) ?
1 NO
]
(SEE PAGE 38) UPDATE ¥
KDAT, KEND
* ERROR

(RETURN) - (RETURN)

- - — o T S D D R D G Y D D G D D KR D D A D R e e G R D e R R R S P R KD D M MR ST W SN e Y S D AR O e MR O D N e A e e W e wm =D w

' COMMANDS : PAUS opens a new experimental

0
in t)
None Eecord in the warehouse, checks SYSTEM = TRANSFER
a

ENTRY = ADDAUS

he validity of the request
nd updates the catalog

- D D - € Y D D S A D SN R D U D R D R A A D G €D 0 a0 S D D e D e R S G R AR D R R A N R G M ok D D M S e W AN D s R WD o M W WP S s e O e

CALL OPAUS(KPT,RNAM,KN,KRAF,FREQ,DAT, ZEYT)

LIST OF ARGUMENTS:

KPT Number of points to be stored

RNAM Name of the new sxperimental record to be stored

KN Is the search index of RNAM (must be -1)

KRAF Sorting factor used to obtain a new frequency(not used)
FREQ Sampling frequency

DAT Date of the record

ZEYT Time corresponding to the first value to be stored

SUBROUTINES OR FUNCTIONS NEEDED:

ERRORS DIRECT: 3,7,9,10

INDIRECT ;

c
C
C
c
c

C

- 36 -

SUBROUT INE JPAUS (KPTsINAMsKNyKRAF ;FREQsDAT 2 ZEYT)

L P N o v s

COMMON X (l0240)sY (10240),Z (5120),

1 BENAM(512), NANF(512),NEND(512) yWFREQ(512),ADAT(512)sBZEIT(512),

2 KDAT¢KEND¢NCyNPyIA ;JRV3X19X2,Y13Y2,IERR; AERRyBERRy; JERRyKERR
3 yKPF (512)

DIMENSION X¥ Z2{16384),22(512)4X512{512),Y512(512),2512(512)
EQUIVALENCE (XYZ(1) s X(1)sX512(1)),(Z2(1)52(4097)),

1 (YS512(1)e¥ (1)) 5(2512(1),2(1))

JNV = 512

CHECK IF THE RcCORD IS REALLY NEW
IF(KNeGT.0) GO TO 921
CHECK THE NJ¥BER OF NAMES LIMIT FOR THE CATALGCG
IF{KDAT.GEo.JdNV) GO TO 30
UPDATE THE PAR AMETERS
WFREQ{(KDAT +1) = FREQ
BENAM(KDAT. + 1) = RNAM
NANF (KDAT + 1) = KEND
ADAT(KDAT + 1) DAT
BZEIT(KDAT +# 1) = ZEYT
MALK = KPT/512
COMPUTE THE FILLING FACTORS
KGER = MALK * 512

KREST = KPT - KGER
KPROV = KEND + MALK - 1
NEND({KDAT+1} = KPROV

KPF (KDAT+1l) = 512
IF(KRESTeEdeD) 60 TO 7
NEND{(KDAT+1} =KPROV + 1
KPF (KDAT+li = KREST

CHECK IF THE LAST RECORD DOES NOT EXCEED THE LIMIT OF THE WAREHOUSE

7 IF(NENDIKDAT #+1) GT.JRV) GO TO 89
KBAT = KDAT + 1
KEND = NEND{KDAT) + 1
RETURN

ENTRY ADDAUS {KFUNCy ISTAT, KPOINT RNANMyLKPT ¢KXYZ,KSHIFT, IMEL)

KSTORE = LKPT
1D = 8
IF(KXYZeNEei) GU TO 45
10 IREC = 0
IMAX 512
IMIN 1
IF (KFUNCeNEe2) GO TO 14
SPECIAL CASE TO ADD VALUES IN THE SECOND HALF BLOCK
IMIN = 257
IA = KPOINT
READ (40°IA, ERR=98) 1Z
14 IF (LKPT.GT«512) GO YO 15
IMAX = LKPT + IMIN - 1

15 =20
DO 20 I=IMIN,IMAX
J=J +1

FILL THE ZZ BJFFER
20 2Z(1) = XYZ (KSHIFT + J + IREC * 512)

(

IA KPOINT
WRITE (40'i4) 2Z

25 LKPT = LKPT -~ IMAX + IMIN -1
KPOINT = KPJINT + 1
IREC = IREC + 1

IF (LKPT) 85,85,14
KSHIFT 10240 * (KXYZ =
IA = KPOINT

GO TD(10,50460,70)y KXYZ
THIS IS THE DIRECT TRANSFER (KXYZ
50 WRITE(40'IA) X512

45 2}

GO TO 80
60 WRITE(40'IA) Y512
GO TO 80
70 WRITE(40'IA) 2512
IF ISTAT = 0 AND IMEL =
80 LKPYT = 0
KPOINT = KPJINT + 1
85 IF(ISTATe,NE-.O0) GO TO 39
ISTAT = 1

IFUIMEL-EQ.V) GU TO 39

233 OR 4)

1 PRINT THE 8 FIRST VALUES (CONTROL)

CHANGE VALUE JF ID IF LESS THAN 8 POINTS

IF (ID«GT«X5>TORE) 1D KSTORE
IS = KSHIFT + 1

IE = KSHIFT + ID
WRITE(NPy 104 JIXYZ{I) 2I=IS,4I1E)

WRITE(NP;102 JRNAM

39 RETURN

89 IERR = 9
AERR = RNAM
JERR = KEND
KERR = JRV
RETURN

90 IERR = 10
JERR = KDAT
KERR = JNV
RETURN

31 IERR = 7
AERR = RNAM
RETURN

S8 IERR = 3
JERR = 40
KERR = KPOINT
RETURN

101 FORMAT{' KOMTROLLWERTE OUTPUT =

102
END

FORMAT(/' DIE WERTE SIND UNTER DEN NAMEN

*93(E1l2:6,1X))

"sA4; " ADDRESSIERBARY)

- 38 -

(apbaus) FLOWCHART ENTRY
|

. ADDAUS
KSTORE =
LKPT
ID=8
o A
N wy YES
?

SET SET IA
IREC,IMAX COMPUTE

IMIN KSHIFT

KXYZ = 2 vaz=z.
N IMIN = 257 KXYZz3 |

[

IA = KPOINT WRITE WRITE / WRITE
Y READ (ZZ) BUFFER BUFFER BUFFER
| X 512 Y 512 Z 512

——— Y
g
CHECK READ
LIMITS ERROR LKPT =0
IERR = 3 KPOINT =
| KPOINT + 1
TRANSFER
XYZ—ZZ =
I
IAzKPOINT
WRITE
22
UPDATE
LKPT, KPOINT
AND IREC
PRINT /
NO YES NO CONTROL
VALUES
c o <

NAME = ADDAUS

]
i
' COMMANDS:: | ADDAUS stores the numerical
None ivalues into the warshouse

SYSTEM = TRANSFER

!

i

|

|

|

t

f

|

:

t ENTRY = NAME in
b

! ADDAUS
|

|

|

I

1

1

!

- - — O D s 6 G D D WD AR D D N R N D D R D D e D A D e A e D A e D A AR A A 4O D O e e G O e R N e S M W G GRS R O R D G D WD ED W e G G

CALL ADDAUS(KFUNC, ISTAT,KPOINT,RNAM,LKPT,KXYZ,KSHIFT, IMEL)

LIST OF ARGUMENTS:

KFUNC 1is equal to 2 if 256 valuss have to be stored in the
second half-record, otherwise KFUNC = 1

ISTAT 1is given as zero for the first transfer and will be
returned as 1

KPOINT is the value of the pointer which indicates the block
where the values are stored. KPOINT is updated to be
ready for the next call.

RNAM is the name of the record (used for documentation of
errors)

LKPT is the number of points which have to be transferred

KXYZ = 1 transfer from the XYZ array (starting at KSHIFT + 1)
= 2,3,4 for a transfer of the first 512 values of the
X,Y and Z arrays.

IMEL = 1 if the first output values (up to 8) are to be
printed for control. In that case the storage is ack-
nowledged. Otherwise IMEL = O.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 3

INDIRECT: None

The transfer scheme will be:

OPEIN (B) (simplified writing form)
OPEIN (C)
OPAUS (A)
ADDEIN (B)
ADDEIN (C)

«» Compute
ADBAUS (A)

Iteration

and involve KANW, KENW, LKPT, ISTAT etc. ... in two separate
OPEIN / ADDEIN structures. It is then advisable to initialize
a double list of arguments like KAN1/KAN2, KEN1/KEN2, LKP41/
LKP2, ISTA1/ISTA2 etc. ... which will be able to maintain
their own independant evolution.

Although a strong similarity exists between OPEIN/ADDEIN and
OPAUS/ADDAUS, their symmetrical structure could be mislea-
ding if the following points are disregarded.

There is an implicit master-slave relationship between ADDEIN
and ADDAUS. ADDEIN is responsible for the input requests and
provides the information concerning the end of the transfer.
The ADDAUS call derives from ADDEIN or from the supervision
of the calling program. This does not preclude the fact that
in some situations there is an OPAUS without OPEIN and reci-
procally. The difference should be noticed for two similar
arguments like ISTAT and LKPT. ISTAT has three status valuses
in ADDEIN but only two in ADDAUS. LKPT in ADDEIN refers to
the number of points still to be read while LKPT in ADDAUS
is the number of points which have to be transferred by the
call, it corresponds to the parameter IMENGE of ADDEIN.

It can be noted that the end of an input request can be ds-
tected after the ADDEIN call by testing for LKPT = 0 or for
ISTAT = 2, whichsever is the most convenient.

2.4 Error Interpretation

Any error occuring during the execution of a program repre-
sents a very uncomfortable situation. The situation is sven

worse, if the error occurs in a large system of the size of

MAIN

41

IERR = 0
[T eALL XL
e
NO _AZroor™, YES

?

—sz NEXT STATEMENT

v

ERROR ZONE

CALL FEHLER
(INTERPRETATION)

SUBROUTINE (X)

CALL Y (........)

]

SUBROUTINE ()

STATEMENT N
* % ERROR FOUND &—

BYPASSED
ZONE

ERROR
ZONE

[ERR=
RETURN

» NEXT STATEMENT

[BYPASSE D]

ZONE
T
RETURN

!

ERROR HANDLING WITH RET UR N SCHEME

- D D T D e e D T D G o S D R D D G e D e R O O3 O3 G D e D G R G D o R R D O O 0 W e e e S GD R D R an e e RS G e R S 3

i 1
' COMMANDS: |FEHLER 1is the error subroutine | NAME = FEHLER
None iwhich is called at the end of a

i
]
L]
]
:
itask if IERR # 0. FEHLER pro- | SYSTEM =gRROR
jcesses twenty different srror |

itypes and expects that the in- | ENTRY = naone
iformation necessary to the srrof
tinterpretation has been orderly)

Epassad to the common '

CALL FEHLER

LIST OF ARGUMENTS: FEHLER has no argument but uses the five follo-
wing parameters located in the common arsea accor-
ding to the following conventions:

IERR is the error code
' IERR = 0 if no error has bseen detected
IERR = 1 to 21 refers to one of the 21 error types

JERR and KERR are two integers which are used to pass the
number of a unit, the address of a false block, the
values of a wrong delimiter etc. ...

AERR and BERR are two decimal values used to pass an incorrect
frequency value or which carry a record name corres-
panding to a FORMAT A4.

Note: Befors issuing any IERR code it is necessary, in order
to obtain a correct error interpretation, to update
some of the four listed parameters according to the
error table.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: Does not apply

INDIRECT: Does not apply

-— - —————— —— ——

SEDAP which was designed to be a problem oriented process,
where the user should not be concerned with all the elementary
steps of the computation. Most of the SEDAP errors can be
classified according to the following typses:

- the primitive errors. They are mainly due to punching
errors. A user can punch S032 instead SpP32 or»TEMD when
he means TEMP.

- the logical errors. They are mainly due to a lack of pro-
cessing scheme or to an insufficient knowledge of the
command specifications.

- a third class of errors is more difficult to detect and
involves a type of errors inherent to the nature of any
computing activity. Typical examples are the hardware
errors (machine error, I/0 parity error, the destruction
of a card, the absence of a tape reel which was not de-
livered to the machine room stc. ... These errors are
generally known to the supervising system or to the ope-
rator but the related information is often extremely dif-
ficult to obtain at the FORTRAN level.

During the implementation of SEDAP it has been attempted to
detect the largsest possible number of errors and to stop the
execution of the job before the consequences of an error be-
come unpredictable. This is materialized by numerous tests
located at critical points of the program. If the course of
the program is not sndangered, a warning will be issued but
gensrally the error causes an immediate return to the error
zone of the main program which terminates the job once the
error has been interpreted. It has been our experience that
a clearly described error will be corrected in one run while
an exagerated indulgence can lead to a chain of errors which
cannot be identified by the system's user. The error detec-
tion was implemented almost to the limit of the FORTRAN pos-
sibilities but the challenge cannot always be met and it is
not claimed that all the errors will be detected.

A large number of errors of third class are out of reach and
will cause an interruption which will be documented only by

the 0S, i. 8. without reference to our problem oriented appli-
cation., This is the case for the machine errors, break-down

etCocoe

When SEDAP addresses a new file (tape or direct access) the
user will be informed of the operation by a special message
like:

"the DUMP command must now use the file 21 for the execu-
tion of the task, this requires the availability of a com-
patible tape and the correct specification of a corrsespon-
ding control card

//FT21F001 cvcecncnosnnonsns”

and may deduce that any interruption immediately following the
message has been caused by one of the above mentioned points.
Some errors like the register under/over-flow are not detected
by SEDAP because they are caused by too many reasons and be-
cause their detection at the FORTRAN level would have to be
paid by a too large increase in memory size and exscution
time. Most of critical divisions are protected against zero-

divide.

The srror status of SEDAP is represented by the integer IERR
which is set to zero during the initialization or after an
error interpretation in the case where a restart is allowed.
Apy detected srror causes IERR to take a value greater than
zero. When an srror code is issued, the value of IERR must
correspond to the type of error to be detected. Four other
parameters JERR, KERR, AERR and BERR contain the information
which must be supplied to the error interpreter according to
the conventions listed in the errortable. JERR and KERR
supply the information about integer values (file numbser,
block numer ete. ...) while AERR and BERR are used to pass
the record names or a decimal parameter. The five parameters
of the error interpretation are located in the common area.
Once an error code has been issued in a subroutine, the con-
trol must be immediately passed to the calling program
(RETURN). This implies that after calling any of the subrou-
tines which can issue an error code, the zero value of IERR

ERROR CODE LIST

IERR Description FORTRAN Reference Remarks AERR BERR JERR KERR

1 Tape reading error READ(KTAPE,IERR=...) DD card, parity error / / UNIT BLOCK
End of file on tape READ(KTAPE,END=...) Too many blocks requested / / UNIT BLOCK
3 Direct access reading READ(40'IA,ERR=...) DD card, damaged disk etc.. / / FILE POINTER

error
Exp. record ovserflow IA 5 NEND(KN) Logical error(see Handbook) NAME / KDIF KENW
5 First delimiter > se- INT(1) > INT(2) Reversed delimiters / / KANW KENW
cond del.
Too many values LKPT > MAX A limit was set for the task / / LKPT MAX
New record name is not K3 > 1 Logical error(see Handbook) NAME / / /
new
8 0ld record name is un- K1 < 1 or K2 < 1 Logical srror(see Handbook) NAME / / /
known
g Wareshouse is full NENBD(N) > JRV Use destroy or larger spec. / / KEND JRV
10 Catalog is full KDAT > JNV Only 512 names permitted / / KDAT JNV
11 1 of the 4 first BEF(1).NE.'SEDA’ False initialization HEAD 'SEDA’ / /
cards is false _
12 Command is invalid BEF.NE.BE(1...KBE) Check commands list BEF / / /
13 Modifier is invalid K4 < 1 See command description NAM2 / / /
14 Less than N values KPT < N | I " / / KPT N
15 Frequency is < 0.0 FREQ.LE.OC.O "o " FREQ / / /
16 First delimiter is < 0 KANW < O Logical error, punching srr. / / KANW /
17 Warehouse specifica- INT(1) > 5000 See Handbook / / INT(1) /
tion exceeded
18 Binary conversion err. (ERAKON) Recording srror (hardware) / / UNIT BLOCK
19 Warshouse is empty KDAT=0 : -togical error / / / /
20 Sorting factor 100 KRAF > 100" Logical error / / / /
21 Non standard error (Listed errors) See Handbook / / CODE /

SY

must be checked. The operation provides a fast cascaded re-
turn to ths main program where an error zone calls the sub-
routine FEHLER for the interpretation of the error. Twenty

types of standard errors are interpreted by the system. The
error code IERR = 21 is reserved for the non-standard errors

and gives a reference number listed in the user’'s handbook.

2.5 Service subroutines

2.5.1 Command file transfer (Subroutine DAKA)

During the execution of a task, a copy of the original command
card is provided for documentation purposes before the inter-
pretation of the task is formulated. Since the main program
already prints the complete list of the commands at the begin-
ning of the job, a re-read operation must be provided. This
function is performed by the subroutine DAKA which reads and
prints all the input cards at the beginning of the job and
transfers them to a new input file. DBuring this operation, the
comment cards which must begin with an arrow (symbol > i. e.
greater than) are printed but are not transferred. The file

15 (blocksize 1680, logical record length 80) is used for this
intermediary storage. Since the cards were read on the standard
input file (file 5), the subroutine DAKA changes the value of
the index NC from 5 to 15 to insure that all the subsequent
READ will be made by addressing the new file.

2.,5.2 Status of the warehouse and the command list
(Subroutine STATUT)

The subroutine STATUT maps the warehouse and gives the list

of all the commands (keywords) which are acknowledged by the

system. The subroutine can perform three types of tasks which

can be classified according to the value of the variablse

KFUNC::

- for KFUNC = 1 the experimental records names are listed
with all the related parameters.

- for KFUNC = 2 the previous case is extended to the block
level and the eight first values of every block are listed.

- for KFUNC = 3 the keywords used as command names are listed
together with the eight character titles which are used to
report the initialization of a task.

The subroutine is straightforward and is mainly comprised of
three DO loops, two of which are bypassed when the warehouse
is empty.

FLOWCHART SUBROUTINE

DAKA DAKA
INITIALIZE
PAGE
TITLE
PUT EOF
ON
NEW FILE
CHANGE
NC FROM
57015

WRITE THE

CARD ON

THE NEW
FILE

(RETURN)

- o oD D D D D = O T €S D Y) O e e e D D T RN @ e WD) 6y om e G G GO R N R G R SR R W4 G A 2 M G R S o e A R e S e = e -

| COMMANDS:

Nons

[}
]
DAKA prints the list of all |
the command cards at the be- |)
ginning of a job and provides | SYSTEM = Service
a re-read possibility by trans4

5

1

1

[}

]

]

}

]

]

|

ferring the commands to a new ENTRY = None

file. During this operation,
DAKA skips the comment cards.

oy 03 - n S W 4o e D T WD T N D R D EE W W W D R D MR D e G M R N e 03 e D D R e R O3 e G e S e D e e - e s - -

CALL DAKA(NC,NP,NN)

LIST OF ARGUMENTS:

NC is the index of the standard input file //G.SYSIN
and is equal to five in the described configuration.

NN is the index of the intermediary file. In the des-
cribed configuration, NN is equal to 15 and refers
to the file allocated under //FT15F001 ..v.us.

NP is the index of the standard output file or SYSPRINT
file and is equal to 6 in the described configuration.

N.B. The value of NC to be returned by DAKA is the value
passed for NN

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: None

INDIRECT: None

' FLOWCHART SUBROUTINE

STATUT
YES
PRINT
"WARE HOUSE
IS EMPTY ¥
=
DO PRINT
K=1, PARAMETERS v
KDAT OF THE RECORD
PRINT
HEAD 1§\\\\
KFUNC =250
r
YES
I ;
PRINT
Pg‘) Sgﬂﬁggcn= Y
KNED THE BLOCK
=
S
[> !
DO PRINT
3=1 NAME AND
KBE LABEL OF
THE COMMAND
A
T

y
(;RETURNT)

- o . e n D D D T D D R D CD D G e D D KR D e D S D WS D N D D AN W RN G R S A A O G O R e N KD SR R TR e D D R A TR e o R S e e D e o

]
]
STATUT lists the records stored NAME = STATUT

[}
| COMMANDS:]
) . . \
BILD,ZUST 1in the warehouse with their i .
| parameters and as option prints| SYSTEM = Service

lthe eight first values of all |
| the blocks contained in the

i warehouse. STATUT also gives a
11list of all the commands of the
! system

ENTRY = None

- . - D D D SRR R =0 AD D WD D M D D D ER W D R 3 D e R R S S ST e b A S A O e S I GO W O D T W R e W) R e D D e e S S e D

CALL STATUT (KFUNC,KBE,BE,ME)

LIST OF ARGUMENTS:

KFUNC ipdicates the selected option with the following key:

, KFUNC = 1 for the list of the records
KFUNC = 2 for the same list as KFUNC = 1 but with the
addition of the eight first values of svery

KFUNC = 3 gigctﬁe system commands list with their
label.
KBE is the number of implemented commands
BE is the array which contains the commands (4 characters)
ME is the array which contains the labels (8 characters)

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 3

INDIRECT : None

2.5.3 Destruction of records (Subroutine LAGER) .

The subroutine LAGER destroys an experimental record from the
warshouse. Such an operation can be necessary if a large experi-
mental record is no longer needed (for example a multiplexed
record is not used once it has been sorted) and if the warshouse
free space has become insufficient. A special case is involved
if the user intends to clear all the warehouse (ZERS ALLE for -
destroy all). Such a situation is looked upon in the MAIN and
represents a simplified case dirsctly handled by the MAIN by
setting KDAT equal to zero and KEND equal to one. The destruc-
tion of a single record is performed by the subroutine LAGER
which first checks the existence of the record and reorganizes
the warehouse to erase the speciFied record. Such an operation
is done by shifting all the parameters which follow the de-
stroyed record to the preceding position and by shifting all

the blocks which follow the last block of the destroyed rscord
by an amount equal to the number of blocks occupied by this

raecord.

It should be noted that another special situation arises if
the record to bs destroyed is the last record stored in the
- warshouse. A simplified treatment is applied to update KOAT
and KEND without a shifting operation.

ENTRY CTLG
LAGER has a secondary function which is accessible by an ENTRY

called CTLG. The purpose of CTLG is to systematically search
the catalog to find whether a proposed name XNAM matches one
of the existing KDAT record names contained in the warehouse.
If the search has been successful, the search index KN will
carry the index K of the record in the KDAT list. If the name
is unknown to the catalog or if the warehouse is empty, KN is
set to -1. SEDAP subsequently uses the index KN to address the
record, to test his existence or to check the newness of new

record names.

—_——— e s — ———

IERR=8

RECORD
DOES
NOT
EXIST

FLOWCHART SUBROUTINE

(RETURN D)

LAGER
YES
KDAT = 0
KEND = 1
PRINT
MESSAGE
YES >
SHIFT THE
PARAMETERS
OF THE CATA - *
L0G (DD LODP)
SHIFT THE
BLOCKS
(DO LOOP)
——
UPDATE
KDAT & KEND
PRINT
MESSAGE
—3

>

TO END OF
TASK

LAGER

' COMMANDS: NAME
ZERS=(destroy)

MODIFIER=ALLE

LAGER destroys a record in the LAGER

warehouse. If all the warehous
must be cleared, the MAIN doses
the job in a simpler way by

[}

[}

}

:

E SYSTEM = SERVICE
)

[}

Esetting KDAT = O and KEND = 1
1

1

]

t

1

1

[}

|

[}

ENTRY = CTLG
CTLG is a LAGER-entry which
searches a record-name in the
catalog
CALL LAGER(K1,RNAM)
LIST OF ARGUMENTS:
K1 is the catalog index of the recerd RNAM (if K1 = -1,

the name has not bsen found) (
RNAM is the name of the record to be destroyed

CALL CTLG(KN, XNAM)

KN is the resulting index after the search (KN = -1 if
not found, KN = K if XNAM matches the Kth name)

XNAM is the name which will be searched in the catalog

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 3+ 8

INDIRECT: None

r
v 3? 1) ATCH YES
=1, E
KDAT ':;AM
NO
KN=K
£
KN=-1
I S

(RETURN)

ENTRY CTLG IN LAGER
(SYSTEMATIC CATALOG SEARCH)

2.5.4 Generation of simulated Data (Subroutine DAGEN)

SEDAP is a program system which was mainly designed for the
treatment of experimental data but its range of application

is extended by the system capability to generate his own data.
This function is performed by the subroutine DAGEN.

Two main reasons Jjustify the existence of the data gensration:
- The experimenter generally likes to test the SEDAP package
in a "dry run"” mode in order to gain some experisnce with
the techniques of data reduction. The subroutine DAGEN allows
the system’s programmer and the system's user to produce data
which are extremely convenient to test the system or to learn
how it reacts.
- An advanced type of data reduction may call for some complex

form of compensation which can be achieved by DAGEN.

The DAGEN subroutine initializes the parameters and checks the
validity of the modifier (index K4) which is used to determine
the type of generated data. The status of the proposed record
name is then inwvestigated. If the name is new (K3 = -1}, a new
record is opsned by OPAUS but if the name already exists, DAGEN
concludes that the user intends to add the generated data to
an old record to obtain a compensation or to perform some type
of complex waveform synthesis. In the last case OPEIN checks
if the request is compatible with the record stored in the
warehouse and usses the returned frequency as sampling frequen-
cy for the data to bes generated. ADDEIN transfers immediately
the first segment of 512 values to the Z array (KXYZ = 4),

In both cases the control is then passed to one of the six
computing zones which generate the following type of data in
the Y array:

1- constant of amplitude a

2- ramp (aX + b) with a and b as parameters

3- sine wave of amplitude a and freguency fp

4- cosine wave of amplitude a and frequency f

5- square wave of amplitude (+a, -a) with a repetition rate ?p

6- random numbers comprised between 0O and +a.

FLOWCHART SUBROUTINE
DAGEN

CHECK SIGNAL | IF PHEFR<0Q —s==| ERROR
FREQUENCY s

[K3>0 al
\\3/
CALL OPEIN ' COMPUTE LKPT
STORE KEND
©®+—{ERROR) CALL OPAUS
CHECK ,
FREQUENCY ®(ERROR) ——™
IS
- - NO aer N\ YES
* 2
STORE * KANW
CALL ADDEIN
____{ERROR)
3 e
SELECT ONE OF THE
GD TO SIX SPECIFIC DO LOOPS
i
{ 1} 1 1 1

TR 3 4 5 6
[coNsT| |RAMP| | SINE | |COSINE| [SQUARE [RANDON

ADD Z ARRAY
TO Y ARRAY
|

CALL

ADDAUS
(RETURN)
1S }__*'®
ves o T o

LKPT£0
?

1
' COMMANDS: i DAGEN generates test data and
DAGE Estores the generated data in
:the warehouse. Six types of
rsignals are possible (constant,

|

i

t

t

I

]

! SYSTEM = SERVICE

}

]
iramp,sine,cosine,square and i

f

|

!

|

t

]

!

i

!

ENTRY = None

rrandom), DAGEN can add the ge-
inerated data on an existing re-
1rcord (Additive Process)

CALL DAGEN(K4,FNAM,GNAM, K3, KANW,KENW,KBDIF,FREQ,PHEFR, AMP)

LIST OF ARGUMENTS:

K4 is the modifier index which indicates the desired
type of signal

FNAM is the record name
GNAM is the modifier name

K3 is negative if the record is new, otherwise the out-
put will be added to the record pointed by K3

KANW, KENW are the delimiters of the selected segment (in
blocks)

KBDIF is the number of blocks to be generated
FREQ is the simulated sampling frequency (Hz)

PHEFR is the frequency of the generated signal (sine,cosine,
square,wawe) or the amplitude of the increment (ramp).

AMP is the amplitude of the generated signal

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN,ADDEIN,OPAUS,ADDAUS,SIN,COS,RANDBU

ERRORS DIRECT: 13 15

INDIRECT: OPEIN,OPAUS,ADDEIN

All the signals are generated with a sampling frequency Fs
specified by the user or provided by the OPEIN call.

If the additive process has been selectsd, the segment of

the existing record which has been stored in the Z array is
added to the newly generated data of the Y array. In both
cases the Y array is transferred to the warehouse with a poin-
ter KSPUR which will direct the new data to the new record or
to the old one (replacement of the block) according to the
status of K3.

The data generation is terminated and the control is rsturned
to the MAIN if the transfer request has been satisfied. Other-
wise the process continues and the control will be passed to
the next ADDEIN call or directly to the computing zone if the
record is new.

Remark: The generation of uniformly distributed random real
numbers (Type 6) requires the availability of the subroutine
RANDU (IBM scientific subroutine package) which is spsecific
to the system 360/370 /3/.

2.5.5 Record delimiting by values or time units (Subroutine
WERT)

SEDAP handles the values by blocks, which means that the de-
limiters carried by the commands cannot retail the recorded
values in quantities smaller than 512 (with the exception of
the last block of a record which may not be completely filled).
It has been initially planned to specify the delimiters in
blocks, values or time units. Only the block option was imple-
mented but the service subroutine WERT allows to transfer a
part of record delimited in values or in time units into a

new record.

