
Mai 1973

Institut für Reaktorentwicklung

Design Principles of the GRAPH IC System

G. Enderle, E.G. Schlechtendahl
U. Schumann, R. Schuster

l<FK 1722

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESE LLSCHAFT FüR KE RN FORSCHUNG M. B. H.

KARLSRUHE

Kernforschungszentrum Karlsruhe

KFK 1722

Institut für Reaktorentwicklung

Design Principles of the GRAPHIe-System
---,,----------,-------_.

G. Enderle, E. G. Schlechtendahl,

U. Schumann, R. Schuster

with contributions by

K. Leinemann, W. Olbrich,

H. Schnauder

Gesellschaft für Kernforschung mbH, Karlsruhe

Abstract

GRAPHIe i8 a system for handling graphical information. It

allows definition. management and output of graphical objects.

The main components of the GRAPHIC-system are;

A problem oriented language for specification of ~ra­

ohical objects and of operations to change them. The

language contains subroutines. UO- and IF-statements.

A lan~uage interoreter which builds up a data structure

while analvsin~ the statements of the language.

A data structure for the internal representation of

graohical objects and ooerations as nodes in a hierar­

chical ring structure.

Routines for parsing structures of graohical objects.

for 8xecuting operations, creating new objects and for

output of ~raohical information.

Lan~ua~e and data structur8 allow reforencing of objects bv

name. GRAPHIe has been imolemented as a subsystem of thA CAD­

svstem lCES.

Entwurfsorinzioien des GRAPHIC-S\lstems______..._ ... 2....:._~__

Zusi'lmmenfassun

GRAPHIe ist ein System zur Definition, Bearbeitung, Verwaltung

und Aus[abe graDhiseher Information. Oie wesentlichen Bestand­

teile dieses OV-Systems sind:

Eine problemorientierte Eingabesprache zur SpezifizierunR

von graphischen Objekten und von Operationen zu ihrer

Ver~nderung. Oie Sprache enth~lt Unterprogramme, 00- und

I F- An"'I eis ungen .

Ein Sprachinterpretierer, der während der Analyse der

Einv,abesprache eine Datenstruktur aufbaut.

Eine Datenstruktur zur internen Darstellung von graphi­

schen Objekten und Operationen in Form von Objekt~ und

Referenzknoten in einer hierarchischen Ooppelring-Struk­

tur.

Routinen, die Strukturen graphischer Objekte abarbeiten.

Jperationen ausführen und neue Objekte oder Ausgaben

~raphischer Information erzeugen.

Sprache und Oatenstruktur erlauben den namentlichen Zugriff auf

alle graphischen Objekte. GRAPHIe wurde als ein Subsystem des

CAD-Systems leES imolementiert.

Contents

1. Introduction

2. The hardware and software environment of the
GRAPHIC-system

3. Results of the system analysis

1

2

3

3.1 Types of graphical objects and their represen-
tat ion in internal storage 3

3.1.1 Basic components of a drawing 3

3.1.2 Linear lists 4

3.1.3 Circular lists 5

3.1.4 Tre8s 6

3.1.5 Reoresentation of graphical objects by
circular lists 6

3.1.6 Graohical objects as nodes in a tree struc-
ture 9

3.1.7 Directed Graphs 10

3.1.6 Identifying graphical objects 13

3.1.9 Graphical Operations 14

3.2 Possible forms of input to a Graphical Data Pro-
cessing System (GDPS) 17

3.2.1 Interactive display terminal 17

3.2.2 Graohical languages 17

3.2. 3 Input of graphical information produced by
existing programs 18

3.2.4 Input from existing drawings 19

3.3 Out out of graphical data 19

3.4 The basic comoonents of the GRAPHIC system 20

4. The GRAPHIC language 22

4. 1 Basic structure of the language 22

4.2 SET and OEFINE-statements 24

4.3 Objects specifications 25

4 3.1 Graphical objects 25
4.3.1.1 Graphical elements 25
4.3.1.2 Graphical operations 29

4.3.2 Logical-arithmetical objects 47
4.3.2.1 Logical-arithmetical elements 47
4.3.2.2 Logical-arithmetical operations

48

4.3.3 Nesting of objact specifications and col-
lections of objects 49

4.4 Output statements 50

4.5 Procedure and Oeclaration Statements 53

4.5.1 Definition and invocation of procedures 53

4.5.2 The DECLARE statement 56

4.6 Program control statements

4.6.1 DO-loops

4.6.2 IF-THEN-ELSE-FI

56

56

57

4.7 System commands 58

4.7.1 The TAKE OVER statement 58

4.7.2 TIME, STANDARD, TEST, TRACE 59

4.7.3 storage and retrieval of graphical in-
formation 60
4.7.3.1 The RESERVE- and RELEASE-state-

ment 60
4.7.3.2 Storing graphical information 61
4.7.3.3 Reading graphical information

from secondary storage 61
4.7.3.4 Deletion of graphical information

on secondary storage 62
4.7.3.5 File-Utility-cammands 62

4.7.4 The COMPILE, LINK and GO cammands 63

4.8 The different modes of GRAPHIe 64

4.8.1 The programming made 64

4.8.2 The execution mode 64

4.8.3 The immediate mode 65

5. Data structure 67

5.1 Introduction 67

5.2 Nodes 67

5.2.1 Object nodes 67

5.2.2 Reference nodes 70

5.3 Types of objects and their attributes 72

5.3.1 Introduction 72

5.3.2 Graphical elements 73

5.3.3 Graphical operations 73

5.3.4 Collections 78

5.3.5 Names 78

5.3.6 Evaluate and define 79

5.3.7 Actions 81

5.3.8 Arithmetical and logical operations and
elements 81
5.3.8.1 Arithmetical and logical opera-

tions 81
5.3.8.2 Arithmetical and logical elements 81

5.3.9 Control objects 82
5.3.9.1 The 00 group and the IF clause 82
5.3.9.2 BEGIN-blocks 84
5.3.9.3 Procedures 85
5.3.9.4 Procedure calls 86

5.3.10 The undefined object 86

6. The interpretation of the GRAPHIC language and the
building up of the corresponding data structure 88

6.1 Steps of the conversion of the language into
the structure 88

6.2 Treatment of names 88

6.2.1 Oeclaration of names, environment, name
referencing 88

6.2.2 Assignment of objects to names 90

6.3 An example for the conversion of a language
statement into the corresponding structure

7. Parsing the structure

8. Extension of the GRAPHIC system

9. Error handling in GRAPHIC

90

92

96

97

9.1 General features 97

9.1.1 Error handling by the command interpreter 97

9.1.2 Error handling by GRAPHIC system routines 98

9.1.3 Error handling by ICES execution or opera-
ting system 100

9.2 GRAPHIC statements to control the ERROR
system 101

9.2.1 GRAPHIC and END GRAPHIC 101

9.2.2 ERROR. the main control statement of the
ERROR system 101
9.2.2.1 Control variables 101
9.2.2.2 Syntax of the ERROR statement 103
9.2.2.3 Semantic of the ERROR statement 104

9.2.3 The GOON statement 105

9.3 ICETRAN statementsto control the ERROR system 105

10. Same GRAPHIC programming examples 106

Appendix A: Concrete syntax of the GRAPHIC language 114

Appendix 8: Abbreviations used in this report 117

References 118

1

1. Introduction

urawin~s are ons of the most important m8ans of communication

betw88n scientists, engineers and technicians. For this reason

many computer programs produce output of graphical information

either as plots or on a display unit. In order to chanse details

of such drawings, 8. ~. for editorial revision of illustrations

for oublication, th8 programs have to be modified. This may be

very time-consuminf or even impossible in the case that the

program source is not available. So the need arose for a system

able to manioulate in a convenient way graphical output orodu­

ced by comouter programs. Such a system should have the ability

to edit (alter, delete or addl parts of a drawing and to stors

Rraphical information. Furthermore the system should suoply

means for specifving new drawings in a way suitable to the enri­

neer. The graphical data processing system GRAPHIC has bBen

developed at the Institut fOr Reaktorentwicklung as oart of tne

o r-oj e c t f~EGErJT (Rechnerß..estOtzter !=ntlAJurf = Comouter Aided

Uesirn) /1, 2/. It is a means to create graphical ob j e c t s , t o

manipulate them, to store graphical information and to produc8

output, at present in the form of plots. GRAPHIC also provides

the necessary interface for adaptation of other sources of

?raohical input.

Zum Druck eingereicht am 3.4.1973

2

2. The hardware and software environment of the GRAPHIC-system--_.__.~._._-"-'----~----"'----'

GRAPHIC was realized as a subsystem of ICES Clntegrated Civil

Engineering System /3, 4, 5/). ICES not only offers a powerful

dynamic memory management, able to handle dynamic arrays and

dynamically linked load modules, but also can be used to define

problem oriented languages in a flexible and convenient way.

Some exoeriences with the use of ICES have been described in

/6/. Since ICES can only be run on an IBM/360 or IBM/370 compu­

ter with the ooerating system OS/360, GRAPHIC also is bound to

the System/360~ The minimum hardware configuration needed is a

computer IBM 360/40 with at least two disk units, type 2311 and

up. These requirements are due to ICES. The minimum size of

core required for GRAPHIC is 240 k Bytes. GRAPHIC was developed

on a configuration IBM 370/165 and IBM 360/65 under OS/360 with

ASP.

Tne graphical output device that is used for drawing graphical

objects is a Calcomp plotter type 763, run offline. Tne routines

to direct the plotter are taken from the Calcomp Graphics Basic

and Functional Software /7/.

-) RCA. UNlVAC and Philips have announced, that they will support

leES on their computers.

3

3. Results of the system analysis--..._..~--"~- ~,----_.__._--_.__._---~-_ ..._----_._~--

3.1 Types of graphical objects and their representation in

internal storage

3.1.1 Basic components of a drawing

A drawing consists of points, lines, curves and symbols. We

shall call these basic components of a drawing, which can be

olotted or disolayed immediately, graohical elements (GE). To

a man looking at a drawin~ the lines and curves on a picture

have certain relations to each other. E. g. the drawing of a

hause consists of lines representing the walls, the roof, the

door and the windows. A Graphic Oata Processing System (GuPS)

therefore must be able to manage relations between GE's. A

simple relation between elements is existing, if they "belong

t oge t he r-v , i. e , they can manipulated as a whole an d , in a

system with names for referencing objects, they can be referen­

ced cy the same name.

Uifferent possibilities for describing the relations betw8en

objects in data structures will be discussed in ~he following

chaoters. Objects will be represented in the figures by rectan­

?ular blocks, \~hile relations between objects are lines between

blocks. Relations with undefined objects are represented as

s h 0 wn i n f i g. 1.

object relation object

one object

undefined

r i«. 1 Objects and relations

4

3.1.2 Linear lists

Linear lists are very simple structures /9/.

!r----llH'-- ----l --Jjl----«

F i ~. 2 Linear list

There are two different kinds of structures that can be repre­

sented by linear lists: Set lists and ordered linear lists /8/.

A set list is a finite set of objects linked together by rela­

tions. Every object can be reached from another one by following

one series of relations.

The relations just fulfill th8 task to show that all objects of

the list are members of the same set. The order of objects in

the list does not have any significance. Every object is the

startin~ Doint of two relations with identical meaning.

An ordered linear list is a finite set of objects, every one

possessing a left and a right relation. Every object can be

reached from another one by running through aseries of relations,

no relation may be repeatedly oassed. In an ordered list, star­

tine at one object 0j s(01" .. ,On) all objects 0i' O<i<j can be

reached only over left relations, all objects 0., j<i~n can be
1

reached only by going along the right relations. The order of

objects in the list cannot be changed.

The random enumeration of all members of an institute, e. g.

is a set list, INhile an alphabetical list is an ordered list.

5

3.1.3 Circular list

Fir,. 3 Circular list

In circular lists, or rings, every object can oe reached from

another one by following one of two oossiole series of rela­

tions. Circular lists represent the membership of objects in

a set. In manv cases circular lists can be handled more effec­

tively by algorithms than linear lists.

Linear lists and rings can 6erV8 only to describe "linear" or

one-dimensional structures, where only two relations emerge

from an object. The following chapter will take a brief look

on methods for representation of more complex structures.

6

3.1.4 Trees

F i g. 4 Tree structure

Knuth /9/ offers a recursive definition of tree structures:

"A tree is a finite set T of one or more nodes such that

a) There i8 one soecially dS8ignated nade called the raat af

the t r-ea , r-oo t (T), and

b) The remaining nades (excluding the raot) are partitioned

into m>O disjoint sets T1, ... Tm' and each of these sets in

turn is a tree. The trees T1, .•. Tm are ca lIed subtrees of

the root."

This definition describes a set tree as already discussed in

/8. 10/, because the relative order of objects is of no impor­

tance. This becomes evident. if we show the trae structure abov8

in another form:

7

Fi g. 5 Representation of a set tree

If the relative order of subtrees Ti'" .T
n

is important, the

structure is called an order~d tree. A special kind of ordered

treBs are binary treBs, wherB every node has one or two sub­

trees.

Plain t r-as s (Knuth calls them "forests") can be convertad into

binary traBs:

Fi g. LI Conv8rtin~ a trae into a binary traa

B

This is of some importance since binary trees often can be

treated more effectively by algorithms. The terminology used

for describing relations between nodes of trees is normally

taken from family trees. Every root is called the father of the

nodes at the head of its subtrees, these nodes are called

brothers. The subtree-nodes are sons of their root. Besides

the types of structures mentioned above 'multilinked structures'

or "graphs" are used for representing complex relations between

objects. The following chapter lines out the advantages and

disadvantages of trees and multilinked structures for graphical

objects in a zraphical da ta processing system (GPOS). This leads

to the data structure of GRAPHIC, which is described in more de­

tail in chapter 5.

3.1.5 Representation of graphical objects by circular lists

Possible data structures for graphical objects are described

in /9, 11, 12, 13, 14/. In SKETCHPAD /15/ and PRAOIS /16, 17/

circular lists are used for graphical data structures. Since a

drawinz must be described by multidimensional relations, several

rings are necessary. which are connected by special relations.

The drawing of a triangle shall serve as an example.

P3

Lr*2
~~P2

P 1 L1

Fic;. 7 Objects and relations representing a triangle

The s t r-uc t ur e "trians>:le" is an ob j e c t , which is composed of

9

different subobjects:

ooints P1, P2, P3

lines L1, L2, L3.

Fit(. 7 s hows the representation of the object "triangle" by three

hierarchically related circular lists. Rings have the advantage

that objects can easily be added to and deleted from the list.

This is tru8 even more for doubly linked circular lists since

an object can be added or deleted at any place without havin~

to run through the whole ring. The rings in the triangle example

are not ordered lists but just comprise objects of the same sort

(points, linesl. The order of the objects in a ring does not

matter. Ths structure of the drawing is not represented by the

rings but by pointers from an object in one ring to objects in

other rings. This conceot has the consequence that changing of

one object (e. g. ooint P3) effects several other objects

(lines L1 and L3 and the triangle) .

3.1.b Graphical objects as nodes in a trae structure

TRIRNGLE

Fif'. B Binary tree representing a triangle

10

FiR. B shows the representation of the triangle object in a

binary tree. Advantages and disadvantages of trees compared

to related circular lists become obvious:

Tree structures show all relations clearly and distinctly,

since from one object to the other there is only one series of

relations. But for this clearness we have had to duplicate

objects. The object P1, e. g. has to be incorporated into the

tree structure 2 times (P1 (I) and P1 (11)). This needs not only

a biß amount of memory but also may require more work to be

done. If the point P1 is to be shifted in a way that all ob­

jects related to it are also changed. the linear transformation

for P1 must be done 2 t i mes , for P1 (1) and P1 (lI). On the ot har-
(111) .hand. if we wish to change only P1 , thlS can be done very

easily.

3.1.7 Oirected Graphs

In order to avoid the necessity for storing several copies of

one object, modified tree structures are advantageously used

for reoresenting graphical objects. The structures are directed

graphs. they may be traes. but they must not. Updating of ob­

jects can be done easier than in strict tree structures. In a

directed graph objects will not be copied, if they are referen­

ced more than once (see fig. 9).

F i g. 9 Two objects referencing the same subtree

We see, that now not only a root (a father) can have more than

1 1

ons subtres (son), but that also a subtree (son) can possess

more than one root (father). (For convenience of the termino­

logy used here, let us allow that a son may have more than one

father). The symmetry becomes obvious, if we somewhat change

the oresentation of the above example:

A is father of 8 and C

0 is father of B and C

B is son of A and 0

C is son of A and 0

Fig. 10 rJbject relations represented by a graph

Let us take a look at a slightly more complicated example:

L8t A be father of 0 and E,

let f3 be father of 0, E and F

let C be father of E and F .

n

Fiq. 11

E F

WB see that in such a structure every object may possess a

discretionary number of relations to fathers and sons. i~ealiza­

tion of these relations by a set of upward-oointers and a set

of do\~nward-ooint8rs at every node would require a comolicated

stora~e-allocation-methodfor the space needed by the varyinq

numoer of oointers. This can be avoided by leavin~ the task of

c onn e c t i nc t wo objects to soecial obj e c t s , called "r-e f c r-enc e s :",

For these references the same storage allocation method can be

used as for all other objects in the Graohical Oata Pool (GOP).

