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Abstract

GRAPHIC is a system for handling graphical information. It
allows definition, management and output of graohical objects.

The main components of the GRAPHIC-system are:

- A problem oriented language for specification of gra-
phical objects and of operations to change them. The

languacge contains subroutines, 00- and IF-statements.

- A lancuage interoreter which builds up a data structure

while analvsing the statements of the languege.

- A data structure Tor the internal representation of
granhical objects and operations as nodes in & hisrar-

chical ring structure.

- Routines for parsing structures of graphical objects,
for executine operations, creating new objects and for

output of cranhical information.

Languare and data structure allow referencing of objects hy
name. GRAPHIC has been implemented as a subsystem of tne CAC-

svstem ICES.



Entwurfsprinzipnien des GRAPHIC-Systems

Zusammenfassung

SRAPHIC ist ein System zur Oefinition, Bearbeitung, Verwaltunzo
und Ausgabe grachischer Information. Die wesentlichen Bestand-

teile dieses 0OV-Systems sind:

- Eine problemorientierte Eingabesprache zur Spezifizierung
von graphischen Objekten und von Uperationen zu ihrer
Verdnderung. Die Sprache enthdlt Unterprogramme, 00- und

IF-Anweisungen.

Ein Sprachinterpretierer, der wdhrend der Analyse der

Eingabesprache eine Oatenstruktur aufbaut.

- Eine Datenstruktur zur internen Darstellung von graphi-
schen 0Objekten und Operationen in Form von Objekt~ und
Referenzknoten in einer hierarchischen Doppelring-Struk-

tur.

Routinen, die Strukturen graphischer Objekte abarbeiten,
Jperationen ausfihren und neue Objekte oder Ausgaben

oraphischer Information erzeugen.

Sprache und Datenstruktur erlauben den namentlichen Zugriff auf
alle eraphischen Objekte. GRAPHIC wurde als ein Subsystem des

CAD-Systems ICES implementiert.
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1. Introduction
Orawings are one of the most important means of communication
between scientists, engineers and technicians. For this reason
many computer programs produce output of graphical information
either as plots or on a displav unit. In order to change details
of such drawines, e. ¢. for editorial revision of illustrations
for publication, the programs have to be modified. This may be
very time-consuming or even impossible in the case that the
program source 1s not available. So the need arose for a system
able to manioulate in a convenient way g¢raphical output produ-
ced by combuter programs. Such a system should have the ability
to edit (alter, delete or add) parts of a drawing and to store
graphical information. Furthermore the system should suopply
means for specifying new drawings in a way suitable to the engi-
neer. The graphical data processing system GRAPHIC has been
developed at the Institut flir Reaktorentwicklung as part of thne
oroject REGENT (Rechnergestiitzter Entwurf = Comouter Aided
Desien) /1, 2/. It is a means to create graphical objects, to
manipulate them, to store graphical information and to produce
output, at present in the form of plots. GRAPHIC also provides
the necessary interface for adaptation of other sources of

pravhical inout.

Zum Druck eingereicht am 3.4.1973



2. The hardware and software environment of the GRAPHIC-system

GRAPHIC was realized as a subsystem of ICES (Integrated Civil
Engineering System /3, 4, 5/). ICES not only offers a powerful
dynamic memory management, able to handle dynamic arrays and
dynamically linked load modules, but also can be used to define
problem oriented lanpguages in a flexible and convenient way.
Some experiences with the use of ICES have been described in
/6/. Since ICES can only be run on an IBM/360 or IBM/370 compu-
ter with the operating system 0S/360, GRAPHIC also is bound to
the System/BBDv The minimum hardware configuration needed is a
computer IBM 360/40 with at least two disk units, type 2311 and
up. These reguirements are due to ICES. The minimum size of
core required for GRAPHIC is 240 k Bytes. GRAPHIC was developed
on a configuration IBM 370/165 and IBM 360/65 under 05/360 with
ASP.

The graphical output device that is used for drawing graphical
objects is a Calcomp plotter type 763, run offline. The routines
to direct the plotter are taken from the Calcomp Graphics Basic
and Functional Software /7/.

*) RCA, UNIVAC and Philips have announced, that they will support

ICES on their computers.



3. Results of the system analysis

3.1 Tvpes of graphical objects and their representation in

internal storage
3.1.1 Basic comnonents of a drawing

A drawing consists of points, lines, curves and symbols. We

shall call these basic components of a drawineg, which can be

plotted or displayed immediately, graphical elements (GE)}. To

a man looking at a drawing the lines and curves on a picture
have certain relations to each other. E. g. the drawing of a
house consists of lines representing the walls, the roof, the
door and the windows. A Graphic Data Processing System (GUPS)
therefore must be able to manage rslations between GE's. A
simple relation between elements is existing, 1f they "belong
together”, i. e. they can manipulated as a whole and, in a
system with names for referencing objects, they can be referen-

ced by the sams name.

Different possibilities for describing the relations between
objects in data structures will be discussed in the following
chanters. Objects will be represented in the figures by rectan-
pular blocks, while relations between objects are lines between
blocks. Relations with undefined objects are represented as

shown in fig. 1.

object relation object

one object

.
| undefined

Fip. 1 Objects and relations



3.17.2 Linear lists

Linear lists are very simple structures /9/.

Fig. 2 Linear list

There are two different kinds of structures that can be repre-

sented by linear lists: Set lists and ordered linear lists /G&6/.

A set list is a finite set of objects linked together by rela-
tions. Every object can be reached from another one by following

one series of relations.

The relations just fulfill the task to show that all objects of
the list are members of the same set. The order of objects in
the list does not have any significance. Every object is the

starting point of two relations with identical meaning.

An ordered linear list is a finite set of objects, every one
possessing a left and a right relation. Every object can be
reached from another one by running through a series of relations,
no relation may be repeatedly passed. In an ordered list, star-
tineg at one object Oj 8(01,...,On) all objects Di’ 0<i<j can be
reached only over left relations, all objects Di’ j<isn can be
reached only by going along the right relations. The order of

objects in the list cannot be changed.

The random enumeration of all members of an institute, e. g.

is a set list, while an alphabetical list is an ordered list.



3.1.3 Circular list

N

Fig. 3 Circular list

In circular lists, or rings, every object can be reached from
another one by following one of two possiole series of rela-
tions. Circular lists represent the membership of objects in
a set. In many cases circular lists can be handled more effec-

tively by algorithms than linear lists.

Linear lists and rings can serve only to describe "linear” or
one-dimensional structures, where only two relations emerge
from an object. The following chapter will take a brief look

on methods for representation of more complex structures.



3.17.4 Trees

7 8\3 Tl

Fig. 4 Tree structure

Knuth /9/ offers a recursive definition of tree structures:
"A tree is a finite set T of one or more nodes such that

a) There is one spoecially designated node called the root of
the tree, root (T), and

b) The remaining nodes (excluding the root) are partitioned

into m>0 disjoint sets T Tm‘ and each of these sets in

gree
turn is a tree. The trees Tq""Tm are called subtrees of

the root.”

This definition describes a set tree as already discussed in
/8, 10/, because the relative order of objects is of no impor-
tance. This becomes evident, if we show the tree structure above

in another form:



Fie. 5 Representation of a set tree

If the relative order of subtrees T1""Tn is important, the

structure is called an ordered tree. A special kind of ordered

trees are binary trees, where every node has one or two sub-

trees.

Plain trees (Knuth calls them "forests”) can be converted into

binary trees:

34 H
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5 L2 51161
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Fig. b Convertine a tree into a binary tree
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This is of some importance since binary trees often can be
treated more effectively by algorithms. The terminology used

for describing relations between nodes of trees is normally
taken from family trees. Every roct is called the father of the
nodes at the head of its subtrees, these nodes are called
brothers. The subtree-nodes are sons of their root. Besides

the types of structures mentioned above 'multilinked structures’
or "graphs” are used for representing complex relations between
objects. The following chapter lines out the advantages and
disadvantages of trees and multilinkad structures for graphical
objects in a eraphical data processing system (GPDS). This leads
to the data structure of GRAPHIC, which is described in more de-

tail in chapter 5.

3.1.5 Representation of graphical objects by circular lists

Possible data structures for graphical objects are described

in /9, 11, 12, 13, 14/. In SKETCHPAD /15/ and PRADIS /16, 17/
circular lists are used for graphical data structures. Since a
drawine must be described by multidimensional relations, several
rings are necessary, which are connected by special relations.

The drawing of a triangle shall serve as an example.

o TRIANGLE

e N

L1 P1 Pe F3

Fig. 7 Objects and relations representineg a triangle

The structure "triangle” is an object, which is composed of



different subobjects:

noints P1, P2, P3
lines L1, L2, L3.

Fig. 7 shows the representation of the object "triangle” by three
hierarchically related circular lists. Rings have the advantage

that objects can easily be added to and deleted from the list.

This 1s true even more for doublyv linked circular lists since

an object can be added or deleted at any place without having

to run throueh the whole ring. The rings in the triangle example
are not ordered lists but just comprise objects of the same sort
(points, lines). The order of the objects in a ring does not
matter. The structure of the drawing is not represented by the
rings but by pointers from an object in one ring to objects in
other rings. This concent has the consequence that changing of
one object (e. ¢. ooint P3) effects several other objects

(lines L1 and L3 and the triangle).

3.1.b6 Graphical objects as nodes in a trse structure

TRIANGLE

11 1

P1 H P2
1 il
T T Tl 71
P1 P3 H P2 H P3 H

1 1 il 1

Fig. 8 Binary tree representing a triangle



Fig. 8 shows the representation of the triangle object in a
binary tree. Advantages and disadvantages of trees compared

to related circular lists become obvious:

Tree structures show all relations clearly and distinctly,
since from one cbject to the other there is only one series of
relations. But for this clearness we have had to duplicate
objects. The object P1, e. g. has to be incorporated into the
(1) 4ng pe (1D

a big amount of memory but also mavy require more work to be

tree structure 2 times (P1 Jo This needs not only
done. If the point P1 is to be shifted in a way that all ob-
jects related to it are also changed, the linear transformation
for P1 must be done 2 times, for P1(I) and P1(II). On the other
hand, if we wish to change only P1(III), this can be done very

gasily.

3.1.7 Directed Graphs

In order to avoid the necessity for storing several copies of
one object, modified tree structures are advantageously used
for reoresenting graphical objects. The structures are directed
graphs, they may be trees, but they must not. Updating of aob-
jects can be done easier than in strict tree structures. In a
directed graph objects will not be copied, if they are referen-

ced more than once (see fig. 9).

b => | -

L]

O

C B C
1 1 1 il

— o

Fig. 9 Two objects referencing the same subtree

We see, that now not only a root (a father) can have more than



one subtree (son), but that also a subtree (son) can possess
more than one root (father). (For convenience of the termino-
logy used here, let us allow that a son may have more than one
father). The symmetry becomes obvious, if we somewhat change

the presentation of the above example:

A D A is father of B and C
D is father of B and C
B is son of A and U

B C C is son of A and D

Fig. 10 Object relations represented by a graph

Let us take a look at a slightly more complicated example:

Let A be father of D and E,
let B be father of D, E and F
let C be father of E and F.

Fig. 11 A eraph

We see that in such a structure every object may possess a
discretionary number of relations to fathers and sons. Realiza-
tion of these relations by a set of upward-pointers and a set
of downward-oointers at evsry node would require a complicated
storage-allocation-method for the space needed by the varyine
number of pointers. This can be avoided by leavineg the task of

connectineg two objects to special objects, called "references’.

For these references the same storage allocation method can be

used as for all other objects in the Granhical ata Pool (50P).



The following example shows the method used for connectineg ob-

jects by references.

q R C BBJECTS
\ ‘\\\\

T 2 4 REFERENCES
1 3(4,

0 E BBJECTS

6:8 REFERENCES
—  — POINTER ON A CIRCLE

is father of and E
8 is father of

is father of

m m o

D is son of A
E is son of A, B and C

Fig. 12 References connecting objects

Figure 12 demonstrates the rules applied to the use of referen-

ces:

- Every reference represents one "father-of"-relation (and,
corresponding to this, one "son-of”-relation).
So, from object A to its two sons, U and E there are two re-
ferences, 1 and 2; from E to its 3 fathers, A, B and (, there

are 3 references 2, 3 and 4.

- References are linked together by two rings, one comprising

all referzsnces that represent the relations from one father

to all of his sons (in fig. 12 the upper rings), the other

one comprising all references representing the relations from



one scn to all of his fathers (the lower rings in fig. 12).

In order to reach all subjects from one root of a structure,

one has to ro along the downward pointer, pass around the re-
ference ring comporising all sons and follow the down-pointer

of all references met on this ring. S0 we reach the next lower
level of the structure. In order to reach all superobjects of

an object we take the corresponding way up. Go up the upward
pointer, run along the rineg of references representing the rela-
tions to all fathers, from every reference met on this way vou
#0 up the upoward pointer and will reach the next higher level

of the structure.

The scheme introduced here for storage of graphical objects is
advantageous compared to a sirict tree structure only if n re-
ferences take less space in memary than n-1 copies of the ob-
ject including the space required for the bookkeeping which

marks the various copies of one object as "belonging together”

In most cases this is true since graphical elements not only
consist of the data renresenting relations (pointers e. ¢.)
but also of attribute data (e. g. coordinates of the points of
a polygaon). Furthermore most operations in a GDPS have to be
accomplished for all conies of a graphical object, in our data
structure they have to be done only once because only one cony

of every object is stored.

3.1.8 Identifving granhical objects

A user cof a graphical data processing system (GOPS) must be
able to inform the system about what action he wishes to be
done on what parts of the stored graphical information. There
ars several wavs of referencing graphical objects. One way is
to describe the object by specifying to the system it's rela-
tions to the other objects or to the origin of the used coordi-
nate svystem. A user could say: "Shift the circle in the upper
left corner of the drawing 2 centimeters to the ricght.” A

auite similar wav of referencing objects is to point at them

on a display unit. Another way to reference objects is to asso-



ciate a name with each object, then being able to say: "Shift

the circle named 'C1' 2 centimeters to the right”.

We feel strongly that the first way identifying a graphical
object would be of great advantage for someone wishing to
change a drawing. But several problems arise if one intends to
implement such a feature. Either all objects in the GUP have

to be searched for the object in the upper left corner or the
objects must be stored in a sequence according to their coordi-
nates. The latter method would simplify the search for an ab-
ject with a specified position on the drawing, but would not

help finding, say, the circle with the greatest aresa.

So for the sake of efficiency and easier implementation {(and
because we are accustomed to use names for identifying objects
in negarly all programming lanpuages) we came to the decision

of using names for identifying graphical objects in the GRAPHIC
system. Nevertheless, this problem has been studied in some
more detail, as described in /18/. Names may identify

eraphical elements (GE)}, . g. points, lines,circles but also
more complicated objects such as a set of several GE's. We call
such a set of GE's that can be referenced as a whole a

"Graphical Collection” or just collection.

3.1.9 Graphical Operations

Operations performed upon GE's are called in this paper

"Graphical Operations” (GO). Examples are the creation of a

line between two points or a circle through 3 points, or linear
transformations such as shifting, rotating or enlarging GE's.
G0's could be represented by a set of procedures, performing
the task specified by the user and adding, as a result, a new
GE (or a collection of GE's) to the GOP. The following example
shows one shortcoming of this method (the language for instruc-

tions to a GDPS used here is selfexplaining).



P1 := point (x = ..., y = )
F2 := point (x = ..., v = ‘)
P3 := point (x = ..., vy = .)
L1 := line from P1 to P3
L2 := line from P1 to P2
L3 += line from P2 to P3

TRIANGLE:= L1, L2, L3

Plot TRIANGLE

Shift P3 2 cm to the rieght
Plot TRIANGLE

In this example the two PLOT-instructions would produce identi-
cal results, since TRIANGLE was evaluated prior to the change
made to point P3. If we would intend to change the triangle, we

would have to write:

Plot TRIANGLE

Shift P3 2 cm to the right
L1 line from P1 to P3
L3 : line from P2 to P3
TRIANGLE: = L1, L2, L3
Plot TRIANGLE

This is neither a notation to be called rather elesgant nor very

pleasant for the user. It would be useful if we could say:

let L1 be the line from P1 to P3, but evaluate it only when L1

is referenced.

{The notation adopted here for purposses of demonstrations is:
L1 = line from P1 to P2).

A feature for reevaluating granhical operations every time
their result is needed can be imnlemented by integrating graphi-
cal onerations together with eraphical elements as nodes in

the eraphical data structure.



The operation L1 = line from P1 to P2 thus could be represen-

ted by the structure in fig. 13.

GO

L” 1 LINE BETHEEN
THO PUINTS

N I
J

GE GE
Pl paINT P2lPaINT

Fig. 13 The "line”-operation in the data structure

=y

If graphical operations are included in the data structure for

graphical objects we have two possibilities:

1. To evaluate an operation at once, then the result is not
changed by alterations of the graphical slements upon which

the operation was performed.

2. To svaluate an operation every time the result's name is
referenced. In this case a change of an element will affect
the result of all operations defined by referencing this

element.

The execution of a task thus will take plece in two steps:

First, build up a data structure representing the task. Second-
ly, at once or later depending on the user-defined specification,
parse the structure and compute a result. Besides the advantage
of being able to reevaluate the result of an operation several

times, this method allows to represent the task specification



in the svstem in a way adequate to the computer, i. e. easy
fto parse and easv to change. This e¢eneral principle can alsao
ba found in the AEJ-system /19/.