The subrbutine WERT first initializes the service parameters

and verifies if the index K4 is not equal to 7, which would
indicate that the delimiters were given in time units (seconds).
This special case is first investigated and the time delimiters
are converted toseconds in accordance with the time floating
factor (FAK), which can be 0.001 for instance if the user has

FIRST VALUE
OF THE RECOR

1) USE KXYZ=2
FOR FIRST ADDEIN
ISTAT=0

2) CALL ADDEIN
KXYZ=1, KSHIFT =512
1STAT=0, LOEF =512

3) CALL ADDAUS
KXYZ =1, LKPT =512

KSHIFT = LR1-1

4) CALL ADDEIN
KXYZ =1, LKPT=512
KSHIFT=512
KUF=512 -LR1

5) ADDAUS

- 60 -

B

LR1 = REST—| [Dbpp2Blecc

e . .
QE R (WAREHOUSE)

¥o

(FIRST VALUE
10 BE
TRANSF}

(LAST

70 BE
TRANSF.)

_/

VALUE

\LAST VALUE OF THE

RECORD
I —
L _n
XYZ (1)
X (1) l: 313 1024
[REST Jana /
l' L 3<—/
KSHIFT_ —— ¢ — —
| Rest JaaalssBBBB |[ccc] \
l
l | |
=—LR1——>JAAA|BBB BBB \
—

KSHIFT LKPT=512 /
—————
N |
b warS\
} SAVE U-FLOW
S12-LR1 o KUF le
<—LR1——>CcCC| B BBBBBJcCCC S\
e—su————wl________j‘/
REST Jccc|pbD DDD |EEE &
¢ [
{REMAINS
UNCHANGED |

LKPT=512

TRANSFER SCHEME FOR 'WERT'

(CALL BY VALUES)

- 61 -

FLOWCHART SUBROUTINE
—— WERT

INITIALIZE
YES
|

CONVERT THE
TIME UNITS
TO THE
NORMAL CASE
' I

FIND THE BLOCK

AND POSITION

OF THE TWO

DELIMITERS

ERROR

CALL OPEIN+
SPECIAL TEST

FIRST VALUE IS THE
FIRST OF A BLOCK

YES

KXYZ =2
KXOUT =2

r

LRS =
LRS+ 512

—— - D S D D D e A R D AR D A D a0 A D g D D D e . O D T D KD W G S D O G0 R R S R e WD O D S S W e

' COMMANDS: IWERT creates a new record by
|transferring a record segment
WERT .S
iwhose delimiters have been spe-

NAME = WERT

}
t
]
|
| SYSTEM = SERVICE
tcified, not in blocks as usual,)
'but in points or in time units.}! ENTRY = None

i

1

1

]

1

]

]

1

- —— . - - —— e . -
oD G O o n D T S o S P WY W D e G T 0) IR e D M D A R) D e A D e A 0 S R D R S G D A D S W o o -

CALL WERT (ENAM,K1,GNAM,K3,I1,I2,K4,TA,TE,FAK)

LIST OF ARGUMENTS:

ENAM is the name of the input record

K1 is the search index of ENAM (not found if K1 = -1) (
GNAM is the name of the new resulting record
K3 is the search index of GNAM (valid if K3 = -1)

I1,I2 are the two values (both inclusive) which delimit the
selected segment

K4 is the modifier index. If K4 = 7, the delimiters are
given in time units by TA and TE

TA,TE are the two time delimiters normally given in seconds.

FAK is a floating factor which will be applied to TA and
TE before they are computed in ssconds (FAK = 0.001
if the delimiters are given in msec).

SUBROUTINES OR FUNCTIONS NEEDED: QPEIN,OPAUS,ADDEIN,ADDAUS

ERRORS DIRECT: 4,5,6

INDIRECT: sge OPEIN,OPAUS,ADBEIN

used the option to specify the time units in millissconds. An
OPEIN call is used to obtain the time and the frequency of the
record. A computation to transform the time delimiters into
points is then possible, thus reducing the time option to the
general case here after described.

The validity of the delimiters expressed in points is first
verified and the position of these two points is investigated
in order to obtain the address of the block where they are
located and their position within that block. OPEIN is called
to open the record and to verify the validity of the request.
Since OPEIN was designed to handle the blocks, two complemen-
tary tests are necessary to insure a correct transfer under
all conditions:
- The time origin must be shifted if the first value is not
the first value of the block.
- The filling factor of the block which contains the last de-
limiter must not bs exceeded by the position of this value.
OPAUS can then open the resulting new record in the warehouse.
Since a special case is involved when the first delimiter
value is the first value of a block (LRS = 0) the existance
of this possible simplification is checked and causes the se-
lection of a fast transfer mode for ADDEIN and ADDAUS with
no underflow and both transfers are performed on the first
512 values of the X array.

The general case must provide a preliminary underflow zone
(see chapter 2.3.2.2 and page 28) which cannot be ob-

tained from the first ADDEIN call. This is done by a prepara-
tory ADDEIN call with KXYZ = 2 which brings the first block
into the first 512 storage locations of the XYZ array. If the
transfer involves only one block, the input transfer is com=-
pleted with the preliminary ADDEIN call and the control is
shifted to the ADBAUS call. In the general case, the second
ADDEIN call stores the next block into the 512 storage loca-
tions adjacent to the previous 512 stored values. ADDAUS can
then transfer a complete block of 512 values by using the
normal transfer mode KXYZ = 1 with a displacement KSHIFT

which is equal to LRS, 4. 8. to the position of the first
value in the related block. All the subsequent ADDEIN calls
will renew the initial zone by using the underflow feature
which can cover the 511 possibilities.

It is important to note that in order to terminate the trans-
fer operations two conditions must bs met:

- the input request (number of points) must be satisfied.

- all the points must have been transferred by ADDAUS.

If the first condition is not met the process continues with

the next ADDEIN but if only the second condition is not met

the control must be passed to a last ADDAUS call which will ’
be sxecuted with a new displacement equal to the former (
KSHIFT incremented by 512. '

Remark: Since the subroutine WERT takes advantage of almost !
all the possible features of the TRANSFER subsystem, some of |
them in tricky ways, the understanding of the individual

operations of the WERT subroutines requires a detailed know-

ledge of the TRANSFER subsystem.

2.6 The input-output subsystem

SEDAP processes data which have been recorded on magnetic tape
or paper tape during an experiment and communicates the re-
sults of the process to the user by directing the records or
parts of the records to output files such as the printer file
or the plotter file. All these files form an environment which
will be shortly described.
1) The command file
This is the standard card input file which contains the
commands to direct the process. A second file is needed to
transfer the list (file 15). These files are handled by the
main program and DAKA and are described in relation with
the specific parts of the system.
2) The magnetic tapes , -
- standard magnetic tapes (usually 9 track - 800 bpi) are
used to dump the records or to provide an interface to

other programs. Sequential data sets on direct access §

devices may be used for the same purposs.
- 7 track tapes in a special format are used to obtain the
data from the data acquisition system (see ERAKON).
3) The printer file
This is the standard output file of the computing system.
4) The plot file
The plot file is installation dependent and is used by the
subroutine GRAPH to produce plot output via offline Cal-
comp plotters.

The input-output subsystem must provide the necessary interface
between the warehouse and these files and this requires a
custom-designed adaptation between the data structure implemen-
ted in the warehouse and the data structure of these files.
This adaptation is quite straightforward for an output file
like the printer file but may be rather complex for other
files which depend from the installation or from the implemen-
tation of other subroutines (data acquisition system, plot sub-
routine). Since SEDAP is modular and since the input-output
subsystem is a part of SEDAP which was built by assembling
different submodules it is easy to substitute any other adap-
tation to a special input-output file.

2.6.1 Conversion of experimental data recorded by the ERA
data acquisition system (SUBROUTINE ERAKON)

The subroutine ERAKON converts the data recorded by the data
acquisition system of the Institut fir Reaktorentwicklung and
stores the resulting recordsin the warehouse. The structure of
ERAKON is determined by the specifications of the recording
system and they will be briefly described.

- All ths input signals must be amplified in order to be com-
patible with the * 10 Volt range of the analog to digital
converter. It is expected that the user has correctly set
the variable low pass filter built around the amplifier loop
in order to avoid any aliasing. (Introduction of low fre-
quency oscillations, which do not exist in the physical sig-
nal, due to the digital sampling method) (sees § 3.3.2).

- The number of channels is always of the 2N form which gives

- 68 -

(ErRAKON) FLOWCHART SUBROUTINE

ERAKON

INITIALIZE
CHECK FREQ.
& FIRST. DELIM.—— s ERROR

I
REWIND

SKIP | READ
1BLOCK |
(2048 HALV)

DUMMY
READ FIRST
CONVERSION
(RE-ASSEMBLE
THE 4 BITS)

Do -
LOOP S
<«—NOT THE LABE

YES

BLOC

CONVERT

. THE
CONVERT LABEL

INTO DECIMAL
WITH SIGN (1)

caLs CHECK
ADDAUS LAST ERROR

DELIMITER [—®

"ONLY
BLOCK ZERQ
?

YES

CALL OPAUS
5 PRSP |
T ERROR

REWIND ZONE
— .

@ETUIRN)

- —— D o - DD D D D e e D D e D G e D D R e e A A D D e e D O e R D R S D R e SN A G G O D ek AN R D RD e e e 0 e S

! COMMANDS : | ERAKON converts the data re-
ERAK | corded by the ERA data acquis
{tion system and storses the re
isults into the warehouss.

NAME = ERAKON
SYSTEM = Input

[I

ENTRY = None

- s - - D D S D O D D G D D T D G K e D D e R G D D e D R M D P S R S G D 3 D R R S b L R M D M e W M e GRS

CALL ERAKON(KBAND,KBANF,KBEND,KBDIF,GNAM,K3,FREQ,DAT,ZEYT)

LIST OF ARGUMENTS:

KBAND file number for the magnetic tape

KBANF first block to be converted. (A block contains
1024 values and block 0 is the label block)

KBEND 1last block to be converted.

KBDIF number of blocks to be converted

GNAM namg of the resulting record

K3 search index of FNAM in the catalog (must be -1)
FREQ is the sampling frequency

DAT is the date (day, month, year)
example: 0306.72 for June 3rd, 18972

ZEYT is the time (seconds)

SUBROUTINES OR FUNCTIONS NEEDED: OPAUS, ADDAUS

ERRORS DIRECT: 1,2,4,5,15,16,18

INDIRECT: OPAUS

¥) FLOWCHART SUBROUTINE

PAPTAP
YES ERROR
-
CALL PCHCK CRROR
CALL
NO ERROR
STRI: OK PDUMP —=
YES
. ERROR
CALL RECO -
CALL OPAUS
=
FILL THE
BUFFER y
NO ~kENDE
?
YES
CALL ADDAUS
RETURN)e—

- D D) S W D D D D A D D G D AT D D S e D eop e e Y D G I I €8 G G O R OO R G R SR OB W R Y S SR S e . s N R WD M =R e . D

| COMMANDS:
PTAP

| I

| PAPTAP converts experimental | NAME = PAPTAP
| data originally recorded on !

! paper tape and stores them | SYSTEM = INPUT/OUTPUT
! into the warshouse. Faulty '

| tapes are dumped into the ! ENTRY = None
] |

i |

| |

[} [}

) |

|]

t t

! |

' '

print file.

- D D G D - D R WD D R D S D 8 D S R S D A D D D D D D D A S D e D R e e G D P D D e A R D D ST e A e D G O G e D D D D D R GO e e e

CALL PAPTAP(KSTRIP,GNAM,FREQ,DAT,ZEYT,K3)

LIST OF ARGUMENTS:

KSTRIP is ‘the number of the file containing the paper tape
data.

FNAM is the name of record to be converted

FREQ is the sampling frequency

DAT is the date of the record

ZEYT is the time of the record

K3 is the search index of FNAM (K3 must be -1)

SUBROUTINES OR FUNCTIONS NEEDED: PCHCK,RECO,PDUMP,OPAUS,ADDAUS

ERRORS DIRECT: 15,21

INDIRECT: see OPAUS

- 70 -
FLOWCHART SUBROUTINE

=

PCHCK
SEARCH IN ’ VES
CONPLETE THE BUFFER
FOR
STRIP_END
NO
SEARCH
FOR CYCLE - KDUMP = |
STOP = CR
COMPUTE ,
SEARCH IN- ————®)
CREMENT
- ——

WRITE
WRONG
POSITION

KDUMP =1

[—@
COMPUTE

THE NEW
SEARCHINDEX

D - D G5 K D W A D D D A e ED 0 GD WO M AT D R D AR e 5 SR em M R e G G0 e em D D O A W e D e o T A e R e e e ROR e R W R mn

| COMMANDS:

None

} PCHCK examines the data of a

| paper tape record. It computes
tthe number of channels and
lcycles.

NAME = PCHCK

SYSTEM = INPUT-OUTPUT
ENTRY = None

CALL PCHCK(KSTRIP,KDUMP,KZAHL,NP,IERR,JERR)

LIST OF ARGUMENTS:

KSTRIP is the number of the file containing the paper tape
data.

KDUMP is an error indicator, KDUMP = 0 means no error,
otherwise the paper tape is not correct.

KZAHL is the number of cycles recorded on the tape file.
NP is the file number of the printer
IERR is an argument of the error code

JERR is. an argument of the srror code for a further comment.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 1

INDIRECT: None

FLOWCHART SUBROUTINE

(RECO > RECO
READ MARKE
/AND DATA /

CONVERTION
CCITT=EBCDIC
CODE

SHIFT
AND FILL

BUFFER

SPECIFY
BUFFER

DIMENSION

SEARCH
FOR THE

STRIP END

YES SET
2 KEND =
JRUE.

NO

COMPUTE
DATA

VALUES

(RETURN)

- s O e O G D D G D M e e e R O3 Y D D e O ORI e R CR D D e G D R G M D e G2 S R O D e mm D e S S e am 6D em e an o TR e D MR e M AR G N e B W RO em

' COMMANDS :
None

RECO converts the data of a

paper tape from CCITT-2 code
to EBCDIC code and floating

point numbers

i
i

i

!

|

i

! SYSTEM = INPUT-QUTPUT
I
i
! ENTRY = None
|
i
!
i
i
i
|
|
i
|

CALL RECO(BEG,DATA,ZAZYK,KANAL,PUFFIN,KENDE,REZYK,KSTRIP)

LIST OF ARGUMENTS:

BEG is a logical variable, initially set .true., after
the first call of RECO it is altered to .false.

DATA is an array containing the converted data.
ZAZYK is the number of cycles of the data record
KANAL is the number of the recorded channels
PUFFIN is an index of buffer contents

KENDE is a logical variable, initially set .true., and
changed at the end of the data file

REZYK is the rest of the buffer contents during any data
cycles are returned to PAPTAP

KSTRIP is the number of the file containing the paper tape
data.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 1

INDIRECT ; None

FLOWCHART SUBROUTINE

(Poump) PDUMP

REWIND
KSTRIP

#

READ MARKE
AND DATA

CONVERT
DATA

- - — D G O G 03 D e T e D G S CD KR €D D S D GO D R e D e D O MR R e WD e D D e D R) R R e D D A b e i AD D e e

' COMMANDS:

None

PDUMP prints a dump of erro- NAME = ppumMP

neous paper tape data.
SYSTEM = INPUT-OUTPUT

ENTRY = None

- - D e D A R T CR R RN A D e A e RO D S e G B R R S AR D R D R D e e WD N G e A S S D A e P R R D AR e R D O R R G D W D D

CALL PDUMP(KSTRIP,NP)

LIST OF ARGUMENTS:

KSTRIP is the number of the file containing paper tape data
NP is the file number of the printer

SUBROUTINES OR FUNCTIONS NEEDED: pNgne

ERRORS DIRECT: None

INDIRECT ; None

the following combinations: 1, 2, 4, 8, 16 or 64 channels.
The multiplexing of the channels and the analog to digital
conversion are performed by a single unit (Raytheon Mini-
verter) with a maximum sampling rate of 40 KHz which has

to be divided by the number of channels to obtain the maxi-
mum frequency of a channel. Different clock rates are avail-
able to control the fast sampling rates and a software loop
which builds a variable time delay allows the use of very

low sampling rates by using the so-called random mods.

The voltages are converted into a 11 bit complementary binary
code and the first bit indicates the polarity. The converted
values are stored in the memory of the Raytheon 703 computer
and when 1024 values are stored, they are transferred as a
complete block on the 7 tracks magnetic tape.

ERAKON verifies the delimiters and checks if the frequency is
positive. The delimiters are incremented by one to take into
account the fact that the label block is considered as the
block No. O. The label block is always interpreted since it
provides useful information about the different parameters
used to perform the recording. The 11 bits of data having
been split into two six bit groups (5 + 6) on the tape are
recombined. The necessary bit shifting operations beeing not
available in FORTRAN are replaced by the appropriate integer
divisien (or multiplication). The results are matched with a
table which contains all the alphanumeric characters and the

label is printed.

Once the label block has been interpreted a number of blocks
may be skipped by a dummy READ if the first block to be con-
verted is not the block No. 2. Since the label block contains
information on how many blocks were recorded, the task will
be rejected if the last delimiter exceeds this limit. The nu-
merical conversion is easy since only two complementary ope-
rations are needed: a test for the polarity and a constant
coefficient to convert the 4096 levels into the 10 Volt range.
The first numerical conversion initializes the transfer by

an OPAUS call and svery block of 1024 values is transferred

to ths warehouse to be stored as two 512 SEDAP blocks.

The first conversion program was written by P. Tack and made
use of an asssmbler subroutine. The help of Mr. J. Krieger
who made valuable suggestions to improve the speed and the
structure of ERAKON is gratsfully acknowledged.

2.6.2 Processing of data on paper tape (Subroutines PAPTAP,
PCHCK, RECO, PBUMP)

At the Institut flr Reaktorentwicklung (Institute for reactor
development) of the Gesellschaft fiir Kernforschung a special
data acquisition equipment exists for recording of experimen-
tal data on paper tape.

The specifications of the recording system will be briefly
described.

40 channels mav be treated. The first channel records the
clock time, so up to 39 channels may be used for experimen-

tal data acquisition.,

- A data cycle records the time plus any data channels. At
the end of a cycle a controisign CR (Carriage Return) is
given.

- The data are recorded in CCITT-2 code.

- An experimental record is finished by a fils limiter.

SEDAP does not read the paper tape directly. However, in a
special step this data 1is read by a papertape reader and
stored on a disk of the IBM 360/370 computer from which it is
read by SEDAP in a subssquent step. The further processing of
the sxperimental data by SEDAP is performed by the subroutine
PAPTAP.

To examine the data file, PAPTAP calls the subroutine PCHCK
because the results of the data acquisition are not always
correct. Following verifications are exascuted: The length of

the first cycle (i. e. the number of channels in this cycle)

is detected. This increment is used to search the whole file

for the correct position of the subsequent cycle-limiters (CR)

and for the file limiter. In the case of stated errors appropriate

messages are printed and a code is returned to the calling

- 78 -

(HoLE) FLOWCHART SUBROUTINE

HOLE

REWIND KHLE

READ / CONDITIO NrENDFILE

LABELBLOCK/

SKIP RECORD

=

CATALOG
SEARCH

&

CALL OPAUS
< | (

READ
DATABLOCK

CALL ADDAUS

Y

{ RETURN)

t
' COMMANDS: tHOLE transfers data from per- NAME = HOLE

|

3

i
1 . §
imanent storage (disk or tape)

HOLE Eto the warehouse. E SYSTEM = INPUT
1This data must be stored I
iaccording to the SEDAP-format E ENTRY = None
| (per default if generated from :

i DUMP) |
i
[}
[}
|

CALL HOLE (KFUNC,FNAM,KFILE,KN)

LIST OF ARGUMENTS:

KFUNC is an option indicator
KFUNC 1 if only one record is to be restored
KFUNC 2 if all records are transferred

FNAM is the name of the record to be fetched

KFILE 1is the number of the dump-file referenced on the
corresponding JOB-control-card

KN is the search index of FNAM

[

SUBROUTINES OR FUNCTIONS NEEDED: CTLG,OPAUS,ADDAUS

ERRORS DIRECT: 1,2

INDIRECT : see OPAUS, ADDAUS

routine to decide if all data will be dumped (printed in a
special format) by the subroutine PODUMP or whether it might
be possible to correct the paper tape. If no error is found,
the data are converted with the routine RECO into the EBCDIC-

code and floating point numbers.

Finally PAPTAP fits the data to the SEDAP conventions and

performs the transfer to the warehouse.

2.6.3 Restoring of data files (Subroutine HOLE)

Data files generated by the DUMP-command of SEDAP or other
programs according to the SEDAP-format conventions can be
transferred back to the warshouse with the subroutine HOLE

(the command has the same name).

Every call of HOLE causes a REWIND of the dump file that con-
tains the various data files. Now the label of the first file
is read. In the case that only one data file should be re-
stored, the label is searched for the name of the file. If it
is the wanted name, the following data are carried to the
warehouse using the TRANSFER routines of SEDAP. The describing
parameters of the data are stored in the common storagse.
Otherwise, the data of the first file are skipped and the fol-

lowing files are looked up and possibly transferred.

If all records on the dump file should be restored the trans-
fer is performed as described above, but without search for

a name.

The user is warned not to use an uncontrolled series of

mixed DUMP and HOLE commands because every dump may uninten-
tionally destroy data files at the end of the dump file. In
this case it is the users responsibility to program a logically

correct succession of his commands.

2.6.4 Printed data output (Subroutine PRINT)

The subroutine PRINT prints the blocks of a record on the
standard output file. The subroutine checks the input request
by the standard OPEIN call and uses the fast transfer mode
with KXYZ = 2 to bring a block of 512 values every time in the

- 81 -

FLOWCHART SUBROUTINE

PRINT

PARAMETER

INITIALIZATI-
ON

, I
CALL OPEIN

ERROR

FILL THE

REST WITH
ZEROES

|

KFUNC = 2

NFUNC =1

PRINT PRINT PRINT PRINT
VERTICAL VERTICAL HORIZONTAL HORIZONTAL
E.FORMAT F FORMAT E.FORMAT F FORMAT

- oD D e e D D e e T D D e D O e e D D I 0 D D0 D e O e e A o D WD G e e G e O G D R e e e e G e e G D D e o e D e G D GO D e D e e e

' COMMANDS: PRINT transfers the values NAME = PRINT
PBVE, PBHE, from the warehouse to the out-r
PBVF , PBHF put file and writes one data SYSTEM = OUTPUT

block per page. Four options

I

i

]

1

I

]

1

]

'
are available to select a ver-! ENTRY = None

1

]

|

]

]

]

1

1

t

tical or a horizontal order
as well as an F or E-Format

- D o o e O D o D D D R O o D) S e G e e D D D e e e e O e O e D D D D D o D D D e D O G e e e G G S e S e e {

CALL PRINT (KFUNC, NFUNC, ENAM, KANW, KENW, K1)

LIST OF ARGUMENTS:

KFUNC indicates the selected printing scheme (vertical if
KFUNC = 1, horizontal for KFUNC = 2) (

NFUNC indicates the selected printing format (E-Format if
NFUNC = 1, F-Format for NFUNC = 2)

ENAM is the name of the record to be printed
KANW,KENW delimit the selected segment of the record ENAM

K1 is the search index of ENAM (If K1 = -1, the record
has not been found in the warehouse)

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN, ADDEIN

ERRORS DIRECT: None

INDIRECT ; see OPEIN and ADDEIN

first 512 locations of the X array. The subroutine checks

if the block is the last block of a record. If this is veri-
fied, the filling factor is unvestigated and the rest of incom-
pletely filled blocks is filled with zeroes. The two function
indicators are then decoded to selsct a vertical or a horizon-
tal printing order and to use the F- or E-Format. The transfer
is terminated when the total number of points has been printed.
This condition is detected by a nonpositive value of LKPT.

2.6.5 Graphical output (Subroutine GRAPH with entry GRAPH1)

Records generated by SEDAP may be plotted with the help of the
subroutine GRAPH and its entry GRAPH1 as functions of time or
frequency. It was tried to satisfy the different demands of
the users with respect to comfort and flexibility.

The following possibilities exist te produced plot output:

- The lengths and the scales of the coordinates may be pre-
defined.

- Together with the first curve of a plot, a comment may be
given to characterize it.

- Various curves may be plotted into ons diagram.

- There also exist possibiiities to choose the sort of ink
and paper.

At the first part of the subroutine GRAPH the informations
given with the commands DEFX, DEFY to specify the coordinates
are verified. The standard values are overwritten by the input
data for the coordinate definitions. If minimum values are de-
fined greater than the maximum values, they are exchanged. The
second part of GRAPH beginning with the entry GRAPH1 performs
the plotting. First the parameters of the PLOT-command are
verified.

The values of the X-axis are computed by using of the frequen-
cy and time parameters that are stored in the common storage
for avery experimental record. If the ordinates of a plot are
not predefined, the record is searched for its minimum and

maximum values to scale the plot axis.

FLOWCHART SUBROUTINE

(GRAPH) GRAPH

SET INDICA-
TOR FOR A

NEW PLOT

>

YES DEEX NO
\?/
MODIFY THE MODIFY THE
STANDARD- STANDAR D-
LENGTH LENGTH
INTER=- INTER-
-1 CHANGE GHANGE
THE VALUES THE VALUES
—g -

PRINT THE
AXIS~
DEFINITION

(RETURN)

| COMMANDS:

GRAPH specifies the limits ands NAME = GRAPH
the scales of a following plot,
gggé by overwriting default specifiq SYSTEM = OUTPUT

cations
ENTRY = GRAPH1

CALL GRAPH (XLANG,YLANG,NSWI)

LIST OF ARGUMENTS:

XLANG length of abscissa expressed in centimeters
YLANG 1length of the ordinate experessed in centimeters

NSWI is an option indicator
NSWI = 1 is caused by the command DEFX and
NSWI = 2 by the command DEFY

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: None

INDIRECT: None

ENTRY OF GRAPH FLOWCHART ENTRY

GRAPH1
(GRAPH 1)

CHECK ERROR
%
MODIFIER

USE DELIMI -
OPEIN ERROR TERS OF
EXISTING
PLOT

ERRORF

_|SEPARATE

| VALUES VALUE ‘

OF X-AXIS

FILL BUFFER
WITH 2000
VALUES

SEARCH
FOR Y MIN
AND Y MAX

DEFINE
THE PLOT-
SCALES

DRAW
PLOT~
FRAME

= S

DEFINE TYPE
AND INTER-

VAL OF POINTS

!

- T - 1 55 5 D ED S T O3 e e e o R D G G o G R D G D R G D R S G G o S0 R G S D A o e S G G Y e e D D D R e A AR D D Y e D

GRPAH1 is an entry to the sub-t NAME = GRAPH1

| COMMANDS: ,
routins GRAPH. GRPAH1 performs!
PLOT the plotting of an experimen- ! SYSTEM = QUTPUT

tal record as a function of

time or frequency ENTRY = GRAPH1 1is

an entry

- D - R D D o8 R R D e e D WD G M R O MO OO G G G G D D e e GD e D D R D T e e O O3 G G 6 M D D O e D e e D WD WD D G e D S G0 D e e D nh S e D KD e G

CALL GRAPH1 (NFUNC, KANW, KENW, KRAF,K1,NTX, FNAM,PLOTEN)

LIST OF ARGUMENTS:

NFUNC 1is. an option indicator
NFUNC = 1 a curve is plotted into a newly opened plot
NFUNC = 2 a curve is drawn into an existing diagram

KANW,KENW are the delimiters of the selected record segment
to be plotted

KRAF is a sorting factor

KA1 is the search index of FNAM (if K1 = -1, the record
has not been found in the warehouss)

NTX is an alphanumeric array which contains a comment to
characterize the plot

FNAM name of the record to be plotted

PLOTEN is a logical variable. It is set to .TRUE. if a stan-
dard plot was opened.

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN,PLOTA

ERRORS DIRECT: None

INDIRECT ; see OPEIN, PLOTA

The data to be plotted by the subroutine PLOTA are transferred
from the warehouse to the computing array by OPEIN and ADDEIN.
Different calls of the subroutine PLOTA /4/ may follow. The
first call of PLOTA will only cause the drawing of the plot-
frame and the characterizing comment.

The other calls of PLOTA causes the plotting of the datavaluss
into a newly drawn frame or into an existing plot.

PLOTA is a special Assembler routine for plotting at the com-
puter center of the Gesellschaft flir Kernforschung, Karlsruhse.
However, an interface routine named PLOTA is also available
which converts all calls to PLOTA to the appropriate calls of
standard Calcomp software /5/.

2.6.6 Dump of the warehouse (Subroutine DUMP)

The subroutine DUMP enables the user of SEDAP to save his data
stored in the warehouse beyond the end of the job on permanent

storage files. These may be on disk or tape.

It is possible to dump either one record at a time or all expe-

rimental records contained in the warshouse.

To transfer the data from the warehouse to a permanent storage
the computing storage (via OPEIN, OPAUS) of SEDAP is used as
buffer.

The data can be restored later using the command HOLE. However,
they may also be read by other programs.

2.7 Operators

2.7.1 Sorting the channels of a multiplexed record
(Subroutine SORTIK)

The subroutine SORTIK separates the different channels of a
multiplexed record obtained from the warshouse and stores the
resulting new records into the warehouse. SORTIK is written to
handle multiplexed records which contain always 2N channels
with the following possible options given by KSORT: 2, 4, 8,
16, 32, 64,

The first part of the subroutine is needed to generate the new
names for the resulting records. When a system's user has up to
64 channels to sort, it would be a tedious work to provide a
list of 64 names. The solution which was adopted for naming the
new records was to derive the new names from the proposed rscord
name by substituting the numbers '01' to '64' to the two last
characters of this only nams.

The proposed record name DA%% will be transformed into DAO1,
DAO2, «ceeseese DAB4. The two characters %% are not necessary

but they are recommended to ths user to keep him aware of the
fact that they will be replaced. This substitution takes advan-
tage of the fact that (the IBM-) FGRTRAN compilers allow an
squivalence of a REAL#4 with 2 INTEGER#2 or 4 LOGICAL*1. The num-
bers 0 to 9 areinitially stored as characters in a data state-
mant and are used by two nested DO loops in a counter-like ge-
nerator to provide the second half of the names.