12

The following 8xample shows the method used for connecting ob­

jects by reference8.

eJBJECTS

REFERENCES

ClBJECTS

-- PlHNTEA CO-Cf AEfEAENCES
eJN A CIRCLE

A i8 father of 0 and E

B i8 father of E

C i8 father of E

[] is son of A

E is son of A, B and C

Fig. 12 References connecting objects

Figure 12 demonstrates the rules applied to the use of referen-

ces:

Every reference r-ep r-es e nt s one "father-of"-relation f and ,

corresponding to t h i s , one "son-of"-relation).

So, from object A to its two sons, 0 and ~ there are two re­

ferences. 1 and 21 from E to its 3 fathers. A. B and ~ thera

are 3 references 2, 3 and 4.

References are linked together by two rings. one comprising

all r-e f e r-enc e s that represent the ~elil-i~ons from one father

to all of his sons (in fig. 12 the upper rings), the other

one comprising all references representing the relations from

13

one son to all of his fathers (the lower rings in fig. 12) .
•_~, .•. ,_._. ••., •. _._, ·, ~v .._. · __·_ ~._'__•• _~.__ _ ' •

In order to reach all subjects from one root of a structure,

one has to ~o alone the downward pointer, oass around the re­

ference ring comorising all sons and follow the down-pointer

of all references met on this ring. So we reach the next lower

level of the structure. In order to reach all superoojects of

an object we take the corresponding way up. Go up the upward

pointer, run along the rin~ of references representing the rela­

tions to all fathers, from every reference met on this way you

gO up the uoward pointer and will reach the next higher level

of the structure.

Th8 scheme introduced here for storage of graphical objects is

advantageaus comoared to a strict tree structure only if n re­

ferences take less space in memory than n-1 copies of the ob­

ject including the space required for the bookkeeping which

marks the various copies of one object as "belonr:ing tagether".

In most cases this is true since graphical elements not only

consist of the data reoresenting relations (pointers e. ~')

out also of attribute data (e. g. coordinates of the points of

a oolygon). Furthermore most operations in a GDPS have to oe

accomolished for all cooies of a graphical object, in our data

structure they have to be done only once oecause only one cooy

of every object is storeo.

3.1.e Identifvinq graohical objects

A user of a graphical data processing system (GDPS) must 08

able to inform the system about what action he wishes to be

done on what parts of the stored graphical information. There

are several ways of referencing graphical oojects. One way is

to describe the object by specifying to the system it's rela­

tions to the other objects or to the origin of the used coordi­

nate s vs t ern . A user could say: "Shift the circle in t ho upoer

18ft corner of the drawin~ 2 centimeters to the right." A

Duite similar way of referencing objects is to point at them

on a diSPlay unit. Another way to reference oojects is to asso-

14

ciate a name with each object, then being able to say: "Shift

the circle named 'C1' 2 centimeters to the right".

We feel strongly that the first way identifying a graphical

object would be of great advantage for someone wishing to

change a drawing. But several problems arise if one intends to

implement such a feature. Either all objects in the GOP have

to be searched for the object in the upper left corner or the

objects must be stored in a sequence according to their coordi­

nates. The latter method would simplify the search for an ob­

ject with a specified position on the drawing, but would not

help finding, s e y, the circle wi t h the greatest area.

So for the sake of efficiency and easier implementation (and

because we are accustomed to use names for identifying objects

in nearly all programming languages) we came to the decision

of using names for identifying graphical objects in the GRAPHIe

system. Nevertheless. this problem has been studied in some

more detail, as described in /18/. Names may identify

p;raphical elements (GE), e , g. po i nt s , lines, circles but also

more complicated objects such as a set of several GE's. We call

such a set of GE's that can be referenced as a whole a

~Grapl1_i~?l~lle_ct ion" or j ust co 11 ect ion.

3.1.9 Graphical Operations

Ooerations performed upon GE's are called in this paper

"Gra 0 h i c a 1 ODe rat ion s " (GO l , ExamDIe s are t he c re a t ion 0 f a
------,-_._._---,--_.~-"-- '

line between two points or a circle through 3 points, or linear

transformations such as shifting, rotating or enlarging GE's.

GO 's could be represented by a set of procedures. performing

the task specified by the user and adding, as a result, a new

GE (or a collection of GE'sJ to the GOP. The following example

shows one shortcoming of this method (the language for instruc­

tions to a GOPS used here is selfexplainingJ.

15

P1 · = point (x · .., y ·. .)

P2 : = point (x · .., y = · ..)

P3 : = point (x ·.., y · ..)

L1 · - line from P1 to P3

L2 · - line from P1 to P2

L3 · - line from P2 to P3

TRIANGLE:= L1 , L2, L3

Plot TRIANGLE

Shift P3 2 cm to the right

Plot TRIANGLE

In this examole the two PLOT-instructions would produce identi­

cal results, since TRIANGLE was evaluated orior to the chanpe

made to point P3. If we would intend to change the triangle, we

would hava to write:

Plot TRIANGLE

Shift P3 2 cm to the right

L1 lin8 from P1 to P3

L3 line from P2 to P3

TRIAi\ICLE: = L1, L2, L3

Plot TRIANGLE

This is neither a notation to be called rather elegant nor very

pleasant for the user. It would be useful if we could sav:

let L1 oe the line from P1 to P3, but evaluate it only when L1

is referenced.

eThe notation adopted here for purposes of demonstrations is:

L1 = lin8 from P1 to P2).

A feature for reevaluating graohical operations every time

their result is needed can be imolemented by integratin~ graphi­

cal onerations together with ~raphical elements as nodes 1n

the graphical data structure.

16

Tne operation L1 = line from P1 to P2 thus could be represen­

ted by the structure in fig. 13.

1

INT p T

Fig. 13 The "line"-oDeration in the data structure

If graphical oDerations are included in the data structure for

graphical objects we have two possibilities:

1. To evaluate an operation at once, then the result is not

ehanged by alterations of the graphical elements upon whieh

the operation was performed.

2. Ta evaluate an operation evsry time the result's name is

referenced In this ease a change of an element will affeet

the result of alloDerations defined by referencing this

element.

The execut on of a task thus will take place in two steps:

First, build up a data structure representing the task. Second­

ly at onee or later depending on the user-defined specification

parse the strueture and compute a result. Beside8 the advantage

of being able to reevaluate the result of an operation several

times, this method allows to represent the task speeifieation

1 7

In th8 system in a WAy Adequate to the computer, i. 8. easy

to oarse ~nd easv to chAn~e. This Reneral principle can also

be found in the AED-svsten 119/.

3.2 Possible forns of inout to a GDPS

l.2.1 Interactiv8 disolay terminal

Whan usinr the term ~raohical inout most people associate with

it a workplace equipped with an intelligent display unit, light­

pen or joystick, alphanumeric and function keyboard /15,16/. In

oractice, however, only a verv small number of potential users

of a GOPS has an activ8 disolay unit available. This is pro­

baoly due to the followinr. reasons: Active graphic disolay

units are inadequately exoensive (both bv themselves and oe­

cause of the computer configuration which they require as tack­

ground) and there i5 a lack of standardized interface (especial­

Iv software interface) between comouters and disolay terminals

- and this situation is unlikelv to change in the next future.

There are two other problems in using interactive graphic ter­

minals: Whenever the problems which are to be treated by tha

COPS bacome large enough to require a si~nificant amount of

computer time, the interactive mode of operation is no longer

approoriate; the complete and correct documentation of the

terminal session is a nontrivial job if a lightpen is used.

For these reasons - at least at the present state of the art

- a language which can be used both in batch and interactive

mode is certainly more widely applicable than direct input at

a graphic terminal.

3.2.2 Graphical languages 120, 21, 22, 23/

One wav of s08cifyin~ graphical elements and operations upon

them is to US8 a language. Simple languages would be series of

calls on special routines in some higher level language:

P1 : =

L 1 : =

point(x = 1., Y = 2.)

line from P1 to P2

18

CALL CREATE POPlT .,2. 'P1');

CALL CREATE LINE('P1','P2' 'L1'J;

Typical examoles of this approach are /24, 25/,

Another oossiblity would be input in form of a table /26/:

P1

L1

ELE~lENT or

OPER/\TIL1N

POINT

LINE

OATA

1 .

P1

2.

P2

It seems to us, that a graphical language closer to the natural

language would be a better solution. A program in such a language

can be read and understood more easily, even by someone who is

not familiar with the GOPS. The input listing itself can be

used as a documentation. Free formatted input allows less mista­

Y,8S and more flexibility. !\loreover, instead of P1:= crosspoint

of L1 and L2; L3:= line from P1 to P2,

one should be able to write:

L3:= line from crosspoint of L1 and L2 to P2;

This kind of nesting of specification for graohical objects would

hardly be possible in a "CALL-"language or in a tabular-input­

language. Furthermore a graohical language should include same

features that have proven their usefulness in many high-level

lanpuages. Ta these features belangs the possiblity to define

procedures and pass arguments to them, do-looos and if-statements

Gf course, using a language close to the natural language re­

auires more prosram writting effort, the language is more re­

dundant than tabular input, and language interpretation is more

comolicated and thus more expensive.

3.2.3 Input of graohical information produced by existin~ oro-

p-rams

Manv Dro~rams solvinq scientific or technical problems produce

~lots. For documentation or oublication often the need arises

19

to make editorial changes on them. E. g. one wishes to add a

second y-axis to a drawinf representinß functions of apressure

and a temoerature over the time Cx)-axis, or in a technical

drawing chanGes haV8 to be made to a design detail. This kind

of modifications to orogram-oroduced plots mostly vJere made by

hand.

It is therefore desirable to make an interface available bet­

we8n the graohical outout of existing software and the input

of a COPS. Editin~ of plots could then be made easier and more

conveniently. All manioulations applicable to graphical objects

created bv usin~ the cnps should also be available for objects

supplied by existing programs.

3.2.4 Input from existin~ drawings

There is definitely a need for input of existin~ line drawinps

in many en~ine8rinq applications. Hardware equipment for pro­

duction of a point by point trace of line drBwings is available.

Outout from such equioment is usually generated on magnetic or

oacer taps. The GOPS should orovide a flexible and weIl defined

interface for the logical adaptation of this form of input.

3.3 Output of praohical data

Possible outout devices for graohical information are olotters

and displays. Since the format of graohical information is dif­

ferent not only for plotters and displays but beyond this for

the plotters and disolavs of different manufacturers, a clearly

defined interface is necessary between the GO PS and the proce­

dures directinp the graphical output to a specific device. In

t he GRAPH I C s Ys t em t his i nt e r f a ce \') i 11 be a "p lot file " ca lle d

data set on a secondary storage device that lS filled by the

GUPS and interpreted in a second step in order to prepare the

output in a way adeouate to the plotter or display unit actual­

ly used.

20

3.4 The basic comoonents of the GRAPHIC system

J

USER-~
PRClGRAH I

PUH­
RGUT!NE l------r-t

SYSTEM­
HJITIAU

SRTHYN

TAKE­
ellfER­

ROUiINES

SRVE- GRRPHIC- FLClT-
FILE ORTR PCJClL FILE

FLt3W llF ORTR D- MllOULE5 C COAE J----_. FLClW llF CClNTRClL - RAEAS

Fip:. 14 Basic components of GRAPHIe

Fi~. 14 shows the basic components of the GRAPHIC system. Thev

are:

an interpreter

a communication area

a module package für structurinrr graphical data and proces­

sing commands

a graphical da ta pool

save and interface files.

The inout made uo of statements in the GRAPHIC-lan~ua~e are ana-

21

lysed by an interpreter, which causes the stora~e of informa­

tion in the oata 0001 by calling processin~ routines. The inter­

preter also causes the manipulation of graohical data in the

pool. The sraphical data pool contains all objects in their in­

ternal reoresentation. Oata are passed from the language by use

of the communication area. Graohical information is pass8d to

outout devices by means of a olotfile, containin~ all informa­

tion necessary for olotting objects. This plotfile reprEsents a

clearly defined interface to the hardware and software of dif­

ferent plotter manufacturers. Thus, the olotter may be changed

without difficulties.

Using a set of plot-simulation routines and the "takeover"­

file, plot-information from other jobs may be taken over into

GRAPHIe.

22

4. The GRAPHIC lan ua e

4.1 Basic structure of the language

The concrste svntax of the GRAPHIC lan~uage is listed in appen­

di A. A pro~ram written in GRAPHIC consists of a head:

:;~R~Jl~~~, a 9JO?~ como sin~ a number of GRAPHIe-statements

and a t e i l : "Ef\ID GRAPHIC". The head (in leES called subsystem

command) is used to identify the following information to the

ICES svstem as a GRAPHIC-pro~ram. The tail starts the processing

of the contents of the outout-interface-file by the graphical

device driving routines. Blocks consist of one or more GRAPHIC­

statements and mav contain a deliberate number of other blocKs.

A block is characterized by a heading: BEGIN or PROCEDUr:t and

bv an ending END.

All names that are RXDlicitly or implicitly declared within a

blocK are local to that block, they can be referenced in all

contained blocKs, but not outside the blocK. Explicit d8clara­

tion i3 done by means of a declare statement (see chap. 4.S.2),

imolicit declaration is caused by referencing a name that has

neither been used so far in the blocK nor in one of it's out er

blocks. If a name that is local to an outer block is explicitly

declared in an inner block, the name in the outer block identi­

fies a different object than the name in the contained block.

The SCOp8 of names in nested blocks is governed very much by the

same rules as it is in other block oriented languages like

ALGOL 60 or PL/1 /28/.

In the follo~/ing chanters GRAPHIC-statements will be described

ln detail. Because the GRAPHIe language is imolemented bv use

of ICES-CDL /3, 5/, rules and restrictions of this svstem are

valid for GRAPHIC tao. Every statement has to start with a key­

wor-d , (in ICES called the command narne) , it can be coded free

formatted on columns 1 to 80 of a card, continuation is noted by

n l a ci n r: a "-" (h v phe n) ast hel ast c ha r-ac te r on t he ca rd tob e

continued. As manv as five cards can form one lo~ical statement

(for an exceotion in GRAPHIC see the polvRon specification in

chapter 4.3.1.2). Comments can

23

be placed at a nv card after "b Sb " (blank, dollar, blank).

Continued cards may have comments, the "g"-si~n then has to oe

placed after the continuation hyphen. Blanks or commas are re­

ouired as delimiters between all items of the language. The no­

tation language used for describing the GRAPHIC languave shall

be shortly explained here: Capital letters reoresent keywords

(reserved words) of the language, the underlined oart of the

word is reouired, the rest of the word may be omitted or spel­

led differently:

For PLOT we can write PLO

or PLOT

or PLOTTHISOBJECT.

Terms of the language that are not reserved words are printed

with small letters. These items are explained after the nota­

tion of the statement, e. \7.:

PLOT object

"o bj e c t " must be explained here.

Brackets are used to desi~nate parts of a statement that are

optional. Described by the notation:

OPEN C-PLOT_7 C~llE sx sy_/

The followin~ statements are valid:

OPEN PLOT SIZE 10 2n

OP SIZ 10 20

OP

If default-values are assumed in the case information is missin~,

the values will be ~iven in the describing text.

If an item may be repeated a deliberate number of times or mis­

sinp:, this is shown bv an asterisk following a closing bracket:

PROCEDURE name / (Darm C~oarm 7*) 7

If one of several oossibilities can be chosen for one item in

a stat8~8nt, this will be notified by braces:

24

f1M

Cf1

STANDARD / U~IT / INCHES

FOOT

FT

YARDS

YD

There are two versions of the GRAPHIC-language implemented:

One with its words close to the German language. This version

lS presentlv used in the IRE, the statements' syntax is listed

in /28/. A second version of the GRAPHIe language has the same

abstract syntax and the same semanties, but a different concrete

syntax, the lan~uage words being taken from tne English lansuage.

The descriptions in this paper refer to this second version of

the GRi\PHIC Lan ouaz e , It is used by s pe c i f v i nz "EGRiI.PHIC" in­

stead of "GRAPHIC" as the first word of a program.

4.2 SET and OEFINE-statements

As a result of using ICES-CDL for implementing the GRAPHIC­

language, statements of the form used in chaoter 3.2 cannot be

imolemented effectively. COL-defined statements must Degin with

the command name. For this reason all GRAPHIC-statements have

to start with a valid statement keyword. Another shortcoming of

COL is the necessity for putting all alpha-strings in quotes

(this is important for names in GRAPHIC). So the statement

L:= line from P1 to P2

is to be worded in GRAPHIC as folIows:

SET 'L LINE FROr] 'P1' TO 'P2'

The words "FROM" and "TO" are not significant for recognizing

the meaning of the statement, so they may be omitted. All key­

words (calIed "modifier in COL) can be abbreviated to a speci­

fied minimum (mostlv 3 letters). Thus the statement reads in its

shortest form:

SET 'L' LIN 'P1' 'P2'

25

In this notation the symbol ":=" of our demonstration languBf,B,

Meaning "Evaluate thB exorBssion to the right and store the

result as an object pointed to by the name standing to thB

Le f t ? , is r-ep l ac e d by the keyword "SET". In chapter 3.2 the

necessity for a second operator was shown, meaning "Evaluate

the exoression to the right every time the name to the left is

referenced and then use the result of the evaluation instead

of the n arne . l~e USBd the symbol "=" for this operator, in

GRAPHIe the keyword for it is OEFINE:

[J EF 'L I LHJ E F,R rJfvl I P1 I T0 'P 2 '

A GRPAHIe-statement starting with the kByword OEF can be com­

pared to "s tateme nt fu nct ions" i n FORTRAI~. The genera 1 form of

the SET and OEF-statement is as foliows:

[NAiI'lED] }
[{AS}J obj e ctspec i fi cat ion

name =

At this point only the form

{
SET}
DEF

name objectspecification

will be discussed. The other form will be treated in the con­

text of procedures (chapter 4.5.1).