3.2 Possible forms of input to a 50OPS
3.2.1 Interactivs disnlay terminal

Whan using the term esraphical input most people associate with
it a workplace equipped with an intelligent display unit, light-
pen or joystick, alphanumeric and function keyboard /15,16/. In
oractice, however, only a very small number of potential users
of a CDOPS has an active display unit available. This is pro-
bably due to the following reasons: Active graphic display

units are inadenuately expensive (both bv tnemselves and be-
cause of the computer configuration which tney require as tack-
ground) and there is a lack of standardized interface (especial-
lv software interface) between computers and display terminals

- and this situation is unlikelvy to change in the next future.
There are two other nroblems in using interactive graphic ter-
minals: Whenever the problems which are to be treated by the
GOPS bhecome larege enoupgh to require a significant amount of
camputer time, the interactive mode of operaticn is no longer
appronriate; the complete and correct documentation of the
terminal session is a nontrivial job if a lightpen is used.

For these reasons - at least at the present state of the art

- a language which can be used both in batch and interactive
mode is certainly more widely applicable than direct input at

a graphic terminal.

3.2.2 Graphical languages /20, 21, 22, 23/

One way of specifyine graphical elements and operations upon
them is to use a language. Simple languages would be series of

calls on special routines in some higher level language:



P1:
L1:

1

point(x = 1., v = 2.)  CALL CREATE POINT(1.,2.,'P1');
line from P1 to P2 CALL CREATE LINE('P1’,'P27,'L1');

it

Tvpical examples of this apnroach are /24, 25/.

Another possiblity would be input in form of a table /26/:

NAME ELEMENT or DATA
OPERATION

P1 POINT

L1 LINE P1 P2

It seems to us, that a graphical language closer to the natural
languags would be a better solution. A program in such a language
can be read and understood more easily, sven by someong who is
not familiar with the GOPS. The input listing itself can be

ed as a documentation. Free formatted input allows less mista-

9}

u
kes and more flexibility. Moreaover, instead of P1:= crosspoint
of L1 and L2; L3:= line from P1 to P2,

one should be able to write:

L3:= line from crosspoint of L1 and L2 to P2Z;

This kind of nesting of specification for grapohical objects would
hardly be possible in a "CALL-"language or in a tabular-input-
language. Furthermore a graphical language should include some
fratures that have proven their usefulness in many high-level
lanpuages. To these features belongs the possiblity to define
procedures and pass arguments to them, do-loops and if-statements.
0f course, using a languaee close to the natural language re-
auires more program writting effort, the language is more re-
dundant than tabular input, and language interpretation is more

complicated and thus more expensive.

3.2.3 Input of granhical information produced by existing pro-

erams

Manv oroerams solvine scientific or technical problems producse

nlots. For documentation or publication often the need arises



to make editorial changes on them. E. g. one wishes to add a
second v-axis to a drawine representing functions of a pressure
and a temneraturs over the time (x)-axis, or in a technical
drawing changes have to be made to a design detail. This kind
of modifications to orogram-produced plots mostly were made by
hand.

It is therefore desirable to make an interface available bet-
ween the granhical output of existing software and the input

of a GOPS. Editing of plots could then be made easier and more
conveniently. All manipulations applicable to graphical objects
created by using the GIPS should also be available for objects

supplied by existing programs.
3.2.4 Input from sxisting drawings

There is definitely a need for input of existing line drawings
in manv enegineering applications. Hardware equipment for pro-
duction of a point by point trace of line drawings is available.
Jutout from such equioment is usually generated on magnetic or
paper tape. The GOPS should provide a flexible and well defined

interface for the logical adaptation of this form of input.

3.3 Output of egranhical data

Possible outout devices for graphical information are olotters
and displays. Since the format of praphical information is dif-
ferent not only for plotters and displays but beyond this for
the plotters and displavs of different manufacturers, a clearly
defined interface is necessary between the GDPS and the proce-
dures directing the g¢raphical output to a specific device. In
the GRAPHIC system this interface will be a "nlotfile"” called
data set on a secondary storage device that is filled by the
GUPS and interpreted in a second step in order to prepare the
output in a way adequate to the plotter or display unit actual-

ly used.



3.4 The basic comnonents of the GCRAPHIC system
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Fig. 14 Basic components of GRAPHIC

Fie.

are:

- an interpreter

- a communication aresa

14 shows the basic components of the GRAPHIC system. Thev

- a module packape for structuring graphical data and proces-

sing commands

- a graphical data pool

- save and interface files.

The input made up of statements in the GRAPHIC-languarse are ana-



lysed by an interpreter, which causes the storape of informa-
tion in the data pool by calline processing routines. The inter-
nreter also causes the manipulation of graphical data in the
pool. The graphical data pool contains all objects in their in-
ternal reoresentation. Data are passed from the language By use
of the communication area. Graphical information is passed to
outout devices by means of a plotfile, containing all informa-
tion necessary for plotting objects. This plotfile represents a
clearly defined interface to the hardware and software of dif-
ferent plotter manufacturers. Thus, the olotter may be changed
without difficulties.

Usineg a set of plot-simulation routines and the "takeover"-
file, plot-information from other jobs may be taken over into
CRAPHIC.



4. The GRAPHIC lancuase

4.1 Basic structure of the language

The concrzte svntax of the GRAPHIC lansuape is listed in appen-
dix A. A program written in GRAPHIC consists of a head:
"GRAPHIC”, a block comprisines a number of GRAPHIC-statements
and a tail: "END GRAPHIC”. The head (in ICES called subsystem

command) is used to identify the following information to the
ICES svstem as a GRAPHIC-program. The tail starts the processing
of the contents of the cutput-interface-file by the graphical
device drivine routines. Blocks consist of one or more GRAPHIC-

statements and may contain a delibesrate number of other blocks.

A block is characterized by a heading: BEGIN or PROCEDURE and

bv an ending: END.

All names that are explicitly or implicitly declared within a
block are local to that block, they can be referenced in all
contained blocks, but not outside the block. Explicit declara-
tion is done by means of a declare statement (see chap. 4.5.2),
implicit declaration is caused by referencing a name that has
neither been used so far in the block nor in one of it's outer
blocks. If a name that is local to an outer block is explicitly
declared in an inner block, the name in the outer block identi-
fies a different object than the name in the contained block.
The scope of names in nested blocks is governed very much by the
same rules as it is in other block oriented lanpuages like
ALGOL 60 or PL/1 /28/.

In the following chanters GRAPHIC-statements will be described
in detaill. Because the GRAPHIC lanpuage is imnlemented by use

of ICES-CDL /3, 5/, rules and restrictions of this system are
valid for GRAPHIC, too. Every statement has to start with a key-
word, (in ICES called the command name), it can be coded free
formatted on columns 1 to 80 of a card, continuation is noted by
placing a "-" (hvphen) as the last character on the card to be
continued. As manv as five cards can form one logical statement
(for an excention in GRAPHIC see the polveon specification in

chapter 4.3.1.2). Comments can



be placed at anv card after "bZb"” (blank, dollar, blank).
Continued cards may have comments, the "2"-sien then has to be
placed after the continuation hyphen. Blanks or commas are re-
ouired as delimiters between all items of the language. The no-
tation language used for describing the GRAPHIC languape shall
be shortly explained here: Capital letters represent keywords
(reserved words) of the language, the underlined part of the
word is reouired, the rest of the word may be omitted or spel-
led differently:

For PLOT we can write PLO
or PLOT
or PLOTTHISOBJECT.

Terms of the languace that are not reserved words are printed
with small letters. These items are explained after the nota-

tion of the statement, e. o.:

PLOT object

"object” must be explained here.

Brackets are used to desicnate parts of a statement that are

optional. Descrited bv the notation:

OPEN / PLOT_/ / SIZE sx sv_/
The followine statements are valid:

SPEN PLOT SIZE 10 200
OP SIZ 12 29
grP

If default-values are assumed in the case information is missine,

the values will be given in the describinz text.

If an item may be repeated a deliberate number of times or mis-

sing, this is shown by an asterisk following a closing bracket:

PROCECURE name / (parm /,parm /%) 7

If one of several possibilities can be chosen for one item in

a statement, this will be notified by braces:



STANDARD / UNIT_/ INCHES

There are two versions of the GRAPHIC-language implemented:

Jne with its words close to the German language. This version
is presently used in the IRE, the statements’' syntax is listed
in /28/. A second version of the GRAPHIC language has the same
abstract syntax and the same semantics, but a differsnt concrete
syntax, the lansuage words being taken from tne English lancuare.
The descriptions in this paper refer to this second version of
the GRAPHIC lancuace. It is used by specifying "EGRAPHIC" in-

stead of "GRAPHIC” as the first word of a prosram.

4.2 SET and DEFINE-statements

As a result of using ICES-COL for implementine the GRAPHIC-
language, statements of the form used in chapter 3.2 cannot be
implemented effectively. COL-defined statements must begin with
the command name. For this reason all GRAPHIC-statements have
to start with a valid statement kevword. Another shortcoming of
COL is the necessity for putting all alpha-strings in quotes

(this is important for names in GRAPHIC). So the statement

L := line from P1 to P2

is to be worded in GRAPHIC as follows:

SET 'L' LINE FROM 'P1' TO 'P2’

The words "FROM” and "T0" are not significant for recognizing
the meaning of the statement, so they may be omitted. All key-
words (called "modifier” in COL) can be abbreviated to a speci-

fied minimum (mostly 3 letters). Thus the statement reads in its

shortest form:

SET 'L’ LIN "P1" P2’



’ "

In this notation the symbol ":=" of our demonstration language,
meaning  "EBEvaluates the expression to the right and store the
result as an object pointed to by the name standing to the
left”, is r=placed by the keyword "SET”. In chapter 3.2 the
necessity for a second operator was shown, meaning "Evaluate
the expression to the right every time ths name to the left is
referenced and then use the result of the evaluation instead

of the name. We used the symbol "=" for this operator, in

GRAPHIC the kevword for it is DEFINE:
DEF 'L’ LINE FROM 'P1' TO 'P2’

A GRPAHIC-statement starting with the keyword DEF can be com-
pared to "statement functions” in FORTRAN. The general form of

the SET and UEF-statement is as follows:

SET name [ AS

] objectspecification
BEFINE 0BJECT [NAMED] name =

At this point only the form

SET AS
name [

OEF ] objectspecification

will be discussed. The other form will be treated in the con-

text of procedures (chapter 4.5.1).

"name” is a string of one to eight characters enclosed in single
quotes. All characters except the single auotation mark are
allowed, e. e. '"HAME', '123’, '-+%2', 'GOOJNAME'.

If "name” is not vet declared when the statement is sxecuted,
it will be imnlicitly declared within the block that contains

the statement.

The “"objectspecification”defines the chject that is to be com-
nuted and that is to be identified by "name”. Possible object-

specifications are described in the following chapter.

4.3 Object specifications

4.3.1 Granhical objects
4.3.1.1 Granhical elements

Cranhical elesments are specified bv use of the SeT or URF state-

ments.



All esraphical elements in GRAPHIC are situated in a rectangular
cartesian coordinate system. All specifications of coordinate

values refer to this svstem.

In the following syntax and semantics of the graphical elements
are explained. It should be noted that the valid syntactical
expressions, which describe a graphical element, may take the
nlace of any praphical object in other expressions of the

GRAPHIC laneguage. For this reason the following syntactical des-
cription does not show complete statements of the GRAPHIC langua-

ge such as

{SET} [{Af}] pornt [x] [ 11 [¥]  [-] 12

DEF

but only the expression for the graohical element.

The point

pornt [x] [-] 11 [v] [-] 12
"11" and "12" are the x- and y-coordinates of the point. All
input specifications representing a length (e. g. coordinates,
height of characters, radius of a circle) have the same form:
[ MM ]
CM
METER
real number INCHES ,
integer number FOQT

FT
YARDS
YD )

If the unit specification is omitted, a standard unit is used.
The standard unit is "METER” unless otherwise specified by a
previcus "STANDARD UNIT" statement (see chap. 4.7.2). Example

for the point specification:

SET '"P' POINT 2 3.5



L] [ [0 [ [] a2 [eese]

"text” is a text-string not containing single quotation marks

and enclosed in single quotation marks. The length of the

string is limited only by the fact, that the ICES-Command-Inter-
preter only allows a maximum length of 390 characters for problem

lanfuage commands.

Following the keyword "HEIGHT" the height of the characters may

be specified. The default value is 5 mm.

"11” and "12" are the coordinates of the left lower corner of
the first character in the string. "angle” is the angle between
the text-strine and the positive x-axis. In GRAPHIC, all angle-

specifications have the following form:

| rest [ecrees]] [ reet [mznutes]] [ reat [seconnd]
integer integer integer
real
RADTANS
inteper

o~
"real” and "inteser” are real constants or integer constants in
FORTRAN format.

If no unit is given, "DEGREES” is assumed. If a specification
for angle is missing at all, zero degrees is assumed.

Exampoles for text:

SET '"T1' TEXT 'THIS IS A TEXT' HEIGHT 3 MM 1 CM 2 CM 30 DEGREES
SET 'T2' TEXT 'TEXT2' 5 IN 10 IN

The axis

The axis snecification is used to specify a linear or lorarithmic

coordinate axis.

axis [ LINEAR ]



[with]  [orzsiy [x] [<] o I [<] 12 ]
[LENGTH 13]
[ANGLE  a1]

[

MINIMAL [COORDINATE] 14

1
[TITLE toxt] [{ ﬁéggT}]

NDRMED [ggﬂLING]}

MAXIMAL [CODRDINATE]

"LINEAR"” specifies a linear scaled axis, "LOGARITHMIC" a
logarithmic scaled axis, 1f both are omitted the default is
"LINEAR”. After "ORIGIN" the coordinates of the axis’ origin

are specified, the default values are x = 0, y = 0.

"LENGTH" is the axis’ leneth in paper coordinates (default:
0.2 METER)

"ANGLE” is used to specify the angle of the axis (default:

0 deorees). "MINI" and "MAX" must be specified, they represent
the minimal and maximal problem coordinate value, i. e. the
value to be written at the beginnineg and the end of the axis.
After the kevword "TITLE" a text can be specifi=sd thet is to

be written at the axis (default is no title). The maximum length

of the title is 80 characters.

"LEFT" or "RISHT" are used to inform the system whether the
annotation and the title shall be placed to the right (on the
clockwise side) or to the left (on the counterclockwise side)
of the axis. Default is "RIGHT". If "NORMED SCALING” 1s speci-
fied, the values for the minimal and maximal coordinates are
adjusted in a way that the numbers at the tick marks assume

rounded values. This is done only for linear axes.

The operation "TRANSFORMATION" (chapter 4.3.1.2) can be used

to transform any object into the space defined by two AXIS-ele-
ments. The operations "X-AXIS” and "Y-AXIS" can be used to
produce automatically suitable axes for a given object and a

piven size of a drawing (see chap. 4.3.1.2)



Examples:

SET '"XAX' AXIS OrRIGIN 2 2 LENGTH 20 MINI 2 ¥MAXI 15 TITLE '"X-AXIS'
NORMED

SET '"YAX' AXIS LOG ORI 2 2 LENGTH 30 ANGLE 90 MINI 1
MAXI 10000 TITLE 'Y-AXIS' LEFT

4.3.1.2 Graphical operations

Graphical operations, like granhical elements are specified using
the SET or DOEF-statement. An operation is performed upon eranhi-
cal elements and a result is computed, that can be referenced by
the name following the SET or DEF-keyword. In case of the SET-
statement the comnutation of the result is done immediately when
the statement is executed. The result of an operation specified
bv a DEF-statement is computed every time the name following

the DEF-keyword is referenced.

In GRAPHIC there are several object-specifications that mav be
element-specifications or operation-specifications. These are

the specifications for

- circles

- arcs

- polysons

- spline curves

- approximation curves.

£. ¢. 1f a circle is defined by 3 points, and all coordinates

of the points are given, this is the specifications of a circle-

element. If, on the other hand, one or more of the three points
are given by their names, an operation has to be performed in
order to compute the circle.

Circles

Circles can be defined in four different ways:

- by specifying central point and radius (1)
- by specifving central point and one periphery point (2)
- as a circle through three points (3)

- as the inscribed circle of a triangle (4)



CIRCLE [ 8Y]
1 3
(1) CENTER o1 [AND] RADIUS r
(2) ] CENTER p1 [AND] POINT p2 i
(3) [THE] [lﬂEEE] POINTS p1 p2 p3
(4) | Inscriven [cIRcle] [oF] [ TRIANGLE] [ wITH]  [POINTS]
-~ pl pZd p3 J
"r" is the leneth of the radius, e. g. 5 INCHES
"pi” are point objects - either given by their coordinates,
e. g. "3.5CM s CH", "X =2 Y = 3" or given by their names or
as a result of an operation, e. g. "'P1’", "INTERSECTION OF 'L1’
AND 'LZ2'",
Examples:
SET 'C1’ CIRCLE CENTER 'P*® RADIUS 15 MM
SET 'C2' CIR CEN 10 10 AND POINT ’P2’
SET 'C3' CIRCLE GIVEN BY POINTS 'P3’ X = 1Y = 2 'P4’
SET 'C4’ CIR INS 2 2 3 3 2 4
Arcs
Arcs can be defined in seven different ways, only four of them

wil

1 be described in detail below:

arc specified by central point, radius (or curvature) and
two angles (1)

arc snecified by radius, begin-point and end-point, an
additional choice between the large circle and the small
circle is necessarv (2)

arc siven by three points (3)

arc given by beein-point, end-point and arc length (4).