An OPEIN call verifises the validity of the input request and
returns the necessary arguments. The fraesquency of the input
record is divided by the floated sorting factor to become the
frequency of the sorted records. An exception is made if the
proposed record name is terminated by the two characters 'FT°'.
This option together with KSORT = 2 is reserved to separate
the real and imaginary parts of a complex Fourier Transform
(FT) and skips the frequency division.

Since the MAIN has not checkad the newly generated names
SORTIK calls the ENTRY CTLG to search the catalog with the
resulting index to be used by OPAUS.

The output records are opsned in the warehouse by a DO loop
which calls OPAUS and computes the necessary parameters from
the arguments given by OPEIN. It is important to note that the
number of new records is defined by NFUNC and not by KSORT in
order to limit the number of created records at the user's
request. Such a situation arises for instance if 32 channels
were recorded but only 25 connected to the experiment. The
exparimenter cannot be satisfied with the lower limit of 16
channels (2N) and must select 32 channsels. During the sorting

FLOWCHART SUBROUTINE
DUMP

WARE=N

HOUSE ?YAP v YES ERROR

KI1=1 KI1=1
K12 = KDAT K12 =1
(DUMP ALL) (DUMP ONE REC)
]
SET DELH
»|MITERS OF
RECORDS
DO '
- CALL ERROR
1 KII,KIZI oPEIN
BUILD AND
WRITE THE
[LABELBLOCK
-
CALL ERROR
ADDEIN =

A A DUMP A
DATA BLOCK

I COMMANDS:
DUMP

DUMP stores expsrimental
records of the warehouse on
permanent data files that may
be on disk or on tape.

I

[}

' NAME = DUMP
]

]

1

|

]

[}

The DUMP command must be fol- 1 ENTRY = None

]

1

]

]

]

]

]

|

|

]

SYSTEM = OUTPUT

lowed by a comment card

CALL DUMP(KFUNC, ENAM, KANW, KENW,KFILE,K1,LIST)

LIST OF ARGUMENTS:

KFUNC is' an option indicator
KFUNC = 1 only one data file will be dumped
KFUNC = 2 the content of the warehouse will be dumped

ENAM is the name of the record to be dumped
KANW,KENW are the delimiters of the selected record segment

KFILE 1is a file reference number given on the according
JOB-control card

K1 is the search index of ENAM

LIST is an alphanumeric array of a length of 80 bytes. It
contains the comment written on the card following the
DUMP command.

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN,ADDEIN

ERRORS DIRECT:

INDIRECT :

DO
K=l,
NFUNC

=

(sorTiK)

NAMES

GENERATE
THE NEW

]

INITIALIZE

 CALL
OPEIN

FLOWCHART SUBROUTINE

SORTIK

CALLCTLG

caLL oPaLS

ERROR

CALL
ADDEIN

ety ©

D@
K=1,
INFUNC

i |
SORT
INTO
THE XYZ

ARRAY

CALL
ADDAUS

S

ERROR

ERROR

[
| | 1
' COMMANDS: iSORTIK sorts the values of an | NAME = SORTIK
multiplexed record. The number
gg?g‘gggg’gggg of channels must be 2N | SYSTEM = OPERATORS
’ ’ (1 < N < 6). The sorted valuesi)
lare stored into 2N new records | ENTRY = None
i
|
!
|
|
|
]
[

lof the warehouse.

CALL SORTIK(KSORT,NFUNC,ENAM,FNAM,K1,KANW,KENW,K3)

LIST OF ARGUMENTS:

KSORT 1is the number of channels to be sorted (2M)

NFUNC allows to limit the sorting operation to the NFUNC
first channels (1 < NFUNC < KSORT)

ENAM is the name of the record to be sorted

FNAM is the name of the resulting records (the last two
characters of FNAM are replaced by numbers from 01

to 64)

K1 is the search index of the record to be sorted
(Kt = -1 if the record was not found)

KANW,KENW are the delimiters of the selected portion (in
blocks)

K3 is the search index of FNAM (must be -1)

SUBROUTINES OR FUNCTIONS NEEDED: DPEIN,DPAUS,ADDEIN,ADDAUS,MOD,CTLG

ERRORS DIRECT: None

INDIRECT ; see OPEIN,OPAUS,ADDEIN,ADDAUS

operation, if he has spscified a value of NFUNC = 25, he will
limit the number of records stored in the warehousse to 25
since the last 7 records would not have any meaning for his
data reduction.

The transfer of the values begins by an ADDEIN call which trans-
fers the first 16384 values (if available) into the first part
of the XYZ array, The sorting algorithm will be repeated NFUNC
times with the location of thse first transferred value being
shifted svery time. The sorted values are stored into the XYZ
segment adjacent to the previous segment (i. e. starting at the
location XYZ (16385) and are transferred immediately to the
warehouse by ADDAUS for every channel. SORTIK cannot use the (
updating features of the pointers by itself. This is done by
applying a formula closely related to the sorting algoritﬁm.

The number of blocks transferred by an ADDAUS call whenever
ADDEIN has been called depends upon the sorting factor accor-
ding to the following relation:

16384
NB = (16384 impliss a filled segment)
512 x KSORT

NB = 16 for KSBRT = 2 or NB = 1 for KSORT = 32 but NB is only
0.5 for the maximum case when KSORT = 64. Since the computing

arrays were limited because of the program size, the transfer

of the resulting values in the case of KSORT = 64 can be made

only with 256 values, i. . an half block. Provision has been (
made in ADDAUS to store the second half block by specifying

KFUNC = 2. This transfer mode requires a reading operation to

get the first half block to which the 256 last values will be
added. This is the only cass where ADDAUS is followed by a

test for error since it is the only case where ADDAUS involves

a direct access READ.

The transfer opsration continues until the total number computed
by OPEIN has been exhausted.

2.7.2 Standard operations (Subroutine OPERA)

The subroutine OPERA performs 11 standard operations which can
involve one to three records and which are characterized by the

fact that the overlapping of the segments is not necessary.

The'subroutine first initializes the service parameters. A
computed GO TO allows to print a specific message to complete
the general sentence printed by the MAIN program.

The following operations correspond to the 11 different options

selected according to the' value of KFUNC

1) Linear translation (aX + b)

2) Conversion of a NiCr thermocouple voltage into °c.

3) Computation of the mean value

4) Subtraction of the mean value found by (3)

5) Addition of two records

6) Subtraction of two records

7) Multiplication of two records

8) Division of two records

9) Multiplication of two complex rscords

10) Multiplication of a record by the complex conjugate of an-
other record

11) Complex division of two complex rscords

The first input record is always needed and is opened by OPEIN
according to the standard scheme. If the option index KFUNC is
greater than 4, the specified operation requires a second input
record and a sscond OPEIN is necessary. It will be explained

in § 3.3.1 that the two input records must normally be synchro-
nous and this property is investigated. If this condition is
not met, a warning is printed to call the attention of the

user but no action is taken since the selacted parameters ars
derived from the first OPEIN and since the number of blocks

has been checked by OPEIN in both cases.

The transfer begins by the first ADDEIN (KXYZ = KX = 2) and is
followed by another ADDEIN (KXYZ = KY = 3) if KFUNC is greater
than 4. One of the 11 different DO loops performs the speci-
fied computation and the results are stored in the warehouse
by an ADDAUS call (KXYZ = KO = 3). The transfer process with
ADDEIN - ADDAUS continues until the total number of points has
been transferred, i. e. for LKPT < O.

INITIALIZE
|

(o010)

FLOWCHART SUBROUTINE
OPERA

ZONE 1

.... N DIFFERENT ZONES TO PRINT A SPECIFIC MESSAGE ZONE 11

»

[cALL OPEIN

A

v

v

EALLADDEIN

TRANSFER ERROR

W

(cot0..)
1

K

....(n sPECIFIC DO LOOPS). . . .

1
LOOP 11

COMPUTE
MWE

|

CHECK FOR
WARt;lING

(RETURN)

y D - D W T e e ED N YO
e A D D e e D R W G D KD G M R A GD A R D KD D D W A R R D A D e e D R D D R R e e -

NAME

]
]

| COMMANDS: ! OPERA performs one of 11 diffe OPERA
1 .

1 rent standard operations on
aégg’;gég'gggii one or two rscords stored in
] ’ 1

]
]
]
L
:
! SYSTEM = Operators
1
the warehouse. The resultin |
MULT,DIVI,MUKO'! g :
]
]
]
]
t
i
]
]
]
]

KOKO,DIKO record is stored in the wars- ENTRY = None

1

iy house with the exception of
i the MWEF case (no output re-
! cord)
|
|
1

CALL OPERA(KFUNC,ENAM, FNAM, GNAM,K1,K2,K3,KANW, KENW,KRAF,A,B, WWE)

LIST OF ARGUMENTS:

KFUNC is.the option index which selects one of the 14 opsra-
(tions

ENAM is the name of the first input record
FNAM is the name of the second input record when nseded
GNAM is the name of the output record

K1 is the search index of ENAM (must be positive)
K2 is the search index of FNAM (must be positive)
K3 is the search index of the record GNAM (must be -1)

KANW,KENW are the delimiters of the seslected record segment
and are expressed in blocks

KRAF is a sorting factor applied to the input records

A and B ars the two arguments needed for the linear trans-
lation aX + b (for KFUNC = 1)

WWE mean value of a record, determined by a
MWEF command and used in a subsequent
MWES command

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN, ADDEIN,OPAUS,ADDAUS, TNICR2
(The standard complex features of FORTRAN IV are required)
ERRORS ' DIRECT: None (warnings are issued)

INDIRECT: see OPEIN, OPAUS, ADDEIN

This transfer scheme has only one exception when the mean
value has to be found (KFUNC= 3). In that case the mean value
is set to zero by the first part of the subroutine and will be
stored by the value WWE after completion of the computation in
order to be used by a subsequent call of type KFUNC = 4, (Sub-
tract the mean valus). This has to be considered for the Over-
lay version and implies that the mean value to be subtracted
should be subtracted immediately after the task where it was
computed. OPAUS and ADDAUS being unnscessary are bypassed. At
the end of the DO loop the termination of the transfer is
eventually dstected and the WWE value which is the sum of all
the processed values is divided by the total number of points

to become the mean valus.

It is important to note that the D0 loop involving complex
values use a special index which is only half of the normal
index (three last options). The subroutine obviously requires
a complex equivalenced array and the implementation of the
standard complex arithmetic of FORTRAN IV.

OPERA avoids the critical situations like the ones caused by
a zero divide or by the argument of a function which is out
of range. The necessary IF conditions protect the critical
operations, provide a standard fix-up and cause the warning
index IWARN to be incremented by one. At the end of the task
the number of warnings will be printed if it is greater than
0. OPERA requires the availability of the function TNICR2
which is a SEDAP adaptation of the function TNICRO. TNICR2Z2
converts a voltage record of values comprised between 0. and
52.46 millivolts into ° C (0 ° C to 1300 °
the standard curve of a Nickel-Chromium thermocouple. If the

C) according to

voltage range of the function is exceeded or not reached the

0

extreme values (0 © C or 1300 C) are provided as default

values and the warning index is incremented.

2.7.3 Smoothing package (Subroutine FILTER)

The filter subroutine handles the six filter options provided

for the different smoothing operations. The transfer scheme

of the program is straightforward and begins by the standard
OPEIN and OPAUS calls. The succession of ADDEIN - ADDAUS calls
continues until the input request has been satisfied (LKPT=0).
FILTER uses the first transfer mode with overlapping capabili-
ties which are specified by KOF and KUF. FILTER storses the
values of KOF and KUF in two arrays indexed according to the
value of the option parameter KFUNC. Between ADDEIN and ADDAUS,
KFUNC is also used to select the appropriate smoothing sub-
routine.

2.7.3.1 Threepoint linear smoothing (Subroutine FIL13)

FIL13 (Filter option KFUNC = 1) computes a new record of
smoothed values starting at the location XYZ(10753) from the
input record starting at the location XYZ(513). FIL13 handilss
vectors divided into segments of 5120 points according to the
following algorithm:

Y1 = 0.5 (X1 + X2)

Yn = 1/3 (Xn_1 + X, + X

Y, = 0.5 (X + Xl)

n+1)

1 1-1

and requires an overlapping of one point in every direction
(KOF = 1, KUF = 1),

The subroutine first checks if the underflow index IUF is equal
to zero which means that the call is the first one (initial
segment). This causes the first point to be computed according
to the first formula and the computing DO loop to start with
the index IANF = 2, Since this loop is only possible if at
least three values are provided by the record, a smaller number
of points causes the termination and an error code is issued.
The upper limit of the DO loop IEND includes the overflow index
I0F with the negative sign to allow the algorithm to be run up
to the last point of the segment if an overflow of one valus
has besn secured. If IOF = 0, the last point is tresated accor-
ding to the last line of the algorithm.

- 100 -~

(FILTER ’

INITIALIZE

FLOWCHART SUBROUTINE
FILTER

ERROR

ERROR

|

|
|

L]

1 2 3 4 5 6
FIL 13 FIL 15 FIL 35] |FILVAR| |FILHANj4 [KSWI=-1
| I I] y
cALL DDAUS

/5\
5
9

(ReTURN)

- ke e R S T D D A R € A €D e D el I D OO D D G5 S 0D ED 6D D an e G T A R S e S e e T O A e s s e S s E e e e G Gm T A D M MR D D D e e

| COMMANDS: FILTER computes a resulting NAME = FILTER
smoothed record from an exis-
E%tl’ﬁiéS’FILa ting record according to one SYSTEM = QOperators

I |
}]
| t
| [}
| }
[} !
: i
| of the six options provided :
! by five specific smoothing ! ENTRY = None
| subroutines. '
} 3
! |
] i
1 1
1 [}
t !
! I

- D G D e D G) G S D e R D D G D T D D G e G D e A A D A D G D A N D D D e G A3 O D e D R O3 D D D D D T S D A €D D KGN e A e R e e

CALL FILTER(KFUNC,ENAM, GNAM,K1 ,K3,KANW, KENW, KRAF, PHEFR)

LIST OF ARGUMENTS:

KFUNC varies from 1 to 6 according to the selection of one
of the six options

ENAM is the name of the input record to be smoothed
GNAM is the name of the resulting smoothed record

K1 is the search index of ENAM (invalid if K1 = -1)
K3 is the search index of GNAM (must be K1 = -1)

KANW,KENW are the delimiters of the selected segment speci-
fied in blocks

KRAF is the sorting factor to be applied to the input

PHEFR 1is the cut-off frequency (Hz) which must be provided
for the option 4 (variable filter)

SUBROUTINES OR FUNCTIONS NEEDED: QOPEIN,OPAUS,ADDEIN,ADDAUS,FIL13,
FIL45,FIL35,FILVAR,FILHAN and standard complex opsrations

ERRORS DIRECT: None

INDIRECT: See OPEIN, OPAUS,ADDEIN,FIL13,FIL15,FIL35,
FILVAR,FILHAN

FiL 13

102 -

FLOWCHART SUBROUTINE
FiL 13

INITIALIZE

YES ANO

(RETURN)

THIS IS w
THE FIRST SEGMEN! '
YES _
THERE IS
ONLY ONE COMPUTE (,
SEGMENT FIRST Y VALUE| [IANF =1
WITH LESS SET IANF=2
THAN THREE
VALUES |
IERR = 14
JERR = 3 COMPUTE
VALUE OF 1END
.
DO COMPUTE
I = IANF, XYZ (N)= ...
1END
(
MORE LAST SEGMENT WITH
10 ONE VALUE (BYPASS DO-LOOP)
COME
COMPUTE
L LAST Y VALUE
9—-—-—4—-—-———'

4
| COMMANDS: | FIL13 generates a new record NAME = FILq3
i
See FILTER :by smoothing a record already
]

stored in the warehouse accor- | SYSTEM = Qpgrators

]

]

]

i

1

1

:

iding to the hersunder descri- |
ibed algorithm. FIL13 is writ- | ENTRY = pnone

1ten to perform the smoothing '

lof a segmented array. :

!

]

]

}

CALL FIL13(XYZ,KPT,IOF,IUF,IERR,JERR,KERR)

LIST OF ARGUMENTS:

XYZ is .the computing array. The input valuss start at the
location XYZ(513) and the output values at XYZ(10753)
KPT is the number of points contained in the segment

1 < KPT < 5120
IUF - is the underflow index (0 for the first segment and
1 for all the further segments)
I0F is the overflow index (0 or 1)

IERR is equal to zero and will be returned as IERR = 14
(with JERR = KPT and KERR = 3) if the task involves
less than three points.

Algorithm
Y1 = 0.5 (X1 + X5)
Yn = 1/3 (Xn-1 + xn + Xn+1)
Y1 = 0.5 (Xl_1 + Xl)

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 14

INDIRECT: None

(FIRST CALL) y

INITIALIZE

,,/’T%\\\\
£ 1UF=0
?

~

FLOWCHART SUBROUTINE
FIL

15

1s :
0
KPT<5 DO
~_?
IERR = 14 COMPUTE KPT=2
JERR = 5 THE 2 FIRST
VA LUES
1ANF=3 IANF=1
COMPUTE
IEND
DO LOOP
(NORMAL CASE)
1s
10F>1 22! (i.e. IOF=2)
YES \ NO
COMPUTE
THE (KPT-1)
th VALUE
YES IOF =1
?
NO
COMPUTE
THE KPT th
VALUE
¥)

&
(RETURN)

i.e. (
KPT=1'
(KPT20)

= e e e e G e G S D G D A D G D G G S N R R A D D I G D G G D 0 D G e G R G SR b G W S D SR G D G AR T Y G R R O3 G R D D R D e e mm Y MR WD e 6B R D

' COMMANDS:
See FILTER

FIL15 generates a new record NAME = FIL15

§
i
i
by smoothing a record already |
i
)
|

stored in the warehouse accor- SYSTEM = Operators

| bed algorithm. FIL15 is written ENTRY = None
i to perform the smoothing of a
i segmented array.

- = 0 o) e e D D N R D O3 3 0 S D S G G e R A w6 s G 06 D M D D K D S D W e R e K S e e e e e R RS e R A M e e e

CALL FIL15(XYZ,KPT,IOF,IUF,IERR,KERR)

LIST OF ARGUMENTS:

XYZ is ths computing array. The input values start at the
location XYZ(513) and the output values at XYZ{(10753)

KPT is the number of points contained in the segment (it
is not the number of points to be processed by the
task)

IUF is the underflow index (0 for the first segment and

2 for all the further segments)
10F is the overflow index (IOF = 0,1 or 2)

IERR is squal to zero as long as no error has been detscted,
and will be set equal to 14 (JERR = KPT and KERR = 5)
if the task involves less than 5 points.

Algorithm
Y1 = 0,25 (2X1 + X2 + X3)
Y2 = 0.1 (4x1 + 3x2 + 2x3 + X4)
Y, = 0.2 (X o F X g X X X S)
Y4 = 0.1 (4)(1 + 3X 4+ 2X L, + X 3]
Y, = 0.25 (2X) + Xq_, + X;_5)

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 14

INDIRECT ;¢ None

FLOWCHART SUBROUTINE

IERR=14
KERR=5

COMPUTE
DELTA
and 2
FIRST VALUES IANF = 1
IANF =3
|
I
COMPUTE
IEND
with IOF
}
I j
DO C%%{HJE
I=IANF
and
IEND Ith VALUE
IOF = Oori
COMPUTE
THE (KPT-1)
th VALUE

FIL 35

COMPUTE
THE KPTth

VALUE

.
(RETURN D)

i.e.
KPT=1
(KPT#0)

I COMMANDS:: NAME = FIL35

FIL35 generates a new record

]
i
|
|
by smoothing a record already _
See FILTER stored in the warehouse. FIL35 i SYSTEM = Operators

1

1

" -
evaluates the least-squares ENTRY = None

to the five successive points
for a segmented array.

CALL FIL35(XYZ,KPT,IOF,IUF,IERR,JERR,KERR)

LIST OF ARGUMENTS:

XYZ is ‘the computing array. The input values start at the
location XYZ(513) and the output values at XYZ(10753)
KPT is the number of points contained in the segment (it
is not the number of points to be processed by a task)
IUF is the underflow index (= 0 for the first segment and
2 for all the further segments)
10F is the overflow index (IOF = 0,1 or 2)
IERR is equal to zero as long as no error has been detected,

and will be set equal to 14 (JERR = KPT and KERR = 5)
if the task involves less than 5 points.

Algorithm
i 4
Y, = X, - 1/70 DX,
4
Y, = X, + 2/35 0%x,
Y = X_ - 3/35 D%
n n n
Y = X. . + 2/35 DX
1-1 1-1 ; 1-2
Y, = X, - 1/70 p*x. _
1 1, 1-2
with DX = X - AX o+ BX - X+ X

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 14

INDIRECT: None

- 108 -

Any subsequent call begins with IANF = 1 since an underflow
necessarily exists and the segment has at least one point. How-
ever if there is only one point, the DO loop will be bypassed
and the point will be treated as the final one.

2.7.3.2 Fivepoint linear smoothing (Subroutine FIL15)

FIL15 (filter option KFUNC = 2) computes a new record of smoothed
values starting at the location XYZ(10753) from an input record
starting at the location XYZ(513). FIL15 handles vectors which
are divided into segments of 5210 points according to the fol-
lowing algorithm:

Y, = 0.25 [2X1 + X, + X3)

1 2

5 = 0.1 (4X1 + 3X2 + 2X3 + X4)

Yn = 0.2 (X + X

Y

n=-2 n-1 + xn + Xn+1 + xn+2)

¢ B8 8 ® 9o 99 O @B O LB BB O

Yioq = 0.1 (84X + 3X 4 + 2X

Y1 = 0.25 (2X1 + X

+ X)

1-2 1«3

1-1 + Xq1-0)

and requires an overlapping of two points in both directions
(KOF = 2, KUF = 2),

The subroutine first checks if the underflow index IUF is

equal to zero which indicates that the call is the first onse
(initial segment). Since a minimum of five points is required,
the number of points is checked and an srror code will be issued
if this condition is not satisfied. The two first values are
computed and the DO loop first index is set equal to three. The
second index of the DO loop IEND is calculated by adding the
expression (IOF-2) to the number of points of the segment (KPT).
This expression allows the central part of the algorithm to be
run up to the last point of the segment (10752 + 5120) if an
overflow of two values has been secured by the transfer sub-
system. If the underflow is not present or if the array is not
full, the DO loop will be run only until the (KPT-2)th value

in order to allow the handling of the two last valuss by the
final form of the algorithm. The value of IOF is also used after

- 109 -

the DO loop to sslect one of the three possible cases:

a) At least two values are left and the overflow contains two
values. The two last lines are skippsed and the control is
passed back to FILTER for the next transfer.

b) There is only one value in the overflow area. The first of
the two last formulas is used and the last point will re-
quire a subsequent call with only one point.

c) There is no overflow and the two last points are considered

as the two final points.

Any subsequent call will invelve a test of the KPT value to

select ane of the three possibilities:

a) KPT is larger than 2. The DO loop is run with IANF=1 since
the underflow is always 2 after the first segment.

b) KPT = 2, The DO loop is bypassed and the two values are
treated by the two last lines of the algorithm.

c) KPT = 1 (this is deducted from the fact that if KPT is less
than 2 only the value 1 is possible). The last line of the

algorithm is used.

2.7.3.3 Fivepoint cubical smoothing (Subroutine FIL35)

FIL35 (filter option KFUNC = 3) computes a new record of
smoothed values starting at the location XYZ(10753) from an
input record starting at the location XYZ(513). FIL35 handles
vectors divided into segments of 5120 points by evaluating the
least-squares polynomial of degree 3 relevant to the five
successive points according to the following algorithm:

_ 4
Y1 = X1 1/70 DX
4

Y2 = X2 + 2/35 D X3

Y = X_ - 3/35 D%
n N n

3

Y1-1 = X

+ 2/35 DX

1-1 1-2

4
L] 4 -
with D Xn = Xn_ 4Xn

2 n+1 n+2

The program structure of FIL35 is almost identical teo FIL15
(KOF=2, KUF=2) with the exception of the delta value (D4Xn)
which is computed for the initialization and inside the DO
loop.

2.7.3.4 Variable cut-off-frequency filter (Subroutine FILVAR)

The subroutine FILVAR (Filter option KFUNC = 4) computes a new
record of smoothed values starting at the location XYZ(10753)
from the input record starting at the location XYZ(513).
FILVAR is written to handle segmented arrays according to the
following algorithm which simulates a first ordsr low-pass
filter:

Y, = X

1 1
) (2T - ¢) + £
Yo * Yn-t BT F O T+ t7 Xn t Xn-q)

with t = dt = 1./freq
and T = Tau = time constant

FILVAR (variable filter) differs from the other smoothing sub-
routine by the fact that the effect of the filter does not de-
pend only from the sampling frequency of the record but also
from a cut-off frequency which can be adjusted and which must
be supplied by the user. This is analog to the time constant
setting of an RC network used as filter. Since the computation
of this relation involves a feedback effect, FILVAR checks if
the proposed cut-off frequency is compatible with the sampling
frequency of the input record. Any cut-off frequency which
exceeds this limit would cause numerical instability and will
cause an interruption of the task with an error code IERR = 15.

FILVAR handles the segmented arrays without using the overlap-
ping features of the TRANSFER subsystem. The initialization is
detected when the switching index ISW has been found equal to
-1, this causes the initial relation to be used and the DO
loop is started with I = 2, Otherwise the loop starts with
IANF = 1 since FILVAR always stores the last valus of X and
the last value of Y before the RETURN to FILTER is executed.

2.7.3.5 Smoothing of spectra (Subroutine FILHAN)

The subroutine FILHAN (filter options KFUNC = 5 or 6) computss

a record of smoothed complex values starting at the location
XYZ(5377) from a complex input record starting at the location
XYZ(257). FILHAN handles vectors which are divided into segments
of 5120 points (i. e. 2560 complex values) according to one of
the following algorithms which are known as Hanning's method of

smoothing:

Algorithm 1 Algorithm 2

Y, = 0.5 (X, + Xy) Y, = 0.5 (X, - X))
e e e e TR v -k
V=05 (X + Xp) v, 0.5 (X - Xpp)

The choice bstween the two algorithms is made in the MAIN accor-
ding to the sign of the first decimal value DEZ(1) and is passed
to FILTER by the option index KFUNC (5 or 6). KFUNC is used to
determine the sign of KSWI which selects one of the two algo-
rithms in FILHAN.

The structure of the subroutine is almost similar to the struc-
ture of FIL13 which was explained before but some differences

exist and are due to the following rsasons:

- Since FILHAN handles complex values, the displacements are
computed for the CXYZ array which is complex equivalent of
the XYZ array. The DO loop indexes are also reduced accor-
dingly.

- FILHAN requirss an overlapping of one value in both direc-
tions but since the valuss are complex and since the TRANSFER
subsystem handles a complex value as two adjacent REALx4, the
two overlapping paramsters KOF and KUF are equal to 2.

The subroutine checks the value of the option index KSWI to
determine the sign of the parameter HALF neseded to compute the
first value. The absence of underflow (IUF = 0) indicates that
the segment is the first segment and the first valus will be-

FLOWCHART SUBROUTINE

FILVAR
COMPUTE
COEFFICIENTS
COMPUTE
FIRST VALUE
IANF = 2 IANF =i
IERR = 14 IERR =15
KERR = 3 AERR= M
PHEFR
COMPUTATION
(DO LOOP)
STORE
LAST X and
LAST Y
C o
B

(RETURN)

- D D - S D e D T D D S0 0 D SR e e O T D WD D e G D D R D e D R S D D OO D RN R G A D MR G T G NN G D S D M % MR em e =3 WD e . O e e

' f
' COMMANDS: FILVAR generates a new record NAME = FILVAR

by smoothing a record already - |
Ses FILTER stored in the warshousse. FILVAR! SYSTEM = Operators

}

1

1

1

)

1

|

is written to handle segmented |
larrays and has the same prope- | ENTRY = None

'rities as a 1st order filter |

| (RC type) with variable cut- |

loff frequency E

]

]

[}

- D D G D D D G e WO R W G R KD AT R e W WD D G D T R O A D D e G G D D A D D D . S D A e D A S S A D e G D S GD N e e D A = =

CALL FILVAR(XYZ,XPT,ISW,FREQ,PHEFR,IERR,JERR,AERR,KERR)

LIST OF ARGUMENTS:

XYZ is the computing array. The input values start at the
location XYZ(513) and the output values at XYZ(10753)

KPT is the number of points contained in a‘segment (it is
not the number of points to be processed by the task)

ISW is equal to -1 for the first segment (initialization)
and is equal to 1 for the following segmaents

FREQ is the frequency of the input record and corresponds
to the sampling frequsncy

PHEFR 1is the cut-off frequency of the filter simulated by
FILVAR

IERR,JERR, AERR and KERR are the error parameters.

Algorithm
Yy = Xy
. C1 X xn_1 + C2 X (Xn + xn_1)
with C 2T - ¢ C. = t

1 377t @ad Cy =535
T = TAU = Time constant of the filter
t = 1.0 / FREQ

SUBROUTINES OR FUNCTIONS NEEDED: Nons

ERRORS DIRECT: 14,15

INDIRECT ; None |

. - ————— -~

- 114 -

FLOWCHART SUBROUTINE
(Friman) - 'FILHAN |

" JINITIALIZE

COMPUTE IANF = 1
| THE FIRsT
VALUE
IANF =2
IERR=14| L o -
KERR=6 v
ADDITIVE SUBTRACTIVE
ALGORITHM ALGORITHM
(DO LOOP) (DO LOOP)
L
1S
NO YES
IDF?<2 >¢<
COMPUTE
FINAL
VALUE
-
-

(RETURN)

| COMMANDS : NAME = FILHAN

See FILTER

I |

!]

E FILHAN generates a complex re=§

i cord by smoothing a complex i

i record already stored in the | SYSTEM = Operators
i warehouse. FILHAN uses the E _ None
i Hanning'’s method and handles : ENTRY = n
i segmented arrays. The index !

| KSWI is used to select one of |

i :

! f

| |

| |

the two possible algorithms.