"rierne " is astring of one to eight characters enclosed in single

ouotes. All characters except the single quotation mark are

e l Lowe d , e • P. 'IJ,A,I'lE', '123', '-+*:6', 'GOOL.Jr~Ai·iIE'.

If "n erne " i8 not vet declared wh e n the statement is e xe c ut e d ,

it will be imolicitly declared within the block that contains

the statement.

Th o "o bj e c t s pe c i F i c e t i on " defines the object t he t Ls to b e c orn­

o ut e d and that is to be identified by "n arne ? • Possible object­

specifications are described in the following chapter.

4.3 Dbject soecifications

4.3.1 Graohical objects

4.3.1.1 Graohical e Larne nt s

Craohical elements are s oe c i f i.e d bv use of t he St~T or JFF s t a t u-

rc'p.nts.

26

All graohical elements in GRAPHIC are situated in a rectangu1ar

cartesian coordinate system. All specifications of coordinate

values refer to this svstem.

In the fo11owing syntax and semantics of the graphical elements

are exolained. It should be noted that the valid syntactical

expressions, which describe a graphical element, may take the

alace of any graphical object in other expressions of the

GRAPHIC lan~uage. For this reason the following syntactical des­

cription does not show complete st~l~.§.~t~ of the GRAPHIC langua­

ge such as

r=] 11 [v] [=J 12

but only the §_~F~~sl~~ for the graohical element.

PO IrH [X] [=] 11 [v] [=] 12

"11" and "12" are the x- and y-coordinates o f the point. All

input specifications representing a length (e. g. coordinates,

height of characters, radius of a circle) have the same form:

{

r e a l number }

integer number

MM

CM

METER

INCHES

FOOT

FT

VAROS

VO

If the unit specification is omitted, a standard unit is used.

The standard unit is "METER" unless otherwise soecified by a

pr-ev i o us "STANO/I.RO Ur~IT" statement (see chap. 4.7.2), Exarnol e

for the point soecification:

SET 'P' POINT 2 3.5

27

The text

The text specification is used to define a character-string.

TEXT text [!j_E~GHT heightJ

[~i1-THJ [xJ [=J 11 [VJ [=] 12 [angle]

"text" is a text-string not containin~ single quotation marks

and enclosed in single quotation marks. The len~th of the

string is limited only by the fact. that the ICES-Command-Inter­

preter onlv allows a maximum len~th of 390 characters for problem

language commands.

Followinq the keyword "HEIGHT" the height of the characters may

be specified. The default value is 5 mm.

"11" and "12" are the coordinates of the left l owe r- corner of

the first character in the string. "angle" is the angle between

the text-strin~ and the positive x-axis. In GRAPHIC, all anple­

specifications have the following form:

{
r e a l } { real} {real }[. .. [!L~GREES]] [. [~NUTESJ] [. [~ECONLJ~J
lnteger lnteger lnteger

{

rea 1 }
. . ~AOIANS
lntep:er

"real" and "intep:er" are real constants or integer constants ln

FORTRAi'J format.

If no unit is given. "iJEGREES" is assumed. If a specification

for an(Jle is missinp: at all. zero degrees is assumed.

Examoles for text:

SET 'T l' TEX T 'T HIS ISA TEX T' HEl GHT 3 11 r~ 1 Cr1 2 C~1 3Cl UEGREES

SET 'T2' TEXT 'TEXT2' 5 IN 10 IN

The axis

The axis soecification is used to specify a linear or lO(Jarithmic

coordinate axis.

{
LI NEAR }J

AXIS [~~ARITHrnC

28

[\~lIH] [9~:.IGI i'J [X] [=] 1 1 [Y] [=] 12]

[~~_!~GTH 13 J

[MiQLE a1J

fHNH1AL [COQRDIWHEJ 14

MAXIMAL COORDINATE] 15

{
LEFT }

[I_lILEt ex t] [13) GHT]

[~g~~.I'1 EfJ [§QLI NGJ]
"LINEAR" soeeifies a linear sealed axis. "LOGARITHMIC" a

logarithmic sealed axis. if both are omitted the default is

"LIf~EAR". After "ORIGHJ" the coordinates of the axis' origin

are s ne c i f i e d, the default ve Lue s are x = 0, y = O.

t , LEr~ GTH" i 8 t he axi 8' le n r: t hin pa o ar- co 0 rd i na t e s (d e fa u 1 t :

o. 2 1'1 ETEi::;)

"ANGLE" is used to s oe c i f y the angle o f the axis (default:

o oc(Yrees). "rlHJI" and "MAX" mu s t be s oe c i f i e d , they represent

the minimal and maximal problem coordinate value. i. e. the

value to be written at the beginning and the end of the axis.

After the ke vwor-d "TITLE" a text can be specified t he t Ls to

be written at the axis (default is no title). The maximum length

of the title i8 60 character8.

" LEFT n 0 r 11 P L.; HT" are u8 8 d t 0 i nform t he s y 8t em '''' h e t her t he

annotation and the title shall be placed to the right (on the

clockwi8e side) or to the left (on the counterclockwise side)

of the axis. Oefault is "RIGHT". If "NORMEO SCALING" i8 speci­

fied. the values for the minimal and maximal coordinates are

edj us t ad in a way that the nurnbnr-s at the tick marks assume

rounded values. This is done only for Ijnear axes.

The operation "TRAf\JSFORi"lATION" (chapter 4.3.1.2) can be used

to transform any object into the space defined by two AXIS-ele­

ments. The oDerations "X-AXIS" and "Y-AXIS" can be used to

produce automaticallv suitable axes for a given object and a

given size of a drawing (see chap. 4.3.1.2)

29

Examples:

SET 'XAX' AXIS ORIGIN 2 2 lENGTH 20 MINI 2 MAXI 15 TITlE 'X-AXIS'

~JOR r'l E[l

SET 'VAX' AXIS lOG ORI 2 2 lENGTH 30 ANGLE 90 MINI 1

'1,"\XI 1ClOiJO TIT lE 'Y-AXIS' lEFT

4.3.1.2 Graphical oDerations

Graphical oDerations, like graohical elements are specified usin~

the SET or OEF-statement. An operation is pBrformed uoon ~raohi­

cal elements and a result is computed, that can be referenced by

the name following the SET or OEF-keyword. In case of the SET­

statement the comoutation of the result is done immediately when

the statement is executed. The result of an operation specified

by a OEF-statement is comouted every time the name following

the OEF-keyword is referenced.

In GRAPHIC there are several object-soecifications that may be

element-specifications or operation-specifications. These are

the specifications for

circles

arcs

polygons

spline curves

approximation curves.

E. ~. if a circle is defined by 3 points, and all coordinates

of the points are given, this is the specifications of a circle­

element. If, on the other hand, one or more of the three points

are given bv their names, an operation has to be oerformed in

order to compute the circle.

Circles

Circles can be defined in four different ways:

by specifying central point and radius (1)

bv specifying central point and one oeripherv point (2)

as a circle through three ooints (3)

as the inscribed circle of a triangle (4)

30

CIF~CLE [SY]

(1)

(2)

(3)

(4)