P3

(2) HRADIUS

P5

s PT
(3) (4)

Fie, 15 Wavs of soecifying arcs
Tven] [ev

CURVATURE ¢{ - -~ — & —7

DIUS LARrE
- [AND]
SMALL

e ]
o {DA oIS r }[ﬁmd] CENTER o1 [AND] ANGLES at AND a2
{CUPVATLQF

()| [T HE] THQEE] POINTS b4 05 06
9

INPOINT o7 [AND] ENDPOINT o8  [AND] LENGTH 1

"n1", "n2”", ..."n8" are point objects, they mav be snecified by
writineg their coordinates, names of existinc points or operations

deliverine a noint as a result.

"ang1” and "ang2" are angles specified either bv deerees, minutes,

seconds or radians or bv referrine to the ancls of a line, 2. ¢o.



"BIRECTION "L'”, if 'L' is the name of a line. After "LENGTH"

the arc length is to be specified.
Examples:

SET '"A1' ARC RAD 5 INCH CENTER 'C' ANGLES 30 DEGREES AND
DIRECTION ’LINET’

SET 'A2’ ARC CURVATURE 2. SMALL BEG 1.5 1. END 2.5 1.

SET '"A3' ARC GIVEN BY THE THREE POINTS 'P1' 'P2' 'P3’

SET 'A4' ARC BEG O O END 1 1 LEN 3.5

Polyeons, Splinefits and Approximation

Polyeons, splines and approximations can be specified in three

different ways:

~ by listing the coordinates of the points of the curve (1),

- by specifying a list of one or more existing objects, like
points or polyegons, through which a new curve is to be crea-
ted (2),

- by inserting a series of FORTRAN (IBM-E-level, /238/) state-

ments defining the points of the curve (3).

POLYGON [fCLOSED}]

OPEN
Lemne ({gge))
APPROXIMATION [0F] [ DEGREE n]  [INDEPENDENT [ VARIABLE] {é}]

[THroucH]  [THE] [Fortowing] [POINTS] coordinates: x,vy
[coordinates: x,y]*ENU

[Throusk]  [The] [FoLlowing] [coLLecTION] object

(object [,object]*)

Fortran-statements, assigning
values to X(1)... X(n) and to
Y(1) ... Y(n)

END

If "OPEN" 1is specified, an open polygon or splinefit is created;

if "CLOSED" is specified, a connection is established from the




last point specified to the first point, thus creating a closed
nolveon orsplinefit. If neither "OPEN" nor "CLOSED” is speci-
fied, "0OPEN" is assumed. Approximations mav not be closed. When
a splinefit element is plotted, a smooth curve is drawn through
the specified points, using a modified splinefit techniaue /5/.
Approximations are achieved by using bglynomials found by the
least square method. The independent variable for the approxima-
tion polynomial may be specified, default is "X". The user may
also g¢ive the deeree of the approximation polynomial, default

1

is 1 (straicht line). "n” must be greater or eoqual U, if 0 is
specified, a line representing the mean value is created.
"coordinates:x,y"” is a pair of coordinate values, e. g. "2 57,

"X 3 CM Y 1 INCH”.

"object” 1s an object of the types: point, line, polygon, spline-

fit, approximation.

Examples:
SET 'P1' POL 1 1 22 33 3 2 3 1 END

Note: This statement is the only exception to the rule that
only 4 continuation cards are allowed in the GRAPHIC languacge.
While listing the coordinates of the points of a polygon, a
spline or an approximation any number of cards may be used. A

continuation hyphen is not reguired at the and of a card.

SET 'P2' POL '"SPLINFIT'
SET 'P3' POL CLOSED ('POINT1' 'LINE1' 'POLY1' ' POIIT2')
SET 'P4' POL WITH 10 VALUES

no 1 I =1, 10

X(I) = I/10.

Y(I) = EXP(X(I))
1 CONTINUE

END

SET 'S1' SPLINE 'P4°

SET 'S2' SPLINE CLOSED 171 12 23 3 2 3 1 2 0O END
DEF ’'S3'" SPL ('P1’ POINT 5.1 5.3 'POINT1')

SET 'A1' APPROXIMATION DEGREE 3 TROUGH 'P4’



- 34 -

SET 'A2' APP INDEP VAR Y ( 'POLY1' 'POLYZ2' )
SET 'A3' APP INDEP Y DEGREE 2 WITH 10 VALUES
bo1 I =1, 10

Y(I) =1
1T X(I) = ATAN(Y(I))
END

The following graphicel objects are always considered as opera-

tions.

Obtaining points and lines out of polygons

There are two GRAPHIC-operations, namely the NPOINT and the
NLINE operation, which can be used to obtain the nth point or

the nth line out of a polygon:

[ FORWARD
, . ) ,
NPOINT n [ - ] [out] [0oF] polygen
J’EQEWARD
NLINE
NLINE n [ BACKWARD [DUT} [DF] polygon

“

The nth point or the nth line from the beginning of the polygon

is created, if "FORWARD" is specified. In the case that "BACKWARL"
is specified the counting of points or lines starts from the

end of the polygon. "FORWARD” is the default-value. The expres-
sion "oolyeon” must be a polygon-specification.

Examples:

SET 'P1' NPOINT 5 OF 'POLY’

SET 'P2' NPO 1 BACKWARD OF 'POLY'
SET 'L1' NLINE 3 BACK 0OUT OF 'POLY’
DEF fLZ27 NLI 40 'POLY?

The line

The line operation is used to create a vectorial linear connec-

tion between two points.

Line [FRov]  pt o [TO] 2

1 3

01" and "p2” have to be point objects, i. e. point elements,

names of points or operations producing a point.



Examples:

DEF '"L1" LINE FROM 'P1' T0 'P2°
SET 'L2' LINE FROM 'P3" TO POINT 1. 1.5
SET 'L3’" LINE FROM INTERSECTION OF 'L1' AND 'LZ2' TO 'P4’

The semicircle

The semicircle operation serves for creation of a semicircle

from one point counterclockwise to a second point.

Pe P 1

Fig. 16 The semicircle

SEMICIRCLE [FROM] p1 [TO] n2

"p1" and "p2" must be point objects.

Examples:

SET 'S1' SEMICIRCLE FROM POINT 10 CM 10 CM TO POINT 20 CM 10 CM
DEF 'S2' SEM 'P1" 'P2?

The intersection of two curves

The intersection operation is used to find the point(s) of
intersection between two lines, a line and a circle or two
circles. In the first case the result is a point, in the latter
cases the result of the operation is a line,it’'s startine point

and end point being the two intersection points.

BETWEEN AND
TNTERSECLTTAN [ ] ob [ ] ob?
T oF

"ob1” and "ob2"” may be lines, polvgons, circles or arcs. Arcs

are treated as if thevy were a circle, i. e. they are expanded to



a full circle. Polveons are treated as if they were lines, only
the straieht line connecting the first and the second noint of

the polveon is taken for comoutation of the intersection point(s).

We feel that it would be desirable to have a generalized inter-
section operation, delivering as a result all points of inter-
section of all kinds of curves (splines, arcs, lines, polygons,
etc.) and delivering no result (the undefined object, see chap.

5. 1) if there is no intersection.

Example:

SET '"L1" LINE '"P1" TO 'P2°

SET 'L2' LINE 'P3’ T0O 'P4’

SET "I1'" INTERSECTION OF "L1' AND 'LZ2°

SET 'C' CIRCLE CENTER 20 CM 20 CM RAD 10 CM
DEF 'IZ2' INT 'L1’ 'C’

The extreme element

This operaticon is used to copy an unnamed element of a named
object. To extract such an element it is identified by its rela-
tiveposition: "the uppermost”, "the leftmost”. By this way vyou
can define a polyeon by its points and extract a line, if it

does have an extreme position.

EXTREM ELEMENT [ AS]
LOWER LEFT ]
UPPER [ RIGHT POINT
[ LEFT [ UPPER ] LINE
RIGHT LOWER

"onject” mav be any kind of single object or a collection, if

[0F] object

vou seek a point (POINT); "object” must be a single object or a
collection containing lines (such as a polygon), if you seek a
line (LINE).

The attributes upper, right, left, lower refer to the basic

coordinate svstem.

The position of a line is given by the position of its central

pnoint.



Example (see fip. 17)

SET 'COL' ( POLYGON CLOSED 2 2 6 2 6 4 2 4 END CIRCLE CENTER 4 2
RADIUS 1)

SET 'P1' EXTR UP POINT r'COL'’

SET P2’ EXTR UP RIGHT POINT 'COL’

SET 'P3’ EXTR LOWER POINT 'COL’

SET '"L' EXTR RIGHT LINE 'COL’

\r Z& n" W W "
P1 P2t .
n "
/—\ L P\\ C D L. "
\x/ )
A1 P 3 "w
Fig. 17 Usaege of the EXTREME-ELEMENT specification

Shades

The shade operation is used to specify shading of areas surroun-
ded by polygzons. A shade may be specified in one polygon or
between two polygons.

SHADE

[01sTANCE [0F] [ L1nEs] dist] [ANGLE angle]

12 o N

BETWEEN ob2 [AND| ob3

"dist” represents the distance between shading lines, default is

5 MM. By "angle” the inclination angle of the shadine lines can



be specified. If the ANGLE-option is omitted, 45 degrees is the

default value.

"ob1”, "0b2"” and "ob3" have to be polyegon objects. If shading
IN a polveon is specified, the interior of it is shaded. If
"ob1" is not a closed polygon, it is converted to a closed one

by connecting it’'s first with it's last point.

If shadine BETWEEN two polyeons is specified, the first points
of both and the last oboints of both are connected, thus creating
a closed area to be shaded. Shading BETWEEN two closed polygons

can be used to create windows in a shaded area.

Examples:

SET 'P1’ POL CLOSED O 0O 4 0 4 4 0O 4 END

SET 'P2’ POL CLOSED 11 21 2 2 1 2 END

SET 'S1' SHADE DIST 0.1 INCH ANGLE 30 DEGREES IN 'P2’
PLOT( 'St 'P2" )

- The result is shown in fig. 18 a) -

SET 'S2' SHADE BETWEEN "P1'" AND 'P2°
PLOT( 'S2" 'P1" "P2" )

- The result is shown in fig. 18 b) -
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13 Shades
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The x-axis and y-axis operation

These operations are used to generate automatically suitable
coordinate axes to a given object (or a collection of objects)

for a specified size of the drawing.

X-AXIS [ LINEAR ]
Y-AXIS LOGARITHMIC
UPRIGHT

DTN [A] din {gmoAnSHEET ]
DIMENSIONS dimx  dimy

[ ON

[ TITLE text ] [10] object

Either a linear scaled (LINEAR is default) or logarithmic scaled
(LOGARITHMIC) axis is created, horizontal if X-AXIS is specified,
vertical if Y-AXIS is specified. The situation of the axes on

the drawing is shown by fig. 19.
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Fie. 19 Situation of axes created by the X-AXIS and

Y-AXIS operation

The dimensions of the drawine are taken from the specifications
after the keyword ON. "DIN A din”, where "din” is an interer

from 1 to 8, rsfers to the German standards for papershest for-



mats (DIN A 1 = 584 mm x 841 mm, DIN A 2

is half of DIN A 1, and so forth). After the keyword "DIMENSION®
explicit dimensions of the drawing can be specified. If a dimen-
sion specification is omitted, the values are taken from the
latest executed size-of-drawing statement [(OPEN PLOT-statement,
see chan. 4.4) or from the builtin default values, if no size-

of-drawing statement has occured since the beginning.

After "TITLE” a text to be written at the axis mav be specified,

"text” is a strine containine up to eight characters and enclosed
in single quotes. If "TITLE" is omitted, "X-AXIS" is default for

the x-axis, "Y-AXIS"” for the v-axis. The coordinate values to

be written at ths tick marks of the axis are taken from "object”,

which mav be anv object or a collection of objects.

The TRANSFORMATI(ON-opneration (see later this chapter) mav be used
to transform an object in a wav that it's size and position will

corresoond to the notation at the axes.

Examples:

OEF "AX1' AS X-AXIS TO ( 'OB1' " 0B2' '0B3" )
DEF 'AX2' Y-AX LOG TITLE 'PRESSURE®' TO ( '0OB1' '0B2' '0DB3' )
SET "AX' X-AXIS ON DIMENSIONS 10 INCH 15 INCH TO 'POLYGON'

The plot-specification operation

In order to spnecifv olottine options for an object, like point
svmbols or line tvoes {dashline, centerline, e. ¢.) the spbeci-

fication operation can be used.

SPECIFICATIONS {{25}]

THROUGH
CENTERLINE
[QpRVETYPE DASHLINE [§XﬁBOLNUMBER number} [kﬁNGTH 1]
DOTTED
WARKED

[every n] [awn] [HEIGHT height] [0F] object



The five linetynes are:
THROUGH

CENTERLINE l /= - —_— — —

NAS = —_— —
DASHLINE ' |
NOTTED x x x

MARKED * * X

X
X
*
*

Default is "THROUGH”

In the case of "CENTERLINE" and "DBASHLINE" the distance from
the berinnineg of one dash to the becinning of the next one may
be specified followine the keyword "LENGTH®. The default value

for "17 1is 100 mm.

In the case of "DOTTED” and "MARKEDR" curves, thes "SYMBOLNUMBER®
and the "EVFRY” ogntions can be used. Bv "SYMBOL” the number of
a noint svmbol is given. Which number refers to which svmbol
depends on the plotter used. In our installation, the Calcomp
conventions are followed /5/. By use of the "EVERY" ontion the
svstem 1is informed that a symhnol is to be plotted at every nth

data noint. The default value for "n” is 1.

The "HEIGHT" option is used to specifv the heieht of the point
svmbols. All the ontions can be used for line and polveon ob-
jects. For snlines and approximations only the THROUGH, DOOTTED
and MARKED curvetvnes are possible. For texts, the HEIGHT ontion
may be used for chaneine the heieht of characters. The "SYMBOL-
NUMBER™ and the “HEIGHT”, ontions are used for specifyvine the

kind of repressntation of point objects.

Examnles:

SET 'POL" SPECIFICATION OF CURVETYPE DASHLINE OF POLYGON
o 11 20 END

SET 'CEN' SPECIFICATION OF CURVETYPE CENTRALLINE 0OF LINE FROM
P T TR2Y

SET 'SPL’ SPECIFICATION OF CURVETYPE MARKED SYMBOL 3 EVERY 5
HEIGHT 0.1 INCH 0OF 'SPLINE'

NEF 'P1" SPEC SYM § HEI 7.5 MM 'P?

SET "BIGTEXT' SPEC HEIGHT 10 INCH 'SMALLTEX?



The followine onerations are used to specifv linsar transforma-
tions to be carried out with eraphical objects. These onerations
are:
- 5hiftine an object in x- and in y-direction
- Enlareement or diminution
- Fotation
- Transformine an objiect in a way that two points of it will
be placed uoon ftwo specified points on the drawing.
- Transformation of an object in a wav that it will correspond

to the notations of two oredefined coordinate axes.

In GRAPHIC there is no statement that can be used to chanege di-
rectlv the value of an object. Such 2 feature could be compared
to a statement like "increment I by N;” in some lanecuages.
Instead an operation can he performed on an object and the value
may be assiened avain to the name of this object. The correspon-
dine statement in a mathematical operation language would be:

T I+ N

Shifting
This operation may be used to create an object that is a copy
of another object, shifted in vertical or horizontal direction.
SHIFTING

TOMARD o1

[8Y] [¥] [=] xshiet [¥] [=] vshift [0F] object

I+ "TOWARD” is specified, "p1” must be a point object, and
"obiject” is shifted bv the x and v-coordinate values of this
noint. IF TOWARD is not specified, the wvalues bv which "object”
is to be shifted have to be specified explicitely. "Object” may

be anv obiject, including a collection.

Exampnles:

OEF ' 0B1" SHIFTING TOWARD 'P1' OF '0B2°7
SET '0833" SHIFT X = 2 Y = 3 0OF '0B3”
SET '0B4’ SHIFT 5 Ci1 4 CM ( '0B5' '0OBs' '087' '0B8' )



Cnlareement and diminution

These operations are used to create an enlareged or diminished
coov of an obisct. The center of the linear transformation,
i. e. the noint of the obiect that does not chance it's position,

an be specified.

DIMINUTION 7]

Cc
{ ENLARGEMENT

FacTor] [x] [=] #aex [Y] [-] facy

“facx” and "facv” are the factors bv which "object” is to be en-
larged or diminished. "object” mav be anv kind of graphical ob-
ject. An enlargement by factors fx and fv delivers the same re-
sult as a diminution by factors 1/fx and 1/fy. If "RESPECTING”

is specified, the center of the diminution or enlargement is the

"p1", which must he a point object. If RESPECTING is not speci-
fied, the center is the point x = 0, v = 0.
Examoles:

SET 'A’ ENLARGEMEMT BY FACTORS 2.5 5.0 OF 'A’
DEF 'R’ DIMINUTION 10 10 RESPECTING TO 'P' OF ( 'B1' 'B2' 'B3' 'p’' )
SET 'C’ ENL 2 2 RES INTERSECTION OF 'L1" AND 'L2' OF ( 'L1" "L2" )

The enlargemznt and diminution operations can he used for mir-
roring, too. Mirrorine is achieved by specifving necative en-

lareement factors.