CALL FILHAN(CXYZ,KPT,IOF,IUF,KSWI,IERR,JERR,KERR)

LIST OF ARGUMENTS:

CXYZ is ‘the array equivalent to XYZ but used as complex
array. The complex input values start at CXYZ(257) and
the output values at CXYZ(5377)

KPT is the number of values contained in the segment and
is equal to twice the number of complex values

I10F is the overflow index (IOF is equal to zero or to 2

if one complex value is stored in the overflow area,
I0F = 1 is excluded)

IUF is the underflow index (IUF = 0 or 2)

KSWI selects one of the two possible algorithms
KSWI = 1 for the addition of the lateral values
KSWI = -1 for the subtraction of the lateral values

TERR is squal to zero as long as no error has been detected
and will be set equal to 14 (JERR = KPT and KERR = &)
if the task involves less than 3 complex values
(6 REAL x 4)

Algorithm 1 Algorithm 2
Y1 = 0.5 (X1 + X2) Yy o= 0.5 (X1 - X2)
Y, = 0.25 (Xn_1 + 2X + Xn+1) ‘ Yn = 0.25 (-Xn_1 + 2X - Xn+1)
Yy = 0.5 (X1 + Xl-1) Y, = 0.5 (Xl - X1_1)

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 14

INDIRECT None

computed if at least three values are provided (this means six
values for the transfer) and the first index of the DO loop is
taken as IANF = 2. The second index of the DO loop is computed
with the half IOF value to allow the algorithm to reach the
end of the segment if a complex value has been secured in the
overflow area (IOF = 2). One of the two available DO loops is
selected according to the valus of KSWI and after completion
of the loop the last value will be computed as the final value
if IOF is less than 2 (once again, IOF can be only O or 2 if
the value is complex). Any subsequent call will run the DO
loop with IANF = 1 but if there is only one complex value

(LPT = 1) the loop will be bypassed and the last value will be
computed as the final point.

2.7.4 Differentiation and integration (Subroutine DIFINT)

The subroutine DIFINT differentiates or integrates a record
and stores the resulting record into the warehouse. DIFINT
follows the standard transfer scheme with the overlapping
features and that implies that the records are transferred by
segments of 5120 points with the input values beginning at
the location XYZ(513) and the output values at XYZ(10753).
DIFINT controls four possible options which are executed by
three special subroutines (TRAP, SIMP, DIF3).

1- Integration with reset of the integral to a preset level
whenever the control record crosses over a specified
threshold. This operation is also called "Integration with
Switch".

2- Integration of a record by the trapszoidal ruls.

3- Integration of a record by the Simpson's rule.

4- Differentiation of a record.

For the first option, the transfer of a second record is neces-
sary and requires a second OPEIN call. Since the two OPEIN calls
check only the validity of the delimiters given in blocks,

the synchronism of the two records is verified. If the two

sets of parameters brought back by the OPEIN calls are not
identical (number of points, sampling frequency, time origin)

- 117 -

the two records are not synchronous and a warning is printed
to report the fact. The values are transferred by ADDEIN and
storad by ADDAUS after the total number of points LKPT has
been processed. The intermediary computation depends upon the
selected command and is directly done by one of the specific
subroutines excepted for the first option where the super-
vision of DIFINT requires a detailed control of the second

input record.

2.7.4.1 Integration with Switch

The integration with switch was implemented to allow an easier
integration of pressure pulses recorded during some experi-
ments performed with a sodium testing station. The integration
can then be reset between two pulses. Such a situation is well
known and arises when one integrates a sine wave signal. The
results of the integration will be easier to follow if the
integration is resset svery time the signal crosses the zero-
line, i. e. if the half waves are integrated separately. This
features requires the storage of the switching record which
can be the same record as the integrated record or any other
record provided by the usser.

2.7.4.2 Integration by the trapezoidal rule (Subroutine TRAP)

TRAP integrates a record segment which is delimited by the two
parameters IL and IE. The subroutine TRAP was written to per-
form the integration of a record for the switching case as well
as for the normal case. The integration is performed according
to the following algorithm:

Y(1) = 0, Y(I) = Y(I-1) 4+ 0.5 (X(I-1) + X(I))/FREQ

and the first value of a segment is selected according to the

value of the parameter ISWI.

If ISWI = -1, the call is the first one and the first value
will be set equal to zero.

If ISWI = 0, the call is a subsequent call which has not been
caused by the switch-interruption. In that case the over-
lapping feature is applied and the integration restarts by
using XLAST and YLAST which are the two last values stored

CoiFint) FLOWCHART SUBROUTINE
— DIFINT

INITIALIZE
SET

KOF, KUF

OPEN (1) }—=(®)

OPEIN (2) =
|
SYNCHROTEST (
Ly
OPAUS
<&
ADDEIN (1) }—=©&)
ADDEIN (2)—=€)
£y
ot >
!
2l KFUNC =1 T
DO IE=KET
SWITCH L
v | cALL CALL CALL
A o h TRAP SIMP DIF 3
Y)
’ W:-KSWI
IE =1= KPT , IE =KPT
| - \ NO Y
> YES
-JADDAUS

N\ _YES

- e . e T . e T e D D e e D D e w em D e e G o S K D U W A K o R N G R e G D D D Gn e e M e e A S e G N e e e e = o

i H
I COMMANDS: !DIFINT generates a new record NAME = DIFINT
|2]] 1
yin the wareshouse by integrating
INSW, INTR, 'or differentiating a record ! SYSTEM = Operators
INSI,DIFF | ; .
lalready stored in the warehouse).
'DIFINT uses three special sub- | ENTRY = None

iroutines to handle the segmen-
ited arrays.

- o o e G G D W D G e D S M N D S D A D G e D D e SR D R e 0 e G G e e G D S S R G e R G em D e e S e e R e G D S e S D D S GD K D D D D G o

CALL DIFINT(KFUNC,ENAM,FNAM,GNAM,K1,K2,K3,KANW,KENW, KRAF,SWITCH,
RESET)

LIST OF ARGUMENTS:

KFUNC is the option index with the following code:

KFUNC = 1 integration with Switch (trap. rule)
KFUNC = 2 integration by the trapezoidal rule
KFUNC = 3 integration by the Simpson's rule
KFUNC = 4 differentiation

ENAM is the name of the input record which must be inte-
grated or differentiated

FNAM is the name of the second input record which provides
the switching record for KFUNC = 1

GNAM is the name of the resulting output record

K1,K2,K3 are the search indexes of ENAM,FNAM and GNAM.
K1 and K2 must be greater than 0 and K3 must be -1

KANW and KENW are the delimiters (in blocks) which delimit
the selected segment of the input records

KRAF is the sorting factor applied to the input

SWITCH is the value of the threshold which causes an inter-
ruption of the integration whenever it has been
crossed over by the switching function (KFUNC = 1)

RESET stores the value to which the integral must be reset
after a SWITCH interruption. (KFUNC = 1)

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN,ADDEIN,OPAUS,ADDAUS,TRAP,SIMP
and DIF3

DIRECT: None, but warning is printed if the two
input records are not synchrondus

INDIRECT ; See OPEIN,ADDEIN,OPAUS,SIMP,DIF3

ERRORS

FLOWCHART SUBROUTINE

TRAP
‘2
FIRST SEGMENT SUBSEQUENT SWITCH
SEGMENT INTERRUPTION
FIRST VALUE GET X LAST RESET
=0, AND Y LAST INTEGRAL
1S=2 I1s=1IL IS =IL
r o -
Do INTEGRATE
- (TRAPEZDIDAL
IS, IE RULE)
-
| STORE
LAST X AND
LAST Y
VALUES

CRETURN)

i
IR ISR cip e '
' "COMMANDS: { TRAP performs the integration | NAME = TRAP
See DIFINT -1of an equidistantly tabulated |
-irecord by the trapezoidal rule.| SYSTEM = Operators
ITRAP is written to perform the |
lintegration of a segmented = ! ENTRY = pNone
[}
:
|
1
]
1
]
]
|

array.

——

CALL TRAP(XYZ,IL,IE,ISWI,FREQ,RESET)

LIST OF ARGUMENTS:

XYZ is the computing array. The input values start at the
location XYZ(513) and the output values are XYZ(10753)

IL is the position of the first value to be integrated.
IL=1 when the first value is located at XYZ(513).

IL and IE delimit the part of the array which must be inte-
grated by TRAP. In the normal case and for a filled
array IL = 1 and IE = 5120 but with a switched inte-
gration IL and IE can take any value within these two
limits.,

ISWI is -1 for the first call
is, 0. for a subsequent call
is +1 for a call due to a switch interrupt and causes
the value to be reset

FREQ is the sampling frequency used to compute the interval h

RESET stores the value to which the integral has to be reset
after a switch interruption.

Algorithm
Y, = 0.0 or Y, = RESET
_ ‘ h
Yn = Ther v 3 (xn-1 + xn)
h = 1/FREQ

- SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 14

INDIRECT None

IERR=14
KERR=3

FLOWCHART SUBROUTINE

SIMP
‘ 1S
1UF. L4, N0
COMPUTE
ONSTANTS v
COMPUTE
TWO FIRST
VALUES
IANF=3 IANF=1
| |
>
DO INTEGRATION |
1=1ang| | (SIMPSON)
KPT STORE YLAST|
o

(RETURN)

' COMMANDS: uSIMP generates a new record by NAME = SIMP

See DIFINT ulntegratlng a record already
ustored in the warehouse accor-
|d1ng to the Simpson's rule.

t
i
t
[}
1
1
! SYSTEM = Operators
i
[}
| SIMP is written to handle the i ENTRY = None
[}
|
1
1
[}
1
]
[}
}

CALL SIMP(XYZ,KPT,FREQ,IUF,IERR,JERR)

LIST OF ARGUMENTS:

XYZ ig the computing array. The input values start at the
location XYZ(513) and the output values at XYZ(10753)

KPT is the number of points contained in the segment (it
is not the number of points to be processed by the
task)

FREQ is the sampling frequency used to calculate the time
interval h = 1/FREQ

TUF is the underflow index (IUF is O for the first segment
and 1 for any of the following segments)

IERR is equal to zero as long as no error has been detec-
ted and will be set equal to 14 if the task involves
less than 3 values.

Algorithm
Y1 = Ol
Y, = h/3 (1.25 X, + 2X, - 0.25X,)
Y= Yn_1 + h/6 (xn_2 +AX 4+ xn)

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 14

INDIRECT: None

IERR=14
KERR=3

COMPUTE
THE FIRST
VALUE

JANF= 2

TIANF

COMPUTE
IEND

T

DO I=
IANF,
IEND

DIFFERENTIATE
THE CENTRAL

VALUES

COMPUTE
THE FINAL
VALUE

4

Y
(RETURN)

FLOWCHART SUBROUTINE

THE
SEGMENT
CONTAINS
ONE POINT
(THE LAST)

| COMMANDS: NAME = DIF3

See DIFINT

DIF3 generates a new record in
the warehouse by differentia-

ting a record already stored SYSTEM = Operators
in the warehouse. DIF3 was

|
1
|
|
|
|
1
]
|
|
en to ha e se e = one
| wri
t
a

|

|

|

|

|

|

|

|

[

- D - - . D R s SR S GO G G G R D D e o D G N D D MR e e R e N e e e D G mn AR R e 0 D R e A R KR D Dy e e 4O R R D e e e W GRS D Em En o e

CALL DIF3(XYZ,KPT,FREQ, IOF, IUF,IERR,JERR)

LIST OF ARGUMENTS:

XYZ is the computing array. The input values start at the
location XYZ(513) and the output values at XYZ(10753)

KPT is the number of points contained in the segment. (It
is not the number of points to be processed by the
task) 4

FREQ is the sampling frequency of the input and is used to
compute the interval h = 1/FREQ

IUF is the underflow index (0 for the 1st segment and 1
after the following)

I0F is the overflow index (= 0 or 1)

IERR is equal to zero as long as no error has been detected
and will be set to 14 if the task involves less than
three points

JERR is an other argument for the error interpretation

Algorithm

Y1 = 1/h (X2 - X

Yn = 1/2h (Xn+1
Y1 = 1/h (X1 - X

1)

- X
n

)

-q)

1-1

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT: 14

INDIRECT ; None

- 126 -

by the previous TRAP call. (TRAP does not use the over-
lapping feature of the TRANSFER subsystem).

If ISWI = 1 the interruption has been caused by the switch
(or by poth since SWITCH has the priority) and the first
value of the segment is squal to RESET (default value =
0.)

2.7.4.3 Integration by the Simpson rule (Subroutine SIMP)

SIMP performs the integration of a record according to the
Simpson's rule and handles segmented arrays passed by DIFINT.

The following algorithm is used:

Y1 = 0.
Y2 = h/3 (1.25 X1 + 2X2 - 0.25 X3)
Yn = Yn~1 + h/86 (Xn-2 + 4Xn_1 + Xn)

h = 1/FREQ is the sampling time interval.

The subroutine verifies the presence of an underflow (index
IUF) and if no underflow is present initializes the integration
with the two first lines of the algorithm. If the task does not
provide a minimum of three values the execution is not allowed.
The first SIMP call must begin the computation of the D0 loop
with the first index IANF = 3 and when the DO loop is termina-
ted the last Y value must be stored since the system does not
have an underflow feature for the output value. Any subsequent
call can start with IANF = 1, since the transfer has secured

the two last X valuss.

2.7.4,4 Differentiation (Subroutine DIF3)

DIF3 performs the differentiation of a record passed by DIFINT
and uses the same conventions for the values of the displace-
ments along the XYZ array. DIF3 uses the standard overlapping
features provided by the TRANSFER subsystem and specified in
DIFINT with one extra value stored in both directions (KUF = 1
and KOF = 1). The differentiation is performed according to

the following algorithm:
Yy = 1/h (X2 - X1)

- 127

Yn =

1/2h (Xn - X

n-1)

)

+1

Y, = 1/h (X1 - X

1 1-1

The first point is calculated according to the first line of

the algorithm if IUF = 0 (first
at least three points otherwise
error code IERR = 14, The first
with a first index IANF = 2 and

call).
the task is rejected with an

The task must involve

call initializes the DO loop
includes the value of IOF

(overflow index) in the computation of the second index IEND
in such a way that the last line of the algorithm will be

used for the last point of the segment if a value has not

been secured in the overflow area. Any subsequent call will
initialize the DO loop with IANF = 1 but if the call involves
only one point the DO loop will be bypassed and the value will
then be computed by the last line of the algorithm.

2.8 The FOURIER package

Many engineering and scientific problems require the treat-
ment of experimental records not only in the time domain but
also in the frequency domain. The standard method to pass from
one of these domains to the 'other involves a Fourier transform or
its reciprocal form which is called the Fourier antitransform.
Since a few years the Fourier methods are more widely used and
SEDAP presents the great advantage to offer a complstely inte-
grated Fourier package based upon the methods of the Fast
Fourier Transform (FFT). The SEDAP Fourier package can be di-
vided into two parts. The first part contains almest all the
slements which are necessary to perform the different Fourier
operations in many modular combinations. All the intermediary
steps are separately programmed, but the Fourier transform is
limited to 16 blocks or to 8 K values. The second part is
centered around the subroutine MEPODE and is oriented toward
The

efficiency is due to the fact that the operations are not

a very effective evaluation of power density spectra.

slowed down by intermediary transfers to the warehouse and the

ovaerlapping techniques allow to process the very long records

- 128 -

which are not uncommon in the experiments involving noises
analysis. It must be noted that the two parts can share some
of the facilities of the package and that the user can combine
the computations in order to perform all the standard tasks
like auto- and cross-corrslation, convolution integrals, de-

termination of the various powsr spectra etc. ...

2.8.1 The algorithm of the Fast Fourier Transform (FFT)

Recéntly Cooley and Tuckey /6 - 10/ have devised an algorithm,
which is called Fast Fourier Transform, whersby the sum of the
form ‘
N-1
X 1 ay ° exp(2riejek/N) and its inverse
Jj=0

N-1
ay =) X, ¢ exp(-2miejek/N)
k=0

can be computed considerably more rapidly than by previous
techniques provided N = 2M and M is an integser. Library sub-
routine programs to svaluate the sum have been written and ons,
available by IBM (FOUR1) /11/ was implemented in SEDAP. There
are at least two somewhat different algorithmic approaches to
implementing the Fast Fourier Transform, one due to Cooley and
Tuckey and another programmed by Stockham and Forman /8, 9/.
The Cooley-Tuckey algorithm was chosen because it needs only
half of the storage places than that of Stockham-Forman, although
it nesds about 30 % more computing time. The subroutine FOURA1
may be used to perform a Fourier Transform or a Fourier Anti-
tranaform. It uses one-dimensional complex arrays DATA(J),
whose length N is a power of two. The discrete Fourier Trans-
form defined by the summing equation above may be expressed
with the following FORTRAN like written relation.

N
TRANS(K) = J DATA(J) « EXP(ISIGN + 2mi « (3-1) o (K-1)/N)
J=1

for all K from 1 to N. DATA(J) is a complex array, where real

- 129 -

and imaginary parts are stored adjacently. ISIGN is an option
indicator and is equal to +1 for a Fourier Transform or to -1
for a Fourier Antitransform. If the input DATA(J) represents
time-intervals equal to (J-1)T, then the transform-values
TRANS(K) correspond to the complex amplitudes at frequencies
(K-1)eF with F = 27w/ (NeT).

By periodicity, all frequenciss above the "foldover frequency”
n/T may be identified by a negative frequency reduced by an
amount equal to 2w/T.About the algorithm see /6/, a special

issue on the Fast Fourier Transform.

In comparing former non FFT-Methods /6 - 10/ with the FFT the
time saving is expressed by the fraction logzN/N. As an example,
if there ars 210
100 times faster than primitive transformation methods.
Gentleman and Sande have shown /10/ that the FFT is the most

accurate Fourier transform method. Their upper bound of the

values to be transformed thes FFT is about

root mean square error is:
b
€ =6 ¢ V2 o 10g2N/2 ,

where b is the number of bits in the floatingpoint fraction.

Some preparations are needed to use FOUR1.

2.8.2 Implementation of the FFT in SEDAP (Subroutine FOUR)

The subroutine FOUR performs the Fourier transform or anti-
transform of a record whose length must not exceed 16 blocks.
The coefficients are normalized according to the standard con-
ventions in such a way that the resulting value of a pure sine
wave of amplitude A will be A/2. The transfer of the input re-
cord is performed by the TRANSFER subsystem and uses the
standard subroutines OPEIN and ADDEIN. The subroutine verifies

if the number of points is of the 2N

form and eventually fills
the last part of the array with zeroes to meet this condition.
The computations of FOUR vary slightly if the task specifies

a Fourier transform or antitransform.

. - T D . D D W D S R D SO D EE R S P R D AW e AR AD AD W e e e e S b R gy K e e e e WM SO W e . AR W G SR e D G R G an e A e D e D - ©

' COMMANDS: FOUR1 performs the Fast Fouriep VA'E = FOUR1
Nona Transform (FFT) according to SYSTEM = Fourier
Package
ENTRY = None

1
]
[}
r
the algorithm of Cooley-TuckeyE
]
]
]
]
1
}
|
|
1
]
]
]
|

—— -y R D D D D D D WD D R A T R en e R D D e T S A 0 AT S D D S D D R N D G R S e N D D D e R e R G D e G D D AR D S WD Om e W

CALL FOUR1(DATA,N,ISIGN)

LIST OF ARGUMENTS:

DATA is a complex array, equivalent to the XYZ-array
(real and imaginary parts are adjacent in storage)

N is the number of points contained by the array time
of computation. The length must be N = 2%xM(M > @,
Integer)

ISIGN is an option indicator.
ISIGN = -1 for the Fourier transform
(time » frequsncy)
ISIGN = +1 for the Fourier antitransform
(frequency =+ time)

Algorithm: see 2.8.1
Remark:
This subroutine is written by N. Brenner of MIT Lincoln

Laboratory and submitted by IBM (Program Order Number
360D.13.4.002)

SUBROUTINES OR FUNCTIONS NEEDED: SIN

ERRORS DIRECT: None

INDIRECT: None

- 131 -

2.8.2.1 Fourier Transform

Since in most frequency analysis tasks the mean value is only
of minor interest, SEDAP suppresses the amplitude at frequency
0. If, however, the user is interested in the mean value, he

may obtain this information from the appropriate SEDAP command.

If the time signal contains less than 2" sample values (n is
integer) the signal is padded with zeroes up to the next higher
number of this form (these extended records are called hyper-

arrays) /12/.

Finally, before entering the transform algorithm the time sig-
nalrecord is converted from real to complex valuses (with zero

imaginary part).

Now FFT is performed by calling the subroutine FOUR1. The raw
spactrum is normalized by the factor 1/N (N = number of samples).
It is not necessary to store the whole result array in the ware-
house, because advantage can be taken from the symmetry proper-
ties of the FFT. Only the complex array represented by frequencies
within the region of Freq = FT/N and Freq = FT/2 (FT = gsampling
frequency, FT/Z = Nyquist frequency) is stored into the ware-
house. This action can be explained by the fact, that the comp-
lex spectrum calculated with FFT has a conjugate complex symme-
try mirrored at the Nyquist frequency and that the value of the
frequency zero contains no significant information, so the whole

spectrum will be restorable at later times.

In the warehouse catalog the initial frequency value (which is
FT/N) is entered. (This corresponds to the time of the first

sample value of time signal records). Also the reciprocal dis-
tance between the frequency samples (which is N/FT) is entered

(corresponding to the sampling frequency of time records).

2.8.2.2 Fourier Antitransform

The inverse of the discrete Fourier Transform, the Fourier
Antitransform is in its form very similar to the Fourier Trans-
form. So the FFT may be used to compute it. Before this trans-
formation the whole complex frequency array must be restored,

because SEDAP, as mentioned above, stores onlv part of the

FLOWCHART SUBROUTINE
FOUR

CALL OPEIN

r

COMPUTE LENGTH -
OF HYPERARRAYS

CALL ADDEIN

TRANSFORM NO YES ANTITRANSFORM
|
PREPARE ARRAY RESTORE
FOR FFT SYMMETRICAL
| SPECTRUM
CALL FOUR 1 |
CALL FOUR 1
NORMALIZE AN
HALVE THE
SPECTRUM
SCALE
FREQUENCY SCALE
AND TIME FREQUENCY
AND TIME
- L
CALL OPAUS

CALL ADDAUS

(RETURN)

I COMMANDS: FOUR performs a Fourier Trans- NAME = FOUR
FOUT form or Antitransform with the
FANT help of FOUR1 SYSTEM = Fourier
Package
ENTRY = None

CALL FOUR(KFUNC, ENAM, GNAM,K1,K3, KANW, KENW)

LIST OF ARGUMENTS:

KFUNC is an option indicator
KFUNC = 1 for Fourier Transform (time to frequency)
= 2 for Fourier Antitransform (frequency to time)

ENAM is the name of the input record

GNAM is the name of the output record

K1 is the search index of the record ENAM

K3 is the search index of the record GNAM

KANW, KENW are the delimiters of the selected record segment

Remark:

If the number of points is not a power of two, hyperarrays
are generated and the mean value is subtracted from the
time series before transforming.

The maximum resulting frequency is equal to the half of the
Sampling frequency.

SUBROUTINES OR FUNCTIONS NEEDED: FOUR1, OPEIN, OPAUS, SQRT

ERRORS DIRECT: None

INDIRECT: OPEIN, OPAUS

- 134 -

FLOWCHART SUBROUTINE

BEFA
BEFA
CALL OPEIN
CALL OPAUS
CALL ADDEIN
COMPUTE GENERATE
AMPLITUDE COEFFIC.
AND OF REAL
PHASE FOUR.SERIES
= e

CALL ADDAUS

(RETURNJ

i

I COMMANDS : EBEFA transforms a complex fre- | NAME = BEFA
BEFA jquency record generated by the
FANA IFFT into the amplitude and SYSTEM = Fourier

iphase or into the normalized

)

[}

[}

]

[}

1

|

' Package

'cosfficients of the rsal ! ENTRY = nNone

1

1

]

i

[}

]

]

1

1

|

{Fourier series,

CALL BEFA(KFUNC, ENAM, GNAM,K1,K3, KANW, KENW)

LIST OF ARGUMENTS:

KFUNC 1ig an option indicator
KFUNC = 0O for the computation of amplitudes and phasss
KFUNC = 1 if the coefficients of the real Fourier
analysis are to be computed from the complex
Fourier Transform coefficients

ENAM is the name of the record to be transformed

GNAM is the name of the resulting record

K1 is the search index of the record ENAM

K3 is the search index of the record GNAM

KANW,KENW are the delimiters of the selected record segment

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN, OPAUS, SQRT, ATANZ2

ERRORS DIRECT: None

INDIRECT ; OPEIN, OPAUS

- 136 -

spasctrum in the warehouse.

If necessary there are zero values added to the frequency array

to produce hyperarrays with a length equal to 2N (N integer).

It is necessary to perform the antitransform by beginning with the
lowest frequency value stored in the warehouse (i. s. from block
number 1), otherwise the result will not be correct. On the

other hand, high frequency values may be disregarded, thus
sffectively using the FFT as a low-pass-filter. But it is not
intended to be used as a standard possibility in SEDAP. (see
description of the command FANT in chapter 3.2).

The Antitransform with FOUR1 should yield an array of real
values in the time domain. To verify this, the imaginary part
of the record is examined and if the maximum error(IMAG/REAL)

is greater than 0.001 a comment is written.
Finally the real part of the computed record is transferred to

the warshouse.

2.8.3 Real valued Fourier series and the computation of !
amplitude and phase (Subroutine BEFA) j

Subroutine BEFA may be used for further reduction of spectra, cal-
sulated by theg FFT. A BEFA gxecution may be caused by two commands:

3EFA generates amplitude and phase from real and imaginary data,
while
FANA generates the normalized cesfficients of the real Fourier (

seriss.

After the transfer of the data into the computing storage one

or the other command is sxecutsed:

2.8.3.1 Amplitude and phase are calculated by

ampl = 2 vYreal® + imag*

- -imag
phase arctg real)

To compute the phase the FORTRAN-library-function ATANZ
(-IMAG, REAL) is used.

- 137 -

2.8.3.2 Fourier analysis

Since the FFT is a relatively new algorithm to perform
spectral analysis, many users are still used to work with

the coefficients of the real Fourier series. Therefore FANA
transforms complex spectra, generated with the FFT into the
normalized coefficients of the real Fourier series with the
understanding that the time series had been real, according to

the following relations:

If CR and CI are the coefficients of the complex FFT and
CO0S and SIN are the coefficients of the real Fourier analysis
then

COS(F) = 2 « CR(F),

SIN(F) = -2 « CI(F) for F = 1, ..., N.

(Remark: Spectra generated by SEDAP do not contain coefficients
for the frequency 0). The transformed spectra are transferresd

to the warshouse with Amplitude-Phase or else with SIN-COS ad-
jacent in the storage. They may be sorted with the command S@02.
(See chapter 2.7.1 for special treatment of the frequency in

the sorting algorithm).

2.8.4 Evaluation of power spectra (Subroutine MEPODE)

Subroutine MEPODE (Mean power density) uses a method /13/ for
the application of the FFT algorithm to the evaluation of power
spectra, which involves sectioning the record, taking modified
spectra of these sections and averaging these modified spectra.
many instances this method involves fewer computations than
other conventional methods /15/. Moreover, it involves the
transformation of sequences which are shorter than the whole
record and this is an advantage in SEDAP where the FFT is limi-
ted to sequences of 81392 points. Finally, it directly yields to
a potential resolution in the time domain which is useful for

testing and measuring nonstationarity.

MEPODE can beused to estimate cross- or auto correlated spectra.
Furthermore correlation functions can be generated by using

FANT for an antitransformation of correlated spectra.

In

FLOWCHART SUBROUTINE

MEPODE) ME PODE

CHECK _tOVERLAP ERROR
SPECIFICAT..

CALL OPEIN ERROR
1.RECORD

CCORRELAT. >—

CALL OPEIN X ERROR _
2.RECORD P

CALL POT 2

o]

ARRArs DYES[CALL HYPER
9

'NO

& e

CALL ADDEIN ERROR

CALL MIWESU (RETURN)

TRANSFER
DX=-DY

|

KANW = KAN2 MIX 1 CALL MIWIBU AUTO MIX

-G —aip

®

- 138 -

MEPODE

(CONTINUED)

?

CALL FOUR 1

COMPUTE
HALVE AND

NORMALIZE
| QUADSPEC

CALL HAGL

ADDRESSES
OF NEXT

SEGMENT

ADD DX~=DZ
COMPUTE

MEAN VALUE

KANW = KAN 1

ADD DX-»DZ

SCALE
FREQUENCY
AND TIME

COMMENT
OF THE
ESTIMATE

CALL OPAUS

ERROR

CALL ADDAUS

e

(RETURN >

' COMMANDS: MEPODE uses the FFT for the NAME = MEPODE
LEDI estimation of Auto- or Cross-
(Leist _ Power Spectral Density by SYSTEM = Fourier
Z818TUNgESs sectioning the experimental Package
dichte) g P ‘ g

records and averaging modified! ENTRY = None

periodograms of the sections

CALL MEPODE(ENAM, FNAM, GNAM,K1,K2,K3,KANW, KENW, KSEG, UELAP, HANF,
APCO,KDLT)

LIST OF ARGUMENTS:

ENAM is the name of the first input record

FNAM is the name of the sesond input record (
GNAM is the name of the resulting record

K1,K2,K3 are search indexes of the three records

KANW,KENW are delimiters of the selected experimental record
segment

KSEG is the length of a segment of the sectioned input re-
cord. It is also the length of the resulting record
if no zeroes are added to the segments of the time

series
UELAP is the length of the overlap of the segments
HANF is a repstition factor for Hanning smoothing
APCO is an option indicator
APCO = 1 a fully aperiodic correlated spectrum is ge-

nerated. Otherwise it contains as many aperio-
dic spectral values as added zeroes.