CENTER 01 [ANoJ RADIUS r

~~~TER 01 [ANOJ foINT p2

[THEJ [I.c~REEJ PoHHS p1 p2 p3

HJSCRIBED [~~BCLE ] [oF] [ TRI.Ar~GLEJ

p1 02 p3

[ WI TH ]

"r-" is the length of the r ad i us , e . g. 5 INCHES

"p i " e r-o point o b j e c t s - either given by their coordinates,

8. g. " 3 . 5 C11 6 C[1", "x: :: 2 Y:: 3" 0 r g i ve n by t h 8 i r nam8 s 0 r

as a result of an o oe r-e t i on , e . g. "'P1''', "INTERSECTIDI~ DF 'L1'

l\ND 'L2".

Examples:

SET 'C1' CIRCLE CENTER 'P' RADIUS 15 MM

SET 'C 2' CI R CEN 10 10 AN0 PO I r~ T 'P 2 '

SET 'C3 I CIRCLE GIVEN BY POINTS 'P3' X :: 1 Y

SET '[4' CIF~ HIS 2 2 3 3 2 4

Arcs

2 'P4'

Arcs can be defined in seven different ways, only four of them

will be described in detail below:

arc specified by central point, radius (or curvature) and

two angles (1)

arc sDecified by radius, begin-point and end-point, an

additional choice between the large circle and the small

circle is necessarv (2)

arc given by three points (3)

arc given bv be~in-point, end-point and are length (4).



31

(2 )

MALL

PS..----

P4:

PB
PB

(4 )
P7

FiC':. 15 Wavs of soeeifyin~ ares

a2MJD

[ ,11, f0 0] !3~~ I NP0 I NT 0 2 [A NO] E f\JD POBI T 0 3

( 3 )

( 1 )

A.RC [~)~_EN J [ ry ]

c} [ANDJ ~i-~TER 01 [AriD] ANGLES 01

(") g~~~~~IJ~E c}[{~~:~}J
[T_~BEE ] rnHHS 04 05 05

( 4) [3EGHJ r [) HH 07 [11, r~ 0 ] E~JO P0 HJT 08 [A N[)J LE ~I GTH 1

"01". "02", ... ·'08" rJre point obi e c t s , thev mav be soecified by

writin~ their coordinates, names of existin~ Doints or operations

d81ivArin~ a ooint as a result.

"anr1" and "enr:2" are angles soecified either by del'rses, minutes,

seconds or radians or bv referring to the angle of a line, 8. 7.



32

"DIRECTIOhJ 'L''', if 'L' is the name of a line. After "LENGTH"

the arc length is to be specified.

Exa les:

SET 'A1' ARe RAD 5 INCH CENTER 'C' ANGLES 30 OEGREES AND

DIRECTIDN 'LHJE1'

SET '/\2' ARC CURVATURE 2. S~IALL BEG 1.5 1. Ef\JD 2.51.

SET 'A3' ARC GIVEN BY THE THREE POINTS 'P1' 'P2' 'P3'

SET 'A4' /IRC BEG 0 0 Er~O 11 LEN 3.5

Polygons, splines and aoproximations can be specified ln three

different ways:

[INDEPENDENT [V_i\BIABLE] {~}J[~~REE nJ

- by listins the coordinates of the points of the curve (1),

- by soecifying a list of one or more existing objects, like

points or polygons, through which a new curve is to be crea­

ted (2),

by insertin~ aseries of FORTRAN (IBM-E-level, /29/) state­

ments defining the points of the curve (3).

POLYGON [r CLOSEO } J
SPLINE [t ~:~~EO}J--- l oPEN

.!:\PPROXIMATImJ [OFJ

[JHR_OUGH] [THE] [ FOLLOVIING] [~:UHSJ coordinates: x,y

[coordinates: x,yJ*E~JO

[TH~OUGHJ [THEJ [f_O~LO\~INGJ
{ obj e c t

[. obj eetJ"J[ COLLECTION]
(obj ect

i:JI TH n [ y_C':~UES] [ .!:\_C C0 R0 I NG] [T 0]

Fortran-statements, assigning
values to X(1) •.. X(n) and to
Y(1) ... Yf n l

END

If "OPEN" is specified, an open polygon or splinefit is created;

i f "CLOS E[J 11 iss pe ci f i e d , a co nne cti 0 n i ses tab 1i s hB d f ro m t he



33

last ooint soecified to the first point, thus creating a closed

001 v rz 0 n 0 r so 1 i ne fit. I f ne i t h 8 r "0 PEN" no r "CLOS E0" iss pe ci -

f i e d , "OPEW' is assumed. Aoproximations mav not b a closed. ~'Jh8n

a solinefit element is olotted, a smooth curve is drawn throu~h

the specified points, using a modified splinefit technique /5/.

Aoproximations are achieved by using Dolynomials found by the

least square method. The independent variable for the aoproxima­

tion polynomial may be specified, default is "X'. The user may

also give the deqree of the approximation polynomial, default

is 1 ( s t r-e i c ht line). "n " must b e f,reater or e nu a l IJ, if 0 is

specified, a line representing the mean value is created .

.. co 0 rd i na t es: x , y" isa 0 air 0 f co 0 rd i nat eva 1 ues, e. g. "2 5",

"X 3 C1'1 Y 1 IfIJ CH" •

"object" is an object of the types: o o i nt , Li ne , po l y gon , s n Li na­

fit, approximation.

SET 'P1' POL 1 1 2 2 3 3 3 2 3 1 END

Note: This statement is the only exception to the rule that

only 4 continuation cards are allowed in the GRAPHIC langua~e.

While listing the coordinates of the points of a polygon, a

spline or an approximation any number of cards may be used. A

continuation hyphen is not required at the end of a card.

SET

SET

SET

'P2' POL

'P3' POL

'P4' POL

00 1 I

xe 1)

Y CI)

'SPLHJFIT'

CLOSED e' POINT1 '

WITH 10 VALUES

= L 10

1/10.

EXpeXeI))

'LINE1 ' 'POLY1' , POIfT2')

corHINUE

END

SET ' 81 ' SPLINE 'P4'

SET 'S2' SPLHJE CLOSED 1 1 1 2 2 3 3 2 3 1 2 0 EI~IJ

OEF '83' SPL e ' P1 ' POINT 5 . 1 5.3 'POINT1' )

SET 'A 1 ' APPRO XI i'lATION DEGREE 3 TROUGH 'P4'



[OUT] [OFJ polygon

[OUTJ [OF ] polygon

34

SET 'A2' APP INDEP VAR Y ( 'PDLY1 ' 'POLY2 ' )

SET 'A3' APP INDEP Y DEGREE 2 liJITH 10 VA LUES

00 1 I 1 , 10

Y( I ) I

1 X ( I ) l\TAf~(Y(I) )

END

The following graphical objects are always considered as opera­

tions.

There are two GRAPHIC-operations. namely the NPOINT and the

NLINE oDeration, INhich can be used to obtain the nth point or

the nth line out of a polygon:

{
E..9 R\Aj AR 0 } ]

r~POINT n [
BACKWARD

I~LINE n [ { ;::::::o}]
The nth point or the nth line from the beginning of the polygon

is c r-ee t ed , if "FORWARD" is specified. In the case that "BACKWARU"

is specified the counting of points or lines starts from the

end of the polygon. "FORWARD" is the default-value. The expres-

sion "polygon" must be a polygon-specification.

SET ' Pi' NPOINT 5 OF 'POLY'

SET 'P2' r~po 1 BACKWARD OF 'POLY'

SET ' Li' NLINE 3 BACK OUT OF 'POLY'

LJEF 'L2' NLI 1CJ 'POLY'

The line

The line operation is used to create a vectorial linear connec­

tion between two ooints.

LI NE L~B.Q~~ p l [TOJ p2

"01" and "p2" have to be point cbj e c t s , 1. e. point elements,

names of points or operations producing a point.



35

Examples:
-,- .._-,-'---_.~-

OEF ' L1 ' LIr~E FROr~ ' P1 ' TO 'P2'

SET 'L2' LHJE FRor'l 'P3' TO POHJT 1 . 1 . 5

SET 'L3' LINE FROf1 INTERSECTImJ OF ' L1 ' AND 'L2' TO 'P4'

The semicircle

Tne semicircle operation serves for creation of a semicircle

from one point counterclockwise to a second point.

P2 P 1

Fiq. 16 Tne sefTlicircle

"p l " and "p2" must be point objects.

SET 'S1' SEMICIRCLE FROM POINT 10 CM 10 CM TO POINT 20 CM 10 CM

DEF '52' SEn 'P1' 'P2'

Ths interssction of two curves

Tne inters8ction operation is used to find the pointCs) of

intersection between two lines, a line and a circle or two

circles. In tne first case tne result is a point, in tne latter

cases the result of tne operation is a line, it's startin~ point

and end ooint being the two intersection points.

T 1\1 T F Re; F r T Tn 1\1
{

GETWEEN}J[----
OF

ob1 [{ MJO }J
WITH

ob2

"ob1" e nd "002" may be lines, oo l vg ons , circles or arcs. Arcs

are treated as if they were a circle, i. 8. they are expanded to



36

a full circle, Polygons are treated as if they were lines, only

the strai~ht line connecting the first and the second point of

the ooly~on is taken for comoutation of the intersection point(s).

We feel that it would be desirable to have a generalized inter­

section ooeration, delivering as a result all points of inter­

section of all kinds of curves (splines, arcs, lines, polygons,

etc.) and delivering no result (the undefined object, see chap.

S. 1) if there i3 no intersection.

Exa le:

SET ' L1 ' LINE ' P1 ' TO 'P2'

SET 'L2' LHJE 'P3' TO 'P4'

SET ' 11 ' HJTERSECTION OF ' L1 ' A~JO 'L2'

SET ' C ' CIRCLE CEI\ITER 20 CM 20 C['1 RAD 10 CM

OEF '12' HJT ' L1 ' 'C'

The extreme element

This ooeration is used to copy an unnamed element of a named

object. To extract such an element it is identified by its rela­

tive oos i tion: "the uppermost", "the Le f trno s t :", By this way you

can define a poly~on by its points and extract a line, if it

does have an extreme position.

EXTRE!'i ELEfvlENT [ AS]

{ ~~~:: } yEFT }['~iGHT ] {~NT } [ OFJ object

{ lEFT } [r p PER
} ]

LINE

~~GHT LOl;JER......

"o oj e c t ' mav be any kind of single object or a collection, if

you seek a point (P01I\IT); "object" must be a single object or a

collection containing lines (such as a polygon), if you seek a

line (LHJE).

The attributes up pe r , right, Le f t , lower refer to the basic

coordinate svstem.

The position of a line is given by the position of its central

point.



37

Examole (see f i z , 17)

SET 'COl' ( POlYGO~j ClOSED 2 2 6 2 6 4 2 4 END CIRClE CENTER 4 2

RADIUS 1

SET 'P1' EXTR UP POINT 'COl'

SET 'P2' EXTR UP RIGHT POINT 'COl'

SET 'P3' EXTR lOWER POINT 'COl'

SET 'l' EXTR RIGHT lINE 'eOl'

"Pl"

"P3"

x

"P2"

" L " "COL"

Shades

Fig. 17 Usage of the EXTREME-ELEMENT specification

The shade operation is used to soecify shading of areas surroun­

ded by polvsons. A shade may be specified in one polygon or

9~_~we~~ two polygons.

SHAOE

tiLI STA ~J CE [ 0F] [ ~~~ES] d i s tJ [ Ar~ Gl E

{[~~1\<EE~b:b2 [ANO] Ob3}
an~leJ

"dist" reoresents the distance betwe8n shading lines, default is

5 MM. Gy "angle" the inclination angle of the shading lines c e n



38

be specified. If the ANGLE-option is omitted, 45 degrees is the

default value.

"ob1", "ob2" and "ob3" have to b e polygon objects. If shading

IN a polygon is specified, the interior of it is shaded. If

"ob1" is not a closed polygon, it is converted to a closed ane

by connecting it's first with it's last point.

If shading BETWEEN two poly~ons is soecified, the first points

of both and the last points of both are cannected, thus creating

a closed area to be shaded. Shading BETWEEN two closed polygons

can be used to create windows in a shaded area.

_E x~. mp}_~~:.

SET ' P1 ' POL CLOSEO 0 0

SET 'P2' POL CLOSEO 1 1

SET ' 51 ' SHAOE OI5T O. 1

4 0 4 4 0 4 END

2 1 2 2 1 2 END

INCH ANGLE 30 OEGREES IN 'P2'

PLOT ( '51' 'P2'

- The result is shown in fig. 18 a) -

SET '52' 5HAO~ BETWEEN 'P1' ANO 'P2'

PUlT ( '52' 'P1' 'P2'

- The result is shown in fig. 18 b) -

a)
FiET. 13 Shades

b)



39

These operations are used to ~8nerate automatically suitable

coordinate axes to a given object (or a collection of objects)

for a specified size of the drawing.

{~~~~~} [{ ~~~:;~THlm}]
[or~ • IN [FI] din {~~~~g~~.EET}} ]

iJJJ!ENSIO~JS dimx dimy

[TJ T.LEt e x t J [T0] 0 b j e c t

Either a linear scaled (LINEAR is default) or logarithmic scaled

(LOGARITHMIC) axis is created, horizontal if X-AXIS is soecified,

vertical if Y-AXIS is specified. The situation of the axes on

the drawing is shown bv fig. 19.

Y-AXIS
z
oe:>
....... z
(J) >-l

Z3:
3CM wer:

::La:
........ 0
o

I LL
>-0

~ X-RX Js-I
3CMJ

~~GF06~Ä~i~8 ~
Firr. 19 Situation ofaxes created bv the X-AXIS and

Y-AXIS operation

The dimensions of the drawin~ are taken from the soecifications

elfter the ke vwor-d rJN. "OHJ !\ din", where "din" is an interer

from 1 to 8, refers to the German standards for oapersheet for-



40

rne t s (0 I N A 1 .. 594 mm x 841 mm,' 0 I N A 2

is half of Drr~ A 1. and so forth). A.fter the ke ywo r d "DIMENSION"

exolicit dimensions of the drawing can be specified. If a dimen­

sion soecification is omitted, the values are taken from the

latest executed size-of-drawin~ statement (OPEN PLOT-statement.

see chan. 4.4) or from the builtin default values. if no size­

of-drawing statement has occured since the beginning.

!\ f t er" TI TLE" a tex t tob e \AI r i t t e n at t he a x i s rn a y be s pe c i f i e d ,

"text is astrin rr containinp: up to eight characters and enclosed

ins i n g: le q u0 te s , I f "T I TLE" i 8 0 mit t e d , "X- A, XI S" i s d e fa u1 t f 0 r

the x-axis. "Y-AXIS" for the v-axis. The coordinate values to

be wr i t t e n a t the tick marks of the axis are taken from "o b j e c t v ,

IN h ich mClv b e a nv 0 b j e c tor a co lle c t ion 0 f 0 b j e c t s .

The TRANSFORMATION-oosration (88e later this chapter) mav be uS8d

to transform an object in a wav that it~ size and position will

corresoond to the notation at the axe8.

Exa les:

DEF '!\X1' i\S X-/\XIS TO ( 'iJB1' , 082' 'OB3' )

IJEF 'AX2' Y-AX LOG TITLE 'PRESSlJRE' TO ( '081' '082' 'OB3'

SET 'A. X' X- /\ XISO N [) If'1Ei~ SION S 10 HJ CH 1 5 HJ CH T0 'PnL YGON '

The olot-s scification 0 eration

In order to soecifv olottin o ootions for an abject, like ooint

symbols or line tvoes (dashline, centerline, e. P:.) the soeci­

fication operation can be used.

,~ff:[IFICATIONS [{ ~~} ]

THROlJGH
C1JJTER LI ~JE
n'A-s-HL I NE
mrfTEO
;'rARKED

[ANOJ [li~}GHT height] [OFJ o bj e c t



41

The five linetvoes ore:

r:;=, --=-r- - -- -

r;:=-,--r-
)( x x )( x x x

x )( J( )( )( J( x

THrWUCH

CE~nERLIr\JE

lJA,SHLHJE

nrJTTED

,IVJ,A,R KED

rJg+ault is "THRfJUGH"

In the ease of "CE~JTERLIf\IE" e nd "DASHLH~E" the d i s t e nc e from

the be~innin~ of one dash to the beyinning of the next one mav

be soeeified Fo l Low i nv the keyword "LE~~GTH'. The default value

f 0 r er 1" i s 1 n rnrn ,

In the ease of "OOTTEO" and "MA.RKEO" curves, th8"syr~BOLr~U!'1BER'

and thR'E\lFPY" o nt i ons ean be u s e d , Bv "SYI1BOL" the number of

a noint symbol is ~iven. Whieh number refers to whieh symbol

rle ns nds o n the n l o t t e r- used. In Dur installation.. the Ce l c orio

eonventions are followed /5/. 8y use of the "EVERY" ootion the

svstem is in+ormed that a symbol is to be olotted at every nth

rla t a noint. The default value for "n" is 1.

The qHEIGHT" option is used to speeifv the hei~ht of the point

symbols. All the oations eun be used for line and oolvvon ob­

.ieets. For solines and aoproximations only the THROUGH, OOTTEO

and MARKEn eurvetvoes are oossible. For texts, the HEIGHT ootion

rne v be used for ehFlnp:ino; the h e i z ht of eharaeters. The "Svr1BDL­

\IIPlRER" and the'HEIGHT", ootions are used for s oe c i r v i nc the

kind of reoresentation of ooint ob~eets.

[xamrJles:

SET 'POL' SPECIFICATION DF CURVETYPE DASHLINE OF POLYGON

o n 1 1 2 0 END

SET 'CEN' SPECIFICATION OF CURVETYPE CENTRALLINE DF LINE FR DM
'P1' T[I 'P2'

SET 'SPL' SPECIFICATI~N OF CUR\lETYPE MARKED SYMBOL 3 EVERY 5

HEIGHT !l.1 If\ICH OF 'SPLIf\JE'

!J EF 'P l' S PEC S Yr.j 9 HE I 7. 5 r~ \'1 'P'

SET '8IGTEXT' SPEC HEIGHT 10 I!\!CH 'S~lALLTEX'



42

The followinp' operations are used to specify linear transforma­

tions to be carried out with ~raohical objects. These ooerations

are:

Shiftin~ an obiect in x- and in y-direction

Enlar~ement or diminution

Rotation

Transforminp an object in a wav that two points of it will

be placed uoon two soecified points on the drawin~.

Transformation of an object in a wav that it will correspond

to the notations of two oredefined coordinate axes.

In GRAPHIe there is no statement that can be used to chan~e di­

rectlv the value of an object. Such a feature c o u Ldi be compared

to a statement Lik e "in~F.~':':1_e_r1j:. I b [\j; '. in s orne Le nv uag e s .

Instead an ooeration can be performed on an object and the value

may be assigned aqain to the name of this object. The correspon­

din~ statement in a mathematical ooeration language would be:

"I : = I + [Ij "

Shi-ftin

This ooeration mav oe used to create an object that is a copy

of another obiect, shifted in vertical or horizontal direction.

SHIFTH!G

U~~fR[X]°i.J x s hi f t [V] [. ] v s hi f t }
[OFJ object

If "FhJAc'(D' is s oe c i f i e d , "ti l " must be a point obj e c t , and

"obiect" is shifted bv the x and v-coordinate values of this

point. If TOWARD is not sDecified, the values bv which "object h

15 to be shifted have to be specified exolicitelv. "Ubj e c t " mav

be anv obiect. including a collection.

Examoles:

[]EF '081' SHIFTI"JG TOHARO 'P1' OF '082'

SET '083' SHIFT X = 2 Y = 3 OF 'OB3'

SET '084' SHIFT S Ci'1 4 Ul ( '085' '086' '087' , OBS'



43

[nlar~ement and diminution

These operations are used to create an enlarged or diminished

coov of an ob.1ect. The center of the linear transformation,

i. e. the ooint of the ob.ject that does not chan~e it's position,

can be soecified.

{
ENLARGF'.'iENT}

LU~~ I NUT 101\1

[~!~CHJRJ [XJ [=] facx [V] [=] facy

L~~~?PECTBiG [ TO] o 1J [OF ] obj ect

;'facx'" and "facv;' are the factors bv which "o bj e c t " is to b e en­

Le r-ze d or diminished. "ubj e c t " mav be any kind ofc:raphical ob­

ject. An enlargement bv factors fx and fy delivers the same re­

Bult as a diminution bv factors 1ffx and 1ffy. If "RESPECTHJG'

is soecified, the center of the diminution or enlargement i8 the

f~p1r1, ~Jhich must be a ooint object. If RESPECTING is not speci-

fied, the center i5 the point x = 0, y = o.

Examoles:

SET 'A' ENLARGEMENT SY FACTORS 2.5 5.0 OF 'A'

OEF '8' CI:r:I[\IUTrrm 10 10 RESPECTHJG TO 'P' OF ( '81' '82' '83' 'r :
SET 'C' E [\J L 2 2 RES I [\1 TER SECTION 0 F 'L l' A~J 0 'L2' 0F ( 'L l' , L2 '

The enlargement and diminution operations can be used for mir­

rnrinQ, too. Mirrorin~ is achieved bv soecifvin~ neqative en­

lar~ement factors.

Fxamoles:

SET 'A1' ENL -1 1 'A'

(Mirroring at the v-axis)

SET 'A2' ENL 1 -1 '/\'

(Mirroring at the x-axisl

SET 'A 3' ENL - 1 - 1 RES PECTIf~ G T0 'P' 0 f 'A'

(Mirroring at point 'P')



44

Th8 rotation

Tha rotation oDeration i3 used to produce an object bv rotatin2

a other obi ct around a ~iv8n point.

ROTfnIn~,J

-{~-'[["BB~~ [A NC; LEJ an z l 8