Fxamnles:
SET '"A1' ENL -1 1 A
(Mirroring at the y-axis)
SET 'AZ2' ENL 1 -1 A
(Mirroring at the x-axis)
SET "A3' ENL -1 -1 RESPECTING 7O 'P’' of 'A!

(Mirrorine at noint 'P')



The rotation

.

ihe rotation operation is used to produce an object bv rotating

another object around a given point.

ROTATION
[8Y] [ANGLE] angle
[BY] nI1RecTIAN [OF] lineobiect [ -----
[ OF] obiect

The angle of the rotation can be specified in two ways. Either
it is given directlv in deerees, minutes, seconds or radians or
it is taken from the inclinsation anele of a specified lineobject.
In the latter case the kevword "DIRECTION” must be used. The
noint around which the rotation shall take place may be speci-
fied following the kevword "AROUND". If this option is omitted,
the central point of the rotation will be x = 0, v = 0. “object”

may be anyv eraphical ohiect.

The image operation

This is a special transformation operation that transforms an
object in a way that two specified noints of the obiect are
nlaced upon two specified points of the drawineg. This is achie-
ved by shifting and enlareine the obiect in a suitable wavy. No

rotation is oerfaormad.

DRAWING
OBJECT PAPER

PLIX1,Y1)

PLX1, Y1)
X

X

5
AW
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AV
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X

P2%X2¥T23

Fip. 20 The imase-oneration



;E'J anciLAr [secTor] [x] x1 [v] v1 [ o] [x] xz [¥] v2
accornins [1a] [x] xa1 [on] [x] x1v [awc] [v] yv1 [oa] [¥] w1
[ano]  [x] x2 [an] [x] x2 [AND] [v] vz [on] [Y] v

[WF] obiect

If the kevword RECTANGULAR 1is specified, the points P1 (x1, vy1)

and P2 (x2, v2) of the object will be placed on the left lower

corner of the drawing and the uoper right corner respectivelv.
he size of the drawineg must be defined by a pbreceding OPEN PLOT

statement (see chap. 4.4).

the keyword ACCORNDING is used, the points P1 (x1, y1) and

0 A
+

iNJ

(x2, v2) of the obiject will be placed upon the points

6]
N

(x1’, v1') and P2 (x2', v2') of the drawine. “nbiect’ mav

b2 anv oranhical obiect, includine 3 collaction.

Examnles:
SET "IM1r IMAGE RECTANGULAR 0O 0 AND 10 10 0OF ( '0B1' '032° '0B37

SET "IM2" IMA ACCO=DING TO 1 ON 1 AND 1 ON 1 AND 150 ON 10 AND
250 ON 20 OF 'DRAWING'

The transformation operation

This aperation can be used to transform an object in a wav that
its situation on the drawine will correspond to the notation

nf two nredefined coordinate axes.

TPANSFARHATION
[10] [axEs] ax1  [ANO]  ax2 [OF] object

"ax1” is to he the x-axis for the object,

"ax2" the v-axis rssnectively. The two axes need not hepin at
the same noint nor need thev bs rectansular to sach other. fOne
or both of the axes mav be of logarithmic tvpz2. They must not he
narallel. Fie. 21 illustrates the effect of the transformation

oneration.

)



OBJECT AXES AND
TRANSFORMED OBJECT

(DASHED LINES FBR CLARIFICATIGN ONLY)

P (100,200) P (200,200
P (100, 100} P (200, 100)
7
/
/
/
/
¢ t t e
100 200
Fie. 21 Result of transformation-operation

"obiect” may be anv graphical aobject, includine a collection.
However, texts and axes cannot be completely transformed lova-
rithmicallv. The logarithmic transformation, if recuired, will
transform in these cases only the oriein and the anele of texts
and oriein, leneth and anele of axes, but will not chanee the

shane of these obiects.

The transformation oneration is verv often used to fit anv ob-
ject defined in some nhysical coordinates (as temperature or
nressure) into the size if a sheet of paper. It is advantage-
pusly used in connection with the axis specification or the

x-axis and v-axis oneration.
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Examples:

SET "TAX1' AXIS ORIGIN 1 1 LENGTH 20 MINIMAL CODRBDINATE O
MAXIMAL COORD 250 TITLE 'T(SEC)’ NORMED SCALING

SET '"AX2' AXIS L2C ORI 21 1 MINI 1 MAXI 1000 TITLE 'P(AT™M)!

SET 'TRANS' TRANSFORMATION TO AXES 'AX1' 'AX2' OF 'ANYOB’

PLOT ( "AX1' 'AX2' '"TRANS' )

SET ’"XAX' X-AX TO ( 'OB1' '0B2’ )

SET '"YAX' Y-AX TO ( '"OR1' '0B2’ )

SET "TRA' TRANS TXAX' 'YAX' OF ( 'OB1' '0B2’ )

PLOT ( "XAX' TYAX' '"TRA' )

4,3.7 Logical-arithmetical obiects

Logical and arithmetical variables
introduced into GRAPHIC since they

statements, like 000 and IF. In the

not opossible to use an arithmetic element, i. e.

instead of a number in
POINT CM 'Y’ CM). This

a variable,

SET A X!

however.

and operations have been

ara needed in proeram control
present implementation it is
the name of
eraphical statements (e. «.

feature would be desirable

4,3.2.1 Loeical-arithmetical elements

RPeal numbers,

lopical values are logical-arithmetical elements.

specified using the SET or the DEF

The loeical values are either TRUE
must not be declared,

use of an element name.

real number
integer number
TRUE

FALSE

integer numbers (in a FORTRAN-like

it is declared

sense) and
Thay can he

statement.

or FALSE. The

implicitelyv

element tyoe
by the first



Examples:

SET '"A' = 144 A’ will be an integer element
SET '82' = 3.14 "B’ will be a real element

SET 'C” FALSE 'C*' will be a loeical elemant

4,3.2.2 Lovical-arithmetical operetors are listed below:

+ (plus) prefix operator

- (minus) prefix opsrator

#K (exponentiation)
X (multiplication)
/ (division)

+ {addition)

- (subtraction)

The followine loerical ooberators may be used in logical expres-

sions:
= (not) prefix operator
2 (and)

infix ooerators
! (or)

Comparison operators:

= (equal)

-1 o= (not esqual)

> (ereater than)

1> (not er=ater than)
< (less than)

< (not less than)

Lorical-arithmetical elements and operations are used to form
exnressions, the same rules have to be apoplied as in hiecher
level lenvuages like ALGOL or FORTRAN (e. ¢. for the priority

of the onerators).

Examples:

SET 'A' = 'B' + 'C!
SET 'A1' = 'B1’ > 'B2' | 'C1’ ~> 2 & ‘D1
SET I‘Azl = ( i"{\»]l + 2 — l[\}! ) HK IAZI

DEF 'SUM' = 'A' + 'R’ & 'C’



4.3.3 Mestineg of object specifications and collections of

obiects

Some examnles in chanter 4.3.1 already indicated that object specifi-
cations mav bs nested in the GRAPHIC laneuage. In those cases
where anv obiect is sllowed in the description of the statements,

one of the followingz can be specified:

- a egranhical element (POINT 2 3)

- a granhical oneration (SHIFTING OF 'A’)

- a2 name representing a graphical ocbject ('A')

- a collection of objects ((POINT 2 3 SHIFTING OF 'A' 'A')).

=

caollecticn is a compoilation from a number of existing objects.
After the execution of a collection command the membhers of the

collection can be referenced by one name.

cotecTion]  [oF] ¢ obsect [roniest T

SET 'C' COLLECTION OF ( 'D* 'E' 'F' )
SET 'C1' ( 'D1' 'E1' "F1' )

The collection obiect, consisting of a list of objects enclosed
in a pair of narenthesis, can be used in many statements instead
of A single object. These cases are specified in the statement

descriptions.

In cases where onlv special kinds of obiects mav be specified

(e, @. a noint obiect), thev can be g¢iven by:

- an anpronriate element (POINT 3 2)

- the name of an anpropriate element ('A')

- an operation deliverine as a result an approoriate elemaent
(INTERSECTION OF 'C1' and 'C2')

Mestines and collections make the SRAPHIC language extremely
flexible. There is a restriction of the level of nasstinas due
to the restrictinon of the level of recursive calls in ICES-CDL.
The maximum level allowed denends upon the aoperations thet are

nested. & level of ten will be accepted in most cases.

Example: The arrow 'AF’' shall be nlaced in the dotted position

above noint 'P' rectancular to line 'L’ in figure 22.
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Fio, 22 Shiftine and rotating an object

This mav be achieved bv the statement:

SET "NEWARROW' SHIFT TOWARD SHIFT 0O 2 OF 'P' OF ROTATION
90 DEGREES NOF ROTATION DIRECTION L' AROUND '"PA' TF 'AR'

4.4 Outout statements
OPEN PLOT

This statement iz used to inform the system that the following
vranhical outouts are to be placed on a new drawing. The left
lowzr corner of the new drawing is the zero point of the coordi-
nate svstem used for the esraphical obiects. The size of the
drawine may be specified in the OPEN PLOT statement. A drawine
is a rectancular sector of the paper. The different drawines
created by a GRAPHIC orogram are placed on the naner sheet in

a way that they will not interfere with each other and use the
naner (almost) as e¢ood as possible. In the first executed OPEN
PLOT statement of a GRAPHIC nrogram the paner tvoe (white or

~ranh paner and the pen tvpe (balleoint or ink) mwav he specified.



aPen [PLOT]  [9n] [ FORMAT]

UPRIGHT
PIM [A] din $ qaaansHEET ]

5178 [¥] [=] «xsize [Y] [=] wvsize
W] GRAPH BALLPOINT
S teeed e ({5

The value after the kevword "JIN" refers to German paoer sheest

—

! —
=
_.‘
xI

formats, after the kevword "SIZE" the size of the drawine may
be snecified exnlicitelyv. If neither "UPRIGHT" nor "BROADSHEET”
is snecified, the "UPRIGHT”-format is default. If a size soeci-
fication is omitted, the size is taken from the foreroing OPEN
PLOT-statement. By writine "GRAPH" or "WHITE" the naper tvos

is selscted, the “BALLPOINT” or "INK” specification serves for

selectine a nen.

Examoles:

OPEN PLOT ON DINM A4 WITH WHITE PAPER AND INK
TPFN

JP SIZE 5 INCH 19 TNCH

nr

9P DIN 5 2RNOAD

The PLOT statement

The PLOT statement is used to plot esranhical objects. A scisso-
rine oontion can be snecified if only & rectancular cut out of
the obiject is to be nlotted.

pLT [Lwrth] cut [x1 [=]  x,

[anD] [x1 [=1 =,

[0F] obiect

-~
< <
| TS W W |
1§
e =
P
N
| M|

If CUT is snecified, onlv those parts of "obiect” are nlotted
that liewithin the frame. that is defined bv P1(x1, V1) and

PZ(xz, V2) {(see fipg. 23).
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Fie. 23 The scissoring feature

"object” mav be any eraphical object, includine a collection.

Examnles:

PLOT "AY

PLOT CUT 10 10 20 30 ( *A" 'B" 'C' )

PLOT SPEC SYMBOLTYPE 5 HEIGHT 10 MM INTERSECTION QF '"LINE1!
AND *LINE??

The PRINT statement

This statement serves for printineg losical or arithmetical
values on the printfile. It may be used for program control or

test nurposes.

PRINT arithmetical-or-logical-expression

Examnles:

SET 'A’ = 3

PRINT 'A' (prints: 3)
PRINT "A'" + 3 - 'A' %% 5 + 10 {orints: -227)

PRINT "A" =5 (prints: FALSE)



4.5 Procedure and Declaration Statements

4.5,.1 Definition and invocation of procedures

A number of GRAPHIC statements may be combined to form a nroce-
dure by nlacine a PROCEDURE statement in front of them and an
END statement at the end. A CALL statement is used to invoke
the nrncedurz. A orocedure has to be defined before it can he
called (this is due to the interpretative nature of the exe-
cution of CRAPHIC statements).

Procedure definition:

PROCENURE name [ foar [, frar %) ]

CRAPHIC-statements

END [RETURN obiect]

Procedure call:

CALL name [( anar [,aoar ]*)]

A nrocedure mayv be defined with (formal) narameters. Evary for-
mal parameter "foar” is reoresent=d by Aa name, 1. e. bV one
throueh 8 characters enclosed in sinele cuotes. Th2 appearance
of a name in the list of formal parameters of a PROCEDURE d=-
finition implicitly declares this name as local to the oroce-

dure.

When a nrocedure is called, the same number of actual ovarameters
must he srecifizd in the list of actual parameters “anar”. (The
term "areument” is avoided here, because it is used in a diffe-
rent sense in the GRAPHIC data structure.) Everv actual nerame-
ter has the form of a e¢ranhical or loeical-arithmetical obisct.
Unon execution of a call svery formal naramgter is implicitlv
OEFINED as its correscondine actual parameter. ("Call by refe-

rence” accordine to /30/).

Thus

pEAC TPLOTY ( AT )

PLOT RATATION 30 G0 OF TAY

END

CALL 'PLOT" ( POLYGON 1 1 2 2 END)



is enuivalent to
PLOT ROTATION 30 DOES NF POLYSON 4 1 2 2  END

Pasults mav be returned from the called nrocedure to the calline

nrocedure in three ways:

- bv returnine one obiect as a result of a function proce-
dure call

- by assienine values to the actual narameters of the nar-
ticular call

- bv the use of =zlobal names.

Functional orocedures ars characterized by the keyword

PETURM (followed bv an object specification) followinz the END
word of the END statement of the procedure. Functional proce-
dures are called by usine the correspondine CALL statement as

an expression (or object) in a GRAPHIC statement.

Thus

PROC "ROT' ( "WHAT’ TARJQUMD® )

SET "WHAT' ROTATION 20 0OFG ARJOUND 'AROUND' OF 'WHAT?
END RETURN (0 "WHAT?, TEXT "WHAT' )

PLOT CALL "PLOT" (C POL 1 1 2 2 END, POINT 1 1)

is enuivalent to

PLOT ( RATATION 30 NEC AROCUND POINT 1 1 OF PCL 1 1 2 2
END, TEXT "WHAT' )

NMne should note that the CALL alwavs imolies an evaluation of
the obiect returned from the called nrocedure to the level of

an 2lement {e¢raohical, locical or arithmetical).

Since formal parameters are considered to represent local names,
assienment of a value to a formal parameter does not affect the
corresnondine actual parameter. E. g. in the preceeding example
"WHAT' 1is en object which is completelv contained within is

procedure block. However, the second form of the DEFINE and SET

statement permits this operation.

ODEFINE AS o )
gE;‘ OBJECT [NAMED] name [ _ ] objectspecification



The exnression
NEJECT NAMED name

descrikes an oreration which when executed, delivers the ohiject
vihich (At this time) has heen defined as this name. Provided
that the ochiect found acain is a name, then the SET or DEF
oneration will use this name as the one to which a value is
assioned. As an examnle,

CJEFINE '"A' AS 'HY

SET 023 '"A' = FOQINT 1. 1.

is =2nuivalent to
SET '8 o= POINT 1. 1.

Since calline a procedure imolicitly means a definition of the
formal parameters, this type of statement can be used in a pro-

cedur2 to rsturn objects through the parameter list.

As an examnle

PROC 'sumr (orAr om0

SET OBJECT '8’ ROTATION 90 OEG OF A

END

SET "A1' POINT 1. 0.

CALL 'sig" ( "A1" "B1" )

is gauivalent to

SET 'B147 = ROTAT 940 OEG OF A1

)b jects mav be passed to and from a nrocedure also by use of

names valid in the outer block, i. e. g¢global objects. Global

nbjects must ke declared nrior to the definition of a brocedure.
Fxample:

SET AT POINT 1 2

JECLARE '8

PROC 'C!

SET 'RT SHIFT 1 INCH 2.5 TINCH 2F 'A'
END

CALL '



is eauivalent to

SET 'B' SHIFT 1 INCH 2.5 INCH OF 'A’

Howaver, if "B’ had not been declared (or implicitly declared)

arior to the PROC 'C’' statement, then 'B' would be local to

¥ ¥

and the call 'C’ statement would have no affect in this

i~
("

examole.

4.5.2 The DECLARE statement

This statement is used to make names of objects local to the
hlock in which the DECLARE statement is situated. If they are
used in the outermost hlock, the names are made ¢lobal. The
IMITIAL ontion serves for assiegning an initial object to the
name.