KBOLT is the whole length of the selected time series record (
to be transformed

SUBROUTINES OR FUNCTIONS NEEDED: OPEIN, OPAUS, FOUR1, POT2, MIWESU,
HYPER, MIWIBU, HAGL

ERRORS DIRECT: 21

INDIRECT: OPEIN, OPAUS

' COMMANDS: POT2 computes the number of NAME = POT2
None zeroes which must be added to
an array to obtain a length SYSTEM = Fourier
equal to a power of two, or Package

] I
]]
| |
]]
} }
| '
| |
| |
: :
| to get aperiodically correla- ! ENTRY = None
| ted spectra. '
1 [}
] t
[} |
1 |
t |
| 1
| |
| J

D D e G MR D e S e AR e I AR NG R A SR b e S e D D M MR T e R R e e AN M o N A WD b MR A S R N M e N O e D b e e -

CALL POT2(KPT,N2,NZ,KAPCO)

LIST OF ARGUMENTS:

KPT is the number of values of a data ssries
N2 is the length of the hyperarray
NZ is the number of zeroes that must be added

KAPCO 1is an option indicator
if KAPCO = 1; N2 is doubled (aperiodic correlation)
otherwise KAPCO = 0.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT:

None INDIRECT ;

1
' COMMANDS: HYPER completes an array up to i NAME = pyppR
None a specified length by filling
the missing values with zeroes. SYSTEM = Foyurier
Package
None

]
i
]
]
]
1
]
]
!
| ENTRY =
[}
[}
]
)
)
]
t
]
]
[}

- o > D . W D D 0 WD e e S G D D D D K D D e e e G e T e o e D e T N s e R G SR GD D G e R e G 0 S D D SE D R D e e W G e

CALL HYPER(DATA,NKPT,NZ)

LIST OF ARGUMENTS:

DATA is an array of data
NKPT is the number of values of the data series (

N2 is the length of the hyperarray which is completed
by adding zero values to the end of the DATA-array.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS

None

DIRECT:
INDIRECT :

- 143 -

2.8.4.1 Description of program flow

Mepode first checks the arguments and prepares the transfer of

data from the warehouse to the computing arrays (OPEIN).

Two problems must be now considered, the first one involves
the lags which are performed circularly (this means: the

time record is assumed to be periodic in time) and the second
must take into account the fact that the proposed number N

of values is not always convenient for the use of the FFT-
algorithm. The aperiodic correlation (which assumes that the
time record is axtended with zeroes both to the left and to
the right) can be performed for as many points as there are
zeroes added to the time series /7, 14/. One obtains a full
apsriodic correlation if the third decimal argument DEZ(3)

in the LEDI-command has been sst to one.

If N is not a powser of two, zeroes must be added to extend
the arrays into the form suitable for FFT. These hyperarrays
are generated by the subroutine HYPER, according to the follow-

ing relations:

X(k) = X(k) for k =1 to N
X(k) = 0O for k = N+1 to M

where M is the smallest power of two greater than or equal to

N, or, in the case of a full aperiodic correlation, it is two
times this value. The number of zerces, that must be added is
calculated by subroutine POT2. The calculation of mean power-
spectra is then performed (see below). The initial frequency and
the reciprocal of the frequency interval between the frequency
samples are calculated and stored in the warehouse catalog.

Finally the transfer of data to the warsehouse is initialized
by OPAUS and executed by ADDAUS.

- 144 -

2.8.4.2 Method of ssctioning time series

X(j)

—

Xilj) KSEG

KSEG-HELAal Xal j) ZQK?EG-UELA

N'KSE[G" xgeq(j) N

ILLUSTRATION OF RECORD SEGMENTATION

We consider an experimental record of lsngth N from which
segmants of length KSEG are to be selacted by taking into
account a possible overlapping factor UELA. The starting

points of the segments will be computed in the following man-

ner:
Let X(J), j = 1, ..., KSEG be the first segment. Then
X, (3) = X(J) ~ for j =1, ..., KSEG
Similarly
Xz(j) = X(J+KSEG-UELA)
XK(j] = X(j+(K-1)¢(KSEG-UELA))

At the end of the experimental record an appropriate overlap-
ping of the time segments is produced according to the tech-
nique propossed by Welch /13/. '

- 145 -

We suppose that there are K+1 such segments, Xq(j], ooy
XK+1(j) and that they cover the entire record. The starting
point of the last segment will be

X = X(N-KSEG+j) for j = 1, ..., KSEG

k1 (3D
This segmentation is done for one experimental record in the
case of an autocorrelated mean power density and for two ex-

perimental records when a cross power density is computed.

2.8.4.3 Handling of data in the computing arrays

The modest dimensions of the computing array require the uss
of sconomical methods. The computing array is segmented in
three parts DX, BY, DZ, each of length 8192.

Data is transferred from warehouse into the first array DX.

by ADDEIN. After the computation of hyperarrays by HYPER and of
the residual time series by MIWESU (Mittelwertsubtraktion =
compute and subtract the mean value) the segment of the first
experimental record is transferred to DY in the case of cross-
correlation and the equivalent ssegment of the second experimen-
tal record is loaded. Mixing algorithms are then applied to per-
form the storage allocation which is necessary for the FFT
computation. Because both time series have only real parts, ad-
vantage is taken of the fact, that the two time series can be
transformed at one time. Ones series is taken as the real part

and the other series as the imaginary parts with

Z(k) = X(k) + iY(k)
N
and Z(n) =) Z(k) * exp(-2mienek/N)
k=1

It should be noted that Z has no physical meaning, but is in-
troduced only for the sake of effectiveness of the algorithm.
Using the Hermitian symmetry and its definition the spectra of
X(k) and Y(k) are’

. Z(n) + 7 (N-n)
2

_ 2(n) - 7 (N-n)
23

X(n)

Y(n)

(Z is the complex conjugate of Z)

- n D D e - D R AR =D D RD W R e D S SR D e e 0 G D S M R A ey A D D M M D R D S SR WD W D W0 e A E WD D N e A W e N A e e A R O e e R N e

' COMMANDS: IMIWESU (Mittelwertsubtr.) NAME = MIWESU.
ccomputes “the mean value of an _ .
Nons larray and subtract it from the SYSTEM = Four;zgkage
larray. ENTRY = None

- D O W —— 0 . G A
- D - Y D D D W e D e T D A D D R R MR R D T D e GO KE D e M ED R G e e AR W e D e w0 W -

CALL MIWESU(DATA,NKPT,SUM)

LIST OF ARGUMENTS:

DATA is. an array and is equivalent to the XYZ-array
NKPT is the number of values of the DATA array
SUM is the meanvalue of the DATA array.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT:

None INDIRECT :

- 147 -

Three methods are available to mix X and Y into Z:

1. Mixing of arrays which are smaller or equal to 4086 points
by using thes free space in the computing storage.

2., Mixing of arrays of length 8192 points with the subroutine
MIWIBU (Mix without buffer). This mixing algorithm uses only
one storage allocation.

3. Autocorrslation-mix. Real and imaginary parts are equal:
Z(k) = X(k) + 3 X(k).

After mixing, the array OX + DY can be used for the FFT to
allow the storage of 8192 complex values or 16384 real values.

From the result of the FFT the raw correlated spectrum

7%— e X o Y (X is the conjugate of X)

is calculated normalized by the factor 1/2N so that an auto-
correlated sinewave with amplitude A is transformed into the
value A2/2 /16/. Because of thas symmetry of the spectrum, only
frequencies up to the Nyquist frequency (FT/2) are calcyla-
ted (this economical method is also applied in FOUT and FANT).

The spectrum is stabilized by the Hanning method which smoothes
the spectrum by applying a frequency window (Subroutine HAGL).

It is possible to specify between 0 and 10 successive smoothing

passes by choosing the value of DEZ(2).

To calculate ths mean power density of the whole experimental
record all spectra (the auto- or cross-correlated mean power
density of one segment of the time series) are added into the
DZ array. Once the spectrum of the last segment has been added,
the mean value of the spectra is calculated and the mean power

density is expressed as

M
1 1 kv s s
MPD = & § oy ¢ Xg ¢ Yy with i =1, ..o, M
i=1

. for an ensemble of M samples.

2.8.4.4 Subroutine MIWIBU

If both input time series have a length of 8192 there is no
free space in the computing array. To perform mixing of the

' COMMANDS: |MIWIBU (Mix without buffer) NAME = MIWIBU
aThe second half of an array is
:mlxed with its first half to

iperform a quasi complex array

] 3
iout of two real series

None SYSTEM = Fourier

Package
ENTRY = None

- e o D T . D G o e R D D WR D G S5 G G KN G A N e O3 e e D W A EB R S e R e R e RS S Y e e e e D W e KR e S e e -

CALL MIWIBU(DATA)

LIST OF ARGUMENTS:

DATA is an array with a length of 16384 points. It contains
two time series of 8192 points. DATA is equivalent to (
the XYZ array.

Method of mixing:

Only one free storage place is used to perform the
mixing. This method is applied if no free storage is
available in the computing arrays.

SUBROUTINES OR FUNCTIONS NEEDED: None

ERRORS DIRECT:

None INDIRECT ;

- - GD W D S D RS T GRS G O D R D G A R R O D RO D R D D S N D e e D R D D s G M D WD R N SO R R W KB Y SR W wx B8 W Ve M W R MO wp M3 W A e O wm e

| COMMANDS: HAGL performs the smoothing of ! NAME = HAGL
None complex spectra with the
Hanning function SYSTEM = Fourier
Package

1
1
1
I
I
t
1
i
!
H ENTRY = None
i
t
0
'
i
1
i
i
|
1

- D e A R S D D S0 90 D N M A D 4D DR D A O D D D WD D S S D e DGR D D D e D T D M G G M AR D e KD e e mm WD e M G e R A R

CALL HAGL(CX,N,KMAL)

LIST OF ARGUMENTS:

CX is an array of complex values
N is the number of the complex valuss

KMAL is the repetition factor for the application of
smoothing. It may be chosen bstween 0 and 10.

SUBROUTINES OR FUNCTIONS NEEDED:

ERRORS DIRECT:

INDIRECT ¢

- 150 -

time series at once, free space of at least half of the lengfh
of a time series should bs available. The mixing is therefore
done in 13 steps (log2 (8192)).

The method may be shown in the following example where the
length of time series is 8. In the first step, the first half
of the second time series is exchanged with the second half of
the first time series, as i1llustrated in the following dia-

grami
LEBEARER ER.ER . RR/AR, | I Njuin|a]j2s|28]27] 28
S — T — — -
SR TR eSS ~ 1N\
- ~~ - \\\‘t
Ninjnn|wjiarj2]23| 4 I 1S |16} 17]w|25]26]27 |28
ha— | H — e S L———S 2 1Z e B - \>(-7
‘/’Q\ ./)‘\. /}\\\ i
ninniaaj2|n|wj2|]2j15j16 125126117]18]27] 28
IH y 4 / / 7\
- \ /\ N\ x N /ZN\ >\ /\
Njajn2j]2|13j31W|20({15]25]116]126117 127186] 28

ILLUSTRATION OF THE MIXINGALGORITHM

Now all those values are in the first half of the whole array
(16), which must be there at the end of the mixing. In the next
step similar mixing is done as before, but for two arrays of
half length. In svery step the length of the arrays is divided
by two, the number of arrays is doubled. The final result

shows the right order after the exscution of the third step.

- 151 -

2.9 User definsd SEDAP commands (extending of SEDAP)

SEDAP helps the expsrimenter to conduct his own data reduction
by the flexibility provided by its set of commands which can
be used in many different combinations.

Furthermore the list of commands with fixed specifications can
be extended by a special command: XTSD, the function of which
may be specified by a user written subroutine. This subroutine
must be written in FORTRAN with the name EXTSED and must be
submitted to the linkage editor together with the objsct code
of SEDAP in order to be available in a specific execution of
SEDAP. To provide for this possibility SEDAP is not stored as
a load module in the program library but rather as an object
module. If no user supplied subroutine EXTSED is supplied, the
system will provide a dummy subroutine with the same name and
the command XTSD will have no effect.

The argument list of the subroutine EXTSED contains 13 argu-

ments. Nine arguments correspond to the specifications of the

nine parameter fields on the XTSD command card. The three first

arguments correspond to the three first parameter fields of the
command, also the six last arguments to the six last paramsters

of the command. Arguments four to seven are the results of checks

in the main program and are used for further checks by the transfer
routines (see chapter 2.2.2 and 2.3). Before using the para-

meters of the command, the description of the command XTSD

should be studied with cars. Some additional remarks may be use-

ful:

- If a modifier is used (argument 2) it should be named with
one of the existing modifier names.

- DOnly the three last parameters of the command may be delibe-
rately used by the programmer.

- If the user needs more than these three parameters to con-
trol the execution of his subroutine, he may read additional
information within EXTSED from any file which is not used by
SEDAP itself [he should not use files 1, 5, 6, 7, 15, 40)

- Arguments of the transfer routines OPEIN, OPAUS, ADDEIN,
ADDAUS may be defined as in example one, if the whole expe-

- o D e D e o D S D D e D T O OO e e G mm D D AR e G 66 D e D G0 MR D e e e e o 5 R R KD D G D e O R M e D D e e e b S o e e W e

I COMMANDS: EXTSED is a user defined sub- NAME = EXTSED
XTSD routine to extend the possibi-
lities of SEDAP SYSTEM =
ENTRY =

CALL EXTSED(ENAM, FNAM, GNAM,K1,K2,K3,K4,KANW,KENW, IX,DEZ1,
DEZ2,DEZ3)

LIST OF ARGUMENTS:

ENAM is the name of the first input record

FNAM is the name of the second input record or a modifier
name ‘

GNAM is the name of the resulting record

K1 is the search index of ENAM (must be positive)

K2 is the search index of FNAM (must be positive)

K3 is the search index of GNAM (must be -1) |

K4 is the number of a modifier item in the modifier list

'KANW,KENW are the delimiters of the selected record segmenﬁ
and are expressed in blocks -

IX may be used as a sorting factor applied in ADDEIN or
as any integer variable to control the subroutine
algorithm, for example a input/output unit number

DEZ1,DEZ2,DEZ3 are user specified.

SUBROUTINES OR FUNCTIONS NEEDED: Defined by the user

ERRORS DIRECT:
Defined by the user

INDIRECT :

- 153 -

rimental record can be stored in the computing storage

(the 25088 first places in COMMON)., If another transfer

mode is used, a good knowledge of the possibilities of-

fered by the transfer routines (chapter 2.3) is necessary.
- If a transfer from and to the warehouse is executed the pro-

gram commonly will have the following structurs:

a) Specification of the common and other arrays

b) Specification of transfer arguments

c) Preparation of the transfer by OPEIN and OPAUS

d) Transfer from the warehouse to the computing arrays

e) Application of special data reduction algorithms to the

experimental records

f) Transfer from the computing arrays to the warehouse

As an illustration of programming with EXTSED two examples will
follow.

Example 1

Let us assume that the data of an experimental record are dis-

turbed by noise in the frequency range of 50 Hertz which should
be eliminated. The converted and sorted signal shall be trans-

formed by the Fast Fourier Transform (FOUT). Within the resul-

ting' frequency record the data-values in the frequency range

50 Hz * 2 Hz shall be sest to zero by XTSD. After the Antitrans-
form of the resulting frequency record by FANT, the time signal

will not contain any frequencies in this range.

Program flow of EXTSED

The whole common area of SEDAP is specified, a complex array
CX is squivalent to the X-array.

The preparation of the data transfer follows. KRAF must be ons
if frequency records are transferred. The arguments of the
transfer are chosen to execute the general transfer mode 1
(KXYZI = 1 , KXYZ0 = 1).

The preparation of the transfer is done by OPEIN, OPAUS.

The :frequency interval of the spectral samples = 1/Freq is re-
turned from OPEIN by the argument FREQ.

Now the delimiting numbers of the points corresponding to the

frequency range to be deleted are computed and verified.

- 154 -
PROGRAM LIST OF EXTEND EXAMPLE NO 1

— o en - e e e D e

SUBROUTINE cXTSED(ENAM;DUA,GNAMyK1,DUB 4K3 3DUC s KANW KENW 4DUC s FREDE
A FRECA)

USERDEFINED SUBROUTINE TO DELETE SOME VALUES OF A FREQUENCY RECORD

OO

COMMON X (1U240),Y (10240),2 (5120),
1 BENAM(512), NANF(512) ,NEND(512) s WFREQ(512);ADAT(512),BZEIT(512),
2 KDAT,KENDyNC ¢NP s IA 3 JRVX15X2,¥1,Y2,IERRyAERRyBERR s JERRyKERR
3 4KPF (512)
COMPLEX CX(4096)
EQUIVALENCE (X(1),CX(1))
KRAF = 1
IMESS
ISTAT
I1STAK
MAX =
KUF=0
KOF=0
KXYZ1I
KXYZ0 = 1
KPOINT = KEwD
KFUNC = 1
KSHIFT = 0
LOEF = 8192
KNULL = 0
CALL OPEIN { KANW,KENW,ENAM,K1,KRAF, TIME;MAXsLKPT,FREQ,DATE)
IF (IERR.GT.0) GO TO 99
CALL OPAUS (LKPT sGNAM K3, KRAF yFREQ,;DATE,TIME)
IF (IERR.GT.0) GO TO 99
C RANGE ANC ADDRESSES OF FREQUENCIES
C DELETED FREQ = FREDE,MINFREQ = FREMI,MAXFREQ = FREMA
FN = FREUE * FREQ
FND=FREDA *FREQ
NF = Fd
NDF=FND - (
NMI = NF - NDF
NMA = NF + NDF

co it H
e
OO O

FREDE = NF / FREQ
FREMI = NMI / FREQ
FREMA = NMA / FREQ

WRITE (NP 9100) NMIyNFyNMA,FREMI,; FREDE;FREMA
IF (NMA,sT.LKPT) GO TO 98
CALL ADDEIN (KANWs;LKPT;LODEF;KRAFysKNULL sIMESS sIMKXYZI,ISTAT10F,
1 IUF,KOFgKUF }
IF (IERReGTs Q) GO TO 99
C DELETE
DG 10 I=NMI,NMA
10 CX{I) = (De90e)
CALL ADDAUS (KFUNCy ISTAKyKPOINT,GNAM, IN,KXY70 KSHIFT, IMESS)
GO T0 99
98 WRITE (NPs1lu 1)
99 RETURN .
101 FORMAT(1H ;! FREQUENCIES DO NOT CORRESPONDENT TO THE',/

- 155

AlH 5 *FREQUENCY RANGE OF THE RECORD'/)
100 FORMAT {(1H ¢ 3{I10,2X),3{F10.%52X))

END

CCMMAND L IST OF EXTEND EXAMPLE NO 1

SEDAP XTSDSOHL
50 HZ FiLTER
TEST OF EXTEND SEJDAP,TAPE ISPIK3

SEDA

ERAK

S004 1SP1
FOUT 1502
DEFX

DEFY

PLOT 1502
SIGNAL WITH
XTSD SPEC
FANT FILT
PBHE FILT
PBHE SPEC
BILD

BEFA SPEC
BEFA FILT
5002 AMPN
5002 AMPF
DEFX

DEFY

PLOT ISFI

SIGNAL WITHOUT
DEFX

DEFY - :
PLOT ANO1
SPECTe WITH
DEFX

DEFY

PLOT AFO1

SPECT. WITHOUT
STOP

TEXT
50nL

AL.E

TEXT
5041

TEXT
5012

TEXT
5041

2400
ISP1 3
IS$$ 1
SPEC 1
1

NOISE
FILT 1
ISFI 1
1l
1
AMPN 1
AMPF 1
ANFT 1
AFFT 1
1

NOISE
)8

NOTSE
1

NOTSE

10
16
4

S -

- e e o

21

=

5000,

Oe
=600,

50¢

"700.

Oe
0.

0.
0.

1.
900,

20

800,

125,
500.

125,
500,

12.7
5.08

12.7
5.08

12.7
5.08

1267
5.08

- 156 -

< EXTSED)

INITIALIZATION
OF OPAUS

AND ADDAUS
ARGUMENTS

1
INITIALIZATION
OF PROGRAM

EXTSED

DO
J=1,
NVALUE

READ A CARD /

FLOWCHART SUBROUTINE
EXTSED EXAMPLE 2

END OF FILE
o

WITH 8 VALUES /—

ADD READCOUN-
TER.SET INDICA

TOR OF DATA
TRANSFER=FALSE

~"7 VALUES
TRANSFERED

SED INDICATOR

OF DATATRANS}

2 FER = TRUE
TRANSFER A
VALUE FROM
AREA A TO FIEL
RECORD ONE RECORD
COMPLETED
Y T0 WAREHOUSE
|

!

TRANSFER
THE REST TO
WAREHOUSE

WRITE
WARNING

' COMMANDS : NAME = EXTSED
XTSD

Example 2 shows the use of
EXTSED to transfer data pun-
ched on card deck into the
warshouse

SYSTEM = INPUT

ENTRY = None

- - D R D R D e A D W D B R R W AR D G A M G G D KR ED WA G T A e e A AN R M G D KD e A D e e D am R K O D G e G e e e e G0 e Mn n e S e -

CALL EXTSED(S1,S2,GNAM,K1,K2,K3,K4,I1,NVALUE, IUNIT,FREQR,DATE,
TIME)

LIST OF ARGUMENTS:

S1 dummy argument in this example
S2 dummy argument in this example

GNAM is the name of the resulting record

K1 dummy argument for this example
K2 dummy argument for this example
K3 is the search index of GNAM (must be -1)
K4 dummy argument for this example
I1 dummy argument for this example

NVALUE is the number of values to be resad
IUNIT 1is the unit number of the input file
FREQ is the frequency of the record

BDATE is the recording date of the data
TIME is the recording time of the data

Remark:

S1, S2, GNAM correspond to NAM1, NAM2, NAM3 (page 166), K1,

K2, K3, K4 are the search indexes defind on page 13 through

16, I1, NVALUE, IUNIT as well as FREQ, DATE and TIME corres-

?ond to I1, I2, I3 and X1, X2, X3 in the list given on page
66 .

SUBROUTINES OR FUNCTIONS NEEDED: OPAUS, ADDAUS

ERRORS DIRECT: 1

INDIRECT; see OPAUS,ADDAUS

- 158 -

PROGRAM LIST OF EXTEND EXAMPLE NO 2

OO0

OO

AC

SUBROUTINE &XTSED (S19S2yGNAMKL K2 ;K3 9K& 311 oNVALUE,; TUNIT,FREQ,
1 DATE, TIME)

QUISITION JF DATA PUNCHED ON CARD DECKS

i Tty oD e R TS D D AT Sy i D D D ™ S D D A D O R D W ARSI

INI

INI

10

15

COMMGON X {10240),Y (10240),2Z (5120),

1 BENAM(512), NANF{512) ,NEND(512) sWFREQ{512),ACAT(512),BZEIT(512),
2 KDATZKENDsNCyNPsIA;JRV§X193X2,Y13Y2, TERR;AERRyBERRy JERR KERR

3 yKPF (512)

DIMENSION FiELD (512),A (8)

EQUIVALENCE (X{1),FIELD(1))

LOGICAL AEM?TY

TALYSATION J= OPAUS AND ADDAUS ARGUMENTS

WRITE (NPs102) NVALUE,IUNIT (
ISTAT = O

IM1 = 512

KXYZ = 2

IMESS = 1

KSHIFT = 0

KFUNC = 1

KSORT = 1

KPOINT = KEnD
CALL OPAUS (NVALUE, GNAM,K3,KSORT,FREQsDATE,TIME)

TIALISATION oF PROGRAM EXTSED

MUCH
INDA
INDF
IREAC = O

AEMPTY = oTRUEe.
IQUANT = NVa LUE

wonou
[oN®Ne

DO 10 J=1,NvVvALUE

IF{ «NDTL,AEM?2TY) GO TO 5

READ (IUNIT, 100,END=20,ERR=98) A

IREAD = IREAD + 1

AEMPTY = oFALSE.

INDA = 0

INDA = INDA + 1 :

IF (INDA.EQ.8) AEMPTY = . TRUE.

INDF = INOF + 1

FIELD (INDF) = A (INDA)

IF {INDF.NE.512) GO 70O 10

CALL ADDAUS (KFUNC, ISTAT, KPOINT yGNAM;s IML ¢ KXYZyKSHIFT , IMESS)
TQUANT = IJJANT = 512

MUCH = MUCH + 1

INDF = 0

CONT INUE

IF (INDF.EQ.Q) GO TO 99

IM1 = TQUANT '

CALL ADDAUS (KFUNC, ISTAT, KPOINT ;GNAMIML,KXYZ,KSHIFT,IMESS)

- 158 -

GO T0 99
20 IM1 = ITREAD % 8 - MUCH * 512
NR = IREAD * 8
WRITE (NPy1lul) NVALUE,NR
GO TO 15
98 IERR = 1
JERR = TUNIT
KERR = NR
99 RETURN

100 FORMAT (8FlLJ.4)

101 FORMAT (1H , 'THE END OF THE CARD DECK FILE WAS FOUND BEFORE ALL *,
1 T4,' COULD BE READ.THERE ARE ONLY *,14,' VALUES STORED IN THE ',

2 "WAREHOUSE* /)

102 FORMAT (1H ,I4,' VALUES ARE TO BE READ WITH FORMAT (8Fl10.4)°,

1 WITH THE FILE NUMBER FTC',1I1,*FO017/)
END

COMMAND LTIST OF EXTEND EXAMPLE NOD 2

e = - - AT D e G D D A D S s T AR D S P Rty

SEDAP EXTSED

EXAMPLE NOo 2
CCNVERSION OF DATA STORED ON CARDDECK INTO SEDAP BLOCKS
SEDA 100
XTSD RECA 1002 1 1. 1006.72
PBVF RECA 1 2

C.0

- 160 -

The data are transferred to the CX-array, the values corras-
ponding to the frequency range 50 Hz * 2 Hz are zeroed and the

resulting record is transferred back to the warshouss.

Example 2

SEDAP provides possibilities to reduce data recorded on magnetic
or paper tape. This example shows how expsrimental data recorded
on a card deck can be transformed into experimental records of
the SEDAP format.

We assume the data to be punched on cards. Every card contains
eight values with FORTRAN-format F 10.4.

The data is read by EXTSED (see flowchart) into an array FIELD
of length 512%(4 bytes). Every time the array FIELD contains

512 values the data 1is transferred into the warehouse by
ADDAUS. |

If the last block to be transferred does not contain 512 values
a special call of ADDAUS is executed.

If there are less data cards than specified by IX on the

command card, a warning message will be written.

The following short command list gives an example how 1002 data
values are read by XTSD and stored into the warehouse of SEDAP
as an experimental record with the name RECA specified by the

parameters: sampling frequency, recording date and time.

- 161 -

3. USING SEDAP

The basic idea behind the SEDAP concept was to relisve the
experimenter from all standard programming work and to pro-
vide a detailed report of the processing activities. The ex-
perimenter must however direct the process and this is
achieved by an experiment oriented language known as the
SEDAP languagse.

As a long range target it was planned to implement a rather
sophisticated command interpreter. In the present version,
however, the structure of the command was restricted to the
normal Fortran IV conventions with the advantages and the

limitations such a choice necessarily implies.

3.1 Running a SEDAP job

The system's user is mainly concerned with the three following
steps which are necessary to run a SEDAP job.

3.1.1 Description of the files

SEDAP requires the availability of different files which must
be defined by the corresponding job control cards. The defini-
tion of the files is a task of a very specific nature and

depends not only upon a given machine configuration but also

. upon the release or the type of software available. The job
control cards which were used in November 1972 to run SEDAP on
an IBM 360/65 - 370/165 computer are listed in appendix A to
show the typical file environment of SEDAP. SEDAP users have
access to a German handbook which informs them from any change
in the procedure.

3.1.2 System initialization

A SEDAP job must always begin with the four following cards:

Card 1 - Title card

Card 2 - First comment card
Card 3 - Second comment card
Card 4 - Warehouse card.

- 162 -

The first card begins with the word SEDAP (column 1 to 5) and
carriegs the title word which will be printed in big characters
on the first page. The title can be made of any valid 8 charac-

ters combination starting in the column 11.

The second and third card will be printed at the bottom of the
first page and allow the user to give a short description of
the job he intends to process. The 160 characters (2 x 80) are
completely free and will be printed in the same format. These
two cards belong to the formal initialization and must always
be present, they can be replaced by two blank cards but thsy
should never contain the arrow (>) in the first column. The
fourth card is a command card of the SEDA type which specifies
the size of the warehouse and the use of the standard options.
The description of the SEDA card is given in the list of the

commands.

3.1.3 The SEDAP commands

The SEDAP commands were specified according to a gseneral
scheme. A SEDAP command card is generally formulated by one
card and occasionally the card must be followed by a descrip-
tion card. This card is expected for instance after a new plot
or a dump command and has nothing to do with the normal commaent
card which begins with an arrow (>) and which is skipped after
the listing operation. The general structure of a SEDAP command

is organized according to the list given on page 166.

3.1.4 Programming of the tasks

The modular principle of SEDAP allows to select different
schemes as long as the basic requirements of the commands are
respected. The user must generally begin by converting the data
or by generating the test data. Various operations are then
possible but the user must take care when specifying names,
that new names are really new and old names are already known
to the catalog of the warehouse. One common source of errors
involves the segmenting of records which must be always compa-
tible with the number of points really stored in the record.
The use of an input sorting factor reduces the output by the

- 163 -

same factor and a new task must take the reduction into account
when the new limits of a resulting segment are used. It is re-
commended to insert a few "BILD” commands to document the stora-

ge organization.