.IJ f!IS' ECT I 'l~j [rJF]

[OFJ obi ect

} [ AROUf\JO
1 i neo b i 8 C t ---

Dointobject]

ThR an~le of the rotation can be specified in two ways. Either

it i8 ~iven directlv in degrees, minutes, 8econds or radians or

it i8 taken from the inclination angle of a specified lineobject.

In the latter case the kevword "OIRECTION" must be used. lhe

Doint around which the rotation shail take Dlace may be soeci-

f i e d f o l Low i nc the keyword "AROLJ~JD". If this oo t i on is orn i t t e d ,

the central point of the rotation wi Ll be x = 0, y = O. "ob j e c t '

mav be anv graohical obiect.

This is a soecial transformation operation that transforms an

obj e c t in a IA/av that t wo soecified oo i nt s of the o b.i e c t are

olaced uoon two specified points of the drawing. This i8 achie­

ved bv shiftin and 8nlar~ing the object in a suitable way. No

rotation 1s oerformed.

OBJECT

r t rxr.v n

OARWING
PRPER

RESULT ~F IMAGE­
OPERRTION

P2

P '( X •~ '( 1')

The i~aRe-ooeration



45

I '~.f; SE

1
RECTA[~G[JLA,R [:?~CJORJ [xJ x1 [vJ v1 [1'\ r~o ] [x] x2 [ VJ v2

,14 CC0i?0 I ~J G [TOJ [X] x1 [ ON] [X] x 1 ' r- 11mJ [v] y1 [0 !IJ] [-j y 1 '--._-_. "..

[PI ~HJ] [x] x2 [ OfIJ ] [x] x2' [Mm] [vJ y2 [ON] [v] '12'

[lFJ cbi e c t

If the ksvword RECTANGULAR is soecified, the ooints P1 (x1, y1)

and P2 (x2, v2) of the ob.ject will be olaced on the left lower

corner of the drAwing and the uoper right corner respectivelv.

The size of the drawing must be defined by a orecedin~ OPEN PLOT

statement (see c he p . 4.4).

If the KRY'-"Jord ACCORLJING is used, the ooints P1 (x 1 , y1 ) and

P2 (x 2, v2) of the o bi e c t will be [llaced uoon the ooints

PI ,
(x '1 , v1 , ) Find P?' ( ')' v2' ) of the d r aw i n c . "objpct mavx: ,

~ anv arFlohical obiect, includin~ 3 collection.

SET 1 Iil1' PI AGE P ECTA [li GULA f~ 0 n ANO 10 10 I] F ( '[J 8 l' '[] a2' 'iJ in '

SET '1'12' P1A i\CCO~OH)G Tl] 1 or~ 1 AilHJ 1 im 1 AI~O 1SlJ ON 1 f] c\f\iLJ

25lJ O[\J 20 elF 'DRAWHJG'

The transformation operation

This oDeration can be used to transform an object in a wav that

its situation on the drawinq will correspond to the notation

of two nredsfined coordinate axes.

TfJ A, 1\: S F fl R!, !/; TI 0 1\:

[TD] [,~)<ESJ a x 1 [t\ f\JIJ] ax2 [OF] obj ect

"ax1" is to be the x-axis for the object,

"ax2' t hs v-axis r-e s o e c t i ve l v . The t wo axes ne e d not be o i n a t

the same ooint nor need thev be rectanqular to sach othsr. One

or both of the aX8S mav be of logarithMic tVP3. Thoy must not oe
D~ral181. Fip. 21 illustrAtes the sffect of the transformation

oosration.



DBJECT

46

RXES RND
TRRNSF~RMED ~8JECT
(DASHEO LINES FcrA CLAAIFlcAir~N ~NLY)

P (lOO, 20m

PC100,100l

P (200.2001

P (200, 100l

I
I

I
I

t
100

I
I

I
I

{Doo

200

Fir:. 21 Result of transformation-operation

"nb i e c t " may be anv a,raphical obj e c t , includinr: a collection.

HowAver, texts and axes cannot be comoletely transformed 101"':a­

ritnmicallv. The lor:arithmic transformation, if reQuired, will

transform in these cases only the orir:in and the ana:le of texts

and orir:in. lenRth and anr:le of axes, but will not chana:e the

shane of these obiects.

The transformation operation is verv often used to fit anv ob­

.iect defined in some ohvsical coordinates (as temnerature or

nressure) into the 5ize if a sh8et of naper. It is advantage­

ouslv u5ed in connection with the axis soecification or the

x-axis and v-axis oDeration.



47

Examples:

1) SET 'AX1' AXIS ORIGI!\! 1 1 LEI\IGTH 20 MHJI!V]AL CODRlJHJ,lHE 0

MAXIMAL COORD 250 TITLE 'T(SEC)' NORMEO SCALING

SET ',Il,X2' AXIS LIlG ORI 21 1 IYJI!\II 1 :V],A,XI 1DOO TITLE 'PUlPI) ,

SET 'TR,i\!'JS' TRA,!\!SFORf1ATI:JN TO AXES ' AX1' 'AX2' OF I Af~YOB'

PLOT ( 'AX1' 'AX2' 'TP,i\NS'

2 ) SET ' X/AX' X-,AX TO ' 081 ' '082' )

SET ' YAX' Y-AX TO ' IlB 1 ' '082' )

SET 'T!~A ' TRAf\JS 'XAX' 'VAX' OF ( , 081 ' '082' )

PLOT ( 'XAX' 'YA,X' 'TRA' )

4.3.2 Lo~ical-arithm8tical objects

Lo~ical and arithmetical variables and ooerations have been

introduced into GRAPHIC since they ara needed in pro?ram control

statements, like 00 and IF. In the present implementation it is

not oossible to use an arithmetic element, i. e. the name of

a variable, instead of a number in graphical statements (e. Q'.

SET 'A' POINT 'X' cr~ 'V' CM). This feature wo u Ld be desirable

howev e r ,

4.3.2.1 Loqical-arithmetical elements

Peal numbers, integer numbers (in a FORTRAN-like sense) and

lorical values are logical-arithmetical elements. They can be

specified using the SET or the DEF statement.

The logical values are either TRUE or FALSE. The element tyoe

must not be declared, it is declared imolicitelv bv the first

use of an element name.

real number

int8Q'er number

TRUE

F,i\LSE



48

Examoles:
---~"---'.--'---.._.. -'.----

SET ' ,A' 144 'A' will be an integer element

SET 1 p t .3 • 14 'B' will be a real element

SET 'C' FALSE 'C' will be a IOfYical element

4.3.2.2 Loqical-arithmetical operators are listed below:

+ (plus) orefix ooerator

(minus) prefix ooerator

~i< ( ex p0 ne nti at ion)

* (multip1ication)

I (division)

+ (addition)

(subtraction)

The followin~ lo~ical ooerators may be used in logica1 exores­

sions:

(not)

& f arrd )

( o r-)

orefix operator

infix ooerators

Comoarison operators:

(equal)

, (not eQual)

> (~reat8r than)

,> (not ~r2ater than)

< (less than)

...,< ( not 1e s s t han)

Lo~ica1-arithmetical elements and operations are used to form

exoressions, the sams ru1es have to be aop1ied as in hi~her

level lanfYua~es like ALGOL or FORTRAN (e. fY. for the oriority

of the operators).

Exa les:

Sr::T '/1,' = '~j' +

SET ',L\1' 'B1' > '82' , Cl' .,> 2 8', 'D 1 '

SET

JEF

'/':,2' , A1 '

'Sl-'~'I' = 'A' +

+ 2 - 'r\J'

'8' + 'C'

'A2'



[~ . 3 . 3

obi e o t s

49

of ob.iect soecifications and collections of

Some examQles in chaoter 4.3.1 alreadv indicated that abject specifi­

cations mav be nested in the GRAPHIC lan~uage. In those cases

where anv ob eet is allowed in the descriotion of the statements,

one of the followin2 can be specified:

a ~raohical element (POINT 2 3)

a graphical ooeration (SHIFTING GF 'A')

a name reoresenting a graphical abject ('A')

a collectian of o b i e c t s ((POINT 2 3 SHIFTHJG OF 'A' 'A')).

A collection is a canoilatian from a number of existing objects.

A~ter the execution of a callectian cammand the members of the

collection can be referenced by ane name.

L~~fl.hLECTION] [0 FJ ( 0bjec t [,0bj e c t ] * )

SET 'C' COLLECTIO~,! OF ( '0' 'E' 'F'

SET 'C1' '01' 'E1' 'F1'

Tho collection object. cansistin~ of a list of abjects enclosed

in a oair o~ oarenthesis, can be used in manv statements instead

of a sinqle obiect. These cases are soecified in the statement

descriotions.

In cases where onlv soecisl kinds of objects mav be specified

(e. a. a point obiect), thev can be qiven bv:

an aooraoriate element (POINT 3 2)

the name of an aooraoriate element ('A')

an operation delivering as a result an aporopriate element

( H·jTERSEC TI 0 f'J 0 F 'C l' e n d 'C 2 ' )

~estinqs and callections make the GRAPHIC lan~uage extremelv

flexible. Thsre i8 a restrictian of the level of nestin~s due

to the restriction o~ the level of recursiv8 calls in ICES-CDL.

The ma x irnum level e l Lows d rleoends uoan the operations t het arg

ncsted. A level of ten will be acceoted in most cases.

Exemo l e : The e r-r-ow 'f\,R' shall be o l a c e d in the dotted oosition

above ooint 'P' r-ec t e nc u Ler- to line 'L' r n F i z ur-e 22.



50

RR
PR~

Fig. 22 ShiftinR and rotating an abject

This mav be achieved bv the statement:

SET 'NEWARROW' SHIFT TOWARD SHIFT 0 2 OF 'P' OF ROTATION

90 DEGREES OF RrnATION OIRECTICm 'L' AROUi'HJ 'PA' IJF '{IR'

4.4 Outout statements

rJ PE[I.) PLOT

This statement i3 used to inform the system that the following

graohical autouts are to be alaced on a new drawing. The left

lower corner of the new drawing is the zero point of the coardi­

nate system used for the ~raDhical ob.iects. The SiZ8 of the

drawing may be s08cified in the OPEN PLOT statement. A drawinQ

is a rectan~ular sector of the oaper. The different drawin~s

createo bv aGRAPHIe orogram are placed on the oaoer sheet in

a way that thev will not interfere with each other and use the

naper (almost) as good as oossible. In the first executed OPEN

PLOT statement of aGRAPHIe orogram the oaoer tvoe (white or

ryra~h paper and the Den tvpe (ballooint or ink) mav bB specified.



lPEi\j [PLOT] [ 11\IJ

din

51

[ = ]

[ { tJ::~~LPOl 'H} ]
HJK

The valus after the kevword "DIN" refers to German oaoer shest

Fo r-rne t s , a f t e r- the k s vwo r-d "SIZE" the size of the d r-awi nz mav

b8 s o e c i f i e d exnlicitelv. I-F neither "UPRIGHT" nor "BROADSHEET"

i 5 S !J e c i f i 8 d , t he " LI PRI GHT" - form a t i s de fa u 1t. I f a s i z e 5 ::)8 c i ­

fication is omitted. the size i5 taken from the for8~oin7 OPEN

PLOT-stFltement. MV wr i t i nv "GRAPH" or "WHITE" the naoer tV08

is s e l e o t e d » the "fj,l\LLPIJBIT" or "INK" soecification serves for

selectin a a oen.

Examoles:

:JP E r~ PLOT Cl N npi /\ 4 l.J I TH \.J HIT E PA PER 1\ 1\1 n I fI) K

clPF~,J

lP SIZE 5 INCH '0 INCH

or
'lP [iHI 5 PR'J'/\IJ

Ths PLOT statement

The PLOT statement i5 used to plot ~raohical objects. A scisso­

rinq ootion can be soecified if onlv a rectanqular cut out of

the obiect is to he nlotted.

PLOT [[ II'!ITH] CUT [X] [ =J x, [ -: [ =] v,.-

[ Af\IO] [XJ [ =] x
2

[ y] [ =J Y2 ]
[nF] obi ect

If CUT i5 snecified, onlv those oarts of "obiect" are olotted

that Li e wi t h i n the f r-arne . t hs t i8 defined bv P'(x" ",) end

(see f i z , 23).



52

P2 (X2 JO '12)

.­.-.-
!

!
!

! - --
Pi tx i . '11)

CU T (JUT
FRA-ME

Fi". 23 The scissorinp feature

"bbi e c t ' mav be an v z r-ap h i c e I nbj e c t , includinq a collection.

Examoles:

11J 1tJ 2 iJ 30 ('(1..' 'B' 'C' )

Sy~aGLTYPE 5 HEIGHT 10 MM INTERSECTION OF 'LINE1'

.IHm 'LIf\IE::::'

PL'JT ' f\ I

PUJT CUT

PLCJT SPEC

The PRINT statement

This statement serves for orinting logical or arithmetical

values on the orintfile. It may be used for program control or

test Durposes.

PR Ii'JT a r i t hmet i c a 1 - 0 r - 1DI:';i c a 1 - e xpres s ion

Examoles:

SET '.A' = 3

PRHH 'A'

Pi,\PH I.A' + 3 - , fJ" ' llHIif r::; + 10J

P~HH ' /", ' = 5

(prints: 3)

(prints: -227)

(orints: FALSE)



53

4.5 Procedure and Oeclaration Statements

4.5.1 Definition and invocation of orocedures

A number of GRAPHIC statements may be combined to form a oroce­

dure bv olacin~ a PROCEOURF statement in front of them and an

END statement at the end ..~ CALL statement is used to invoke

the nrncedure. A orocedure has to be defined before it can be

called (this i5 due to the interpretative nature of the exe­

cution of GRAPHIC statements).

Procedure definition:

PPOCEi1lIRE na!TIc [( f oar- [.foar J*) ]
SP0PHIC-statements

E:'\I[] [,r~f.::...IURf~ obiect]

Procedure call:

C/\LL name [( anar [. aoar r) ]
A orocedure mav be defined with (formal) narameters. Everv for­

mal o ar-erne t e r- "foar" is r-e or e s e n t e d bv a n arne , i. 8. bv o ne

throu~h 8 characters enclosed in single ouotes. The appearanC8

of a naMe in the list of formal oarameters of a PRJCEDURE de­

finition imolicitlv declarBs this name as local to the oroce­

dure.

When a orocedure is called. the same number of actual oarameters

!TIust he sn8ci~i8d in the list of actual narameters ~Dar (The

term "a rl"l' um 8 nt " i s Clv 0 i d R d h 8 r-e , be c CluS 8 i t i s u S (1d i n a d i f f e -

rent sense in the GRAPHIC dsta structure.) Everv actual oaramo­

ter has thR form of a ~raohical or lo~ical-arithmetical ob1ect.

Joon execution or a call every formal oaramster is imolicitlv

'~!F:FHJEfJ PJS its c o r-r-es o ond i nc actual n ar-ame t ar . ("Call b v ref8­

renen accordinry to /3n/).

Thus

pnnc 'PLOT' 'A'

PL~T ROTATION ~O ~Er QF 'A'

EI'J Li

U,LL 'PLJlT' ( PiJL yr;nr~ 1 2 7- F !\IO )



54

1S enuivalent to

PLOT ROTATION 30 DES OF POLYGON 1

Pesults ma be returned from the called orocedure to the callin~

Droc8dure in thr88 ways:

bv returnina ons ob.iect as a result of a function oroce-

dure call

bv assianina values to the actual oarameters of the oar­

t i o u l e r- call

bv the use of ~lobal names.

Functional orocedures are characterized by the keyword

[)[~TUR~I (follo'A/sd b v an obi e c t s pe c i f i c e t i o n ) f o Ll owin o t ho EI'm

word of the END statement of the procedurs. Functional proce­

Juras are callad bv using the correspondin a CALL statement as

an e xo r-es s i on (o r- o b i e c t ) in a GRi\PHIC statement.

Tnus

PROC 'ROT'

SET '\,jH/\T'

( '1'.iH iH' '1\ f~ rJ lJr·! D' )

ROTATION ~n DEG ARDUNO 'AROUND' OF 'WHAT'

r= i\i n f\ ETU Rr,j ( 'hj HAT', TEX T 'IvH,1\ T '

PLiJT CALL 'PLOT' (POL 1 1 2 2 E~JO, POHIT 1 1)

is eouivalent to

PUJ T ( !~ 11 TAT I nII! 3 D ~l EC ,1\ R0 lJ~I 0 P I] I NT 1

E ~.1 o, TEX T '1'1! HAT '

OF POL 1 1 2 2

One snould note that the CALL alwavs imolies an evaluation of

the object returned from the called orocedure to the level of

an element (~raohical, loqical or arithmetical).

Sincs +ormal pArameters are considered to reoresent local names,

assipnment of a value to a formal oarameter d08s not affect thE

corrBsoondin a actual parameter. E. g. in the preceedin~ 8xample

'WHAT' is an obiact which is completelv contained within is

orocedurB block. However, the second form of the DEFINE and SET

statement oermits this operation.

[~IAr1EDJ [{ A:S } 1name ob.iectsoecification



55

The exor8ssion

OBJECT NAMED name

dGscri~8S an operation which whsn 8xecuted. delivers the ob.iect

\ .h i c h (n t t h i s tim e ) ha s b88 n d 8 f i ne d ast h i s na m8. Pro vi d e d

that the obiect found aqain is a name. thsn the SET or DEF

ooeration will use this name as the ons to which a valus is

assiansd. 0s an examole.

QEFINE 'A' AS 'B'

SET :J2J 'A' = FOHlT 1. 1.

is 3flu 1 va l nnt to

SET 'I~' = POP!T 1. 1.

Since callinv a procedure imolicitlv means adefinition of the

formal oarameters. this type of statement can be used in a oro­

cedur3 to return obiects through the oarameter list.

i\s an e xarnnLe

, l\. ' , ::::',

SET nOJECT 'B' ROTATION gn OEG OF 'A'

F [I!C]

SET '/\1' POHIT 1.8.

Ci",LL 'SU8' I {-\,1' 'B 1 I

is eouivAlent to

SET '8 l' = F~ or AT 9 n nEGO F ',1\1 '

Objects mav be passed to and from a orocedure also by uso of

names valid in the outer block, i. e. global objects. Global

ob.iects must be declared prior to the definition of a orocedure.

SET 'A' p:lI~'n 1 2

JECLJ\.RE 'g'

PRDC 'C'

SET '8' SHIFT 1 HJCH 2.5 INCH JF 'A'

[ND

C/\LL 'r::'



56

i8 80uivalent to

SF-T '!:J,' SHIFT p~CH 2. 5 Ir~ CH CJ F 'A'

HOVJ8Ver, if '13' he d not bBen deelared (or implieitlv de c Le r-ed )

n r-i o r- to the pROC 'C' s t e t eme n t , t hs n '8' wo u l d be loeal to

'C' e nd the c a Ll 'C' statement would have no effeet in this

examole.

4.5.2 The DECLARE statement

This statement is used to make names of objects loeal to the

block in whieh the DECLARE statement i8 situated. If they are

ussd in the outermost block, the names are made qlobal. The

INITIAL ootion serV8S for assigning an initial objeet to the

naMe.

ilECLA.RE name L~!i]:_l~IAL obieet]

[ n ame [ J!LII} ALob i e c t] ]*
Examole8:

Valid objects

UECL 'A' 'B' mt r POl 2 , A ' , 'B'point, 'C'
1

REGHJ

nECL 'FJ' UJIT CH~CLE CE~nER 0 0 RAD 1 'A', 'B'eirele,

IlECL '0' 'A', 'B'cirele,

PROC 'C' 'A', 'B'circle,

'C'
1

, C' , 0 '
1 '

, 0 '. 'C I Lo c e 1

, A " 'B' n e IJ/, '0', I e'l 0 C a 1

4.n Pro gram control statements

4.5.1 [Jo-looos

, A ' ,

, A ' ,

'R'eirele,

'B'ooint,

'C'procedur8

'r'
c., 1

Do-loops are used if a number of statements shall be repeated

several times.

{arith. exor. [L~~~ES] }DO
\\IH I LE 10?'. 8xor.

number-of-GRAPHIC-statements

F. ~J D



57

In the first form of the OD-statement, the arithmetic expression

"arith. e xo r c " is converted into an Lnt e a e r- value i before the

zroup of statements between 00 and END are executed for the

first time and the statements in the OO-~roup are executed i

times.

If "t'JHILE" is s ne c i f i e d , the l oz i ce l expression "log. exor."

is evaluated and, if the value is TRUE, the DO-grouo statements

are executed. Then "log. e xpr-v " is evaluated again. The OO-group

is executed successivelv until the evaluation of "log. expr."

yields the value FALSE.

Examole:

00 10 TI!'1ES

CALL PLOTOB 'A'

SET 'A' SHIFT 1 2 OF '/\'

E['JO

SET 'A' 2 .

SET 'C' 20

no "JH I LE 'A' > 'R' g, 'C' > I"]

SET 'C' 'C' - 1

SET 'A' 'A' + 0.1

CALL 'EVAL' 'OB' 'A' 'B'

SET 'flB I ENLARGEr1ENT 1.1 1 .1 '08'

END

4.6.2 IF-THEN-ELSE-FI

The IF-statement is used to execute a oiece of orogram deoending

on the result of a logical exoression.

IF log. expr. THEN statement1

[ELSE statement2]

FI

If the evaluation of the logical exoression "log. expr." vields

the ve l ue TRUE, the statement "statement1" is executed. Other­

wise, if "ELSE" is soecified, the "statement2" is executed. If

"ELSE" is omitted, "statement1" is onlv e xe c ut e d in the ca se

that the r8sult of "log. 8xpr." is TRUE, while no operation is

executed for a "log. e xo r-v " resultinr: in FALSE. "statement1" and