NECLARE name [INITIAL ohiect]

[neme [INITIAL obiect] [*

Examples:

Valid objects

DECL "A' 7B’ INIT POI 1 2 'C7 "A', 'B'point, '6'1

REGIN

NECL '"B' INIT CIRCLE CENTER O O RAD 1 'A', 'B’circle, ’6’1

DECL 'D "A', 'B'circle, 'C'q, D’

PROC 'C! "A', "B'circle, 'D’, 'C' local
OFCL TR AT, 'B'new, 'D', 'C' local
EAD '"A', ’'B'cirele, 'C’procedur=
END A, 'B’point, ’C'1

4.5 Frogram control statements

4.5.1 fNo-loons

Do-loops are used if a numbzr of statements shall be repeated

several times.

arith. exor. [TIMES]
00 o

WHILE log. expr.

number-of-GRAPHIC-statements

END



In the first form of the DD-statement, the arithmetic expression

"arith. expr.” 1is converted into an inteeer value i before the
eroup of statements between DO and END are executed for the
first time and the statements in the 00-sroup are executed i

times.

If "WHILE” is snecified, the logical expression "log. expr.”
is evaluated and, if the value is TRUE, the DO-group statements

7

are executed. Then "loe. expr."” is evaluated again. The D0-group
is executed successivelv until the evaluation of "log. expr.”

vields the value FALSE.

00 10 TIMES
CALL PLOTOB ( "A' )
SET "A' SHIFT 1 2 OF '"A?

END

SET 'A' = 2,

SET 'C' = 20

no WHILE '"A' > "R’ & 'C' > 0N
SET 'C' = 'C" - 1

SET 'A' = 'A' 4+ 0.1

CALL 'EVAL" ( '0OB' 'A’ 'B' )
SET 'NB' ENLARGEMENT 1.1 1.1 '0B’
END

4,.6.2 IF-THEN-ELSE-FI

The IF-statement is used to exescute a piece of oprogram depending

on the result of a logical expressiaon.

IF log. expr. THEN statement
[ELSE statementZ]
FI

H

If the evaluation of the logical expression "log. expr.” vields
the value TRUE, the statement "statement1” is exscuted. Other-
wise, if "ELSE" is specified, the "statement2” is executed. If
“ELSE" is omitted, "statement1” is only executed in the case
that the result of "log. expr.” is TRUE, while no oneration is

executed for a “loe. expr.” resulting in FALSE. "statement1” and



"statement2” mav be singles statements or a group of statements
between "D0” and "END" or a block between BEGIN and END.

Examples:

IF *A' > '"B' THEN DO

CALL *AGTB’

END

ELSE CALL 'ALEB’
FI

IF A & 'B’ & 'C' & 'D’ THEN DO
PLOT ( "PA' 'PB" 'PC’" 'PD* )
OPEN PLOT

END

FI

4.7 System commands

System commands are GRAPHIC statements that are executed imme-
diately wherever they are specified, even in the definition of
a procedure. System commands perform some kind of action. They

do not deliver a result.

4,7.1 The TAKE OVER statement

This statement serves for taking over graphical information from
an interface file previously written by a program producing a
nlot output. Special routines intercept all calls to the plotter

software and instead write information on the interface fils.

By exescutine the TAKE OVER command, graphical elements are
created from the information on the interface file and a name

is egenerated for everv one of the elements. The name for the
collection containing all the elements taken over must be speci-
fied. The eenerated names of the single elements can be displaved

bv a successive plot-statement.

TAKE [DVER] name [FRAM] [FILE] [nn]

"name" is the name of the overtaken graphical collection. If
"nn" is specified, this number refers to the interface file with

the DD-name "FTnnF301". The default value for nn at oresent is 13,



The names oenerated for all single elements of the e¢ranhical
collection start with the first three characters of "name’.
After the TAKE OVER command is executed the object with the
name 'ZEIGNAME' contains a collection of texts, renresentine

the ecenerated names.

If '"ZEIGNAME' 1is nlotted toeether with "name”, the eenerated

names will be written at the annropriate graphical elements.

Examples:

TAKE OQVER TPICTUREY!

PLOT SHIFT 3 C¥M 3 CM ( "PICTUREMT' 'ZEIGNAME' )
OPEN PLOT SIZE 10 19

TAKE 2OVER 'PICTUREZ’ FRCM FILE 14

PLOT SHIFT 1 1 OF 'PICTUREZ’

4,7,2 Time, Standard, Test, Trace

TIME

This command prints out date and time on the standard printfile.

Examnle:

TINE

Standard unit

The standard unit command i1s used to chanee the unit taken for

leneth soecifications, 1f no unit is specified exnlicitelvy.

—
O
I

~

sTANDARD  [LNIT] .

Example:

STANDARD UNIT €%

SET 'A’ POINT 1 2

SET 'B' TEXT 'ABC' HEIGHT & "M 1 1
STAN INCH

SFT 'C' POINT 5 5



The test and trace commands

These commands are used foar testine and debucoine nurnos

nev Featuras are to be incoroorated into the GRAFPHIC svystem.
lete list of data containend in the
datas nmol in a raadsahle form (the orintine routines ussd ars

dascribed in /3, 10/).

The command: TRACE

switches on or off a trace of svhroutine calls. A messace is

nrinted a2t the becinnine and hefore the end of everv subroutina.

I+ "TIME" is specified, at the end of a subroutine CPU-time and
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ce the start of the job are orinted out additio-

4.7.3 Storage and retriesval of eraohical information

The users of the ORAPHTIC-svystem have the possibility to save and
ratiave ecranhicael information. In many situations it is conveni-
nt to store the content of the Granhical Data Pool (GOP) and
thus the rranhical task for a lone period. When, durine the nro-
cass of testine a GRAPHIC-oroeram, the eraphical information is
keot on a secondarv storaege device, only incorrectlv snecified
obijects have to be radefined in a new task. This wav the proces-

S5ine time for comnosine a drawine can be reduced.

For these operations a sequential dataset is established. This
dataset mav contain several GRAPHIC-records. Each renresents

the content of the GOP of one task and is identified hy a nams2
included in its head. The records are written with the programs
tfor dynamic arrav - I/0 /8, 10/, which renuire a logical record

leneth of 80 bytes in the dataset.

1.7.3.1 The PFSERVE- and BELEASE-statement

In order to chanece libraries or any dataset in the normal job-
stream in a "WT or MFT environment, it is necessarv to ressrve

the dataset for exclusive use for this time.

"ESERVE| | DSHAE - nIsk
(4 oaTaser ¢] dsnamer [0n] [ ] " volume:
RELEASE FILE VOLURE =

[viTH]  [nnave] ‘ddname’



These commands enable the GRAPHIC-proorammer to use the capna-
bilities of the NS-Assembler-iacros ENO and OED /31/. EMD creates
a list of combinations of dsnames and volumes, which are to h2

used exclusively. 'ddname' is needed to control the validity.

While processing the following commands the I/0-datasets are
imnlicitelv nrotected, when the corresponding declarations (FILE

nn DSNAME = ‘dsname’ VOLUME = 'volume') are snecified.

4.7.3.2 Storine eraphical informatian

The command PUT ’name' stores the datastructure contained in

the COP a2nd associates the structure with the name 'name’.
"name' identifies this SRAPHIC-record in the secuential dataset.
The name mav cansist of one to eight alphanumerical characters.
While savineg information on secondarv storage the datastructure

in the G0P will not be chaneed.

The comnlete PUT-command has the following form:

PUT 'name’ [WEIH] [KEY] [’kevl [DN} [EELE] [nn]
[HN] [ [ SRLASET ] 'dsname’ [DN] [[ = ] ’volumel ]

With 'kev' one can nrotect a GRAPHIC-record aeainst unauthorized

ISNAME

’ '

destruction. If 1t i1s omitted, is assumed.

The other rdeclarations are ontional and mav te used to chanre
the default values for implicite reservation of datasets as men-
tioned in th2 RESERVE- and RELEASE-statement. The specification

FILE nn corresnonds to a 00-name 'FTnnF0O01°'.

A1l datasets must be initialized before their first use.

4,7.3.3 Peadine oranhical information from secondarv storace

GET 'name' [Eggﬂ} [EENE] [nn]
DATASET NISK

[@M] [ [ T5AnE ] "dsname’ [UN] [[ ;;EUME :] 'volumel }

OET 'name’' causes the svstem to read information from GRAPHIC-

record 'name’ into the 3DP. lUpon execution of this command the



nrevious structure of nodes in the GOP is deleted and the en-
vironment becomes identical to what it was, when the corrasoon-
dine PUT was executed. The user can now continue to manipulate

the new structure,.

All other soecifications of the command can be overridden in
a similar wav as in the PUT-statement, 1f one does not want to
use the default ootions for FILE, DATASET or VOLUME.

4,.7.3.4 Deletion of eraphical information on secondary storace

The command is worded as follows:

DELETE “name’  [wITH] [reY] kev' [on] [FILE] [nn]

[ on]

DELETE 'name' 'kev' deletes a GRAPHIC-record identified by

'name’ from secondarv storage. It will only be executed, if the

DISK

:] 'dsname’ [ON][[ QDLUME =] 'volumei}

DATASET

DSNAME

user also specifies an appropriate protection key. The space in
the dataset is available for new disoosals. The other specifi-

cations are used in the same manner as in the PUT-or GET-command.

4.7.3.5 File-Utility-command
The FILE-command 1s used to handle datasets with GRAPHIC-records.

INITIALIZATION
FILE INFORMATION [on] [rrLe] [nn]
REPAIR ’'name’

DATASET OT5K
[ [ "dsname’ [DN [
OSNAME = VOLUME

"volume' ]

[QN]

Refore the first datastructure from GDP can be saved into a
dataset, this dataset must be initialized with an endword usine
FILE INITIALIZATION.

This =2ndword must also be restored with FILE REPAIR, if a job
is terminated abnormallv, while executineg the PUT- or DELETE-
command .

With FILE INFORMATION the user can eet a table of contents with

the names., kevs and creation dates of all GRAPHIC-records.



4.7.4 The comnile, link and ¢o commands

These commands enable the user to compile, link and exscute
nroerams in the GRAPHIC-eo-sten. Hence it is possible to chanee
or enlarge the content of libraries, while processineg other
GRAPHIC-jobs. This capability is very helpful for “flvine” ex-

nansion of the GRAPHIC-svstem.

comerLe  [with]  [zveut]  [ERom] [Fite] [nn]
} INPUT
*-*éDF

The inout after the COMPILE-statement can be made un of several
ICETRAN-porograms. After the last program a card containing

¥ E00F in column 1 throuesh 5 must bes inserted. The innut is ex-
pected from file FTOS5F001 respectively SYSIN. For all other
sources FILE nn (FTnnFJ01) must be specified. A corresponding

JD-card is reacuired.
{

LINK] TEMPORARY

§ STANDARD
' VOLUME

[v1TH] [outeut] [on] DATASET 'dsname*[on]| ] *volume:

Laao] [M900LE] tname’ [WITH] ENTRY “name1’ ... 'names’

aun] [PROGRANMS  'name?’ ... 'nameG’]

Hith the LINK-command the ohbhiect-modules are linked. The load-
mocdules built up ars stored into the following kinds of libra-
ries:

temporary, the standard library for GRAPHIC-modules

or anv other snecified in the LINK-statement.

£11 libraries can be declared as "SHR” in the correspondine
SYSL¥ID-0D-card. "namel1’ is used to declare the name of the
load-module. 'name2’ throuch 'namef' are alias names and 'name7’
to "namel16’ are other proerams also to he linked into the load-
module ‘namel’.

The GO-statement causes the execution of a load-module 'name

G "name'



4.3 The different modes of GRAPHIC

Denendine on whether a command expressed in the GRAPHIC lanzu-
are is executed immediately after it has been processed bv ths
command interoreter or whether the sxecution takes place at a

later time, the terms "execution modes” and "programming mode”

ars used.

4.8.1 The nroerammine mode

Any GRAPHIC command, which is not a svstem command, is conver-
ted into an equivalent internal node structure. When the com-
mand was contained in a group (00, IF) or in a block (BEGIN,
PROCEDURE) it will not be executed (i. e. its interval repre-
sentation will not be parsed by the parser program) until the
containine block or proup itself is exscuted. Hencs, as long
as there is an exnlicitly snecified group or block onen,

CRAPHIC is called to be in the 'proesramming mode’.

4,8.2 The execution mod=a

Anv GRAPHIC svstem command, whether it is found in the outer-
most block (which begins with GRAPHIC and ends with END GRAPHIC)
or in a contained block or eroup, is executed immediatelv.
Hence, durine nrocessineg of a svstem command, GRAPHIC is called

to be in the "execution mode”.

Anv CRAPHIC command which is part of the outermost block of
GRAPHIC is executed immediately after its conversion into its
correspondine internal representation. This shall be illustra-

ted bv the followine aexamnle:

GRAPHIC

. execution mode
BEGIN

. proesrammine mode
END

. execution mode

No WHILE 'N'< 3
. nrogrammine mode
FND
. execution mode



4.8.3 The irmediate mode

Tt is possihle to ask for immediate execution of a GRAPHIC com-
mand while beine in the oroeramming mode. To perform this, the

command must be preceded bv the prefix command "i".

Svntax:

' anyv-GRAPHIC-command

The command nreceded by ! is called to be in the immediate

moda.
Examnle:

GRAPHIC

SET 'A' = ......

a0 o3 TINES

SET 'A' SHIFTING +3 -2 OF 'A’
I PLOT 'A’

PLOT 'A"

EN

END GRAPHIC

Tn this examnle the first of the two PLOT commands 1s precedead
bv a ! nrefix command. Hence 1t will be executed with the "nre-

sent”’ definition of 'A', which is valid before the DN-loon.

Hence, the above GRAPHIC nroeram ics eaquivalent to

P

GCRAPHIC

SET AT

PLOT 'A’

20 3 TIMES

SET 'A' SHIFTING +3 -2 0OF 'A'
PLOT TAY

END GRAPHIC

The nossibility to use the immediate mode is of no ereat use fgor
batch processing. However, in.an interactive use of GRAPHIC, it
may be helpful to modify graphical information immediately with-

out having to leave the programming mode. The capability which
is thus achieved mav be considered as the szouivalent of a "dask

comnutar mode” which is provided by several interactive svstems

hased on mathematics oriented proeramming languages.



Mot only whole commands mav be executed in the immediate mode
but alsno any eraphical object specification. The syntax is si-

milar:

! anv-eraphical-object
Fxamnle:

SET 'A' POINT 1 1

SET "B PRINT 2 2

PROCEDURE "PLOT?

SET '"FIGURE® ( 'A', 'B’', | LINE FROM '"A'" TO '8’ )
PLOT '"FIGURE’

ENTD

Whenever orocedure 'PLOT' is invoked by a CALL, the objects
which are assignead to 'A' and 'B' just prior to the point of
invocation, will be plotted together with a line from point 1 1

to point 2 2. The above program is equivalent to

DECLARE "AY

DECLARE 'B’

SET 'LINE' = LINE FROM POINT 1 1 TO POINT 2 2
PROCEDURE 'PLOT!

SET '"FIGURE" ( 'A', 'B', "LINE' )

PLOT TFIGURE’

EN



5. Datgwﬁﬁzgpture

5.1 Introduction

In chapter 3.1 different methods for representing grachical ob-
jects in a GDPS were described and a directed eraoh structure
was oroposed. The basic conceont of this structure shall be re-

neated:

- Everv objiect is represented by a node in the structure

-  Every obiect mav have an arbitrarv number of sons and an
arbitrarv number of fathers

- The relation between a father and its sons, and vice versa,
is established hv spoecial objects, called references

- All references connecting a father with all of his sons are
situated on a ring

-~ All references connectine a son with all of his fathers are

situated on a second rine.

All the obijects, including references are stored in a linked
list, called the “node list”. A stack is maintained for all
nlaces in the 1list that are not occupied bv a node. If a new
ohject is to he generated, the first free list position is
taken from the frees nlace stack. If an object is destroved, its

list nosition is added to the stack.

When the last item is removed from the free nlace stack, the

—
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t is exnanded automaticallv. The feature of dvnamic arravs
fer

s

a by TICES has proved to be extremelv helnful for imolemen-

ed
tine the data structures described here.

In the followine chapters the object nodes, the reference nodes

and the attributes of object nodes will be described in detail.

il

5.2 MNodes

5.2.1 Nbiect nndes

Nhiect nodes rcontain a structural part for renra2sentation of
the relations between obiects and a part containine the descrin-

tion of the obisct itself. The latter part is called "attribute



L]

substructure” or "attribute set” or just "attributes”, it has
a different form for the different tvpnes of objects. For des-

crintion of attributes see chap. 5.2.3.

The relation nart of objects is the same for all tvpes of ob-
jects. It consists of pointers up and down and of a pointer to
the set of attributes. The downward pointer of eraphical or
arithmetical slements is emnty. The downward pointer of opera-
tions points to the nhiect or objects upon which the operation
is to be performed. If we take a look at two operations, the
semicircle from one point to another one and the shift apera-
tion, we soon recoenize that there are different kinds of opsra-

tion subobiects. see fig. 24.

SEMICIRCLE SHIFT
QPERABTION GPERATIAON

)

N
/

POINT Pgém POINT LINE CIACLE

Fie. 24 Subobiects of operations

In the first case, the operation must have two and only two

sons, which must be noints, the order of sons is imoortant.

NMn the other hand, a shift oneration mayv have any number of
sons, a chance of the order of sons does not affzct the result

of the opneration.

For this reason, an object in the GRAPHIC has two nointers to
subobijects. 0One noints to those subohjects that have to he in
a fixed order. The rino comprisine these subobjects is an

ordered circular list. The sons of an object that are contained



in this ordered circular list are called areuments of the ob-
iect. S0 we sav: The semicircle operatian must have two arocu-
menta. The sscond downward nointer of an obiect noints to a
set of subohiscts that mav be in an arbitrarv order and of anv

number. Thes2 sons of an ohiect form a set rine.