3.2 Description of the commands

The list of the commands uses a simplified syntax for the repre-
sentation of the command language. This scheme shows the three
groups of three command parameters included in parentheses with
two commas as delimiters. Parameters, which are omitted, will

be ignored by the command interpreter. As an example

ADDI (RECA, RECB, RECC) (IB1, IB2, IB3)

indicates that this command requires three record names and

three integers as parameters, while no real data are necessary.

- 164 -

TABLE OF VALLiD COMMANDS

- s o e aman o s s w2 D T S D

ADDI - ADD TWO RE.ORDS

AX+B - LINEAR TRANSFORMATION

BEFA —~ CONVERSION FROM CARTESIAN TO POLARKOCRDINATES
BILD - CONTENT OF WAREHODUSE

CAGE ~ CATAGENERAT ION

DEFX - DEFINE THE X - AXIS

DEFY - DEFINE THE Y - AXIS

DIFF - DIFFERENTIATION OF A RECCRDS

DIKO - COMPLEX DIvISION

DIVI - DIVIDE TWO RECORDS

DUMP ~ DUMP RECORJS ON A DATASET '

ERAK — CCONVERSION OF DATA RECORDED ON MAGNETIC TAPE
FANA - FOURIER ANALYSIS

FANT = FOURIER ANT ITRANSFCRM

FOUT - FDURIER TR4ANSFORM

FIL1 = LINEAR THRLE POINTS SMOOTHING

FIL2 - LINEAR 'FIvc POINTS SMOOTHINSG

FIL3 - CUBICAL FivE POINTS SMOOTHING

FIL4 — SMOOTHING #ITH VARIABLE CUT=0FF FREQUENCY
HAFU - SMOOTHING 4F SPECTRA WITH HANNING FUNCTION
HOLE = RESTORING JF DUMPED RECORDS

INSI = INTEGRATION WITH SIMPSON METHOD

INSW = INTEGRATION WITH SWITCH

INTR = INTEGRATIUN BY THE TRAPEZOIDAL METHOD

KOKO = COMPLEX COWJUGATE MULTIPLICATICN

LEDI - ESTIMATION OF POWER SPECTRA

MUKO - COMPLEX MJL TIPLICATIDN

MULT = MULTIPLICATION OF TWO RECORDS

MWEF - COMPUTATIUN OF THE MEAN VALUE

MWES - SUBTRACTIUN OF THE MEAN VALUE FOUND BY MWEF
PBHE = PRINT RECJIIDS IN AORIZINTAL ORDER WITH E-FORMAT
PBHF = PRINT RECJ:DS IN HORIZONTAL ORDER WITH F=FORMAT
PBVE = PRINT RECUXDS IN VERTICAL ORDER WITH E-FCRMAT
PBVF — PRINT RECORDS IN VERTICAL DRDER WITH F~FORMAT
PLOT - PLOT WITH AUTOMATIC SCALING

PTAP = CONVERSION OF DATA RECORDED ON PAPERTAP

RENA — RENAME A RcCORD

SEDA - SPECIFY THc SIZE JF THE WAREHOUSE

5002 - SDRT 2

S004 —~ SORT 4

5008 - SORT 8

S016 = SORT 16

5032 = SORT 32

5064 - SORT 64

SUBT = SUBTRACT T40 RECORDS

STOP - STOP THE CJMMANDS INPUT STREAM

INI1 - CONVERT THcRMOCOUPLE VOLTAGE TO TEMPERATUR
WERT - CREATION 35 RECQRDS DELIMITED BY VALUE- OR TIMEUNITS
XTSD = POSIBILITY TO DEFINE COMMANDS BY THE USER
ZERS — DESTROY ONz OR ALL RECORDS

ZUST - LISTS THE cXISTING COMMANDS

KONS
AX+8
SINF
COSF
VIER
RAND

ZEIT

TEXT
ALT*

ALLE

MCD1
MoD2
MOD3
MOD4

LIST OF vALID M3IDIFIERS

USED
USED
USED
USED
USED
USED

USED

USED
USED

USED

USED
USED
USED
USED

WITH
WITH
WITH
WITH
WITH
WITH

WITH

WITH
WITH

WITH

WITH
WITH
WITH
WITH

« OMMAND
< OMMAND
« OMMAND
L OMMAND
« OMMAND
- OMMAND

v OMMAND

- OMMAND
« OMMAND

« OMMANDS

« OMMAND
v OMMAND
« JMMAND
» OMMAND

DAGE
DAGE
DAGE
DAGE
DAGE
DAGE

WERT

PLAT
PLOT

DUMP

XTSD
XTSD
XTSD
XTsSD

165

HOLE

BILD

COMM

- o -

EXPLANATION : COMM : COMMAND NAME :
THE COMMAND MUST BE SPECIFIED BY ONE OF THE 51
KEYWORDS<ONLY THE FOUR FIRST CHARACTERS ARE
CHECKED AND THE USER CAN EXTEND THE FOUR CHARAC-
TERS TO ANY COMBINATION WICH DOES NOT EXCEED THE
10 CHARACTERS SPACE (MULTIPLY IS A VALID EXTENSION
OF MULT). ‘
NAM1 ¢ FIRST RECORG NAME
IS GENERALLY THE NAME OF A RECORD WHICH IS TO BE
FOUND IN THE WAREHCUSE.,
NAM2 : SECOND RECCRD NAME CR THE MOCIFIER |
IS THE NAME OF A SECOND RECORD OR THE NAME OF A
MODIFIER WHICH IS SPECIFIED BY THE COMMAND. (
NAM3 : THIRD RECORD NAME
IS THE NAME OF A NEW RECORD
11 : FIRST INTEGER
IS THE FIRST BLOCK OF A SELECTED SEGMENT
I2 : SECOND INTEGER
IS THE LAST BLOCK OF A SELECTED RECORD SEGMENT
I3 : THIRD INTEGER
IS IN MOST CASES A SCRTING FACTOR APPLIED TQ THE
INPUT (1 OF N VALUES).FOR SOME COMMANDS,WHICH DO
NOT PERMIT SCRTING,THIS NUMBER HAS A DIFFERENT
MEANING.
X1 X2 X3 : THE THREE LAST PARAMETERS ARE DECIMAL NUMBERS
AND THEIR MEANING 1S EXPLAINED IN THE DESCRIPTION
OF THE COMMANDS.
DATASTUCTURE =
| STRUCTURE | COLUMNS | FORMAT 1 COMMENT |
| e e e e e . i o e e et e e |
} CCMMAND I 1 - 4 ! A4 | LEFT JUSTIFIED :
+ e e e e + -
1 NAML | 11 - 14 | A4 | LEFT JUSTIFIED |
| - - e e e s e - |
| NAM2 I 16 - 19 | A4 | LEFT JUSTIFIED |}
B $mmm e e e ———— D I
| NAM3 | 21 - 24 | A4 | LEFT JUSTIFIED |
| e e e o e e e S e e e o e e e e
: I1 | 26 - 30 | 15 | RIGHT JUSTIFIED :
- et e e + —
. ¥ | 31 - 35 | 15 | RIGHT JUSTIFIED |
| -+ fo———— + - |
| 13 | 36 - 40 | 15 | RIGHT JUSTIFIED |
|mmm e e e $m e e e e -1
I X1 | 41 = 50 | Fl0.4 | I
e e ———————— T e o e e |
¥ I 51 - 60 | Fl0.4 i |
l - = e haleniand 2 b -—]
1 x3 | 61 - 70 | Fl0.4 | I

- 166 -

FORMAT OF THE SEDAP COMMAND LANGUAGE

NAM1 NAM2 NAM3

I1 12 i3 X1 X2 X3

® ° °

R et B B B

.- 167 -

ADDI
adds‘two records and stores the resulting record in the

warshouse.

ADDI (RECA, RECB, RECC) (181, IB2, IS)

————ar———

RECA is the name of the first record to be added

RECB is the name of the second record to be added

RECC is the name of the record resulting from the addition
(C = A+ B)

IB1 is the first block of the selected record segment

IB2 is the last block of the selected record segment

IS is the sorting factor to be applied at the input

Example
ADDI (CH22, CH23, TEMP) (1, 6, 2)
Add the six blocks (1 to 6) of the channel 22 to the

six blocks of the channel 23 and store the resulting record
(three blocks since IS = 2) under the name TEMP

Remarks

Maximum number of blocks = 2500 blocks
Sorting factor from 2 to 100 |

Sse note aon synchronous records '
ADDI can be used to add complex values

- 168 -

AX+B
performs the linsar translation of a record according
to the relation y = ax + b and stores the results in the
warehouse

AX+B (RECX, ,RECY) (IB1,18B2,1S) (A,B,)

RECX 1is the name of the input record (x in the formula)
RECY 1is the name of the resulting record (y in the formula)
IB1 is the first block of the selected record segment

IB2 is the last block of the selected record segment

IS is the sorting factor to be applied at the input

A,B are the two coefficients a and b of the formula

Example
AX+B (CH11,,NC11) (1,10,5) (10.0,3.0,)

Multiply every 5th value of the 10 first blocks of the re-
cord CH11 by 10.0, add +3.0 to the product and stors the 2 re-
sulting blocks under the name NC11

Remarks

Maximum tumber of blocks = 2500 blocks

Sorting factor from 2 to 100

If A = 0.0, AX+B transforms the record in a constant B

If B = 0.0, AX4+B multiplies a record by a constant A

If A = 1,0, AX+B adds a constant to the record

If A= 1,0 and B = 0.0, AX B becomes a "DO NOTHING”"” operator
and transfers the input to the output. Since SEDAP recognizes
this case and speeds the transfer accordingly without executing
the operation, AX+B should be used to sort one of IS values of
a rscord ssgment.

- 1689 -

BEFA _
transforms a complex record by computing amplitude and
phase analog to the conversion of cartesian coordinates

to polar coordinates
BEFA (COSP,,AMPH) (IB1,1B2,)

COSP is the name of the input record (complex spectrum)
AMPH is the name of the resulting record (amplitude, phasse)
IB1 is the first block of the selected record segment

IB2. 1is the last block of the selected record segment.

Example
BEFA (KART, ,POLA) (1,8,)

Transform the 8 first blocks of the record KART and
store the result under the name POLA

Remarks

Maximum number of blocks = 2500

A sorting factor cannot be applied

Amplitude and phase values of any frequency are stored in two
adjacent memory locations

They are normalized as if they had been gensrated by real
Fourier analysis

For separating amplitude and phase see command SOnn

- 170 -

BILD
(means Snapshot or picture) maps the contents of the
warehouse

Two forms ararpossible:

BILD (no argument)

BILD (,ALLE,)

‘BILD gives the names of all the records stored in ware-
house and lists the parameters of the catalog for each record,
if the modifier ALLE (=all) is specified, the task is extended
to a list of the first eight values of each block contained
in the warehouse.

Remark.

BILD is especially useful to understand the way the system
stores the records and should be called a few times by the new
users of the system to check the properties of the records

stored in the warshouse.

- 171 -

DAGE

Data generation
BAGE (,TYPE,REC?) (IB1,IB2,) (X1,X2,X3)

TYPE specifies the type of generated signals and is a generic
name which must be replaced by one of the following modi-
fier names:

KONS ¢generates a constant signal with a sampling frequen-
cy X1 and an amplitude X3 (X2 is not used)

AX+B. generates a ramp with a sampling frequency X1. The
first point of the signal has the value X3, the
second X3 + X2 and the n-th point X3 + X2 (n-1).

X2 and X3 can be positive or negative.

SINF generates a sine wave with a sampling frequency X1,
a sine Frequehcy X2 (Hz) and an amplitude X3.

X1 and X2 must be always correctly defined (no de-
fault) and it is recommended to satisfy the condition
X1 > 2.0X2.X3 is generally positive and the user

can use a negative value for X3 if he intends to
cause a 180 ° shift.

COSF generates a cosine wave and uses the same convention
as SINF

VIER (viereck = square) generates an alternated (+/-)
squarewave with a sampling frequency X1, a repetition
rate X2 (Hz) and an amplitude X3. (The first half-
wave is equal to X3 and ths second to -X3). X1 and
X2 must be correctly defined and a negative X3 value

o .. .
(inversion)

causes a shift of 180
RAND generates a random signal with a sampling frequency
X1 and an amplitude comprised between 0.0 and X3.
X3 can be negative and X2 is disregarded.
REC? 1is the name of the generated rescord and the question mark
indicates the status duality of the record:
The record name can be new and a new record will be gens-
rated in the warshouse. In that case IB1 is expected to
be 1 and IB2 is the last block to be generated.

The record name can also be already known and the genera-

- 172 -

ted data will be added to the existing record. In that
case the sampling frequency X1 has no meaning since ths
sampling frequency will be given by the catalog. IB1 and
IB2 delimit the segment of the record and must satisfy

to the requirements of a normal input request.

Examples
DAGE (,AX+B,RAMP) (1,10,) (512.0,1.0,2.0)

A new record of 10 blocks will be generated under the
name RAMP. The signal is a ramp with a sampling frequency of
592. Hz. The first value will be equal to 2.0, the second to
3.0 and the last value to 5121.

DAGE (,SINF,SINE) (1,1,) (100.0,10.0,5.0)

A new record of 1 block will be generated under the
name SINE. The signal is a sinewave with a sampling frequaency
of 100.0 Hz and a frequency of 10 Hz (there are ten full sine
cycles in an interval of 100 points) and an amplitude of 5.0.

DAGE (,KONS,MIXD) (1,5,) (400.,,10.0)
DAGE (,VIER,MIXD) (2,2,) (400.,8.5, 1.)
DAGE (,RAND,MIXD) (4,4,) (400.,,1.0)

The three previous commands will generate a constant
signal of 5 blocks with an amplitude of 10.0 volt. The second
block of the record will be "disturbed” by the superposition
of a squarewave of 1.0 volt and the fourth block by a random
signal of also 1.0 volt.

Remarks

Maximum of blocks = 1000
Sorting factor has no meaning and will be disregarded.

- 173 -

DEFX
defines the X axis of a plot frams

DEFX (,,) (,,) (XMIN,XMAX, XLENGTH)

XMIN is the minimum value specified for the X axis (the X
axis is related to the time and is expressed in sseconds)

XMAX is the maximum value specified for the X axis.
If the relation XMIN > XMAX is not respected the system
will interchange the two values.

XLENGTH specifies the physical length of the plot length (in
centimeters). If XLENGTH has been omitted, the default
value X = 35,0 cm will be substituted.

Example
DEFX (,,) (,,) (11.5,11.7,20.0)

A length of 20.0 cm is reserved to plot the X values
which will be comprised between 11.5 and 11.7 seconds.

Remark

Since PLOT handles only 20 blocks in a task it is possible

to extend the limit to several times 20 blocks if all the plot
tasks are directed to the same frame which has been specified
for all the values of different tasks. (See PLOT)

DEFY

DEFY

YMIN
YMAX

- 174 -

defines the Y axis of a plot frame
(,,) (,,) (YMIN,YMAX,YHEIGHT)

is the minimum value specified for the Y axis

is the maximum value specified for the Y axis

If the relation YMIN < YMAX is not respected, the system
will interchange the two values

YHEIGHT specifies the height of Y on the physical plot frame

(units = cm). If YHEIGHT has been omitted, the default
value DY = 26. cm will be substituted. In the present
configuration the limit is 101.0 cm and any hsight ex-
ceeding 25.4 om will cause the plot to be drawn on the
large size plotter.

Exampls

DEFY

(,,) (,,) (5.0,105.,50.0)

A height of 50 cm is reserved to plot the Y values which

are expected to be comprised between 5. and 105. arbitrary

units.

Remarks

See DEFX and PLOT

differentiates a record and stores the resulting record

- 175 -

in the warsehouse

(RECA, ,RECB) (1B1,1B2,18S)

DIFF
DIFF
RECA 1is
RECB 1is
I1B1 is
IB2 is
IS is
Example
DIFF

(Obtain the value of an acceleration by differentiating a
velocity)

the
the
the
the
the

name of the record to be differentiated
name of the resulting record

first block of the selected segment

last block of thse selected segment
sorting factor to be applied to the input

(SPID,,ACCE) (1,9,3)

Remarks

the 9 first blocks of the record SPID are differentiated
and the three resulting blocks are stored under the name ACCE.

- Maximum number of blocks = 2500 blocks

- Sorting factor from 2 to 100

= Minimum number of points = 3

DIKO
DIKO
RCXA 1is
RCXB 1is
RCXC is
IB1 is
IB2 is
Example
DIKO

- 176 -

performs the complex division of two complex records

and stores the resulting complex record in ths warehouse

(RCXA,RCXB,RCXC) (1B1,1B2,)

the
the
the
the
the

name of the complex record to be divided by RCXB
name of the second complex record o

name of the resulting complex record C = A/B
first block of the selscted record segment

last block of the selected record segment

(SPK1,WEIG,QUOT) (2,3,)

the blocks 2 and 3 of the record SPK1 are divided by the
blocks 2 and 3 of the record WEIG and the two resulting blocks
are stored under the name QUOT

Remarks

- Maximum number of blocks = 2500

- The input sorting factor is not allowed for a complex opera-

tion

- ses note on synchronous records (

- a SEDAP block contains 512 valuss which must be considered as

256 complex values when the record is complex.

- 177 -

DIVI
divides two records and stores the resulting record in

the warehouse
DIVI (RECA,RECB,RECC) (IB1,IB2,IS)

RECA 1is the name of the record to be divided by RECB

RECB is the name of the second record

RECC 1is the name of the resulting record (C = A/B)

IB1 is the first block of the selected record segment

IB2 is the last block of the selected record segment

IS is the sorting factor applied during the input transfer
(the three last parameters concern both RECA and RECB)

Example
DIVI (CH15,CH16,RATE) (2,21,10)

Divide CH15 by CH16 (20 blocks) and store the resulting
2 blocks (IS = 10) under the name RATE

Remarks

Maximum number of blocks = 2500 blocks

Sorting factor from 2 to 100 (included)

Ses note on synchronous records

DIVI should not be used to divide complex values (see DIKQO).
If the record RECB contains values equal to zero, the division
is impossible and the zero will be replaced by 1.0 as fix-up.
This will be reported by one or several warnings at the end

of the task.

- 178 -

DUMP
dumps a record or the complete warshouse on a user
supplied sequential data set (usually tape). Two

options are possible.

DUMP (RECA,,) (IB1,IB2,IFILE)
or
DUMP (,ALLE,) (,,IFILE)

RECA- is the name 6f‘thevrecord to be dumped (option1)

IB1 is the first record block to be dumped (option1)

IB2 is the last rscord block to be dumped (option 1)
IFILE is the file number for the user supplied 9 track tape
ALLE is the modifier name which selects the second option

and causes the complete warehouse to be dumped

Example
DUMP (TEMP,,) (2,4,22)

Dump three blocks (2 to 4) of the record TEMP on the
file 22,

DUMP (,ALLE) (,,23)

Dump the complete warehouss on the file 23

Remarks

DUMP must always be followed by a comment card. (80 characters
are free, the first one should not be the > sign).

Since DUMP may be used to interface SEDA with other programs
the user should be informed of the method to access the dumped
values. Every dumped experimental record is preceded by a
label. To read the label (SEDAP label, i. e. not the taps
label), the following unformatted statement may be used.

READ (KFILE) (IW@RD(I),I=1,24), (FWORD(I),I=1,8)
IWPBRD(1) 1length of the label (124 bytes)

IWARD(2) record number

IWBRD(3) number of points

IWARD(4) Filling factor (last block)

- 178 -

IWARD(S to 24) Text
FWARD(1) Name of the record
FWORD(2) Frequency

FWBARD(3) Date

FWBRD(4) Time

FWPARD(5 to 8) Unused.

The corresponding JOB-control card which must be supplied by
the user for the SEDAP JOB STEP, might be the following:

//G.FTnnFO01 DD UNIT=TAPEY,DSN=D1,DISP=(NEW,KEEP),
// DCB=(BLKSIZE=3303,RECFM=VBS) °

nn is the file number specified in the third integer-parameter
of the DUMP-command.

ERAK

ERAK

NREC

ITB1
ITB2

ITAPE

FREQ

- 180 -

converts the experimental data recorded on a magnetic
tape by the ERA data acquisition system and stores the

resulting record in the warehouse
(, ,NREC) (ITB1,I7B2,ITAPE) (FREQ,DATE,TIME)

is the name of the record which results from the con-
version

is the first converted block

is the last converted block

The following conventions are due to the special features
of the ERA data acquisition system and must always be ap-
plied to ITB1 and ITB2 (Tape blocks):

a) The tape blocks contain 1024 values (and not 512).
That means that 10 tape blocks will be converted into
20 SEDAP blocks.

b) The "label block” which contains a short information
about the nature of the recording is always printed
and is rsferred as the block No. 0. The blocks 1 and 2
are test blocks which are used to record the off-
set values of the amplifiers before the experiment is
run for good. This standard practice implies that the
"real” experimental values begin with the block No. 3.

c) If ITB1 = ITB2 = 0, the system will conclude that the
user intends to convert only the label block. Since
this operation is performed without storing a record,
the name NREC can be omitted.

is the file number used to specify thse data set and the
related type reel. This number should correspond to the
definition given to the system for the tape and should be
comprised between 20 and 29 to avoid any confusion with

the standard units.

is the sampling frequency used to perform the recording
and must be given in Hz. FREQ is the total frequency of
the multiplexer or the sum of the frequencies used by all

the recorded channels. If the experimenter records four

- 181 -

channels at the 5 kHz sampling rate, FREQ must be spe-
cified as 20000 Hz. Since many further operations (in-
tegration, differentiation, plot etc...) depend upon

the value of the frequency, it is especially important
that the user specifies correctly the value of FREQ. A
frequency of 0.0 Hz will cause the task to be rejected.

DATE 1is the date of the expseriments in the following order:
day, month, year which must be coded as
2604.72 for the 26th day of April 1972.

TIME 1is always the time origin of the first value of the
third block and must be given in seconds. If no time is
given, the first value of the third block will have
assigned the default origin 0.0 sec. This solution is re-
commended as long as the data reduction of the experimen-
tal phase does not involve a cross-reference of several

files or tapes.

Examgle
ERAK (,,TA33) (3,22,29) {16000.,2604.72,0.0)

Twenty blocks of the file 29 (//FT29F001 ..eves)
recorded with a sampling frequency of 16 kKHz will be converted
into the record TA33 (40 SEDAP blocks).

Remarks

The maximum number of blocks to be converted is limited only
by the size of the warehouse.

It is possible during a job to convert more than one file or
more than a tape. The user should be aware that the computing
installation cannot simultaneously handle too many tapes and
that even with a few tapes the job can seriously impede the
smooth flow of a job stream by blocking several units. The
user should clearly indicate that he intends to call the dif-
ferent tapes in a sequential order and not in the parallel
mode. This can be achiesved by requesting a deferred mounting
or by specifying the affinity of different volumes for the
same unit. This detailed information can be obtained from the

specifications of the job control language.

- 182 -

transforms a complex record C(k) generated by the FFT

into the usual coefficients A(k), B{(k) of the Fourier

analysis according to the relation:

C(k) » 0.5(A(k) = jB(k)) k = 1,...,N/2

(Comp,,C0OSI) (IB1,1IB2)

FANA
FANA
COMP is
COSI is
IB1 is
1B2 is
Example
FANA

the
the
the
the

name of the complex input record
name of the resulting sin-cos series
first block of the selected record segment

last block of the selected record segment

(Comp, ,COSI) (1,4,)

The 4 first blocks of the complex record COMP generated

by the FFT are transformed. The resulting coefficients of the

cos-sin series are stored in pairs into the warehouse under
the name COSI.

Remarks

Maximum number of blocks = 2500

A sorting factor cannot be applied

Before separating the cos-sin series see description of

command S0nn.

- 183 -

FANT
is used to antitransform a complex spectrum into the
time domain with the Fast Fourier Transform (FFT) algo-
rithm.

FANT (SPEC,,TIME) (1B1,1B2,)

SPEC is the name of the record to be antitransformed
TIME 1is the resulting record

IB1 is the first block of the record

IB2 is the last block of the selected record segment

Exampls
FANT (SPEC,,TISE) (1,3,)

The first blocks of the record SPEC are antitransformed.
The resulting time series has a length of 4 blocks and is
stored under the name TISE.

Remarks

Maximum number of blocks = 16

A sorting factor cannot be applied

FANT expects that the complex spectrum originally was gensra-
ted by the FFT (commands FOUT,LEDI).

FANT may be used as a low pass filter by cutting of the higher
frequencies (see example). The cutting of the lower frequencies
will lead to erroneous results.

For instance the command

FANT (SPEC,,TISE) (2,4,)

will produce incorrect time series.

FILA
FIL2
FIL3

- 184 -

smobthes a record and stores the resulting record in

the warehouss

FIL3 (RECA,,RECB) (1B1,1B2,1S)

RECA is
RECB 1is
IB1 is
IB2 is
IS is

the
the
the
the
the

name of the record to be filtered

name of the resulting record

first block of the record to be filtered
last block of the record to be filtered
sorting factor applied at the input

FIL3 wuses the third of three different algorithms which are -
given in the part II of the report (see FILTER).

Example

FIL3 (RAW1,,SM@Z1) (1,2,2)

Smooth the two first blocks of the record RAW1 and store
the resulting block (IS = 2) under the name SM@1. '

Remarks

Maximum number of blocks = 2500
Sorting factor from 2 to 100 (included)
See note on the use of sampling frequency.

The use of the filter subroutines requires a minimum number

of values:

- FILA
- FIL2
- FIL3

3 values
5 values

5 values

- 185 -

FIL4
filters a record with an user specified cut-off frequen-
cy and stores the resulting record in the warehouse.

FIL4 (RECA,,RECB) (I1B1,1B2,18S) (FREQ, ,)

RECA 1is the name of the input record

RECB 1is the name of the resulting record

IB1 is the first block of the selected record segment
IB2 is the last block of the selected record segment
IS is the sorting factor to be applied at the input
FREQ 1is the cut-off frequency of the filter (in Hz)

Example
FIL4 (CH21,,DA21) (1,10,2) (10.0,,)

Filter the 10 first blocks of the record CH21 by remo-
ving the frequencies above 10.0 Hz and store the five resulting
blocks under the name DA21.

Remarks

FIL4 simulates a first order low-pass filter analog to the
wellknown RC filter. FIL1, FIL2 and FIL3 provide a smoothing
effect which is always adapted to the sampling frequency of the
record, whereas FIL4 is a very effective variable filter which
must be used with some care.

~ The effect of this filter depends upon the setting of FREQ.
FREQ has been normalized as the reciprocal value of the time
constant (RC=TAU) of the filter, which means that a value of
FREQ = 0.1 corresponds to a time constant of 10 ssc.

- The cut-off frequency must be smaller than the sampling fre-
quency (otherwise an error code will terminate the job) and
the user must keep in mind that the effective sampling fre-
quency is the sampling frequency divided by the sorting fac-
tor.

- The user is warned against the use of two large time-constants
i.e. too small cut-off frequencies. The effect of a cut-off

frequency f = 0.01 (100. sec time constant) on a record samp-

- 186 -

led at 50 Hz will be disastrous and will "dilute” or "smear”
10000 points since the filter is still effective after a
time lag of two time constants.

Sorting factor from 2 to 100

Maximum number of blocks = 2500

- 187 -

FOUT
performs the Fast Fourier Transform (FFT) of a time

series into a complex spectrum.

FOUT (TIME,,SPEC) (IB1,IB2,)

e —

TIME 1is the name of the record to Se transformed

SPEC 1is the names of the resulting record (complex spectrum)
IB1 is the first block of the selected record segment

IB2 is the last block of the selected record segment

Example
FOUT (TIME,,SPEC) (1,,5)

The 5 first blocks are transformed. The time series
array is completed to a hyperarray by adding 3 blocks filled
with zero values. The resulting 8 blocks of the complex spec-
trum are stored under ths name SPEC.

Remarks

‘Maximum number of blocks = 16

A sorting factor cannot be applied

The FFT expects the number of points to be a power of two.

In the other case the array of the time series is sxtendst
adding extra points with zero values.

The mean value of the time series is calculated and subtracted
before transformation.

Only part of the complex spectrum is stored in the warehouse
according to the frequency domain from F = FT/N up to F = FT/Z
(FT = gampling frequency).

If hyperarrays be transformed the results may be corrected by a
factor NPZ/NP (NP = is the number of data values, NPZ = NP plus

the number of added zeroc valuss). Use command AX+B !

Before separating the real and imaginary parts, see descrip-
tion of command SOnn.

Detailed descriptions of the FFT can be found in /6 - 12/.

- 188 -

HAFU
smoothes complex spsctra according to the Hanning's
method.

HAFU (DATA,,DATB) (IB1,1B2,). (DSIGN,,)

DATA 1is the name of the record to be smoothed

DATB 1is the name of the modified spectral record

IB1 is the first block of the selected record segment
IB2 is the last block of the selected record segment
DSIGN is.1. or -1. (sse the remarks)

Example
HAFU (RADA, ,MOSP) (1,4,) (1.,,)

The 4 first blocks of the record RADA containing the
raw data are smoothed with the positive Hanning Functlona The_

resulting modified spectrum is stored under the name MDSP.

Remarks

Maximum number of blocks = 2500
A sorting factor cannot be applied
Algorithms of the Hanning smoothing method:
DSIGN = 1. Smoothing of quadratic spectra
MOSP(1) = 0.5 « (RABA(1) + RADA(2))
MOSP(K) = 0.25 ¢ (2.¢RADA(K) + RADA(K-1) + RADA(K+1))
MOSP(N) = 0.5 « (RADA(N-1) + RADA(N)) |
DSIGN = -1, Smoothing of linear spectra
MOSP(1) = 0.5 « (RADA(1) - RADA(2))
MOSP(K) = 0.25 + (2.+RADA(K) - RADA(K-1) - RADA(K+1))
MOSP(N) = 0.5 ¢« (RADA(N) - RADA(N-1))
K=2,3,...,N-1

For detailed description see /6 - 8/.