58

"statement2" mav be single statements or a group of statements

between "00" and "E~JO" or a block between BEGIN and END.

Examoles:

IF 'A' > 'B' THEN 00

CALL 'AGTB'

END

ELSE CALL 'ALEB'

FI

IF 'A' & 'B' g, 'C' s '0' THEN 00

PLOT 'PA' 'PB' 'PC' 'PO'

OPEN PLOT

END

FI

4.7 System commands

System commands are GRAPHIC statements that are executed imme­

diately wherever they are specified, even in the definition of

a orocedure. System commands perform some kind of action. They

da not deliver a result.

4.7.1 The TAKE OVER statement

This statement serves for taking over graphical information from

an interface file oreviouslV written by a orogram oroducing a

plot outout. Soecial routines interceot all calls to the plotter

software and instead write information on the interface file.

Sy executinq the TAKE OVER command, graphical elements are

created from the information on the interface file and a name

is ~enerated for everv one of the elements. The name for the

collection containing all the elements taken over must be soeci­

fied. The ~enerated names of the single elements can be displaved

bv a successive plot-statement.

"name" is the name o f the overtaken graphical collection. If

"nn" is specified, this number refers to the interface file with

the OO-name "FTnnF001". The default value for nn at oresent is 13.



59

Thq nnmes ITenerated for all sin~18 elements of the qraohical

collection start wit h the F i r-s t three characters of'name '",

~ft8r the TAKE OVER comnand is executed the object with the

name 'ZEIGNA~E' contains a collection of texts, r8oresentin~

the qenerated names.

I f 'Z EI G~,) A1\1 E' i s 'l l o t ted t 0 " e t her 1'1 i t h "n arn e ", t herr 8 ne rat e d

n arnes HilI b e wr-i t t an e t thp annropriate z r-ap h i c e l elements.

r::xamoles:

TAKE OVER 'PICTURF1'

PLnT SH1FT 3 C:'1 :=\ C[vl ( 'P I CTUf~ El' 'Z EI G~J A"1 E '

OPEN PLOT SIZE 10 10

TA,KE JVER 'PICTURE2' FR(:I! FILE 14

PLOT SHIFT 1 1 OF 'PICTLJRE2'

4.7.2 Time, Standard, Ts s t , Trace

TI E

This command orints out date and time on the standard orintfile.

Exam'lle:

TPli=:

standard unit

The standard unit command is used to ChanQ8 the unit taken for

lenrrth soecifications, if no unit is soecified exolicitelv.

r'lETER
Ir\ICH
'F-ODT
FT-
YARDS
To'·

Examole:

STAf'HJf\RD Ui\HT Ci/!

SET 'A , PD HJT ')
L-

SET , A' n~XT
, A,BC , HEIGHT o ~'1 ['I 1

STMI PICH

SET 'C' pnr~'IT Ci R



60

Ths t8St end trac8 commands

c ornrne nri s =Jrs u s a d for t.es t i n« e n d dab u o o i n nUl~OOC3[?'3 '-Ih n

nSI! ~eatur8C; srs to be incoroorated into ths GRAPHIC svstern.

i r::T' n r- n t s out t he c ornole t e list of d e t e c o nt e i nad in t hs

n A rearla 1e form (the orintin a routines ussd are

d s s c r i I?

Thr? c orome nd : [ ]
:,I\!'tC!ISS on Cf' off", t r-ec a of s uh r-out i ne cC111s.

Drinted at ths b8~innina and befors the end of everv subroutin

Tf TI EH is s oe c i f i e d , e t the end of a subroutine CPU-time a nd

e1anssd time since the start 0+ the job are orinted out additio­

ndll\!.

4.7.3 Stora a 8 and retrieval of ~raohieal information

The users of ths SRAPHTC-svstem have the possibility to save and

rntievs rrra~hieal information. In mBnv situations it is eonven1-

ent to store the ~ontent of the Grachieal Oata Pool (GOP) and

thus ths ~rao~ical task for a lon~ aeriod. When. durinrr thc oro-

C8SS t8stin~ a GRAPHIC-oro~ram, the araohieal information is

keot on a secondarv stora~8 device, onlv ineorrectlv soecified

objeets have to bs radefined in a new task. This wav the oroces-

sin~ tina for eomoosin a a drawina ean bs redueed.

Für these oosrations a sequential dataset i3 established. This

dataset nav contain several GRAPHIC-reeords. Each rSDresents

the eontent of the GOP of one task and is identified by a nams

included in its head. The reeords are written with the programs

for dynanic arrav - 1/0 /8. 10/. whieh reouire a logical r8eord

length of BO bytes in the dataset.

~.7.l.1 The °FSFPVF- and ~ELEASE-3tat8ment

In ordsr to ehanaa libraries or any dataset in the normal iob-

stream in a MVT or MFT environment. it i3 nee8ssarv to reserve

the dataset for exelusiv8 use for this time.

(

'] Sf\1 A ,,1 F

[ -:SET
FILE

] "d s n erne ' [or~J
{

DI S!<

[ Vl1..LlH~c
'volume'

'c!dname'



61

These commands enable the GRAPHIC-oro~rammer to use the capa-

bilities of the nS-Assembler-Macros ENQ and DEO /31/. ENO creates

a list of combinations of dsnames and volumes. which are to b3

us e d e xc Lus i ve l v . 'ddname' is needed to control the validity.

~hile processinq the following commands the I/O-datasets are

imolicitelv orotected, when the corresoonding declarations (FILE

nn DS~lA~,l[ = 'dsname' \/OLUflE = 'volume') are specified.

4.7.3.2 Storing grephical information

The command PUT 'name' stores the datastructure contained in

the GOP end associates the structure with the name 'name'.

'name' identifies this GRAPH1C-record in the sBouential dataset.

The name mev consist of one to eiqht alphanumerical characters.

While saving information on secondary storage the datastructure

in the GOP will not be changed.

The com~lete PUT-command has the followin~ form:

PUT 'name' [\\J~JH] [f(,EYJ [, k ev ,] [ Of~] [fL~EJ [ nn]

[ nilj ] [ [{DA~'%ET }J "ds n arne ' [mJ] [[{U}~K
"}1

'vo lume '] ]OS fI),I\ ['1E = \I 0 Lur'l E

~ith 'kev' one can protect a GRAPHIC-record against unauthorized

destruction. If it is omitted, , is assumed.

The nther ~8clarations are oational and may te used to chan~e

the default values für imolicite reservation of datasets as men­

tioned in ths RESERV[- and RELEASE-statement. The sDecification

FILE nn corresoonds to a OD-name 'FTnnF001'.

All datasets must be initialized before their first use.

4.7.3.3 ReadinR ~raahical information from s8condarv stora~e

c;ET 'name' [E~'2"IJ [ E_Il:E] [n n]

[t~~~:~:T}1 "d s n erne ' I volums ,] ]

CET 'name' causes the S'Istem to rea~ information from GRAPHIC­

record 'name' into the GOP. UD on execution of this command the



62

prsvlous structure of nodes in the GOP is deleted and the en­

vironment becomes identical to what it was, when the corrssoon­

din~ PUT was 8xecuted. The user can now continue to manioulate

the new structurs.

All other s08cifications of the command can be overridden in

a similar wav as in the PUT-statement, if one doss not want to

usa the default ootions for FILE, OATASET or VOLUME.

4.7.3.4 Deletion of ~raDhical information on secondary storage

The command is worded as folIows:

OELETE 'name' [~L~HJ

[
[{ O._._AT. ASET }J

OSI\JAr1E =
'volume'J]

FILE

OELETE 'name' "k e v ' deletes a GRAPHIC-record identified b v

'name'from seconrlarv storage. It will only be executed, if the

user also spscifies an aporopriate protection key. The space in

the dataset is available for new disoosals. The other specifi­

cations are used in the same manner as in the PUT-or GET-command.

4.7.3.5 File-Utilitv-command

The FILE-command is used to handle datasets \Nith GRAPHIC-records.

{

'.~. NITI ALI Z,A, TI 0 I\J}
INFrJRMiHIClN

~EPAIR 'name'

[ rJ 1\)J [ [{ D. A.. T.. ASET }J
OS ~JAJ;1E = {

OI SK },ds name' [0 N] f _._--- . J
VOLlJME

'volume' ]

Refore the first datastructure from GOP can be saved into a

dataset. this dataset must be initialized with an endword usinp

FILE INITIALIZATION.

This endword must also be restored with FILE REPAIR, if a job

is terminated abnormal Iv. while executing the PlJT- or DELETE­

command.

With FILE INFOR~ATION the user can pet a table of contents with

the names. kevs and creation dates of all GRAPHIC-records.



63

4.7.4 The comoile, link and ~o commands

These commands enable the user to compile, link and eX8cute

nro~rams in the G~APHIC-zo-steo. Hence it is possible to chanze

or enlarge the content of libraries, while orocessing other

Gi'?APHIC-iobs. This caoabilitv is very heloful for "flvin a " ex­

nansion 0+ the GRAPHIC-svstem.

c.r}~]PI LE [~'~L~H]
] I ~,!PlJT

* * EOF

The inout after the CO~PILE-statement can be made uo of several

ICET~AN-oro~rams. After the last orogram a card containing

** EOF in column 1 t hr-o uz h 5 must be inserted. The inout is e x­

oected from file FT05F001 respectively SYSIN. For all other

sources FILE nn (FTnnF001) must b8 soecified. A corr8soondin~

OD-card is reouired.

L I!\IK TE;"1 PDRAR Y

STANDARD

{
VOLlJ ME}

9.0.IJ\SET ' dsname' [ ON] [ -.----... ]
DISK

'volume'

[h~lF\DJ

[1\ un]

[~~l;JqULE]

[ E-.:~:.::l GR.A ~'1 S

'name1'

'name7'

[~v..I~HJ EI\JH!Y , name1 '

'name1G']

'name6'

I)ith ths LINK-command tho obiect-modules are linkerl. The load­

modules built UD are stored into the following kinds of libra-

ries:

temoorarv, the standard library for GRAPHIe-modules

or anv other soecified in the LINK-statement.

,1111 Lib r-e r i e e can b e declared as "SHR' in t ha c or-r-es pond i no

SYSL'\1JfJ-;]D-card. 'name1' i s used to declare the name of the

Lo arf -rnodu Le . 'name2' t hr-o uah 'name6' are alias n ernas end' name7'

to 'name16' are other orograms also to be linked into the load­

module 'name1'.

The GO-statement causes the execution of a load-module 'nerle'.

r,1] 'name'



64

4.8 The different modes of GRAPHIC

lJe~8ndin~ on whether a command expressed in the GRAPHIC langu­

aqe is executed immediately after it has been processed bv ths

command interoreter or whether the execution taKes olace at a

later time. the terms "execution mo de s " and'orogramming rno de "

are used.

4.8.1 The nrogr3mming mode

Any GRAPHIC command, which is not a system command, is conver­

ted into an equivalent internal node structure. When the com­

mand was container] in a group (00, IF) or in a blocK (BEGIN,

PRnCEOlJRE) it will not be executed (i. e , its interval repre­

sentation will not be oarsed by the oarser program) until the

containing blocK or grouo itself is executed. Henc8, as long

as there is an exolicitly soecified group or blocK ODen,

GR,L\PHIC 1S called to be in the "p r-oz r-ernrni nz mo d e :",

4.8.2 The 8X8cution mode

Anv GRAPHIC system command, whether it is found in the outsr­

most b Loc k (wh i c h begins wi t h GRAPHIe and e n ri s with END GRAPHIC)

or in a contained block or aroup, is executed immediatelv.

Hence, du r i n« nr-o c e s s i nz of a system c ornme nrl , GRp"PHIC is called

to be in the "execution mode".

Anv C~APHIC command which is part of the outermost block of

GRAPHIC is executed immediately after its conversion into its

corresoondina internal reoresentation. This shall be illustra­

ted bv the following examole:

GRfI,PHIC
execution mode

ßEGII\J
prorrrammin a modR

8xecution mode
i] CJ l~ HI LE 'rl!' < 3

oro~rammin~ mode
FI\JO

8xecution mode
Efm GRAPHIe



65

4.8.~ The irmediate mode

It is oossihle to ask for immediate execution of a GRAPHIC com­

mand while beino in the oro~rammin~ mode. To oerform this. the

c ornrne nd rnu s t be o r-eoe de ri bv the orefix command "!"

anv-GRAPHIC-commF3nd

T~8 command nreceded bv ! is called to be in the immediate

C~:~.APHIC

SET '{'>,'

SET '(\.' SHIFTING +3 -2 OF 'A'

! PLOT 'A'

PLnT 'A'

EiJO l~RAPHIC

In this eXF3mole the first of the two PLOT commands is preceded

b v a ! nrefix c nrorne nd . Hence i t wi 11 be executed ',.Iith the ' nre­

sent' dn F'i n i t i nn of 'A', wh i c h is valid befors the Oll-looo.

H'3nce, the above GfUWHTC n r-oc r-arn I s eouivalent to

GRA.PHIC
SFT i t:»

PUJT '{'>'

on 3 TPiES

SET 'A' SHIFTING +3 -2 nF 'A'

PLOT 'f!..'

um GR/\ PHI C

Ths oossibilitv to usa the immediate mode is of no oreat use for

batch processing. However. in,an interactive use of GRAPHIe, it

may be helpful to modify graphical information immediately with­

out having to leave the programming mode. The capability which
is thus achieved mav be considered as the gquivalent of a "dask

comnuter mode" which is provided bv several interactive systems

hased on mathematics oriented orofYrammin~ lanfYuapes.



66

Not onlv whole commands may be executsd in the immediate mode

but also any araphical object soecification. The syntax is si­

milar:

anv-praohical-object

F:xam'Jle:

SET '/\' P'J IrH 1

SET "3' P IJ rrn 7 2

PRllCE[JLH~~E 'PLOT'

SET 'FIC;URE'

PLOT 'FIGURE'

E1\10

, A " 'B', LI NE FR'] Iv1 'A' T0 'g' )

I,!henever o r-o c e dur-e 'PLOT' I s invoked b v a [,ALL, the obj e c t s

\I' h ich are ass i g n 8 d t 0 ',14,' e n d '8' j u 8 t p r i o r tot h e 0 0 i nt 0 f

invocation. will 08 olotted together with a line from Doint 1 1

to point 2 2. Th e ahove program I s equivalent to

LJECLA,RE 'I;'

rJECLfI,RE '8'

SET 'L 11\1 E' = LDI E FR [l ['1 PO HJT 1

PROCEOURE 'PUH'

SET 'FIGURE' '/,,', '8', 'LHJE' )

PLOT 'FIGURE'

Ei\ilJ

TO POINT 2 2



67

5. Osta structure

5 . 1 In t ro duc ti 0 n

In cnaoter 3.1 different methods for representing graohical ob­

jacts in a GOPS were described and a directed ~raoh structure

was orooosed. The basic conceot of this structure shall be re­

Jleated:

Everv obi e c t is represented bv anode in the structure

Every obi e ot mav have An arbi trary number of sons and an

arbitrarv number of fathers

The relation between a father and its sons, and vice versa,

is established bv soecial ob.iects. called roferences

All references connecting a father with all of his sons are

situated on a rin~

All referenc8s connectin~ a son with all of his fathers are

situated on a second ring.

All the objects. includin~ references are stored in a linked

li s t , c a 118 d t he ., n 0 deli s t '", Ast a c k i s mai nt a i ne d f 0 r a 11

Qlaces ln the list that are not occuoied bv anode. If a new

oh;ect is to be 7enerated, the first free list position is

taken from the frA8 olace stack. If an object is destroved, its

list oosition is added to the stack.

When the last item is rBmoved from the free olace stack, the

list is 8xoanded automaticallv. The feature of dvna~ic arravs

offered bv IC~S has proved ta be extremelv heloful for imolemen­

tin~ the data structures described here.

In the fallo~linq chapters the abject nades, the reference nodes

and the attributes of abject nades will be described in detail.

5.2 l"odes

5.2.1 ~biect nodes

0biect nod8s contain a structural oart for reor8sentation of

the r8lations betw88n ob.iects and a oart containin~ the descrio­

tion of the obiect its81f. The latter DArt is called ~attribute



68

s ub s t r-uc t ure ' or "attribute s e t " or .j us t "attributes", it has

a different form for the different types of objects. For des­

criotion of attributes see chao. 5.2.3.

The relation Dart of objects is the same for all types of ob­

iects. It consists of oointers UP and down and of apointer to

the set of attributes. The downward pointer of graphical or

arithmatical elements is emoty. The downward pointer of opera­

tionS Doints to the ohiect or objects upon which the operation

13 to be ne r-f o r-rna d , If !'J8 take a look at t vo operations, the

semicircle from one point to another one and the shift opera­

tion, W8 soon r8co~nize that there are different kinds of opera-

tionsubobiects. S88 fi~. 24.

SEMICIACLE
QPEAATlelN

SHIFT
QPEAATlelN

r r-. 2i1 Subohiects of operations

In the first case, the operation must have two and only two

sons. which must be noints, the order of sons is imoortant.

On the other hand, a shift oDeration may have any number of

sons, a Chang8 of the order of sons does not affact the result

of the oDeration.

For this reason, an obiect in the GRAPHIe has two Dointers to

subohjects. One Doints to those subobjects that have to be in

a fixed order. ThR rina comprising these subobjects is an

ordered circular list. The sons of an object that are contained



69

In this ordered circul~r list are called ar~u~8nts of the ob-

i e c t . So hJP' sav: The semicircle oo s r-at i o n must he ve hJO Clrcr,u­

ments. The seconrl downward oointer of an obiect ooints to a

set of suhohiects that ~av be in an arbitrarv order and of anv

number. These sons of an ob,iect form a set rin~.

V/e call this kind of e ub ob i e c t s o ne r-ends of the obi e c t . The

shift oDeration h3S no ar7uments and an arbitrarv number of

Doerands. An Doeration ~av ~ossess both arRuments and operands.

An examole is the rotation around a rriven ooint. The ooint is

the arrrument of the Doeration, the objects to be rotated are

the ooerands. Fia. 25 shows the corresoondin7 structure. In the

illustrations showinp data structures the downward pointer to

the operands is emerqinrr from lower ed~e of the rectangle re­

nresentin" the obiect. The ar~ument oointer is b8rinnin~ at

the rirht ed~e of the rectan~le.

sct AT HJN RllUNO
A GI VEN pen NT

,,~ ~ ~ --J/
- V

OPERRNDS

\.~-...., ,------/
V

RRGUMENT

r i«. 25 ~oerands and arrument of the rotation-operation

An ooeration is oerformed with its given ar~uments (if anv are

nresent) once for every one of its Doerands. If an operation

h~s no ooerands, it is oerformed once with its arquments.

F-ve rv obiect thus Dossesses four oointers:

one to its father

one to '-!- arQ'uments1 t s

one to its oDerands

one to its attribute set



70

fathRr

oointer

!lbiect
e r-z ume n t

pointer

attribute

oointer operand

oointer

Fin. 26 Pointers of an ob.iect