We call this kind of subobiects opoerands of the object. The
shift oneration has no arsuments and an arbitrarv number of
operands. An operation mav nossess both arpuments and operands.
An examnle 1is the rotation around a esiven point. The noint is
the areument of the operation, the objects to be rotated are
the onerands. Fie. 25 shows the corresnondine structure. In the
illustrations showins data structures the downward pointer to
the operands is emereineg from lower edee of the rectangle re-
nresentins the obisct. The arsument pointer is berinning at

the rieht edee of the rectangle.

‘ROTATION ROUND
A GIVEN POINT

c -

@BJECT OBJECT - - 0BJECT PBINT
AN \/ / — P s
OPERANDS ARGUMENT
Fieo. 25 Qnerands and arrument of the rotation-operation

An oneration is performed with its eiven arecuments (if any are
nresent) once for everv ong of its ooerands. If an operation

has no operands, it is nerformed once with its arguments.

Fverv obiject thus possesses four oointers:
- one to its father

- one to its arguments

- one to its operands

L

to its attribute set



Afather

nointer

argument

/ pointer

attribute

/

<3

nointer aoperand
nointer
Fie., 26 Pointers of an ohi=ct

Anv nne of the noirters mav he emntvy, i. e. the null pointer.

h,2.2 “Peference nores

“oferencas are used to connect obijiects with each other. They

do not poss=sss attribute sets. Since references are no anera-
tions but onlv data slsments representine relations between
obiects, thev ne=d not have a nointer to areuments and operands,
but just one downward nointer. We have seen that an ohject has
nnly one nointer to areuments, operands and fathers, althoueh

it mav nossnss mare than one of each. Thus the task of connozc-
tin~ the fathers or the snns of an obiect is 1left to the refe-
rences. For this nuroose references have pointers to form two
circular lists: One for comprisine all sons of an obiect (this
is called the rine with common superobiect, RSUP”) and another
one for comnrisine all fathers of an object (rine of common sub-
ohiect, RSUZ)., Ficure 27 clarifics the use of both rines. In

thiag fioure onlv anerand pointers are shown.



<mae?

RSUP

)
SN Sd

RSUB

Fie, 27 Psfereance rincs

There is one RSP for the aresuments and one for the onerands

of an ohiect.

OFPERAND RSUP _-ARGUMENT RSUP

Ny &

Fie, 28 Inerand and arpument rines of an obisct



The RSUP and the RSURB rines of a reference node are implemented

by use of left and rieht pointers. Doublv linked circular lists

are used bzcause an element can easilv be included into or dele-

ted from the list without havine to parse throuch the whole

ring. Every reference possesses 6 pointers:

- pne to the father

- one to the son

- the left and the rient pointer of the RBSUP
- the left and thes right nointer of the RSUB.

father

pointer

right RSUP pointer

left RESUP pointer < ( )
left RSUB bpointer <« TL,
son
nointer
Fie. 29 Faeference nointers

U1

5.3.1 Introduction

Ohjects in the GRAPHIC data structure
attribute set. All objects possess at

ohiject tvpe. Accordine to the tvoe of

nart of the attribute set i1s buillt up.

are nossible:

- ec~raphical elemants

- oranhical ooperations

- lorical-arithmetical eslements

- loeical-arithmetical operations

- collections

>
& right RSUSB pointer

.3 Tvpes of obijects and their attributes

differ onlv in their
least one attribute: the
the object the remaining

Followine object types



- names

- wmvaluate

- define

- control obiects (nrocedure, if)
- actions

- name reference

- undefined obhiect

The different tvnes of obiects and their attributes will be de-
scribed in the following chapters.

5.3.2 Granhical elements

Crenhical elements contain the basic graphical information, thev
do not denend on other obiects, hence thev have neither oberands
nor arecuments; they can be plotted immediately. Granhical ele-
ments are: points, polveons, splinefit and aoproximation curves,
texts, coordinate axes, arcs, circles and shades. In the attri-
hute sets of the elements the information describing them is
stored. All =2lements nossess the attributes: object tvpe, ele-
ment tvoe and number of dimensions. The rz2maining attributes are
different dependine on the element tvoe and the dimensions. For
a polyson-element in two dimensions e. ¢., the remaining attri-
butes are number of noints and the x- and v-coordinates aof the
noints. At nresent all elements implemented in GRAPHIC are two-

dimensional. A possihle extension to three dimensions is descri-
bhed in /1B/.

5.3.3 GCraohical oo=2rations

Granhical operations are obijects that, when executed, create a
craphical =zlement, a collection of granhical elements or a
~raphical operation according to the tvne, the arcuments and
operands of the onesration. Table 1 ¢ives a survey of egranhical
onerations, the number and kind of arcuments and ooerands thev

renuire and the kind of results they deliver when executed.



OJoeration

Number and kind
of arguments

Number and kind
of operands

Result

Line

Semicircle

Intersection of lines or
nolveons

Intersection of lines and
circles

Mth point or line out of
nolveon

Extreme slement (leftmost,
uppermost etc.)

Shadine the interior of a
nolyeon

Shading between two polv-
T0oNs

x-axis

. to an object
yv-axis

Plot specifications
(dotted lines, point svm-
bol tvpes etc.)

2 point elemants

2 point elements

2 line elements

2 elements, at
l=zast one circle

1 polygon element
any

1 closed polveon
element

2 polygon elements

anv GE

none

none
none
none
none
none
none
none
none

none

any GE

line element (i. e.
nolveon with two points)

arc slement
point elsment

line element

point element or line
element

point element or line
element

shade element

shade element
axis element
collection of =lements

accordine to number
and tvpes of operands

Tahle 1

Granhical ooerations

24



Operation

Humher and kind
nf arcuments

Mumber and kind
of operands

{

Shifting

Shiftine bv the coordinates
of a noint

Enlareement
Diminution

Enlareement with a speci-
Himinution fied point as
tha center of the transfor-
mation

Rotation around the oriein

Fotation around a eiven
noint

Rotation around a eiven
noint bv the declination
anele of a line

none

1 noint element

none

1 point element

nong

17 noint element

1 noint element
anf
1 line element

any

any

anv

any

any

anv

any

oE

collection of elements
raccording to member
and tvpes of operands

Tanle 1 {cont.)

G¢



Tneration

“tumher and kind
of arocuments

Slumher and kind
nf operands

Faosylt

“ne of the linear transfor-
mation onerations (shiftine,
enlarcemant, diminution, ro-
tation) = on1

Tmage oneration

(lin. transf. so that 2
pnints nf an object are
nlaced on 2 points of the
drawing)

Transformation of an object
accordine to two axes

Circle throuch the
2 noints of a triancle

ITnscribaed circle of a
triangsle

m3
ok

cle =iven bv central
oint and radius

Nlrj

none

none

AN

axis elements

oneg of the linear
transformation
onarations

= onZ

o]
m

any

m

any G

nonea

nonea

none

17 linear tran?Foﬂmation

ongration comporisine
the tasks of on? and
onz

collection of elements
raccordine to numuar
and tvoes of onerands

1 circle elemant

7 circle elaemant

0
e
ip]
9]
fmnt
D
O
—
(0
3
O
.
[
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Tperation ‘umher and kind slumber and kind Fosult
nf arruments of onarands
Arc throueh 3 points ? npint elements none 1 2rc elemant
Arc given by beein and end
noint and arc leneth 2 noint elements none 1 arc elemant
~
Polvoon throuesh a numbaer
of obhiescts . none 1 molveon element
1 collectinn of
Snlinefit curve throueh >nnint nlements.
a numher of ohiects nolveon elements, none 1 splinefit 2lement
A . . , snlinefit elements
Amnroximation curve throuoh ; .
; sy and anproximation i .
a numher of cobiscts none 1 apnraximatiaon =2lemant
J olemants

Tahle 1 (cont.)

LL




For execution of the operations everv operation node possesses
an annertainine routine which is called when the node is parsad.
The attrihute s~ts of oneration obj=2cts contain at least the
ohiect tvne - oranhical oneration - and the tvoe of oneration.
I+ further information is naeded for sxecutine the operation,

it is also contained in the attribute set. 5. ., tha line
onaeration needs no additional attributes, tho oneration “circle
ovivan hv radius and cantral noint” needs the value of tha

radius to he stored in the attribute set. For linear transfor-

mation the attribute s=t contains the transformation matrix.

5.3.4 Collections

Collertion obiects are nodes in the data structure nossessine
~

0

no  ar~uments and a2 deliberate member of operands. Thev are
us2rd to comhine obiacts that are to be referenced and maninula-
ted as a whnle. F. ¢. collections are used to comnr2hend the
narameters nf a CRAPHIC orncadure. Collection obiects have

only ona Aattribut=, the ohiect tvne.

-~ [

7.5.5 Namas

HMames in the data structure correspoond to the names used for
identifvine and referencine ohiects in the GRAPHIC lancuane.

The namn itself, i. 2. the character strine used as an identi-

L

fier is the onlv attribute of the nams obiect (hesides the

obiescht tvme). llame ohiects possess an

L

ar~umant, which 1is
2ither one obisct or one collection of obiscts, thev do not
have anv ongrands. A name object associatesthe character string
in it’'s atftribute set with the whales substructure below the
ar~ument. 2ecause the names are intecrated as nodes into the
structure, no refersence to a name table is reouired while nar-
sine the structure. If an object i3z to be destroved, 2. o.,
all subohicgcts of it rust be destroved unless a named abiect

is met in the structure. Named subobiects must not be destroved.

T+ names were not inteerated into the structure, the name table

would have to be raferenced at svery node, in order to ensure
that no named suhobiject is destroved. When the data structure

is to hbe nrinted out in a readahle form, it 1is also useatul to



ment the narmes in the structurn while narsine it.

5.3.6 Fuvaluate and define

The evaluate-oniect aAand the define-obizct ar~ us=2d to control
the narsine nf the data structure. The definz-obiect is used
to name its suhstructurz. FHefore the structure is oarsed, the
Adefine-nhierct iz the structure’s ton. After the structure is
narsecr, the structure’s too is a name-ohbhiject. The substructure
ot thm nams is5 the result of the parsine of the oricinal struc-
ture. The svaluate-obiesct causes the parser-nrooram o evaluate
tructur2 of the svaluate-cbiect and to nass the result

ot the svaluation to the obiesct above itself.

A SET-statament of the lancuace is renresented in the struc-
ture before narsine hv a define-object and an evaluate-ohject,

-

a OFF-statemaent is renresented by a define-obisct onlv. Fig.

w)

»

clarifies the use of the define-object and the evaluate-objiect.
SRAPHIC-statewmants:
SET 'L LIneE P R

NOE LR LIME PR3 P4

lafina-ohie

L

ts have one arcument, the substructure to bhe named,
and one onerand, the name 1tself or a name reference. bvaluate-
objects nos=sess just one onerand, the substructure to bhe eva-

iuated,



STRUCTURE BEFORE FPARBSING:

DEFINE——;g

NAME EVALURTE

L1 §>
LINE-
OPERATION

80 -

DEFINE

:

NAME

L2

NAME || NAME
"PZi "P1

i
I
¥

STRUCTURE AFTER PARSING:

NAME

L1

B

LINE-
ELEMENT

LINE-

OPERRTION

NAME

L2

LINE-

NAME NAME
Py P39

OFERRTION

o0

NAME || NAME
"P41 “P3j

7. 37 The evaluate-obisct and the define-obirct



cts, when ex=cuted, do not deliver a result in form
of an obij=ct, hut nerform some action outside of the obisct-
norde list. Actions are “gnen nlot” and "olot’. "Onen olot”

chanees valuas in the communication area renresentine the mo-
mentary coordinate svetem oriein used for drawine obiscts and
the momentarv size of the drawine. These values are important
for successive nlot-actions. The "onen-nlot -action possosses

either arsuments nor onerands. Its attribute set contains the

3
0

siz2 aof the new drawine to be onened. The "nlot -action is

us2d tn nlot erarhical ohiects. It nossesses no areument, but
a fdzliverates number of operands that must be ~ranhical elements.
When executed, the pnlot-obiect writes information on the nlot-
file renrssentine its oberands. The attribute set of the nlot-
obisct contains information on the rectancular cut to be scis-

sored out, 1f scissorine 18 snecified.

5.3.8 Arithmetical and locical onerations and elements

Arithmetical and loecical exnraessions are often renresented as
a simole binarv tree /9/. Since GRAPHIC is capable of handline
more complicated tree structures it has hzen a rather simple

task to imnlemant arithmatic and logical exoressions.

5.3.8.1 Arithmetical and loeical operations

CRAPHIC ornvides obijects with an attribute s3et which characte-
rizes this obiect as an arithmetic-loeical oneration corraesnon-

dine to the fallowine mathematical symbols
+, -, ~{prefix), +, -, *, /, %%, =, ==, >, =>, <, =< (infix)

The aoperations are c=neric in the sense that they are able to
onerat=s on hoth rezal and inteeer arithmetic elements. The com-
mon arithmetic functions such as SIN, CDS, EXP atc. have nnt
he2en imnlemented so far.

1

L3.A.2 Arithmetical and locical elements

Tne attrihute =et of obiects ranresentine aritnmetical-loeical

alemants i3 comnossd of the followine information



- obiect tvoe (as all other objects)
- glement tvoe intee=sr, real or loeical
-  a2lement value internal representation of the valus

‘
.
(o8]

e
o

Control obiects

Tne important feature of CRAPHIC is the capahilitv to identify
a number of obijects as “"heloneing toesether” in a collection.
The ~ranhical collection as a set of granhical object has nre-
viously been introduced. However, this concent can =asilv be
extended to a set of actions (such as DEFINE, NPEN PLOT, PLOT
ertc.), since tha internal reoresentation of actions is also 1in

form of ohinmcts compatihle with othsr ~ranhical objects. There

is ane difference between a eranhical collection of 8. ¢. ssve-
ral noints and lines 1n that a collectinon of actions must b=

an ordersd saenuence to represent a meaninefull proeram, while
for noints and lines the order is not imnortant. However, the
narsine aleorithm of GREAPHIC has been imnlemented such that the
ordar of collections (or the order of the elements contained

in collections and collections of collections) is alwavs main-

tein=2d. The2 same oringciols apnplies also to the onerands of all

—+

other obisct tvones, not onlv collections.

5.3.9.1 The 30 eraun and the IF clause

Hhen=avar a Ul or an IF in th=e command indicates ths becinnine
of a 137 eroun or an IF clause which is to be comnleted bv a
carresnondine EHD or FI an obhisct is created with an approoriate
ohiject tvne. The attributzs set of this obiect contains informa-

tion as to whether it is

1) an IF clause
?2) a renetitive DO (00 n TIMES)

3} 2 loedical N9 (0N WHILE lorical expression).

As an poerand this obisgct has a lorical or arithmetical expres-
sion (which will be converted to an element prior the execution
nf this chiect): as an arcument the object has one action or

one collection (=. ». of actions) or in the case of an IF fol-

lowed by an ELSE two actions or collections.



The function of the routines which actually perform the opera-
tions described by the DO-group-and-IF-clause object shall be
described briefly with the following examples.

IF-clause

Command: IF a THEN b / ELSE ¢ J/ FI

Structure:
IF
}— _________
) g ?
ittt
a b | c :
-

Result: If a = TRUE then the result is b otherwise no result

(or c)

Repetitive DO

Command: DO n TIMES
b
END

Structure:

00 (rep) b

Result:

Collection

n references from the

collection to b

T
I
by
[
|

it

l
1
|
!
I




Logical DO

Command: DO WHILE a
b
END

Structure:

DO (log) b

Result: If a is FALSE no result,
if a is TRUE a collection containing b and the logical

DO group itself.

Collection

DO (log)

5.3.9.2 BEGIN-blocks

Whenever a new block is to be opened by the keyword BEGIN,
GRAPHIC generates two objects of different types. One of these
objects is the block headsr, the other one is the corresponding
environment. The block header has no attributes besides its ob-

ject type. The environment object has two attributes:



- a hash table
- a pointer index initialized to the value of the environ-

ment object node index.

The hash table will be used to associate the local names of the
block with the indices of the corresponding name objects. The
pointer index serves as the link between the elements of the
stack of currently open environments. Since all name references
within a block are converted to the appropriate name object re-
ferences as long as the block is open, the hash table is no
longer needed after the corresponding END of the block. The en-
vironment object is necessary as a superobject to all name ob-
jects belonging to this environment. Only in the outermost block,
when the environment is the universe, the undefined object ser-

ves as a superobject to the name objects.

A reference is generated such that the environment becomes the
(only) argument of the block header. The commands (or else:
the objects representing the commands in the internal node struc-
ture) contained in the block will be linked to the block header
as operands., Upon execution of a block header, these operands,
one after the other, will be submitted in the proper sequence

to the parser for further execution.

5.3.9.3 Procedures

Procedures are very similar to BEGIN-blocks. The following dif-

ferences exist:

1) A procedure has a name; hence, in the block containing the
procedure, there is a name object which has the block header
of the procedure as its argument.

2) Within the procedure itself, the name of the procedure is im-
plicitly declared local; hence the environment attached to
the procedure block header contains a name object for the
name of the procedure.