- 189 -

HOLE (means GET)
restores a dumped record or several dumped records into
the warehouse.

Two options are possible

HOLE (RECA,,) (,,IFILE)
or
HOLE (,ALLE,) (,,IFILE)

RECA is the name of the record to be transferred (option1)
IFILE 1is the file number of a user supplied 8 track tape which
was produced by a DUMP or by a special interfacs.

ALLE is the modifier name which causes all the records of the
records of the file to be transferred into the warshouss.

Example

HOLE (TEMP, ,) (,,22)
The record TEMP is to be found on the file 22 and will

be transferred to the warshouse.
HOLE (,ALLE) (,,23)

Restore the records of the file 23 in the warshouse.

Remarks

It is possible to transfer only one record if the transfer has
been performed by DUMP ALLE and HOLE ALLE will be accepted if

only one rscord has been dumped.

INTR

- 190 -

integrates a record according to the trapezoidal rule

(see definition of the algorithm in DIFINT) and stores

the resulting record in the warehouse.

INTR (RECA,,RECB) (IB1,1B2,1IS)

RECA is
RECB 1is
IB1 is
IB2 is
IS is
Example

the
the
the
the
the

name of the record to be integrated

name of the resulting record

first block of the selected record segment
last block of the selected record segment
sorting factor applied at the'input

INTR (CH15,,IN15) (1,4,4)

The four first blocks of the record CH15 will be integra-
ted and the resulting block will be stored under the name IN15.

Remarks

- Maximum number of blocks = 2500

- Sorting factor from 2 to 100

- The task should involve at lsast two points

INSI

- 191 -

integrates a record according to the Simpson’'s rulse
(see definition of the algorithm in DIFINT) and stores
“the resulting record in the warshouse.

INSI (RECA,,RECB) (1B1,1B2,1S)

RECA 1is the
RECB 1is the
IB1 is the
IB2 is the
IS is the

Example

name of the record to be integrated

name of the resulting record ‘

first block of the selected record segment
last block of the selected record segment.
sorting factor applied at thebinput |

INSI (CH21,,PR21) (1,1,4)

The first block of the record CH21 will be integrated
and the resulting block (128 values) is stored under the name

PR21.

Remarks

- Maximum number of blocks = 2500 blocks
- Sorting factor from 2.to 100
- The task must involve at least three points (required mini-

mum)

- 192 -~

INSW
(integration with switch) integrates a record by the
trapezoidal rule and resets the integration to a presst
level every time the "switching record” crosses a user
specified threshold. The resulting record is stored in
the warehouse. Typical application is the integration
of periodic signals (sine) or pseudo-periodic waveforms
(pulse shaped shockwaves) which is easier to interprete
if the integration is reset periodically.

INSW (RECA,SWIT,RESL) (IB1,1B2,IS) (TRIG,RESET,)

RECA is the name of the record to be integrated

SWIT 1is the name of the record which causes the integration of
RECA to be reset to a value RESET every time it crosses
over the valus of TRIG. SWIT can be the same record as
RECA |

RESL is the name of the resulting record

IB1 is the first block of the selected record segment

IB2 is the last block of the selected record ssgment

IS is the sorting factor to be applied at the input

TRIG 1is the threshold value of the "switching record”

RESET is the value to which the integration must be reset
(usually 0.)

Example
INSW (SINE,SINE,HALF) (1,2,4) (,,)

the two first blocks of the record SINE are integrated
and the resulting block (256 values) is stored under the name
HALF. Since the two values TRIG and RESET are taken as 0.0 per
default and since SINE itself provides the switch function,
the integration will be restarted at the end of every half
cycle.

- 193 -

Remarks

- Maximum number of blocks = 2500 blocks

- Input sorting factor between 2 and 100

- At least two values should be provided

- See note on synchronous records |

- Records which cross the threshold between every two points,
should be avoided as control records (SWIT)

- 194 -

KOKO
performs the multiplication of a complex record by ths
conjugate of another complex record.

KOKO (RCXA,RCXB,RCXC) .(IB1,IBZ)

RCXA is the name of the complex record whose conjugate is to
be multiplied by RCXB - '

RCXB is the name of the second complex record

RCXC 1is the name of the resulting record

IB1 is the first block of the selected record segment

IB2 is the last block of the selected record segment

Example
KOKG (SPC1,SPC2,XREC) (1,4)

The 4 first blocks of the complex record SPC2 are multi-
plied by the complex conjugate of the 4 first blocks of the re-
cord SPC1 and the resulting complex record (i.e. a powsr spectrum)
is stored under the name XREC.

Remarks

Maximum number of blocks = 2500

A sorting factor cannot be applied

See note on synchronous records

A SEDAP block contains 512 values which must be considersed as
256 complex values if the record is complex. The conjugate com-
plex multiplication is used to gensrate auto- or cross-power

spectra.

- 1895 -

LEDI
uses the FFT for the evaluation of auto- or cross-power
spectral density by sectioning the experimental records
and averaging modified periodograms of the sections.

LEDI (TIMA,TIMB,SPEC) (IB1,1IB2,ISEG) (XLAP, XSMO, XAPER)

TIMA 1is the name of the first input record (time series)

TIMB 1is the name of the second input record (time series)

SPEC 1is the name of the resulting record (complex spectrum)

1B1 is the first block of the selected experimental record
segment to be transformed

IB2 is the last block of this selected record segment

ISEG is the length of the partial record segments into which
the total selected record segment is sectioned, and also
the length of the resulting record if no zeroes be added
to the segments of the time series.

XLAP is the length of the overlap of the segments

XSMO 1is a repetition factor for the application of the
Hanning smoothing algorithm

XAPER is an option indicator. XAPER = 1. leads to a fully
aperiodic correlation, otherwise the spectrum contains as
many aperiodic spectral values as zero values were ge-

nerated to extend the time series record (hyperarrays).

Example 1
LEBI (SIGA,SIGA,APSD) (1,100,4)

The 100 first blocks of record SIGA (signal A) are used
to estimate an auto-correlated power spectral density (APSD).
The FFT is perfdrmed in sections of 4 blocks, that is, first
the blocks 1 to 4 are transformed, next the following blocks 5
to 8, and so on, until the whole signal record has been processed.
The choosed segments do not overlap, the spectra are not smoothed,
the correlation is cyclically performed. The resulting spectral
estimation has a length of 4 blocks and is stored under the
name APSD,.

- 196 -

LEDI (continued)

Example 2
LEDI (TIMA,TIMB,CPSD) (1,16,3) (1.,3.,1.)

The cross-power spectral density is evaluated for the
16 first blocks of the times series records TIMA and TIMB. The
transformation is performed with sections of length 3 blocks one
block overlapping (section 1 = block 1 to 3, section 2 = block
3 to 5, and so on). To power spectrum the Hanning smoothing is
applied three times.
Hyperarrays are generated of the time series sections. One
block of zero values is added according to the requirement of thel
FFT for array length of a power of two, other 4 blocks of zsro
values are added to perform a fully aperiodic correlation.
The linear meanvalue of the 8 computed spectra is stored under
the name CPSD with a record length of 8 blocks.

Remarks

Maximum number of blocks = 2500

A sorting factor cannot be applied

See note on synchronous records and on complex values

Linear mean values are computed and subtracted for every section
of the time series. | |

The length of the segments must be a power of two, otherwise
hyperarrays are performed. Their maximal length is 16 blocks.

In case of aperiodic correlation the length of the segments is
doubled by adding zero valuss, the maximal length of the segments
is then 8 blocks.

The length of the resulting record is in blocks:

(512 « ISEG + Number of added zero valuss) /512

- 187 -

LEDI (econtinued)

The adding of zero values causes a too small amplitude. It
may be corrected with the help of the command AX+B by multi-
plication by a factor:

FA = ((512 ¢ ISEG + number of added zero values)/(512+ISEG))?
(see 2.8.2.2). The resulting spectrum is the linear meanvalue
of the computed quadratic spsctra.

It is stored according to the spectral range from F = F /N

to F = F

sample
sample/2 (Nyquist frequency).

For separating real and imaginary parts see command SOnn.

Special remarks

The evaluation of power spectra without the use of LEDI:

The command LEDI has been defined to offer the user further
programming comfort. All the operations executed by thes example
2 could have been performed with the existing more special
commands. However, this requires a longer command list, more
records in the warehouse and because of the many transfer-
operations much more computing time. To demonstrate the diffe-
rence between the application of LEDI and the programming of
commands without LEDI a schematic list to compute a cross-power

density as in example 2 follows on the next page.

- 198 -

LIST OF COMMANDS TO ESTIMATE THE CROSSPOWER DENSITY
AS IN EXAMPLE 2 44 THOUT LEDI

AX+B TIMA LERO 1 8 Oe Oe

AX+B TIMA TSAl 1 3

ACD1 LEROQ T35Aal HRA1L 1 8

FOUT HRA1 RSA1 1 8

AX+B TIMB TSB1 1 3

ADDI ZERO TSs1 HRB1 1 8

FOUT HRB1 RSB1 1 8

KCKO RSA1 RSl QSP1 1 8

HAFU QSP1 MS11 1 8

HAFU MS11 MS21 1 3

HAFU MS§21 MSP1 1 8

AX+B TIMA TSA2 3 5

ADDI ZERO T542 HRAZ2 1 8
® ®
L] ®
[] ®
L] ®

AX+B - TIMA TSA8 14 16

ADDI MSP1 MuoP 2 ADD1 1 8

ADDI MSP3 ADJ1 ADD2 1 8

ADDI MSP4 ADu2 ADD3 1 8

ADDI MSP5 ADu 3 ADD4 1§ 8

ADDI MSP6 ADu4 ADDS 1 8

ADDI MSPT ADJS ADO6 1 3

ADD1 MSP8 ADJ6 SUMS 1 8

AX+B SUMS cPsSD 1 8 177 Oe

- 199 -

LEDI (continued)

| The first command AX+B produces‘a record filled with zsro

values, but with the same parameter as those of the time series

records. To get the hyperarrays the sections of the time series
are added to the zero record (see note on synchronous rscords).

Following are the FFT of the hyperarrays, the correlation by

complex conjugate multiplication and threetimes the Hanning-

smoothing. This must be done 8 times. Finally the mean valus

is computed by adding and normalizing the spectra.

During normalizing two corrections are applied:

1) The result must be multiplied by a factor 7.1 to correct the
deflection of the amplitude caused by the adding of zsro
values (see the remarks abovs).

2) The computation of the power density via the complex conju-
gate multiplication KOKO yields only to the half value of
the expected amplitudes.

So the normalizing factor is 7.1+2/8 (8 is the number of samples).

This detailed program of commands produces indeed many interme-
diate informations, but additional 78 commands are needed and

624 more blocks stored in the warehouse.

MUKO

MUKO

- 200 -

performs the complex multiplication of two complex re-

cords and stores the resulting complex record in the

warehouss

RCXA 1is the

RCXB

RCXB 1is the
RCXC is the
IB1 is the
IB2 = is the

Example

MUKDOD

(RCXA,RCXB,RCXC)

name of the

name of the
name of the
first block

(IB1,18B2,)

complex record to be multiplied by

second complex record
resulting record

of the selected segment

last block of the selected record segment

(SPC1,SPC2, XREC)

(5,6,)

The blocks 5 and 6 of the complex record SPC1 are multi-
plied by the blocks 5 and 6 of the complex record SPC2 and the
two resulting complex blocks are stored under the name XREC.

Remarks

Maximum number of blocks = 2500

Input sorting factor is not allowed and will be disregarded

See note about synchronous records

A SEDAP block contains 512 values which must be considered

as 256 complex values if the record is complex.

- 201 -

MULT
multiplies two records by each other and stores the

resulting record in the warehouse.
MULT (RECA,RECB,RECC) (IB1,IB2,1S)

RECA 1is the name of the first input record to be multiplied
by RECB

RECB 1is the name of the second input record

RECC 1is the name of the resulting record

IB1 is the first block of the selected record segment

IB2 is the last block of the selected record segment

IS is the sorting factor applied during the input transfer

Example
MULT (DATA,DATB,PROD) (2,3,4)

Multiply DATA by DATB (2 blocks) and store the resulting
half filled block (IS = 4} under the names PROD.

Remarks

Maximum number of blocks = 2500

Sorting factor from 2 to 100

See note on synchronous records

MULT should not be used to multiply complex values (see MUKO,
KOKO) .

- 202 -

computes the meanvalue of a data seriss and saves it

for a subsequent_command to substract the meanvalue
(MWES). Also it is listed.

(RECA,,) (IB1,1IB2,1S)

MWEF
MWEF
RECA 1is
IB1 is
IB2 is
IS is
Example
MWEF

the
the
the
the

name of the input record
first block of the selected record segment
last block of the selected record segment

sorting factor

(TISE,,) (1,3,)

Of the 3 first blocks of TISE the meanvalus is computed

and saved.

Remarks

Maximum number of blocks = 2500
Sorting factor from 2 to 100
If the command MWES succeeds, it should be immediately, in case

of the overlay version.

By the command MWEF a formerly computed meanvalue is destroyed.

- 203 -

MWES
may be used to subtract from an experimental record its
meganvalue. This must be computed by a preceding MWEF

command.

MWES (RECA, ,RECB) (1B1,1B2,1S)

RECA 1is the name of the input record

RECB is the name of the resulting record

IB1 is the first block of the selected record segment
IB2 is ﬁhe last block of the selected record segment
IS is the sorting factor applied to the input

Example

MWEF (TISE,,) (1,3,)
MWES (TISE,,RESI) (1,3,)

Both commands are put together in order to suggest to
use them always in this sequence immediately following each
other. By the command MWES the walues of the 3 first blocks
of TISE are transformed. After the meanvalue computed by
MWEF has besn subtracted, the result is stored under the
name RESI.

Remarks

Maximum number of blocks = 2500

Sorting factor from 2 to 100

The parameters of the corresponding MWEF and MWES commands
(RECA,IB1,1IB2,IS) must be identical; otherwise thes resulting
racord RECB will be incorrect.

- 204 -

PBxy
prints the blocks of a record on the standard printing
file. PBxy is a generic name where x and y must be re-
placed by the following characters to select ons of the
four options:
x = H for a horizontal list
= \\ for a vertical list

y = F for a FORTRAN F-format
= E for a FORTRAN E-format.
The fdur valid combinations define the four following
commands: PBHF, PBHE, PBVF and PBVE

PBxy (RECA,,) (IB81,1B2)

RECA 1is the name of the record whose blocks will be printed‘
IB1 is the first block to be printed
IB2 is the last block to be printed

Example
PBVF (TEMP,,) (1,5,)

The five first blocks of the record TEMP will be printed
in vertical order and the values will be written with a F-format.

Remarks

- Maximum number of blocks = 2500 blocks
- An input sorting factor is not possible
- There is always one block by page

- 205 -~

PLBT

plots: a record on the plottsr.

PLAT (RECA,MEZDI,) (1B1,1B2,1S)

RECA is the name of the record to be plotted

MADI stands for the three possible modifiers and must be re-

IB1
IB2
IS

placed by either "ALT%"” or "TEXT" or blank
is the first block to be plotted

is the last block toc be plotted

is the sorting factor applied at the input

Two cases are possible:

1)

2)

The modifier is blank or "TEXT".

PLOT uses the coordinadtes which were given by DEFX and DEFY
and cuts the values which are not compatible with the frams.
Otherwise the subroutine determines a frame. If the modifier
has been specified as "TEXT" a comment card must follow imme-
diately the PL@AT card, otherwise a default text will be gene-

The modifier is "ALT%". rated.

The PLOT is drawn on the former frame and the values which
are not compatible with the frame are cut off. A new frame

will be used if no former frame was available.

Example
PLOT (TEMP,,) (1, 8,)

The first 8 blocks of the record TEMP are to be plotted

with the default text.

Remarks

- Maximum number of blocks = 20 blocks

- 206 -~

PTAP

converts a paper tape and stores the converted values
into the warehouse.

PTAP (,,RECA) (,,IFILE) (FREQ,DATE, TIME)

RECA 1is the name of the new record which results from the
conversion

IFILE is the file number of the corresponding file declaration
(paper tape reader)

FREQ is the sampling frequency in Hz which corresponds to the
cycle frequency multiplied by the number of channels
effectively recorded

DATE (see ERAK)

TIME <(see ERAK). The default value is 0.0 ssc

Example
PTAP (,,LB0P) (,,17) (0.03,2604.72,0.0)

' Convert the paper tape re?erenced‘Under the file 17 and
store the resulting record which will be known as "L@@P".

Remarks'

If an error is detected during the conversion, an auxiliary
subroutine will be automatically called and the error will be
identified. Furthermore the values will be printed.

Maximum number of blocks = 40 blocks

- 207 -

RENA

renames a record stored in the warshouse
RENA (OLDN, ,NEWN)

OLON 1is the old name of the record. The name must be known
NEWN is the new name of the record. The name must be new

Example
RENA (CH34,,TEMP)

The record CH34 will be renamed TEMP and must be there-
after called by the name TEMP.

Remarks

RENA can be used to change the names provided by a sorting

opsration.

- 208 -

SEDAP
is a special command which specifies the size of the
warehouse and the options of the system.

SEDA (DUMP,,PASS) (ISIZE,,IFILE)

"DUMP" is the keyword which:causes the contents of the ware-
house to be automatically dumped on a magnetic volume
if an error has been detected before the end of the job.

PASS 1is a password for system testing and should be left
blank.

ISIZE specifies the size of the warshouse in‘blocks; The mini-
mum size is 100 blocks. The maximum size of 5000 blocks
should not be exceeded.

IFILE is the file number of a ussr supplied 9 track tape whers
the records will be dumped. '

Example
SEDA (,,) (500,,)

defines a 500 blocks warehouse without the DUMP option.
SEDA (DUMP,,) (5000, ,29)

specifies a 5000 blocks warehouse and requires that the
contents of the warehouse be dumped on the file 29 if an
interruption occurs.

Remarks

The SEDAP command must be the fourth card of the deck, i.e.
the first command. If a second SEDAP card is read thereafter,
the option status may be changed but the size of the warehouse
remains unchanged.

- 209 -

S@nn
sorts a multiplexed channel into nn channels. S@nn is a
generic command name which must be replaced by one of the

six possible options to obtain the six following commands:

S@02, SP04, S@0O8, S@16, SP32, and SH64
S@nn (RECA,,REZ8) (IB1,IB2,ILIMIT)

RECA 1is the name of the record which will be sorted.

REZ8 1is the name which has been selected for the nn resulting

(REFT) records. The new names are given automatically by SEDAP
during the execution of the task by replacing the two last
characters of REZ® by the serial number of the channels.
The new names will be REO1, REO2, «¢scsa.s RE64 for nn = 64
and the %2 ending is not a requirement but is recommended
to the user to keep him aware of the fact that they will
be replaced. If the user uses the command S@02 to separate
the real and imaginary parts of a complex record like in
the case of a complex Fourier spectrum (Fourier Transform),
he must indicate his intention by specifying a new name
ending by the two characters 'FT'. In that caese the record
REFT will produce two record names REO0O1 and RE0OZ2 but their
sampling frequsency will be equal to the sampling frequency
of RECA (i.s.; not divided by 2).

IB1 is the first block to be sorted

IB2 is the last block to be sorted

ILIMIT is a user specified limit which must be comprised between
1 and nn and which causes only the first ILIMIT records to
be stored in the warehouse. This option is especially use-
ful when 64 record channels were recorded with only ILIMIT

connected to the experiment.

Example
s@16 (DAX1,,CHZ2) (1,32,11)
the 32 first blocks of DAX1 will be sorted into 16

channels. The resulting 11 new records are CHO1, CHO2 ... and
CH11 and are comprised of two blocks.

- 210 -

Remarks

Maximum number of blocks = 2500 blocks

No input sorting factor

See AX+B if only one of n values has to be sorted for a non-
multiplexed record.

- 211 -

STOP

is the last command of a job

STOP (no arguments)

Remark

STOP provides the system with a command which orderly termi-
nates a job and should not be forgotten.

Any commands following the STOP command will be listed at
the beginning of the job but they will not be processed.

- 212 -

SUBT
subtracts a record from another record and stores the

resulting record in the warehouse
SUBT (RECA,RECB,RECC) (IB1,IB2,1S)

RECA is the name of the first input record

RECB 1is the name of the record to be subtracted from RECA

RECC is the name of the record resulting from the subtraction
(C = A - B)

IB1 is the first block of the selected record segment

182 is the last block of the selected record segment

IS is the sorting factor to be applied at the input

Example
SUBT (DA15,DA16,RDIF) (1,6,2)

Subtract the six first blocks of DA16 from the six first
blocks of DA15 and store the three resulting blocks (IS=2)
under the name RDIF.

Remarks

Maximum number of blocks = 2500 blocks
Sorting factor from 2 to 100
See note on synchronous records

SUBT can be used to subtract complex records

TNI1
converts a millivolt record originated from a Ni-Cr-Ni
thermocouple into © ¢ and stores the resulting record

in the warehouss
TNI1 (MILV,,DEGR) (IB1,IB2,1IS)

MILV is the name of the input record to be converted
DEGR is the name of the resulting record (see remarks)
IB1 is the first block to be converted

IB2 is the last block to be converted

IS is the sorting factor applied at the input

Example
TNI1 (CH15,,TE15) (1,3,3)

Convert the two first blocks of the record CH15 and store
the resulting block (IS=2) under the name TE15.

Remarks

Maximum number of blocks: 2500

Sorting factor from 2 to 100 (included)

Since the voltage produced by a thermocouple is physically limi-
ted and since the range of the function is comprised betwean

o ©

values comprisaed between 0.0 and 52.46 mV. Any value not com-

C and 1300 ° c, the input record MILV must contain positive

prised within this range will be converted to the minimum or

©¢C) and a warning will be printed at

to the maximum (0 or 1300
the end of the task to indicate the number of times the function
has been found exceeded.

The user should be aware that the thermocouples signals ars
often amplified and that the Funétion is defined for a referaence
©c. The operator AX+B allows this

double correction in one step.

temperature squal to O

The user can also use AX+B in a following step if he wants to

. . O . O
obtain a tempsrature in F or in K.

WERT
creates a new record by transfsrring a segment of an old
record with the peculiarity that the segment is delimited
by time units or by the position of the limiting points.

Twa forms are possible:
WERT (RECA, ,RECB) (IP1,1IP2,)
WERT (RECA,ZEIT,RECB) (,,) (T1,72,TFLOAT)

RECA 1is the name of the old record which must be stored in
the warehouse

RECB 1is the name of the resulting record

For option 1

IP1 is the IP1th point of the record RECA and will become the
first point of the record RECB
IP2 is the IP2th point of the record RECA and will be the
last point of the new record RECBH
conditions IP1 < IP2 < 99999 (IS5 Format)
IPT > O

For option 2

ZEIT (=Time) is the modifier name which causes the sslection
of the second option and the interpretation of the para-
meters T1 and T2 instead of IP1 and IP2

T1 is the time coordinate of the value of RECA which will
become the first valus of RECH
T2 is the time coordinate of the value of RECA which will

become the last value of RECB (T1 < T2)

TFLOAT is a floating factor which is applied to T1 and T2
(multiplication) if the user wishes to use another unit.
If T1 = 10, and T2 = 20., the system will transfer all
the values comprised between 10.0 and 20.0 sec. for a
value of TFLOAT equal to 1.0 or 0.0 (blank and 0.0 are
replaced by the default option 1.). If the user has
used a TFLOAT factor equal to 0.001 the two values will

be interpreted as milliseconds.

Examples

WERT (TEMP,,T200) (1,200,)
Transfer the 200 first values of the record TEMP to
build the record T200

WERT (TEMP,ZEIT,TCUT) (,,) (15.0,25.0,0.001)
Transfer the values of TEMP which are comprised between
15. and 25. ms to build ths record TCUT

Remarks

- WERT requires a detailed knowledge of the parameters of the
record RECA (number of points, sampling frequency) and it
is recommended to the new users to use BILD as preceding
command to facilitate the interpretation of any possible
error. :

- The output control values printed by WERT are the new values
but the input values are the first values of one or two
blocks of the record RECA.

- A WERT task can be terminated with an error code of type 4
if the number of blocks is not exceeded but if the filling
factor of the last block is too small to allow the execution
of the task.

XTSD

XTSD

RECA
WORD

RECD
IB1
IB2
IX

is a user specified command and the conventions must be
given by the user which has programmed the EXTSED sub-
routine.

Following conventions are only indicative:
(RECA,WORD,RECD) (IB1,IB2,IX) (X1,X2,X3)

is the name of the first input record

is the name of the second input record or the name of a
modifier

is the name of the resulting record

is the first block to be processed

is the last block to be processed

is a sorting factor or a input/ocutput unit number

X1,X2,X3 are user specified.

Two examples are given in the description of the subroutine
EXTSED (chapter 2.9).

- 217 -

ZERS
(zerstdren = destroy) destroys a record stored in the
warehouse or clears the warehouse

Two forms are possible:

ZERS (RECA,,)
or
ZERS (,ALLE,)

RECA is the name of the record to be destroyed (the record
must be stored in the warehouse to be destroyed)

ALLE (=all) is the modifier name which causes the second
option to be selected. In that case all the records
contained in the warehouse are destroyed, i.e. the

warehouse is cleared.

Example

ZERS (CH22,,)
destroy the record CH22
ZERS (,AllE,)
destroy all the records of the warehouse

Remarks

The user needs to destroy only if there is a risk to excesd
the capacity of the warehouss. Prior to such situations he
should investigate the possibility to select a larger ware-
house size. He should be aware that the destruction of a re-
cord implies a reorganization of the warehouse and that it is
more efficient to destroy a record as soon as it has served
his purpose in order to avoid the shifting of many following
records. When several records have to be destroyed it is

always more efficient to begin by ths last record.

ZUST
lists all the command names (keywords) which are ack-
nowledged by the system and lists the corresponding 8
character labels which are printed as heading of a task.

Example

ZUST

Remarks

ZUST is comprised of only a keyword and has no parameters.

ZUST gives also ths date corresponding to the last version
of the system and the user is advised to verify if the
date of his handbook matches the information provided
by ZUST.

- 219 -

3.3 Some special features in the reduction of data series

3.3.1 Synchronism of two records

The basic scheme for a SEDAP task is to obtain a record from
the warshouse and to store the results of a specific mathema-
tical operation into the warehouse by creating a new record.
This operation involves an ipput record or a segment of the
input record and the new record will derive his new parameters
from the values of the warehouse parameters: date, tims, fre-
quency and number of points. If the user has specified a sor-
ting factor and the transfer of only a record segment, the
relation still exists after application of the frsquency re-
duction and of the shift of the time origin. Some other tasks

involve an operation performed on two input records,
for instance C=A+8B

where A, B and C reprssent experimental records.
It is expected that when the user specifies such an opsration,
the two input records A and B will be synchronous. Two SEDAP

records (or segments of records) will be synchronous if:

a) the two records have the same time origin. This must also
be valid if the two selected segments are specified by a
delimiter other than 1 and should be extended to the date.

b} the two records have the same sampling frequency, i. e.
the time interval between two points of both records will
be the same.

c) the number of points involved by the task is the same for

the two records.

The synchronism of two input records is important since ths de-
limiters and the sorting factor are specified for the two input
records by a single set of values and since the transfer sub-
system is mainly concerned with blocks. A special situation
arises if two input records contain respectively e.gew 612 and 614
points. Both records will be accepted by the TRANSFER subsystem
which has received 1 and 2 as delimiters. The transfer zons

will however correctly compute the two numbers, of points (812
and 614) since the filling factors of the last blocks will be

- 220 -

respectively 100 and 102. The computing subroutine could

theoretically choose between two possibilities:

- stop the process after 612 values and disregard the two last
points which are present on only one of the records

- sxecute the operation up to the 614th value and since nobody
knows what are the values stored into the last positions of
the shorter record, the results can become at least unpredic-
table.

Such a situation would speak in favor of a radical solution
(reject the task) but there are other situations where the lack

of synchronism could be tolerated.

- An experimenter can justify the comparison (for instance sub-
traction) of two records which have the same frequency, the
same number of points but two different time origins becauss
he compares the runs of two different days.

- One would like to compensate the drift of an integrator by

subtracting the ramp signal generated by DAGEN.

The most important thing is that the user should be aware of
what he does and the following rules which reflect the duality
of the previous considerations are applied to the dstection of

non synehronous records:

1) Any operation involving two input records supposes that the
user has selected two synchronous records.

2) The synchronism of two records is always verified and the
lack of synchronism does not cause an interruption of the
task but a warning message will bs issued if:

- the two numbers of points are not identical
- the two time origins are not the same
- or if the two sampling frequencies are not identicals
3) The resulting record derives always its parameters from the

first record listed in the command card.

The last point leads to suggest that the first record should
always be the shorter record if the two records don't have the
same length (it is obvious that the difference of length con-

cerns only the case of the last block of a record when both

(

- 221 -

don't have the same filling factor). This is very easy to per-
form operations where the commutativity is accepted like for

the addition or the multiplication of two records:

C=A4+4+B=8+A
G =ExF =F % E

but requires some more care for other operations.

The user can find numerous ways to solve similar problems and
although it should be considered as a very minor point the

following examples are given to provide a few complementary

explanations about the way how the system handles the records.

Assuming two records R612 and R614 which contain respectively
612 and 614 values:
The following operation
SUBT (R612,R614,REST) (1,2,1)
is easy because the shorter record is the first listed.

suBT (R614,R612,REST) (1,2,1)
will be followed by a serious warning and can be replaced
by the following list
AX+B (R614,2614) (1,2,1) (-1.0,0.0)
ADDI (R612,2614,REST) (1,2,1)

where the operator AX+B with a -1 and b = 0 has inverted

the record to replace the subtraction by an addition which is

commutative.