~nv nne of the noint8rs mav be GMotV. i. 8. the null Dointer.

5.2.2 ~8f8r8nCo, nodo,s

~Df8rpnc8s are used to connect ob.iects with each other. Thev

do not nOS58SS attributo. SRtS. Since references are no onera­

tions hut nnlv date elements reoresentin a relations betw8en

obiects. th8V need not havR a oointer to arDuMRnts and operands.

b ut i us ton e rl 0 \.m INar rl n 0 i nt 8 r , 'iJ 8 ha v8 S 8 8 n t hat An 0 b i 8 Ct h .:'1 '3

onlv one oointer to arDuments. oP8rands and fathsrs. althouDh

it mav DOSSASS more than one of Rach. Thus the task of connac­

tin~ the ~athers or the sons of an obiect is 18ft to the refe­

rances. For this nurOOSR referenc8s hav8 oointers to form two

circular lists: One for comorisin~ all sons of an ob.lect (this

is c a Ll o d t he rinn \,'ith conmon s uo e r-ohj e c t , RSLlP") and e no t h e r­

one ~or conorising all fathers of an object (rin~ of conmon sub­

ohiect, QSUg). Firyure 27 clarifiRs the US8 of both rinns. In

t.h i s ficrurR onlv o o e r-e n d oo in t e r-s e r s ShO\1O.



71

AING ~F C~MM~N
SUPEReJBJECT
lASUP)

'---+--~...---------

RING ~F C~MM~N
SUBeJBJECT
(RSUBl

RSUP

Fip'. :27

Th e r-e is one PS!JP for the arrruments and o n e for t h e o o e r-en d s

of an o bi s c t ,

l3PERANO RSUP ARGUMENT RSUP

Für. 22 ~D8rand and arp'ument rinp's of an obiect



72

The RSUP and the RSUB rings of a referenc8 node are imolemented

bv use of 18ft and riryht oointers. Doublv linked circular lists

are used because an element can easilv be included into or dele­

ted from the list without having to parse through the whole

rin~. ~verv reference possesses 6 pointers:

ane to the father

one to the son

the left and the right oointer of the RSUP

the left and the right oointer of the RSUB.

father

oointer

left RSUP oointer

left RSIiS oointer

son

pointer

riqht RSUP pointer

right RSUg pointer

Firr. 2~j Reference Dointers

5.3 Tvoes of obiects and their attributes

5.3.1 Introduction

nbjpcts in the GRAPHIe data structure differ onlv in their

attrihute set. ,1\.11 obi e c t s oo s s e s s at least one attribute: the

ob ect t e. According to the tvoe of the object the remaining

oart of the attribute set is built UD. Following object types

are 00s8ible:

ryraohical elements

granhical ooerations

logical-arithmetical elements

logical-arithmetical operations

collections



73

na~es

8valuate

~efine

control obiects (~rocedure. if)

~ctions

na~8 reference

undefined ob.iect

The different tvoes of objects and their attributes will be d8­
seribed in the following ehapters.

5.1.2 Gr~ohical elements

Graohical elements contain the basic ~raphical information, thev

do not deoend on other objects, henee th8V have 1either oDerands

nor ar~um8nts; thev can be plotted immediatelv. Graohical ele­

ments are: ooints, oolv~ons. splinefit and aooroximation curves,

texts. eoordinate axes. ares. eircles and shades. In the attri­

bute sets of the elements the information describing them is

stored. All elements possess the attributes: object tvoe, ele­

ment tvpe and number of dimensions. The rsmainin2 attributes are

different deoendin a on the element tvoe and the dimensions. For

a polV20n-element in two dimensions e. ~., the remaining attri­

butes are number of ooints and the x- and v-coordinates of the

ooints. At oresent all elements implemented in GRAPHIe are two­

dimensional. A oossible extension to three dimensions is descri­

bed in /18/.

5.3.3 Grsohical oDerations

Graohical oDerations are objects that, when executed, create a

araohical element, a collection of graohical elements or a

araphical oDeration accordin~ to the tvoe, the ar~uments and

operands of the oDeration. Table Q.ives a survev of ~raohical

Doerations, the number and kind of ar~um8nts and oOBrands thev

reouire and the kind of results they deliver when executed.



Ooeration

Line

Semicircle

Intersection of lines or
polygons

Intersection of lines and
circles

Nth point or line out of
oolvgon

Extreme element (leftmost,
uPP8rmost etc,)

Shading the interior of a
polygon

Shading between two polv­
q;ons

1\lumber and kind
of arguments

2 point elements

2 ooint elements

2 line elements

2 elements, at
least one eirele

1 polygon element

any

1 elosed polYgon
element

2 polygon elements

f\Jumber and k i nd
of ooerands

none

none

none

none

none

none

none

none

Result

line element Ci. e .
polygon w i t h two points)

e r c element

point element

line element

point element or line
element

point element or line
element

'.J..,.
,

shade element

shade element

x-axis
y-axis to an object anv GE none axis element

rlot specifications
Cdotted lines, point svm­
bol types ete,)

none any GE
collection of elements
aeeording to number
and types of operands

Table 1 Graohieal operations



iJoeration i1ul'lhor e n d kind ;'Iumhpr and kind Result
of Arauments of o o e r-an ds

...,

Shiftin?: nO!1e anv CE
Shiftinr:; bv tn8 coordinates
of 4 'Joint 1 noint element any r;E

En18rzoment
DiMinution none an'! GE

{~~l;rge~ent} \" i t h a soeci- collection of elements
iJHT'lnutlon fied ooint as accordin\! to member
the center of the transfor- and t,/pes of operancJs
rlation 1 ooint ele!T'ent any GE
Rotation around the oricrin GE

.none anv
;::;'otation around a cyiven
ooint 1 ooint olof'18nt an\! GE
C(ot'1tion around a r;iven 1 ooint element
ooint 0\1 the doclination Anti
anp'le 0+ a li ne 1 lj ne Rlement anv GE

...

'"U1

Tahle 1 f o o n t . )



:l o e r iJ t i o n

One o~ the linear tr3nsfor­
mation oD8rations (shiftin rr ,

9nlarNement" diminution, r-o :
t a t io n ) = 001

Imap:e oDeration
(li n. t r-a n s f , so t hs t 2
ooints of an ob,1ect are
olaced on 2 points of the
d ra "I i n g: )

Transformation of an object
aecordinp: to two aX8S

Cirele through the
3 Goints of a trianql8

Inserib8d circle of Cl

triancrle

Cirele ryiven bv central
Doint and radius

'!umher end ki.n d
of ar rrum8nts

none

none

2 axis e l arne n t s

j ooint eleMents

3 noint elements

1 noint eleMent

'umh e r- e n d k i n d
of ooerands

one of the linear
transformation
oD8rations

= 002

anv GE

an'! GE

none

none

none

'Jsult

1 linear transforma ion
oDsration comorisin
the tasks of 001 an
002

collection of elements
~accordinp: to numbar
ane tyDes of ODsran s

1 circle elem.ent

1 o i r-o l s e Lernc n t

'1 c i r c l e elerv:m

'J
rn

T3tJIs 1 (cont, )



:<peration

~rc throu ah'3 oojnts

lJ"lb~r e n d ki nd
n+' arC':u';l~nts

'~ 'Joint e l eme n t s

umher enrl kind
oF oQRrands

none

'"sult

1 arc element

1 e r-c e l ernn n t

Jolv~on 8lpr~2nt

splinefit element

Arc giVAn bv be~in and end
ooint and arc l8n~th

Polvqon throuryh a number
of obi8Cts

S8line~it curV8 throuah
a numcer of ohiects

Aonroximation curve throuryh
a numher of obiects

2 noint elements

1 colloction oe
> nnint 8l8m~nts

nolv~on elements,
snlinefit elemonts
~nrl aooroximation
c::lements

none

non8

none

none

1

• +- •a 0 o r-o x H:la ~ 1 o n 3l8rnp,nt 'J
'J

T"lble 1 (c o n t v l



78

For Bxacution of the oDerations everv operation oode Dossesses

'l n3!l 02 rt 2 i n i nO' routine It' h ich i s ca lle d \AJ h8 n t h G no d R i s Dar S Gd.

Thn attribute s~ts of oDeration obiacts contain at least the

objact tvoe - araohical oDeration - and the tVDe of oDeration.

J~ ~urthgr in~ormation is n8erlad for 8x8cutinn the operation,

;t is also contained in the attribute set. E. a., the line

oDeration nRads no additional attributes, thp 0!l8ration circle

aiven hv radius end central Doint' n88ds the value of the

radius to ~o stored in the attribute set. Für linear transfor­

Mation the attribute set contains the transformation matrix.

5.3.4 Collections

Collection ohlects are nodes In the data structure Dossessin a

no araUMentS end a celioerate mSMber of oosrends. Thev are

userl to combins obiects that are to 08 referenced end manioula­

t oc nS Fl ,"hnl!='. F. P'. o o Ll o c t i o n s are u s o d to cor"'lnrghend t h s

rV3rnn:lO'ters n-l:' a CRAD~IIC o r-oc s dur-e . Collection obiects have

onIv one attri ute, the ohiect tvoe.

r,!ClrT1f~S in the r-jr]ta structurs c o r-r-e s o o nd to the n erne s US8,j f o r-

jdentifvinp' end referencina ohipcts in the GRAPHIe lanauaae.

The name its81f, i. e. ths character strin a used as an identi­

fier is the onlv attribute of the name ob.lect (b8sides the

nbiect tvne). ·3MB obiects OOSSBSS one araument. which is

eitlwr o n e o b i e c t o r- o n e collection of o b i e c t s , t he v do not

have anv onsrands. A naMS obiect associatesthe character strinq

in it's attribute set with the whole substructurs below the

~raument. W.8cause the names are intearated as nodes into the

s t r uc t ur-e , n o r e f e r-e n c e to a name table is r-e o u i r-e d v.h i 18 n s r-:

c;-in a t h c s t r-uc t ur-n , If an ob j ac t is to b e d e s t r-ov e d , 8. 0' ••

all suboh18CtS 0-1:' it ~ust be destroved unless a named ob1ect

i5 ~et in the structure. Named subob1ects must not be destroved.

I~ names "Jerr3 not I nt s o r-a t ad in t o t hs s t r-uc t ur-e , t hs n erne t8ble

"foule! h'lve to h8 ro,ferCJnced at every node. in order to ensure

t hst no n arnnd s ub o b i e c t is destroved. \/,fhen the da t e structure

is to bs orinted out in a readable form. it is also uS8Tul to



j n

79

, -r-
,'. l.••

') . :1 . ii ,~ 11 '"J 1 u2 t 2 2 n rl d p -t- i n8

The evaluate-00iect 2nd the define-obiect ern used to control

the ~arsjna n~ the jata structurs. Ths defins-obiect is used

to na~8 its su0structur8. Qefor8 the structur8 is oarsed, the

dpfinn-ohiect is the structure's tOD. ~fter the structurs is

narsc rl , the structure's toD is a name-obiect. The substructure

o~ thn namp is thn rgsult nf th8 narsina of the oriainal struc-

turBo Th8 8valuato-ojiect caUS8S the parssr-nroaram to pvaluate

ths su~structurs of the evaluate-ohiect anj to nass the rgsult

of the evaluation to the ob.iect abov8 itself.

A SET-statemsnt of the lanauaae is reoresented ln the struc-

ture bp-t-ore oarsinn bv ~ d~fine-object and an evaluate-object,

a DEF-stat~MRnt is r~Dres8nt8d bv a define-obisct onlv. Fi~, 30

clarifies the usa of the defins-ob.iect and the evaluate-ob.iect.

GR.~PH::rC-")tatn,-i8nts:

S ET ,
L 1

, L I w= ,
" 1

, , p') ,

FF ,
L? , L I "iE

,
P ~

, I P4 I-,

11R~in8-obigcts have one 3r~um8nt, the substructure to be n~M8d.

and ans ODerand, the na~8 its8l~ or a name referenc8. Evaluate-

o b i s c t s DOS"'8SS i us t nne ons r-e nri , the substructurc to 118 8'Ja-



NRME

BO

STRUCTURE BEFaRE PRRSING:

L I NE - 1------,

('!PfARr I ClN

I I
I I
I I

STRUCTURE RFTER PRRSING:

Fi~. 30 The evaluate-obiact and the define-ob.i8ct



81

Ci.1.? l\c:;ttons

Action obiscts, when eX9cuted, do not dgliver ~ rssult in ~orm

o~ an 0~i2ct, hut nerf~r~ SomB action outside of tha obiect­

no de list. :"., c ti 0 ns are 0 'J '3 n 0 Lot " i'l nd ., 0 lot .' Cl 0 8 n 0 lot JI

chan?es valuss in the co~munication area renresentin~ ths mo-

mentarv coordinate svstem orizin uS8d for drawin? ob,iects And

rlomentarv size o~ the drawin? These values are important

for succRssiv8 olot-actions. The "ooen-nlnt -action POSS8sses

neither araurlsnts nor oDsrands. Its attribute 3et contains the

SiZ3 of the np'·, d r-awi nc to be o nan ed , The "n Lot rr ac t i on is

uss:::! to nlot 0ri'lohical o~jects. It DosseSSRS no arpument. but

a rlelibsrate numhor o~ Doerands that must be araohical elements.

:~h8n eX8cuted. the olot-obiect writes information on ths nlot­

file reoresentinq its oDerands. The attribute set of the olot­

ohiect contains infor~ation on the rectangular cut to oe scis-

sorge! out, if scissorin~ is snecified.

5.~.B Arithrl8tical and lo~tcBI ooerations and elements

ArithmeticAI and loaical 8xor8ssions ar8 often reoresented as

a si~ol8 binarv tree 19/. Since GRAPHIe is caoable of handling

more comolicated tre8 structures it has OBen a rather simole

task to im~lem8nt arithm8tic and lo~ical exoressions.

5.1.3.1 Arith~etical and logical operations

Gr::/~,PHIC o r-ov i rle s ob i e ct s ,·,ith an a t t r i hu t e 3Rt \\Ihicn cb e r-ec t a-

riZ8s this oblect as an arithmetic-Ioqical ooeri'ltion corresoon­

dina to the followin a mathematical symbols

+, -, -. (prefix), +, -, ., I, •• , =, ....=, >, ....>, <, ..,< (infix)

The oDerations are ~8neric in the sense that they are i'lble to

onBrate on both real and inteGer arithmetic el8rl8nts. ThB com­

mon arithmetic functions such as SIN, COS, Exr etc. h3ve not

08en irlolerlented so ~ar.

~.~.a.? Arithmettcal and logical elements

T~e attrtllute set o~ obiects reoresenting artthmgticBI-Ioaical

elements i~ comoosed o~ the followin a informAtion



o b j e o t t.vn s

element tvoe

slrwe;l[ ve l ue

5.3.J Control obiects

82

(as all other objects)

in t e q 8 r , re al 0 rIo g' i c al

internal raoresentation of the value

[ne imoortant +eature of GRAPHIe i3 the capabilitv to identifv

a nu rn b 8 r o.f 0 h i e c t s Cls' h81 0 n q i ng tor: 8 t h 8 r ' in a co 118 C ti 0 n .

The ~raohical collection as a set of graphical obiect has ore­

viauslv beRn introducerl. However, this concsot can easilv be

extended to a set of actions [such as DEFI~E, nPEN PLOT, PLOT

scc.), sincB the internal reoresentation of act~on5 i5 also in

form of obiects cOMoatihle with other ~ranhical objects. There

1S one dif+srenc8 betw88n a praohical collection of 8. g. 58V8­

ral noints and lines in that a collection of actions MUSt be

r1n 0 rde r-s d .?.9r: u~_n_c~ to rep re s sn t a mea ni np', fu 11 nr-o or-am , IA/h i le

for ooints and lines the order is not imoortant. HowBver. the

~arsin~ alaorithm of GRAPHIe has been imolemented such that the

order of collections (or the order of the elements contained

in collBctions and collections of collections) is alwavs Main­

tained. Ths SAme orinciole Aoplies also to the oDerands of all

other ob,iect tV08S, not onlv collections.

~J. 3 .. 1 The Yl PTOUO an d the IF c lause

\Jhenqver a n or an IF in the command indicate3 ths b8oinnin~

0.1:' n :]'J o r-oun o r- an IF c l e us e wh i c h is to be c ornn l e t e d bv a

corresDondina END or FI an ohject is created with an approoriate

ohiect tvne. The attribute set of this object contains informa­

tion as to whether it i5

1) an IF claus!?

7) a rRn8titive OiJ (DrJ n TP1ES)

l) d Lo e i C Cl1 1; n (l: r] \,'H I L F: 10 rr i ca 1 8 X P re s 5 i o n ) .

As An oDerand this otliect has a loaical or arithmRtical exorBS-

sion (which will be converterl to an element prior the execution

nf t h is ob i e c t L. as an a r-e urnent the obj e c t has one action or

one collection (B. 7. of Flctions) or in the case of an IF fol­

lowed hv an ELSE two actions or collections.



83

The function of the routines which actually perform the opera­

tions described by the oo-group-and-IF-clause object shall be

described briefly with the following examples.

IF-clause

Command: IF aTHEN b f ELSE c J FI

Structure'

IF

+
<D- ---

a b

------6)
I

... - - - _1- - - - 1
I I
I C IL ~

Result: If a = TRUE then the result is b otherwise no result

(ar c)

Repetitive 00

Command: 00 n TIMES

b

END

Structure:

00 (r-ap l I b II

n

Result:

n references from the

collection to b

b



84

Logical 00

Command: 00 WHILE a

b

END

structure:

00 (log) I bI

a I
Result: If a is FALSE no result.

if a is TRUE a collection containing band the logical

00 group itself.

Collection

00 (log) ~

a

I

I b

5.3.9.2 BEGIN-blocks

Whenever a new block is to be opened by the keyword BEGIN.

GRAPHIC generates two objects of different types. One of these

objects is the block header. the other one is the corresponding

environment. The block header has no attributes besides its ob­

ject type. The environment object has two attributes:



85

a hash table

a pointer index initialized to the value of the environ­

ment object node index.

The hash table will be used to assQciate the local names of the

block with the indices of the corresponding name objects. The

pointer index serves as the link between the elements of the

stack of currently open environments. Since all name references

within a block are converted to the appropriate name object re­

ferences as lang as the block is open, the hash table is no

langer needed after the corresponding END of the block. The en­

vironment object is necessary as a superobject to all name ob­

jects belonging to this environment. Only in the outermost block,

when the environment is the universe, the undefined object ser­

ves as a superobject to the name objects.

A reference is generated such that the environment becomes the

(only) argument of the block header. The commands (or else:

the objects representing the commands in the internal node struc­

ture) contained in the block will be linked to the block header

as operands. Upon execution of a block header, these operands,

one after the other, will be submitted in the proper sequence

to the parser for further execution.

5.3.9.3 Procedures

Procedures are very similar to BEGIN-blocks. The following dif­

ferences exist:

1) A procedure has a name; hence, in the block containing the

procedure, there is a name object which has the block header

of the procedure as its argument.