3) Procedures may have formal parameters. These are local names
represented by name objects which are attached as arguments
to the block header (and of course as operands to the environ-

ment). Hence a procedure block header has n+2 arguments for



a procedure with n formal parameters (1 environment + 1 local
name representing the procedure name + n parameter names).

4} If¥ the END which closes the procedure has the RETURN option
{RETURN object), then the last operand of the block header

will not be an action but rather the obiect to be returned.

P

BN

Command: PROC "NAME' ( 'FP1* , 'FP

statement

END RETURN returnobject

Structure:
' ' blaock
NAME' M cader 1
environr
ment

|

i 1 I V

state- return- ] ] » 5 v ] other lo-
ment """ lobject NAME FP1 FP2 cal names

5.3.9.4 Procedure calls

7

When a procedure is callsd, an object of obhject tvpe "evaluate’
is generated and the name following the CALL (i. e. the name
object of the called procedure) is attached to the svaluate ob-

ject as an operand.

If the name of the procedure is followed by a list of actual
parameters, then an assignment object (same as the one which is
generated by DEFINE) is generated for each actual paramster.
The actual parameter is attached to this assignment object as
an argument, while the corresponding formal parameter {(which is
a name object in the set of arguments of the called procedurs
block header) is attached as an operand. The proper sequence is
controlled by means of a stack which contains the actual para-
meter position. {A stack is required because actual parameters

may themselves have the form of a function procedure calll.

The evaluate object which represents the call in the internal

data structure makes sure, that the actual-to-formal parameter



assignments are carried out before the operand (i. e. the pro-
cedure itself) is evaluated. Since the evaluate object allows
only elements (graphical or arithmetic-logical elements) or
the undefined object or collections of these or nothing to be
considered as a result, all actions contained in the procedure
will be executed and a result (if any) will be returned in ele-

mentary form.

Command: CALL 'NAME' ( apar1 , apar2 )
Structure:

Fvaluate * }

DEFINE [™] apar1 DEFINE [™] apar?

1 l I

el block-
'NAME header

y i y 1y

EONETCTT] | nAMEr || Rpa 'FP2

5.3.10 The undefined object

When an error is encountered during processing of an object
specification, a special object, the "undefined object”, is
built into the structure instead of the erroneous object. In
this way the consistency of the structure is maintained. Thus,
the erraneous GRAPHIC-statement: "SET 'A' NOTHING"” would cause
the building up of a structure containing the name 'A’' and
below it the undefined object. Beyond this, the undefined ob-
ject is used to represent objects in the structure that are

already referenced, but not yet defined. If the GRAPHIC-state-
ment:

"DEFINE 'L' LINE FROM 'A' TO 'B'"

is specified prior to the specification of 'A' and 'B', the
undefined object would stand in the structure as the arguments
of the name objects 'A' and 'B'. (O0f course, in order to avoid

an error, 'A' and 'B’' must be specified before referencing 'L'.)

The undefined object is represented only once in the structure.



6. The interpretation of the GRAPHIC language and the building

up of the corresponding data structure

6.1 Steps of the conversion of the language into the structure

Buring the interpretation of the words of the GRAPHIC language,
a corresponding data sturcture is built up in internal storage.
The integration of every obhject into the structure takes place

in several steps.

In the first step a CDOL-routine interprets the language words
and stores data from the language in the communication area. In
the second step a routine (called from the CDL-routine) creates
an object node for the object to bs integrated and introduces
the node’s index into the "temporary node list” (TNL). The TNL
is a stack which holds the indices of all nodes not yet comple-
tely connected with their superobjects and subobjscts in the
structure. After creating the node and updating the TNL, the
attribute set of the object is defined and filled with data.
This is done according to the information passed from the languy-
age over the communication area. In the last step the objsect
node is connected with its superobjects by structure connecting
routines. The object node index is removed from the TNL, when

the object is connected with all subobjects and all superobjects.

6.2 Treatment of names

6.2.1 Declaration of names, environment, name referencing

Whenever a name is encountered in a GRAPHIC command, such as ‘A’

and 'B’ in
SET 'A®* = LINE FROM POINT 3 2 TO 'B’

or in an explicit declaration or as a formal parameter, the
appropriate actual environment is checked as to whether the name
has been previously declared. For this purpese a hash-table is
provided for each environment. The hash routines used ares des-
cribed in /32/. If the name is not found in a declaration state-
ment or as a formal parameter it is considered as previously un-

declared. If it is not found in anothsr statement, then the next



hieher environment is checked similarly. All environments which
are presentlv "open” are linked in a stack to this resopect.

This shall be explained by the following example

Program Stack of apen Remarks
Environments
GRAPHIC Uni One environment called "uni-

verse” is opened (Uni) and be-
comes actual

PROC 'A’ Uni, A Environment of 'A' is opened
and becomes actual

PROC 'B’ Uni, A, B Environment of 'B’' is opened
and becomes actual

BEGIN Uni, A, B, Environment of this block is
opened and becomes actual

END Uni, A, B Environment closed. Environ-
ment of 'B’ becomes actual

END Uni, A Environment of 'B’' closed. En-
vironment of 'A' becomes actual

END Uni Environment of 'A' closed. Uni-
verse becomes actual

END GRAPHIC Universe claosed

The search for the name is terminated when either the name 1is
found ("previously declared”) or when it cannot be found in all

the open environments including the universe.

If the name is found to be previously declared in an environment,
the corresponding name object index is retrieved from the hash
table and - if the command was not a declaration - this object

is inserted into the TNL.

If the name is found to be previously undeclared, then it will

be declared in the actual environment. This is performed by

- generating an appropriate name object

- inserting the name and the object index in the environ-
ment hash table

- attaching the name object as a subobject to the actual

environment object.

Now the name is declared and can be treated as previously declared.



6.2.2 Assignment of objects to names

Objects may be assigned to names by means of a SET or DEFINE
command or by the INITIAL option of a declaration. Names to
which no object has been assigned, are considered to have the

undefined object assigned to them by default.

Every assignment is performed by an assignment cbject which

has - when executed - as its operand the name object to which
something is to be assigned, and the object as its argument.
(Note that both name and object may be results of the execution
of other objects.) If the name has already an object as an argu-
ment, this object and all other object which are subobjects to
this one alone are destroyed. Then the (new) object is attached

as argument to the name.

Examples:
Result

DECLARE 'A’ TAY undafined
DEF "A® POINT 2 3 TA? point element
DEF 'C* 'B° ce B undefined
SET 0BJ *'C' LINE FROM

B line slement

YAY TOD POINT 3 2

6.3 An example for the conversion of a language statement into

the corresponding structure
Let us consider the statement:
SET *L* LINE 'P1°® POINT 1 2

The object named 'P1°' is supposed to exist already. The struc-
ture nodes corresponding to the different words of the state-
ment are shown in fig. 31. Building up the structure is done in
the same order as the words of the language are met, i. e. from

the top of the structure downwards.
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DEF INE ‘g
NAME EVALUATE
T[“' ¢
LINE-
OPERBRTICN
= 1“‘—_‘““<<F} {%j)
([ POINT
NAME
ELEMENT
"P1 1 2]
ALREADY
EXISTING
OBJECTS
POINT
ELEMENT
CO8R-
N DINRTES
Fig. 31

ture

>OET "L
>LINE
POINT 1

2

Correspondence of language words and struc-



7. Parsing the structure

The graphic data structures are parsed by a program, called

the parser. Parsing starts at the top of a structure. When pro-
cessing an object node, the parser looks up the object type of
the node being processed and the types of the arguments and ope-
rands. Depending on these object types one of two possible

actions is executed:

1. The object node is executed with its arguments and every one
of its operands, the result of the operation logically re-
places the operation in the structure and the parser goes
one level up.

2. The object cannot be executed with its arguments and operands.
The parser goes down to every subobject, first to all argu-
ments, then to all operands and transform them, until their

objecttype is suitable for execution of the object.

The parser looks up in a decision table which one of these ac-
tions is to be taken. If the object in process can be exscuted,
a routine is called according to the object type. This routine
is called once for every operand of the object. If thers is no
operand, the parser substitutes the undefined cobject as operand.
The parameters passed to the routine by the parser are one ope-
rand object and the collection of arguments. The invoked routine
may return a resulting object or a collection of objects to the
parser. The routine, whiech is called up may detect, that one of
the arguments or the operand is unsuitabls for correct proces-
sing. In this case the routine will generate an error message
and return either nothing or the undefined object as a result.
The results delivered by all calls are integrated into a collec-
tion of results. This collection replaces the processed object
in the structure. The result of the execution of an object node
may be not only an element but also an operation. E. g. the re-
sult of the execution of a line operation with two point elements
as arguments is a line element logically replacing the line ope-
ration and its arguments in the structure. The execution of a

linear transformation operation with the operand being another



linear transformation operation delivers as a result a new

linear transformation operation which logically replaces the

two operations in the structure.

The resulting operation then

has to be executed. The following example illustrates the par-

sing of a simple structure.

a) Evaluate

|

Lin. Transform.
(Shifting)

Lin. Transform.
(Rotation)

Operation

(Line)

-«—— Node looked up,

but not proces-
sed

[

Element
{(Point)

h) Evaluate

Lin. Transform.
(Shifting)

Lin. Transform.
(Rotation)

Operation

(Line)

Element
(Point)

Node looked up

and processed

Element
(Point)

Element
(Point)

Object type: Evaluate

Operand type: Linear
Transfor-
mation

Arguments: None

Action: Go down

Object type: Linear

Transfor-
mation

Operand type: Linear
Transfor-
mation

Arguments: None

Action: Execute

Result: Linear

Transformation



c)

d)

e)

)

Evaluate -m———— Node looked up, Object type: Evalu-
but not proces- ate
i sed Operand type: Linear
Lin, Transform. Transfor-
(Shift and rotate) mation

Operation

Arguments: None
Action: Go down

(Line)
I 1
Element Element
(Point) (Point)
Evaluate
i <______ .
Lin. Transform. Node looked up, Object type: Linear
(Shift and rotate)| but not proces- Transfor-
sed mation
Operand type: Opera-
Operation tion
(Line) Arguments: None
Action: Go down
| ]
Elemsnt Element
(Point) (Point)
Evaluate

Object type: Operation

Lin. fransForm.
(Shift and rotate)

Operands: None
Argument types: Ele-
ment

Action: Execute
Result: Element

Operation -s——— Node looked up (line)
(Line) and processad
[ ]
Element Element
(Point) (Point)
Evaluate
Lin. Transform. result of e)

(Shift and rotate)

Element
{Line)




g) Evaluate Object type: Linear
. Transforma-
: tion
Lin. Transform. Node pro- Operand: Element
(Shift and rotate) cessed Arguments: None
l Action: Execute
Result: Element (line)
Element
(Line)
h) Evaluate -—— Node processed
Element
(Line)
i) Element dotted lines indicate the logical relation-
(Line) ship between intermediate objects

Fig. 32 Steps for parsing a structure

Since some operations, the linear transformations, can not only
be executed with elements as operands, but also with linear
transformations as operands, they have a different object type
than the other operations. In most cases the structure must not
be destroyed while parsing it. So the results of operations do
not actually replace the operations in the structure. The indi-
ces of the intermediate results are kept by the parsing program
in stacks and the replacement of a node by its result takes

place only logically.



8.

Extension of the GRAPHIC system

New species of objects can easily be integrated inteo the

GRAPHIC system, especially new kinds of elements and operations,

The following tasks have to be done in order to add new kinds

of objects:

First, define the syntax of the object specification in the
GRAPHIC language.

Then, write a CDL routine according to this syntax. The CDL
routine must place necessary data from the language in the
communication area. At least, the routine has to call a rou-
tine that builds up an object node for the new kind of ob-
ject.

This routine, called from the CDL, must be programmsd. It
has three tasks:

Create a node for the object, define its attribute array,
fill it with data and integrate the object into the struc-
ture. The first and the last task are accomplished by calling
existing system routines. Only the definition of the attri-
bute set of the new object and the taking over of the attri-
bute data from the communication area have to be programmed
completely new.

For new operation objects the esxecuting routine corresponding

to the operation node must be set up. This routine is called
when the operation node is parsed. It has a normed argumsnt-
list, containing the indices of the operation node, the ope-
rand node, the argument collection and of the resulting ob-
ject to be created by the routine.

For new element objects routines have to be prepared for the

linear transformation of the element and for plotting the
element, i. e. placing a set of data elements describing the
glement on the plotfile.

For new object types the decision tables of the parser have

to be extended.



8. Error handling in GRAPHIC

3.1 General features

So far, the correct use of GRAPHIC has been described, but
GRAPHIC has been designed to run with incorrect input data too,
producing the most meaningful output possible (no dumps). This
is desirable especially in batch jobs in order to avoid incre-
mental and therefore time consuming debugging. For this purpose,
the GRAPHIC system contains a great number of tests to detect
errors. Some of these tests are carried out on the level of the
command interpreter, most of them on the level of GRAPHIC sy-
stem routines (those coded in ICETRAN) and some on the level of
the ICES executive system or the general machine operating sy-

stem.

89.1.1 Error handling by the command interpreter

Errors detected by the command interpreter are mostly syntax
errors. Whenever a syntax error is detected, a legible message
is produced and the word, which caused the error, is skipped.
A similar action is taken when the end of a command is found
too early. This means that the command is syntactically incom-

plete. As an example take
SET 'A' LINE FROM POINT 3 2
(where e. g. TO PDOINT 7 10 is missing).

As a consequence of this type of error, the undefined object is
built into the internal data structure representation of the
command at places, where no correct object could be found. Thus
the data structure, which is submitted to other programs, is

consistent and uncontrolled breakdown is avoided.

The GRAPHIC language has been designed to work even if some
statements cannot be interpreted. In many error situations, re-
ference is made to some object which should have been defined
before, but which is undefined due to errors. In these cases
GRAPHIC nevertheless performs all the work requested with the

correctly defined objects, producing a plot which shows at 1least



part of the whole picture and which allows the user to check
the semantics of his GRAPHIC program for this part. The con-
cept of the "undefined object” has been very helpful to this

respect.

8.1.2 Error handling by GRAPHIC system routines

Errors found by ICETRAN-GRAFHIC system routines are treated by
calling a special part of the GRAPHIC-program system, the pro-
gram-error-handling system or shortly "ERROR system”. This
ERROR system is an almost independent subsystem itself and it
is connected to GRAPHIC by some clearly defined linkages onlvy.
The ERROR system may be used in other subsystems too, although
it has been implemented only in GRAPHIC at this time. In case
of errorsGRAPHIC calls this system and passes the following in-

formations:

a code number (nr) which identifies the error message and
a severity-code (s) describing the importance of the error

found.

The severity-code varies between 0 and 16. Messages with codes
0 to 4 are considered as warnings only, 5 to 8 are errors which
can be handled by the GRAPHIC system routines to continue the
execution and (very scarcely) 9 to 16 mark errors which should
result in an interruption of the interpretation of the command
actually processed. Moreover, the message may contain data
which identify the origin of the error or the state of the pro-
gram or data structures, the knowledge of which may help in un-

derstanding the reasons for the error.

All these informations are processed by the ERROR system in a
way which may be controlled by other GRAPHIC system routines

or by user’'s input statements embedded in other GRAPHIC state-
ments (see 8.2 and 9.3). The standard actiom of the ERROR system
are as follows: According to the code number of the error (nr)

a text, including format descriptors is read from the subsystem
data set. The values submitted are formatted as described by
this format. The message is completed with the error sequence

number, the name of the program issuing the message and the



actual {cpu) time since the start of the GRAPHIC execution.
The resulting character string is printed on a print file, which
is the standard print file by default. Thus the GRAPHIC program-

mer is supplied with a legible error message.

Besides, the ERROR system counts the number of errors of diffe-
rent "characteristics” (see below), so that system programs may
ask whether and how many errors have occurred and the user may
be informed of the total number of errors of different characte-
ristics found while executing his job. Moreover, the ERROR sy-
stem compares the actual accumulated number of errors of diffe-
rent kinds with predefined allowable numbers of these errors.

If any limit of this type is exceeded, the ERROR system calls

an exit program. By default this prints statistics, some mes-
sage buffers and inhibits execution of the subsequent GRAPHIC

commands, which are nevertheless checked for syntactical errors.

The "characteristic” of an error is identified by a figure (m)

and is definad by default as follows:

m = 1 gvery error has this characteristic, so the number
of errors with this characteristic is the total

number of errors reported.

m = 2 an error message, which has been submitted to the
ERROR system after a predefined time measured from
the start of the GRAPHIC execution, has this charac-
teristic. The ERROR system contains a routine to
evaluate the maximum allowable step time for this

job, so time overflow may be detected.

3
u

3 to 19 the error message has the severity-code 0 to 16

accordingly.

Additionally the user may redefine the characeristic figure and
define some "special” characteristics by adding ICETRAN subrou-
tines, which are called by the ERROR system to decide whether
the error message shall be gualified with this special characte-
ristic or not. This subroutine can ask for all informations

just stored in GRAPHIC to make its decision.
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Besides the standard action described, the ERROR system may be

controlled in a flexible way by the user. Some of its possibi-

lities are:

- Suppress completely execution of the ERROR system, favouring
effectivity against security.

-~ Suppress printing of messages at all.

- Suppress actual printing of messages by storing the message
in a buffer of adjustable size. From there, messages may be
nrinted later, if required to show the history of any
disastrous error situation.