The following command
DIVI (R614,R612,QU0T) (1,2,1)

could be replaced by the following list
AX+B (R612,,FRAM) (1,2,1) (0.0,1.0)
DIVI (FRAM,RE12,X612) (1,2,1)
MULT (X612,R614,QU0T) (1,2,1)

which follows almost the same pattern. It is interesting
to note that the operator AX+B has created a record filled with
values equal to 1. but with the same parameters as the previous
one. Such records filled with 1 or 0 are called "frame-records”
because they carry only the former frame of the record and can

be used in many different "tricky combinations”.

- 222 -

There is obviously a shorter way to replace the two first
lines of the previous example:

WERT (R614,,D612) (1,612,1)

with the last line changed to

DIVI (D612,R612,QU0T) (1,2,1)

The example of the compensation of the drift of an integrator
can also illustrate the flexibility of the system if the user
knows how to take advantage of the modularity. Any D.C. offset
at the input of an integrator will cause a drift of the inte-
gration and must be compensated by a ramp. If the record to

be compensated contains only 614 values,the record produced by
DAGE with the modifier AX+B will simulate a ramp of 1024 valuss;
Since the larger record is subtracted from the first one, the
system will not issue a warning. The user could replace the
subtraction by an addition by generating a negative ramp if the
commutativity would be involved but a better solution would be
to use the additive option of DAGE and to spare the interme-

diary record.

3.3.2 The sampling frequency

The digital data acquisition systems record the different
state variables not as continuous signals but as sequences of
points which are considered as equispaced. The experimenter
must always be conscious of the sampled nature of the recording
and this requires to treat the data reduction with some extra
care. Most of the scientists are familiar with the applications
of the Stroboscope which substitutes an apparent frequency to
the real rotation,everybody knows the imperfections of an
optical sampling like a cinematographic sequence which often
gives an unsatisfactory representation of a motion (the wheels
of the stage coaches seem always to challenge the motion's
laws). But many experimenters disregard the importance of the
sampling frequency in their own data reduction. This is mainly
due to the fact that many experimenters have had considerable
experience with the techniques of continuous analog recording
where the inertia of the galvanometers have a strong limiting

influence on the frequency bandwidth of the signals. If the

- 223 -

basic relationship between the sampling frequency and the
signal bandwidth is not respected, the resulting record may bs
aliased./17,18,19/. The aliasing of a record is not only
dangerous because of the inaccuracy of the results but es-
pecially by the fact that a serious aliasing can be inter-
preted as a new phenomenon which has nothing to do with the

real experiment.

It is therefore recommended to pay the greatest attention to
the sampling frequency at the different steps involved in the

recording of the reduction of numerical values.

- The first step is to select a sampling frequency which is at
least twice as high than the highest frequency one wishes

to investigate. (A signal which must be evaluated up to

200 Hz could be sampled at 500 Hz).

- The experimenter must verify that the frequencies which
represent a higher spectrum are correctly eliminated prior

to the sampling process. That implies that the variable low
pass filter be correctly adjusted in order to cut off the
frequencies which exceed the folding frequency (250 Hz in

the previous example).

- These preliminary steps are extremely important and must

be followed by others which deal with the data reduction.

The user must supply the correct sampling frequency when the
records are passed by the input system (ERAK,PTAP). The value
of the frequency is extremely important for the operation
which involve the time interval (for instance integration or
differentiation).

- Many users have a tendency to select the highest sampling
frequency and justify this excess by saying that "one never
knows” if a fast transient will not require such a high re-
solution. The discussion of this viewpoint does not belong

to the frame of this report but it should be pointed out that
such a "safe” viewpoint generally involves the use of a high
sorting factor in the data reduction to compress the records
into shorter ones. The use of the sorting factor necessarily

implies that the setting of the low pass filter is no more

- 224 -

valid for the new "sorted frequency”. It is therefore advis-
able to perform a smoothing of the record before attempting
to reduce its length by a sorting factor.

3.3.3 Complex values

The values recorded by the data acquisition system are always
real. When the recorded values are processed by a Fourier
Transform the resulting values will be complex and build a
complex record which must be treated with some special care.
Like in most of the computing systems,complex data are stored
as couples of scalar values, the first scalar value being the
argument of the real part, the second one the argument of the
imaginary part. The experimenter who directs the process of
complex values generally knows the meaning of the operations
he has planned and it is his responsibility to select the
appropriate operators which are designed to handle such comp-
lex records. A complex record may be printed in a horizontal
format (PBHE) but if the same record is directly plotted, the
graph will be of little use because of the alternation of real
and imaginary parts. The user who wants to plot a complex
record will generally use a preliminary sorting task (S@02)
and plot separately the real and imaginary parts. The user
will find the Fourier Package especially easy to handle and
the modular structure allows to perform all the standard ope-
rations with a very good flexibility. He must however pay

some attention to the following points:

- The commands which handle the complex records will generally
disregard the sorting factor which is always set to one by
the system itself. If the user, in a separate task specifiss
a sorting factor, he will obtain a new record which may be
of no further use.

- The use of the command WERT (call by values) may also
destroy the structure of a complex array. If the first value
is even (2 to 127 for instance), the first value will be
skipped and the imaginary parts will be stored where the

real values were sxpected.

- 225 -

4, EVALUATION OF SEDAP

The first version of SEDAP was implemented in 1970 and was
used for different tasks of data reduction involving up to
several millions of sampled values. The system was enlarged
to include the Fourier Package and a few other components
/20, 21/. During the first months of 1972 the system was
slightly modified to insure a better uniformity of the sub-
routines and a better efficiency and to allow the proces-
sing of larger records. This version was designed to

form a complete and consistent package which includes not
only the master deck with the listing but also the test runs,
the user’s handbook and the documentation with a detailed

description of the commands and the associated procedures.

SEDAP has been widely used already in different experiments
mainly related to thermodynamics or to the sodium technology
(sodium boiling, simulation of fuel rod failures, perfor-
mance of sodium loops etc.) The SEDAP approach has been so
far considered as very successful /22/. An average experi-
menter can learn the SEDAP language in one or two hours and
after a few runs he is able to conduct very delicate data
reductions which otherwise would have required many days of
programming work, should a conventional computing technique
have been used. It is obvious that a user will need more
time if he intends to acquire a perfect grasp of the system
and if he tries to master all the tricky applications which

are possible within a complex modular structure like SEDAP.

The use of experimental records, the very simple command
language and the possibility to name the records have been
found very valuable and are especially appreciated by the
scientists who are not familiar with computing sciences. The
modularity of the system has provided the expected versatili-
ty and most of the problems of data reduction were solved
with the standard features of SEDAP without resenting the
limitations of the system. It must be added that the SEDAP

package includes a user’'s subroutine (EXTSED) which gives the

1) As time proceeds, SEDAP will of course be modified to accom-

modate more user wishes.

- 226 -

possibility to join a user written Fortran subroutine to the
gystem in order to solve any specific problem which has not

besn treated under thse organization of the official version.

SEDAP was also used for some applications which were not ori-
ginally foreseen. The interfacing capabilities of the system
ware used to perform analysis of data which were produced by
digital simulation programs and which were then analysed with
the Fourier Package. The flexibility of the data generation
provides many possibilities for the theoretical investigations
of different types of signals and any experimenter can try the

system in the dry run mode.

SEDAP was created according to some preliminary guidelines

which were exposed in the first part of the present report and
the system was progressively extended within the limits of the
original frame. It would have been tempting during the deve-
lopment to change some details of the frame but this tendency
was resisted because it was always possible to extend SEDAP
without changing the shape of the basic scheme. The fundamen-
tal structure of the system is likely to remain actually stable.
and that is the rsason why the documentation of the program

was undertaken at the present time. It is interesting however
to summarize the few points where the frame has been found
somewhat narrow and to discuss the improvements which could be
contributed without great changes to the whole system. In

other words a basic question can be formulated as the following:

Should it be done again, would it be done the same way?

4.1 The command intsrpretsr

It was already stated that the SEDAP language was designed in
the rigid context of a Fortran input. The general scheme has
been very satisfactory, but in soms cases a few limitations
have become apparent. One can refer to the example of two in-
put records which block the use of a modifier or to the legi-
timate wish to have two modifiers. In some cases an option has
to be passed as a decimal number because the three integers

are alreédy assigned.

- 227 -

It seems therefore that a more sophisticated command inter-
preter would greatly improve the system without changing the
basic structure. The interpretation of the language might be
preceded by a syntax check which would allow a detection of
all syntactical errors before the execution. According to our
experience, most of the errors are of trivial nature and we
evaluate to more than 90 % the percentage of the errors which
could be detected by a syntax check. This would involve the
investigation of a catalog belonging to a "dummy warehouse"
and would considerably alleviate the burden of the srror
checking procedures at the time of the execution. The efficien-
cy could be increased further by introducing a compilation of
the input language rather than an interpretation. It is inter-
esting to mention that in such a case the record number would
be substituted to the record name, the absolute address to the
relative address etc. ... A great improvement could be achieved
if the command interpretation would be executed in a time
sharing esnvironment with an interactive mode to allow an imme-
diate correction. Another advantage of such a modification
could be obtained by combining the results of the interpreter
to a dynamic linkage. In that case only the necessary modules
would be considered and many of the unnecessary elements could

be' dropped according to the list of the commands.

In many applications, where the same sequences of operations
ought to be executed on a number of signals, the capability of
defining and executing subroutines was found very desirable.
Another method to solve the same problem would be the intro-

duction of a macro facility.

4.2 Type dependent operations

One feature which was included in the very sarly planning for
SEDAP and which was dropped later, was the introduction of
various record types and the sensitivity of the operations

with respect to these types. At present, the user is requested
to use different commands for the multiplication of two records,

whether they contain real data (signals in the timedomain) or

- 228 -

complex data (frequency spectra). If the warehouse catalog
would be extended to include the appropriate type information,
the same command syntax could be used in either case and many

user errors could be avoided.

4.3 Size of the system

The size of the complete executable SEDAP load module amounts
to around 240 K bytes. The last reorganization of the system
brought it down freom 300 K to 238 K and by trimming the over-
lay version the limit can be expected at about 200 K. Such a
size is a compromise between the priority of a job and the
input/output load for the present computer installation but
can be a disadvantage for the smaller computers. The reduction
of the size is possible with the use of the overlay version
but the reduction factor is rather modest and this is mainly
due to the large size of the common area which includes the
catalog and the computing arrays. It has been explained that
the use of a preliminary compilation would almost eliminate
the catalog during the execution and we can add that most of
the checking features which are scattered all over the system
would be reduced in such a way that the combined savings can
be estimated in the range of 25 - 35 K bytes.

The reduction of the computing arrays would obviously contri-
bute further to the size reduction of the module. The size of
the computing arrays was determined before the introduction
of a systematic segmenting of the transfer operations. A re-
duction of the computing arrays would be perfectly feasible
for most of the commands with a penalty on the input/output
gfficiency which is not the sensitive issue of small configu-
‘rations. Two SEDAP complexes would however be seriously
offended by such a drastic change, they are the sorting sub-
routine and the Fourier Package. The sorting subroutine could
be easily modified to sort 2" channels by a succession of ele-
mentary steps applied with lower factors like 2 and 4. S@08
will be iteratively treated as a 4 and 2 cascade, S@64 would
require the triple cascade 4, 4 and 4. It would be also pos-
gsible to reduce the size of a block to 256 or 128 and this

(

- 229 -

reduction can be combined with the previous step. In the two
cases the results would influence very negatively the perfor-

mance of the input/output operations.

The reduction of the computing arrays would be more disastrous

on the Fourier Package which cannot be implemented with smaller
arrays without loosing either the capability to treat the pre-
sently rather high number of frequencies or the advantages of the
Fast Fourier Transform. The involved segmentation would require

a bulky bookkseping and tremsndously increase the computing

time . Hence, the reduction of the computing arrays would most
likely go along with a reduction in the frequency range of the
FFT.

From the previous considerations it is clear that a separate
handling of the command interpretation and of the execution
would bring a considerable improvement for the user and an
interesting reduction of the size of the moduls. Further rs-
ductions would be more difficult to justify and narrowly de-
pend upon the types of configurations on which SEDAP is run

as well upon the types of processed records (length in 1000

or millions - with or without Fourier Package etc.). The ver-
sion which has been documented represents a good compromise
for the machinas which are generally available in the scienti-

fic computing centers.

4.4 Data management

There are two areas of data management to be considered:

a) the computing arrays and b) the warehouse.

As mentioned above, the computing arrays might be reduced in
gize if one is willing to accept more input/output operations
and a reduction of the frequency range which can be handled

by the FFT. Since in the present version the computing arrays
are located in COMMON, almost all source programs must be modi-
fied and recompiled for such a modification. This would be a
nontrivial job and would be acceptable only for the implemen-
tation on another computer installation. However, even on the

same installation a more flexible version would be dsesirabls

- 230 -

in order to save core space and to gain priority for SEDAP
jobs which do not require the full capability. This would
require a modification in such a way that all subroutines
would obtain their computing arrays through the argument list

and would use adjustable dimensions.

The prssent data management in the warehouse is extremsly
simple. The warehouse is always filled consecutively with the
experimental records, which are kept contiguous to each other
even if intermediate records are to be scratched. A great

deal of input/output is required for copying of data in this
case. A new version of SEDAP would certainly contain an address
table in the catalog which would permit scattered storage of (

the records in the warehouss.

4.5 Conclusion

Like for many software projects the time which was necessary

to develop and to document SEDAP has exceeded the original
estimation. This is partly due to the fact that the system has
been welcome in its early stage and that becauss of the favour-
able resonance of the user'’'s group, it was decided to adapt

the package several times to user wishes and to include a
complete detailed documentation of SEDAP. One of the main
achisvments in dealing with this problem oriented computing
application was the excellent cooperation bstween the scientistg
involved in the experimental work and the designers of the
system. The aim of the system was to obtain a better quality
and a better efficiency of the data reduction which is one of
the most important problems of the research work in the field
of the fast breeder project. The target has been reached and
the authors are indebted to the different users for their out-
standing cooperation and for the numerous discussions which
have contributed to the progress of the system. The assistance
of G. Rittirsch who is responsible for the data acquisition
system is especially acknowledged.

- 231 -

References

/1/
/2/
/3/
/4/

/5/

/8/

/7/

/8/

/9/

/10/

Hoare C. A. R.: Record Handling in Programming Languages,
F. Genuys Academic Press London and New York 1968

Eggenberger O0.: ABFORM Programm zum Ausdrucken von Texten
im GroRformat, Programmbeschreibung 230-GFK (not published)

RANDU Subroutine in System /360 Scientific Subroutine
Package (360A-CM-03X) Version III, Programmer’s Manual
(H20-0205-3), IBM

Heine S. et al.: PLOTA Ein allgemeines Plotprogramm, Pro-
grammbeschreibung Nr. 117, GFK (not published)

Leinemann K«: PLOTA FORTRAN-IV-Routinen zur Umsetzung von
1130-PLOTA-Aufrufen in Aufrufe der CALCOMP-Software,
IRE-Programmbeschreibung Nr. 896/1972, GFK (not published)

Cooley J. W. et al.: Application of the Fast Fourier Trans-
form to Computation of Fourier Integrals, Fourier Series,
and Convolution Integrals. IEEE Trans. Vol. AU-15, No. 2,

June 1967, Special issue on the Fast Fourier Transform

Webb C.: Practical Use of the Fast Fourier Transform (FFT)
Algorithm in Timse-Series Analysis, Texas Univsrity, Austin
Texas, June 1970, AD713166

Cochran W. T., Cooley J. W. st al.: What is the Fast
Fourier Transform? IEEE Trans. Audio and Elaectroacoustics
AU-15, 45-55, June 1967

Kremer H.: Praktische Berschnung des Spektrums mit der
Schnellen Fourier-Transformation, electronische datenver-
arbeitung 6/69

Gentleman W. M. and Sande G.: Fast Fourier Transform -
For Fun and Profit, 13866 Fall Joint Computer Conf. AFIPS
Proc., Vol. 29, Washington, Spartan Books, pp. 563 - 578,
1966

/11/

/12/

/13/

/14/

/15/

/186/

/17/

/18/

/18/

232 -

Brenner N,: Cobley-Tuckey Fast Fourier Transform FOUR1

IBM Corp.

10532, Progr.

Bingham C.

Estimation, IEEE Trans.
AU-15, pp. 56 - 66,
Welch P. D.:

PID, 40 Saw Mill River Road,
Order Number: 360D-13.4.002

Hawthorne,

» 1968

New work

et al.: Modern Techniques of Power Spectrum

June

1967

Audio and Electroacoustics, Vol.

The Use of Fast Fourier Transform for the

Estimation of Power Spectra: A Method Based on Time

Averaging Over Short, Modified Periodograms,

Audio and Electroacoustics, Vol. AU-15, pp. 70 -

June 1967

Stockham T.

IEEE Trans.

73,

G.: High speed convolution and correlation,

1966 Spring Joint Computer Conf., AFIPS Proc. vol. 28.

Washington,

Spartan Books, pp. 229 - 233,

1966

Tack P.: Program to Compute Correlation Coefficients,

Spectral Density Functions and Cross Spectral Density

Functions,
KFK 1237,

Bendat J.

Kernforschungszentrum. Karlsruhe,

July 1970

Germany,

S.: Principles and applications of random
New York,13968

noise theory, Wiley,

Audoux M.: Grundlagen der digitalen Erfassung prim&r ana-

loger MeBwerte,

Ext. Bericht 8/69-5,

Truxal J.
New York,

Rittirsch

Nov.

1968

Kernforschungszentrum Karlsruhe,

Germany,

G.: Automatic Feedback Control System Synthesis,

1955

G.: Kriterisn zur Wahl der MeBfilter und Abtast-

frequenz sowie Methoden zur MeBfehlerkorrektur, angewandt

bei Temperaturmessungen in Natrium, Kernforschungszentrum

Karlsruhe,

Germany,

Ext.

Bericht 8/71-3,

1971

{

/20/

/21/

/22/

- 233 -

Audoux M.: SEDAP A Systematic Approach to the Processing
of Experimental Data, Proc. ifip congress 71, Booklet
TA-6, North-Holland, Publishing Co., Netherlands P.O.
Box 211, Amsterdam

Audoux M., Katz F.W., Schlechtendahl E.G.: SEDAP Rechnear-
gastliitzte Auswertung technischer Versuche, KFK-Nachrichten

3/71, Kernforschungszentrum Karlsruhe

Audoux M., Katz F., Rittirsch G.: Praktische Erfahrungen
mit einem modularen leicht programmisrbaren System zur
Auswertung von MeBsignalen (SEDAP), Angewandte Informatik
8/72

- 234 -

Appendix A
Job Control Cards for SEDAP

//SEDAP PROC BAND=NULLFILE

/7L EXEC PGM=I1EWL,CONC=(4,LT)PARM=0VLY
//SYSLIN DD DSN=DATA.IRE(SEQVLY) sDISP=SHR
// DD DDNAME=SYSIN

//SYSLIB DD DSN=SYS1.FORTLIB,DISP=SHR

// DD DSN=GFK.FORTLIB, DI SP=35HR

7/ DD DSN=LOAC.IRE,CISP=5SHR

//L0AD DD DSN=LOAC.IRE,DISP=5SHR

//7PLOT DO DSN=LOAD.CALCOMP,;D1ISP=SHR

//SYSUTL DD UNIT=DISK,SPACE=(3303,(150)),0CB=8BLKSIZE=3303
//SYSLMOD DD DSN=L&GOSET(MAIN)UNIT=DISK,DCB=BLKSIZE=3303,

// SPACE={3303,(150451);RLSE);CISP=(,PASS)

//SYSPRINT DD UNIT=(CTC,,DEFER);LABEL=(sNL),

7/ DCB={BLKSIZE=968,LRECL=121,RECFM=FBM)

/76 EXEC PGM=%,L.SYSLMOC, COND={5,LT) (

//ETO5F001 DD DDNAME=SYSIN
//FTO6F001 DD UNIT=(CTC,sDEFER), LABEL=(4NL),

// DCB=(BLKSIZE=931,LRECL=133,RECFM=FBA)
//FT15F001 DD UNIT=SYSDA;DISP=(NEW,DELETE) ;SPACE=(1680,(20,1)),
/7 DCB={BLKSIZE=1680,LRECL=8C,; RECFM=FB)

//¥T40F001 DD UNIT=SYSDA,DISP=(NEW,DELETE) ,SPACE=(2048,1(2500))
//PLOTTAPE DD UNIT=(TAPES, ,DEFER), LABEL=(4NL) s DSN=&BAND,

/7 . VGL=(,RETAIN,SER=(&BAND))

/7 PEND

- 235 -

Appendix B

EXAMPLE

FOLGENDE BEFEHLE SIND IN DIESEM JOB ENTHALTEN

SEDAP NSK
AUSWERTUNG DES NSK VERSUCHES NR.,1 VCM 19.APRIL 1971,GENAUE BESCHREIBUNG SIEHE =
EXTERNER BERICHT 8/71-3 G.RITTIRSCH - INSTITUT FUER REAKTORENTWICKLUNG AUGUST 71

SEDA 1000

ERAK DATE 3 130 21 100Q0.0 2805,71

S016 CATE DA$S 1 256 9

AX+B CAQé AX06 1 16 0,005 0.0

TNI1 AXQE€ CX06 1 16

CIFF Cx0é EXQé6 1 16

AX+B EX06 FX06 1 16 0.0142 0.0

ACDI FX0€& Cx06 IX0¢ 1 .16

FILZ2 CX0é JX06 1 16

FIL2 IXCe KX0é 1 16

BILD

DEFX 508 6.57 25.4
DEFY 650 800, 17.8
pLOT JX06 TEXT 1 16

NSK—VERSUCH NRel /VOM 29,4671/ MESS.-STe T16 MIT TEMP,-KORREKTUR

PLOT KX06 ALT* 1 16

> ES FOLGT EINE FEHLERHAFTE SEDAP-ANWEISUNG

ADDI KX0& NYDA ERR 1 1

sTOP

ENDE DER EINGABEBEFEHLE

- e -

Aok kb odbkdkkk DATUM = 20.12,72
* * ZEIT = 1l.04.1l1
* AX + B *
* *
s ek sk ok ke ke o A ok

BEFEHL WAR WIE FOLGY CODIERT :

AX+B TACE AX06 1 16 0 0. 0050 0.0 0.0
* 0= Ix |x o Ix .« I¥ o

AUFTRAG IST WIF FOLGT WEITERGELEI TET WORDEN :

VON BLOCK 1 BIS BLOCK 16 SOLLEN 16 BLOECKE DES EXPER. RECORDS DAQ6 TRANSFDRMIERT WERDEN
UND CEN EXPER.RECORD AXOQ¢ BILDEN

CTIE TRANSFORMATION ERFOLGY MIT EINEM OPERATCR VCM TYP :
AX+B (LINEAR VERSCFIEBUNG)

064252S3E 04 0,424804E 04 0,424804F 04 00425293E 04 00425293E 04 00425293E 04 0.425293E 04 0,425293E 04
0212646E 02 04212402F 02 04212402E 02 0.212646E 02 04212646E 02 04212646E 02 04212646FE 02 0.212646E 02

KONTROLLWERTE INPUT
KONTROLLWERTE QUTPUT

CIE WERTE SINC UNTER DEN NAMEN AXQO€é ADDRESSIERBAR

*k STEP UM 11.04e12 BEENDET

** AUFTRAG ERFUELLT **
*x BEMOETIGTE CPU-ZEIT: 0.1132 SEK

...8{3-

e e o e ek skeok ook ok ok DATUM = 20,12.72
* * ZEIT = 11.04.28
* ACCIEREN *
* *
ok ok ook ok ok ok

BEFEHL WAR WIE FOLGT CODIERT =

ADDI FXC6 CX0€& IX06 1 16 0 0.0 0.0 0.0
* 0 |x |» o I+ o |* o

AUFTRAG IST WIE FOLGT WEITERGELEITET WORDEN @

VON BLOCK 1 BIS BLOCK 1€ SOLLEN 16 BLOECKE DER RECORDS FX06 UND CX06 TRANSFORMIERT WERDEN
UND CEN EXPERORECORD IXGé BILDEN

CIE TRANSFORMATION ERFOLGT MIT EINEM OPERATCR VCM TYP =
ADDIEREN ZWEIER DATEIEN

—eS0T€E9E 01 -6253834F 01 0.253834E 01 0.253834E 01 0.0 0.0 0.0 0.0
00514530 03 0.513958E 03 0,513958F 03 0.514530E 03 06514530E 03 0.514530E 13 00514530E 03 0.514530E 03
0.509453E 03 0.511419E 03 0.516496E 03 0.,517068E 03 0.514530F 03 0,514530E 03 0,514530E 03 0.514530E 03

KCNTROLLWERTE INPUT
KONTROLLWERTE INPUT
KONTROLLWERTE OUTPUT

[

CIE WERTE SIND UNTER DEN NAMEN TX0¢& ADDRESSIEREAR

3 STEP UM 11.04.32 BEENDET

*% AUFTRAG ERFUELLT *%*
*% BENOETIGTE CPU-ZEIT: 0es1531 SEK

- &K -

e e e dode o Feoke ek ok

*
%*
*®

*

LAG.BILD *
*

e e g ook deode ek dk ok

BEFEHL WAR WIE FOLGT CODIERT

BILD

AUFTRAG IST WIE FOLGY WEITERGELEI TET WORDEN

LAGER ZUSTANC [RUCKEN

FOLGENDE 17

ok
deke
*%

INDIZ NAME
1 DATE
2 DAC1
3 DAC2
4 DAQ3
S CAC4
-] DACS
7 DAQ6E
8 DAO7
9 DACS

10 CACO
11 AXC6
12 CXC6
13 EXC6
14 FXC6
15 IXCo6
16 JXC6
17 KXCé

AUFTRAG ERFUELLT **

ANFANG

1
257
273
285
305
221
337
352
365
385
401
417
433
445
4€5
4e1
497

ENDE

256
272
288
304
32¢
336
352
368
384
400
416
432
448
464
480
496
512

f*

0.

0

| *

BLOCK

0.0

EXPERIMENTAL RECORDS SIND IM LAGER GESPEICHERT

FREQ

10000000
625,000
625,000
625,000
625,000
625,000
625,000
625,000
625,000
625,000
625,000
625,000
6250000
6250000
6250000
625,000
625,000

0.0

CATUM

2805, 710
2805.7T10
2805.710
2805.710
2805,710
2805.710
2805,710
2805, 710
2805.7190
2805, 710
2805,710

- 2805, 710

2805,710
2805,710
2805,710
2805,710
2805,710

UHRZEIT

0.0
0.0
0.0
0.0
0.0
0,0
0.0
000
000
000
0.0
0.0
0.0
0.0
0.0
0.0
0.0

PUNKTE

131072
8192
8192
8192
8192
8192
8192
8192
8192
8192
8132
8192
8192
8192
8192
8192
8192

DATUM
ZEIT

20612,72
11.04,38

Won

FUELLFAKTOR

512
512
512
512
512
512
512
512
512
512
512
512
512
512
512
512
512

STEP UM 11,0438 BEENDET

BENDETIGTE CPU-ZEIT:

00,0399 SEK

- ofe -

el ok deadkok dokoeok ok DATUM = 20612,72
* * ZEIT = 11,0439
% PLOYTEN *
%* *
e ok e ok gk ook ko

BEFEHL WAR WIE FOLCT CODIERT =

PLOT JX0€ TEXT 1 1¢ 0 0.0 0.0 0.0
* x x |= . I* . 1% o

AUFTRAG IST WIE FOLGT WEITERGELEITET WORDEN =

VON BLOCK 1 BIS BLOCK 1& SOLLEN 16 BLOECKE DES EXPER. RECORDS JX06 GEPLOTTET WERDEN
ES WIRD EIN NEUER PLOY EROEFFNET

KCNTROLLWERTE INPUT = 0.514244E 03 06514243E 03 04514301E 03 0.514301E 03 0.514415E 03 0.514530FE 03 00514530E 03 0.514530E 03

SKALENBESCHRIFTUNG 3 NSK-VERSUCH NRel /VCFK 2904071/ MESSe-STe T16 MIT TEMP-KORR

- He =

DIE KURVE HAT FOLGENDE DIMENSIONEN =

XMIN = 0,580000E 01
XMAX = 0657000E 01
YMIN = 0.650000E 03
YMAX = 0.800000E 03
*k STEP UM 11004. 43 BEENDET

*% AUFTRAG ERFUELLT **
ko) BENOETIGTE CPU~ZEIT: 002729 SEK

3k ok o e ok kK ok
* *
* ACCIEREN =*
* *
ok ook e 3 ek ke ek e ok

BEFEHL KAR WIE FOLGT CODIERT :

ADCI KXC6 NYDA ERR 1

0 0.0 0.0

* I 1* | * N I * .

AUFTRAG IST WIE FOLGY WEITERGELEI TET wORDEN

VON BLOCK 1 BIS BLOCK 1 SOLLEN 1
UND CEN EXPER.RECORD ERR BILDEN

CIE TRANSFORMATION ERFOLGT MIT EINEM OPERATCR VCM

ADDIEREN ZWEIER DATEIEN

FERLER AUFCETRETEN (FEHLER CODE - IERR = 8

>>> FEHLERERKL AERUNC

ES WURDE OFR EXPER IMENTAL RECORD NYDA VERLANGT, OBWOHL FR NICHT IM LAGER IST

AUFTRAG NICHT ERFUELLT

CIESER SCHWERWIEGENCE FEHLER VERHINDERT EINE

BLUECKE

TYF :

SINNVOLLE WEITERFUERUNG DES PROGRAMMES UND VERURSACHY DIE

¥ % R % % ok okoloakdio ook ok
% *
* E S
* ERROR *
E 3
*
E *x
* %

DER RECORDS KXO06 UNC NYDA TRANSFORMIERT WERDEN

20612572

DATUM
L1040 44

ZEIT

i

- 2h2 -

SEDAP UNTERBRECHUNG