- Stop execution.

- Save the actual contents of the GRAPHIC data pool on any
file and then stop execution. A later job may be started to
read this data and continue the task including only some
correction statements. (Restart feature).

- Plot the graphical data created until the error was found
and then stop execution.

- Print informations,

Most of these possibilities may be achieved by just setting
some control values as describsed in 9.2 and 8.3. Faor the other

ones the user has to supply an exit program by his own.

The format-texts which are read by the ERROR system according
to the code number nr of the error message and may be added to
the subsystem data set or changed, deleted or listed by using
the subsystem TABLE-II /33/. Thus, the message text may be
written in English or German or other languages, may be shorte-
ned or extended for more detailed or clearer informations with-

out any modifications to the programs.,

8.1.3 Error handling by ICES execution or operating system

Although we tried hard to program GRAPHIC so that no error
should be handled at the ICES executive or operating system
level, this may nevertheless happen. Reason for this may be er-
rors which may still exist in the GRAPHIC system routines or
error situations which actually occur at the operating system

level as e. g. a data set, time or core storage-overflow. An
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error found by the ICES executive results in a message and a

core dump of controllable contents and subsequently ‘the job is
terminated with user completion code 256. Errors found by the
operatine system usually result in a job termination with sy-
stem completion code. By submitting special job control cards

a core dump may be obtained in this case too.

9,2 GRAPHIC statements to control the ERROR system

The following commands of the GRAPHIC language control the
ERROR system

GRAPHIC
ERROR

GOON

END GRAPHIC

GRAPHIC and END GRAPHIC have other functions too, as already

described.

9.2.1 GRAPHIC and END GRAPHIC

The GRAPHIC statement causes the initialization of the ERROR
system. At this time, all default values for the control para-
meters are assigned. END GRAPHIC causes (in connection with
the ERROR system) the printing of error statistics and of the

contents of the message buffer.

9.2.2 ERROR, the main control statement of the ERROR system
9.2.2.1 Control variables

The ERROR system is controlled by the following control varia-
bles which may be altered by the statements described below.
The standard values are listed too. The variable m refers to
the characteristic figure and varies from 1 to 19. For every

characteristic the following control parameters are stored:

ik (m) the allowable number of messages. If the number of mes-
sages is greater than ik (m) an exit program is called.
standard
ik(1) (total number of messages) 1 000 000
ik(2) (time overflow) 0



nams (m)

ids (m)

ide (m)

icontim)
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ik{3) (code 0) 1 000 000
ik{4) {(code 1 to 8) 1 000
ik{12 to 19) (code 9 to 19) 0

the name of the exit program, standard nams (m) =
"EREXIT'

the messages, with seguence numbers between ids (m)

and

ide (m) (including both) are printed immediately, other
messages may be stored in the buffer or suppressed.
Standard ids (m) = 0, ide (m) = 100

if icont (m) = 1 messages with this characteristic m

are not processed.Standard: icont (m) = 0O

Other control values are:

leont

ne

ibuf

1buf

mst
mson

cpures

cpumax

if lcont = 1 the ERROR system does nothing; so nearly
no time is exhausted, but on the other hand the user

gets no messages. Standard lcont = O
print-file of the ERROR system. Standard ns = 6

if ibuf = 1 no messages are storsd in the buffer.
Standard ibuf = O

number of print-lines which may be stored in the buf-
fer. Standard lbuf = 20

number of standard characteristics (mst = 19)
number of special characteristics (mson = 0)

after cpures sec. before the maximum allowable CPU-time
for the actual job step all messages have the characte-
ristic m = 2 (time overflow).

Standard: cpures = 15

after cpumax sec., measured in CPU-time since the start
of GRAPHIC execution, all messages have the characteri-
stic m = 2(time overflow). Standard cpumax = maximum
allowable step time after the GRAPHIC command minus

cCoures
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namsan (ms) ms = 1,2, , mson, the names of the user delivered
programs which decide whether a message shall be
qualified by a special characteristic.
Standard mson = 0 and therefore no namson are de-

fined.

9.2.2.2 Syntax of the ERRGOR statement

ERROR [ :]

PRINT [DN] [EEEE né] information

SET [FOR] [ CHARACTERISTICS m1 [T0 m2] values %
CODE c1 [T0 c2] values
SPECIALCHARACTERISTIC namson values
PARAMETER parameter

| FORMAT TEST [FROM nr1] [[T0] nr2]

STATISTICS
information ::=¢ BUFFER [ [ AND] inFormation]
PARAMETERVALUES
r N
ON
[ conTRoL ] {DFF}
voluss ::= 3§ STOP [ AFTER] ik [MESSAGES] , [ [AND]
[PRINT] [FROM ids] TO ide [MESSAGES values
EXIT [PROGRAM] nams
- o
parameter ::= 5
’ PRINT [ON] [FILE] ne
[NUMBER] [OF] STANDARDCHARACTERISTICS mst
[MAxIMUM] [CPU] TIME  cpumax [SEC] r [AND]
[cPU] RESERVETIME cpures [ SEC] parametar
ON
[BUFFERSTORAGE] { neg
L[ggEFER] LENGTH  lbuf )

m1, m2, ¢1, c2, ik, ids, ide, ne, mst, lbuf are integer values
cpumax and cpures are integer or real valuss

namson, nams are alpha strings with maximum length 6.
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9.2.2.3 Semantic of the ERROR statament

ERROR ON sets lcont = O (see 9.2.2.1)
ERROR OFF sets lcont = 1
ERROR PRINT ON FILE ne information
On file ne (standard ne = 6) informations are printed
information = STA, a messages statistic is printed
= BUF, the contents of the message buffer is

printed

H

PAR, the valuses of the controul parameters

listed in 9.2.2.1 are printed

ERROR SET FOR CHARACTERISTICS m1 TO m2Z values
For the characteristics m1 to m2 the "values” are assumed.
ERROR SET FOR CODE ¢t 70 c2 values
For the characteristics c1+3 to c2+3 the "values” are assumed.
ERROR SET FOR SPECIAL CH = namson values
The program namson decides over a special characteristic and
for this characteristic the "values” are assumsd.
ERROR SET PARAMETER parameter
For some of the characteristic - independent parameters

listed in 9.2.2.1 the values defined in "parameter” are

assumed.

values ::= CONTROL ON sets icont (m) = O
CONTROL OFF sets icont (m) = 1
STOP AFTER 1k sets ik (m) = ik
PRINT [FROM ids| TO ide sets ids (m) = ids
and ide [m) = ide; standard values for ids is O
EXIT nams sets nams (m) = nams

parameters ::= BUFFERSTORAGE ON sets ibuf = O

BUFFERSTORAGE OFF sets ibuf
The other parameter - commands set thes values

as defined by name in the syntax and in 9.2.2.1

ERROR FORMAT TEST FROM nr1 TO0 nr2
The format texts stored for the error code numbers nrl to
nr? on the subsystem data set are used to print test-error-

messages (with some assumed values if necessary). Thus, the
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system programmer may test, whether the format texts are
correct and clear or not. If changes are necessary, they

can be done by using the TABLE-2 Subsystem.

9.2.3 The GOON statement

Syntax: GOON

Semantic: This command causes an ENABLE request of the COL
to be executed. Any preceding INHIBIT request is
canceled. If an INHIBIT has been executed, no
GRAPHIC system programs have been called by the

command interpreter since that time.

This statement should be used just before some "conserving”
statements, as e. g. ENDGRAPHIC, so that, if an error caused
an INHIBIT, this conserving statement may be executed never-

theless.

9.3 ICETRAN statements to control the ERROR system

There are many programs of the ERROR system which may be

called by LINK statements in GRAPHIC system programs to con-
trol the ERROR system. The full details of these calls will
be described elsewhere in a following publication. Here the

possibilities are listed only.
The ERROR system provides programs which may be called to

- create messages

- ask for the error codes of messages produced in subprograms
of the just executed system program

- ask for statistical informations (number of messages with
some characteristic since initialization or since the last
question)

- get the contents of the message buffer

- sanction a previos error-message; this means that for some
message characteristics the number of allowable messages
is incremented by one

- test for time overflow

- change all values which control the ERROR system and which
are described in 9.2.2.1

- cause printings of statistics and the message buffer.
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10. Some GRAPHIC programming examples

The following figures demonstrate some capabilities of the
GRAPHIC system.

=)
O

o)

2.00

U1l Ue

(V)

1.00

.00

%Y. 00 2. 00 .00 6.00 3.00 10.00
T (SEC)

Fig. 33 GRAPHIC programming example

EGRAPHIC

2 A GRAPHIC EXAMPLE

OPEN PLOT ON DIMENSIONS 20 CM 14 CM

SET "INP'" POLYGON O 0O 2 0O 2 3 10 3 END
SET '"OUTP' POLYGON WITH 81 VALUES ACCORDING TO

TAU = 1.
o1 1 =1,81
X(I) = (I+19.)/10.
1 Y(I) = 3.%(1.-EXP(-(X(I)-2.)/TAU))
END

SET U1 TEXT '"U1' 1.2 1.5
SET "U2'" TEXT 'U2' 2.8 1.5
SET "XAX' X-AXIS TITLE °'T(SEC)’' TO ( "INP','0QUTP® )
SET "YAX' Y-AXIS TITLE 'u(vy)’ TO ( "INP!','0OUTP' )
SET 'TRANS' TRANSFORMATION TO 'XAX' 'YAX' OF
( "INP','0UTP",’U1",'U2"' ,SHADE DIST 0.4 BETWEEN 'INP' AND 'OQUTP' )
STANDARD UNIT CM
SET 'ARROW®™ PDLYGON 12.5 6.4 12.5 4.6 12.45 5.1 12.55 5.1 12.5 4.6 END
SET 'CIRCUIT® ( "ARROW',TEX 'U1' 11.5 5.25, POL 12.5 6.5 13.5 6.5
13.5 6.35 14.5 6.35 14.5 6.65 13.5 6.65 13.5 6.5 END, POL 15.5
5.4 15 5.4 16 5.4 15.5 5.4 15.5 4.5 END, SHIFT 4 0 'ARROW',
TEX *U2' 16.6 5.35, POL 16.5 4.5 12.5 4.5 END )
PLOT ( "XAX','YAX','TRANS','CIRCUIT' )
SAVE 'FIG.33' 'KEY1’
END GRAPHIC
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STANDARD UNIT CM
OPEN PLOT DIN A 4
g FIGURE 34

SET 'P1"' POINT 2 22

SET 'P2" POINT 2.5 15
SET 'P3' POINT 2 8

SET 'P4' POINT 4.2 17.7
SET 'P5"' POINT 4.2 12.3

DO 20 TIMES

PLOT SPLINE CLOSED ( 'P1® 'P4' 'P5' 'P3' 'P2' )
SET 'P1' SHIFT 0.4 -0.25 'P1°

SET 'P2' SHIFT 0.375 0 'P2’

SET 'P3* SHIFT 0.4 0.25 'P3'

SET 'P4' SHIFT 0.69 -0.135 'P4’

SET 'P5' SHIFT 0.69 0.135 'P5’

END

Fie. 34 Example 2
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ST ANDARD UNIT CH

OPEN PLCT DIN A 4

PROCEFDURE *PATTERNY { *0B*, IN?,'Me,8DJ0 tpDt |
SET *0B1Y = *1B8¢%

DO N TIMES

SET #aB2t = v£B1°

DO MY TIMES

PLCT *0B2°

SET *0RB2* SHIFT TCWARD *Pl® DOF *0B2°
ENC

SET *uBl® SHIFT TCWARD *pP2* 0OF *0BL?
END

END

CALL *PATTERN® { CIRCLE CENTER 2 25 RADIUS 1, 25 3, POINT -
15 0% POINT 0 ~1.5 )

CALL *PATTERN® { POLYGOWN CLOSED @ 19 10 20 11 2C 12 19 11 18 -
1C 18 END, 35 2y POINT 2.2 =1es PCINT =-2.2 -1 )

Fig, 35 Example for using a procedure



SET

OPEN PLOT DIN A 6

'CURVE'
READ (12,10)
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POLYGON WITH 100

(X(I),Y(I),I=1,100)

10 FORMAT (10E14.7)

END

SET 'XAX' X-AXIS 'CURVE’
SET 'YAX' Y-AXIS 'CURVE'
SET 'C1' TRANSFORMATION TO *XAX' 'YAX' 0OF 'CURVE'
PLOT ( 'C1' 'XAX' 'YAX' )
OPEN PLOT DIN A B
PLOT ( APPROXIMATION 0OF DEGREE 2 'C1' 'XAX' 'YAX' )
END GRAPHIC
o o
(@] (@)
2 3
N
o o \\
(=) O
Ll_lC)‘_‘ LlJCJ._‘ \
(f)»—a U')-—-c y
I I~
') )
s g Lo
- . Il o
p—— - )__ .
T o ()
= \ 2 \
\.\ \
\t - \
S \ o \
: o
=3 B 3
'2.00 12.00 2.00 12.00
X-ACHSE X-ACHSE
Fieg. 36 Example for coordinate axes and an

approximation
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Appendix A

Concrete syntax of

<program>
<block>
<group>
<declaration>»
<proc-decl>
<name-decl>
<name-init>
<do>»
<statement>
<la-st»>
<la-expression>
<la-term>
<la-factor>
<gcomparison-op>
<a-expression>
<a-op1>

<term>

<a-op2>
<factor>
<a-value>
<l-value>

<system-st>

the GRAPHIC language

7

GRAPHIC —f Eblockﬂ* END GRAPHIC —

BEGIN ~} <group> END —{| <do> <group> END-—{| <group>
[[<declaration>]” [<statement>]*]’é

<name-decl>|<proc-decl>

PROCEDURE <name> [ ([}name>ﬂ%> ] g —{[<statement>]” END [RETURN <object>];

DECLARE <name> <npame-init>

4] INITIAL <object> —

Do <a-expression>[]4l Do <a-expression>[] WHILE <la-expression> ~{

<graph-st>—{ | <la-st>—| | <system-st>—|| <proc-st>—{| <block>

<st-id>[]<la-expression>

<la-term> ['][’ <la—term>]*

<la-factor> [8& <la-Factor>]*

. 1
<a-expression> [kcomparison-op> <a"expr8331on>]D

vl

= lo= > 7> | < |7x

<term> [<a-op1> <term>]

+| -

<factor> [<a-op2> <Factor>]*

x| /

<a-value> E?’G<a-valua>]é

<real> | <integer> | <l-value>

TRUE | FALSE | <name> | =<1-value>| (<la-expression>)

<standard> | <time> | <trace> | <test> | <take> | <ressrve> | <release> | <get> |

<put> | <delete> | <file> | <compile>| <link> | <go>



<graph-st>
<st-id>
<name>
<gr-outp>
<la-st>
<control-st>
<clause>»
<pbject>»

<gpecification>

<transformation>

<proc-st>
<collection>
<char>
<alnha>
<digit>

<sig>

<st-id> [] <object>

SET [0BJECT [] ] <name> | DEFINE [0BIECT []] <name> | <gr-outp>
'[<char>]?'

PLOT | PRINT

<st-id> <la-expression> | <control-st>

IF <la-expression> THEN <clause> FI o

<block> | <block> ELSE <block>

<name> | <specification> | <transformation> | <proc-st>

<point> | <line> | <text> | <circle> | <axis> | <polygon> | <spline> |
<approximation> | <are> | <semicircle> | <intersection> | <extrem-element> |
<shade> | <object-named> | <x-axis>| <y-axis>| <spec.-outp> | <npoint> |
<nline> | <transformation> | <collection> | <open>

<shift> | <enlargement>| <diminution> | <rotation> | <image> |

<transf. to axis>

CALL <name> [<[<objectir)] é

D <[<object>:|*)

<alpha> | <sig> | <digit>

AlBlc]...lYylz
1121 3] ...]19]0
. e BT N B A0 B B O

Gl



The GRAPHIC language accepts as delimiters

b .3 or .

The describing metalanguage uses the following symbols:

< > Angular brackets enclose non-terminal variables

to distinguish from terminals

1= This symbol is used to define a rule for generating
valid syntax by substitution of left parts by right
parts.

[ ] n All elemsnts within the brackets may be repeated
from n-through m~times. If n is omitted, one is as-
sumed. If m = # the bracketed item may be repeated

a deliberate number of times.
] End of card
D This symbol is placed for ignorable words
!

Separates alternative right parts of rules.

All non-terminals, which are not explained - like <point>,
<line> etc. - should be taken from their description in

chapter 4.
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Appendix B

Abbreviations used in this report

AED Automated Engineering Design

CAD Computer Aided Design

CDOL Command Definition Language

CPU Central Processing Unit

ov Datenverarbeitung

GDP Graphical Data Pool

GDPS Graphical Data Processing System

GE Graphical Element

GO Graphical Operation

IBM International Business Machines

ICES Integrated Civil Engineering System

ICETRAN ICES-FORTRAN

IRE Institut fir Reaktorentwicklung

MFT Multiprogramming with a Fixed Number of Tasks
(refers to 0S/360 or 0S/370)

MVT Multiprogramming with a Variable Number of Tasks
(refers to 0S/360 or 0S/370)

0S Operating System

REGENT Rechnergestitzter Entwurf

RSUB Ring with Common Subobject

RSUP Ring with Common Superobject

TNL Temporary Node List
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