2) Within the procedure itself. the name of the procedure is im­

plicitly declared local; hence the environment attached to

the procedure block header contäins a name object for the

name of the procedure.

3) Procedures may have formal parameters. These are local names

represented by name objects which are attached as arguments

to the block header (and of course as operands to the environ­

ment). Hence a procedure block header has n+2 arguments for



86

a oroc8dure th n rmal parameters (1 environment + 1 10eal

name representing the procedure name + n parameter names).

4) If the END whiGh closes the procedure has the RETURN option

(RETURN object). then the last operand of the block header

lobe action b trather the objact to be returned.

o ME'
statement

END RETURN returnobJect

Structure:

'NAME' block
header

'NAME' 'FP1' other 10­
eal names

5.3.9.4 Procedure ealls

When a procedure is called an 0 eot of objaGt type "evaluate"

i8 ganerated and the name 11awing the CALL (i. 8. the name

abjaGt of the called proeedure) i5 attached to the evaluate ob­

ject as an operand.

If the name of the procedure is followed by a list of aetual

parameters, then an assignment object (same as the ane which i8

generated by OEFINE) i8 gene ed for sach aetual parameter.

The ac 1 aramete i5 attache ta this assignmen abject as

an argume t. while the corresp ding formal paramete hich i8

a name objact in the set of arguments of the called procedure

block header) is attached as an operand. The proper sequence is

controlled by means of a stack ich contains the aetual para­

meter position. (A stack is required beeause actual par~meters

may themselves have the form of a function proeedure call).

The 8valuate object which represents the call in the internal

data structure makes sure. that the actual-to-formal parameter



87

assignments are carried out before the operand Ci. e. the pro­

cedure itselfJ is evaluated. Since the evaluate object allows

only elements Cgraphical or arithmetic-logical elements) or

the undefined object or collections of these or nothing to be

considered as a result, all actions contained in the procedure

will be executed and a result Cif anyJ will be returned in ele­

mentary form.

Command: CALL' NAME' C apar1 , apar2 )
Structure:

I-valuate t t
IDEFINE apar1 I IDEFINE apar2 I

I I
I-- block-

'NAME' header i ~ ~ t
j3nviron- 'NAME' 'FP1 ' I 'FP2'tnent

5.3.10 The undefined object

When an error is encountered during processing of an object

specification, a special object, the »undefined object", is

built into the structure instead of the erroneous object. In

this way the consistency of the structure is maintained. Thus,

the erraneous GRAPHIC-statement: "SET 'A' NOTHING" would cause

the building up of a structure containing the name 'A' and

below it the undefined object. 8eyond this, the undefined ob­

ject is used to represent objects in the structure that are

already referenced, but not yet defined. If the GRAPHIC-state­
ment:

"DEFINE 'L' LINE FROM 'A' TO '8'"

is specified prior to the specification of 'A' and '8', the

undefined object would stand in the structure as the arguments

of the name objects 'A' and '8'. CDf c our-s e , in order to avoid

an e r-r-o r , 'A' and '8' must be specified before referencing 'L'.)

The undefined object is represented only once in the structure.



88

6. The interpretation of the GRAPHIC language and the building

up of the corresponding data structure

6,1 Steps of the conversion of the language into the structure

During the interpretation of the words of the GRAPHIC language.

a corresponding da ta sturcture is built up in internal storage.

The integration of every object into the structure takes place

in several steps.

In the first step a CDL-routine interprets the language words

and stores data from the language in the communication area. In

the second step a routine (calIed the CDL-routine) create8

an object node for the object to be integrated and introduces

the node's index into the »temporary node list» (TNL). The TNL

is a stack which holds the indices of all nodes not yet comple­

tely connected with their superobjects and subobjects in the

structure. After creating the node and updating the TNL. the

attribute set of the object is defined and filled with data.

This is done according to the information passed from the langu­

age over the communication area. In the last step the object

node is connected with its superobjects by structure connecting

routines. The object node index is removed from the TNL. when

the object is connected with all subo ects and all superobjects.

6.2 Treatment of names

6.2.1 Declaration of names. environment. name referencing

Whenever a name is encountered in a GRAPHIC command. such as 'A'

and '8' in

SET 'A' = LINE FROM POINT 3 2 TO '8'

or in an explicit declaration or as a formal parameter. the

approp ate actual environment is checked as to whether the name

has been previously declared. For this purpose a hash-table is

provided for each environment. The hash routines used are des­

cribed in 132/. If the name is not found in a declaration state­

ment or as a formal parameter it is considered as previously un­

declared. If it is not found in another statement. then the next



89

higher environment is checked similarly. All environments which

are presentlv ~open~ are linked in a stack to this resoect.

This shall be explained by the following example

PROC 'A' Uni, A

PROC 'B' Uni, A, B

BEGIN Uni, A, B,

END Uni, A, 8

END Uni, A

END Uni

END GRAPHIC

Program

GRAPHIC

Stack of open
Environments

Uni

Remarks

One environment called ~uni­

verse" is opened (Uni) and be ­
comes actual

Environment of 'A' is opened
and becomes actual

Environment of 'B' is opened
and becomes actual

Environment of this block is
opened and becomes actual

Environment closed. Environ­
ment cf 'B' becomes actual

Environment of 'B' closed. En­
vironment of 'A' becomes actual

Environment of 'A' closed. Uni­
verse becomes actual

Universe closed

The search for the name is terminated when either the name is

found ("previously declared") or when it cannot be found in all

the open environments including the universe.

If the name i8 found to be previously declared in an environment,

the corresponding name object index is retrieved from the hash

table and - if the command was not a declaration - this object

is inserted into the TNL.

If the name is found to be previously undeclared, then it will

be declared in the actual environment. This is performed by

generating an appropriate name object

inserting the name and the object index in the environ­

ment hash table

attaching the name object as a subobject to the actual

environment object.

Now the name is declared and can be treated as previously declared.



90

6.2.2 Assignment of objects to names

Objects may be assigned to names by means of a SET or OEFINE

command or by the INITIAL option of a declaration. Names to

which no abject has been assigned. are considered to have the

undefined a eet assigned ta them by default.

Every assignment is performed by an assignment abject which

has - when executed - as its operand the name abject ta which

something is to be assigned. and the abject as its argument.

(Note that bath name and abject may be results af the executian

af ather objects.) If the name has already an abject as an argu­

ment. this object and all at her abject ich are subobjects to

this one alone are destroyed. Then the (new) object is attached

as argument to the name.

Examples:

Result

IOEClARE 'A' 'A' H undefined

DEF 'A' POINT 2 3 'A' H point elementl

DEF 'C' '8 ' 'C I H'8' H undefined

SET 08J •C' lINE FROM
element I'8 ' Hline

'A' TO POINT 3 2

6.3 An example for the conversion of a language statement into

the corresponding structure

let us consider the statement:

SET 'l' lINE 'P1' POINT 1 2

The object named 'P1' is supposed to exist already. The struc­

ture nodes corresponding to the different words of the state­

ment are shown in fig. 31. Building up the structure is done in

the same order as the words of the language are met. i. s. from

the top of ths structure downwards.



91

"Pl"--

LINE

SET "L"

POINT 1 2

RLREROY
EXISTING
ClBJECTS

PDINT
ELEMEN1
COelR­
OINATES

Fig. 31 Correspondence of language words and struc­

ture



92

cture

The graphie data struetures are parsed by a program. called

the Parsing sta s at the top of a structure. Whan pro-

cessing a object nods. the parser looks up the object type of

the node being processed and the types of the arguments and ope-

rands. Depending an these objact t es ane of possibla

actions is executed:

1. The object node is executed with its a uments and 8very one

of its operands. the result of the operation logically re­

places ths operation in the strueture and the parser goes

ons level up

2. The objeet cannot be executed with its arguments and operands.

The parser goss down to every subobject. first to all argu­

ments, then to alloperands and transform them. until their

objecttype 1S suitable for exec ion of tha objact.

The parser looks up in adecision table which ans of these ac­

tions is to be taken. If the object in prOC8SS can be 8xecuted.

a routine i8 called according to the object type. This routine

i5 called once for every operand of the abject. If there i9 no

operand the parser substitutes the undefined objact as operand.

The parameters passed to the routine by the parser are one ope­

rand object and the co11ection üf a uments. The invoked routine

may return a resulting abject or a collection of abjects to the

parser. The routine. which i8 called up may detect. that one af

the arguments or the operand i8 unsuitable für correct proces­

singe In this ca se the routine will generate an error message

and return either othing or the undefined object as a result.

The results delivered all calls are integrated into a collec-

tion of results This collection replaces the processed abject

in the structure. The result of the execution of an object node

may be ot only an element but also an operation. E. g. the re-

Gult of the execution of a line operation with point elements

as arguments i8 a line element logically replacing the line ope­

ration and its a uments in the structure. The execution of a

linear trans rmation operation with the operand being another



93

linear transformation operation delivers as a result a new

linear transformation operation which logically replaces the

two operations in the structure. The resulting operation then

has to be executed. The following example illustrates the par­

sing of a simple structure.

Evaluate ... Node looked up •
but not proces-

I sed
Lin. Transform.
(Shifting)

I
Lin. Transform.
(Rotation)

I
Operation

~
(Line)

I

I
Element

I
Element

I(Point) (Point)

a) Object type: Evaluate
Operand type: Linear

Transfor­
mation

Arguments: None
Action: Go down

b ) IEvaluate

:

Lin. Transform. ~ Node looked up
(Shifting) and processed

I
Lin. Transform.
(Rotation)

I
Operation 1-j(Line)

Element Element
(Point) (Point)

Object type: Linear
Transfor­
mation

Operand type: Linear
Transfor­
mation

Arguments: None
Action: Execute
Result: Linear

Transformation



94

Object type: Evalu-
ate

Operand type: Linear
Transfor­
mation

Arguments: None
Action: Go down

Node looked up,
but not proces­
sed

1--
Lin. Transform. I
(Shift and rotate)

Operation
(Line)

I
Element Element
(Point) (Point)

c) IEvaluate

d )

Object type: Linear
Transfor­
mation

Operand type: Opera­
tion

Arguments: None
Action: Go down

Element
(Point)

Element
( int)

Lin. Transform.
(Shift and rotate)

r----'--------,.......--
Node looked up,
but not proces­
sed

e ) IEvaluate

Lin. Transform.
(Shi and rotate)

Operation -- Node looked u
(Line)

~
and processed

Element Element
(Point) (Point)

p

Object type: Operation
Operands: None
Argument types: Ele-

ment
Action: Execute
Result: Element

(Une)

f) IEvalu~te

Lin. Transform.
(Shift and rotateJ

result of e)

Element
(Line)



95

Lin. Transform. Node pro-
(Shift and rotate) --Cessed

I

g ) Evaluate

Element
(Line) I

Object type: Linear
Transforma­
tion

Operand: Element
Arguments: None
Action: Execute
Result: Element (line)

h l Evaluate Node processed

i)

Element
CLine)

Element
CLine)

Fig. 32

dotted lines indicate the logical relation­
shio between intermediate objects

Steps for parsing a structure

Since some operations, the linear transformations, can not only

be executed with elements as operands, but also with linear

transformations as operands, they have a different object type

than the other operations. In most cases the structure must not

be destroyed while parsing it. So the results of operations do

not actually replace the operations in the structure. The indi­

ces of the intermediate results are kept by the parsing program

in stacks and the replacement of anode by its result takes

place only logically.



96

B. Extension of the GRAPHIe s stem

New species of objects can easily be integrated into the

GRAPHIe system. especially new kinds of elements and operations,

The following tasks have to be done in order to add new kinds

of objects:

First. define the syntax of the object specification in the

GRAPHIC language.

Then. te a CDL routine according to this syntax. The CDL

routine must place necessary data from the language in the

communication area. At least, the routine has to call a rou­

tine that builds up an object node for the new kind of ob­

jact.

This routine, called from the CDL. must be programmed. It

has three tasks:

Create anode for the object. define its attribute array.

fill it with data end integrate the object into the struc­

ture. The first and the last task are accomplished by calling

existing system routines. Dnly the definition of the attri­

bute set of the new object and the taking over of the attri­

bute data from the communication area have to be programmed

completely new.

For new 0 eration ob ects the executing routine corresponding

to the operation node must be set up. This routine is called

when the operation node is parsed. It has a normed argument­

list. containing the indices of the operation nade. the ope­

rand nade. the argument collection and af the resulting ab­

jact ta be created by the routine.

Far new element a ects routines have to be prepared for the

linear transformation of the element and for plotting the

element, i. e. placing a set of data elements describing the

element on the plotfile.

For new object types the decision tables of the parser have

to be extended.



97

9.1 General features

So far, the correct use of GRAPHIC has been described. but

GRAPHIe has been designed to run with incorrect input data too.

producing the most meaningful output possible Lno durnp s l , This

is desirable eSP8cially in batch jobs in order to avoid incre­

mental and therefore time consuming debugging. For this purpose.

the GRAPHIC system contains a great number of tests to detect

errors. Some of these tests are carrisd out on the level of the

command interpreter. most of them on the level of GRAPHIC sy­

stem routines (those coded in ICETRANJ and some on the level of

the ICES executive system or the general machine operating sy­

stem.

9.1.1 Error handling by the command interpreter

Errors detected by the command interpreter are mostly syntax

errors. Whenever a syntax error is detected, a legible message

is produced and the word, which caused the error. is skipped.

A similar action is taken when the end of a command is found

too early. This means that the command is syntactically incom­

plete. As an example take

SET 'A' LINE FROM POINT 3 2

(where e. g. TO POINT 7 10 is missingJ.

As a consequence of this type of error. the undefined objsct is

built into the internal data structure representation of the

command at places, where no correct object could be found. Thus

the data structure, which is submitted to other programs, is

consistent and uncontrolled breakdown is avoided.

The GRAPHIC language has besn designed to work even if some

statements cannot bs intsrpreted. In many error situations, re­

fersncs is made to some object which should have been defined

before, but which is undefined due to errors. In these cases

GRAPHIC nevertheless performs all the work requested with the

correct1y defined objects, producing a plot which shows at least



98

part of the whole picture and which allows the user to check

the semantics of his GRAPHIC program for this part. The con­

cept of the "undefined object» has been very helpful to this

respect.

9.1.2 Error handling by GRAPHIC system routines

Errors found by ICETRAN-GRAPHIC system routines are treated by

calling a special part of the GRAPHIC-program system, the pro­

gram-error-handling system or shortly "ERROR system". This

ERROR system is an almost independent subsystem itself and it

is conneeted to GRAPHIC by some clearly defined linkages only.

The ERROR system may be used in other subsystems too, although

it has been implemented only in GRAPHIC at this time. In ease

of errorsGRAPHIC calls this system and passes the following in­

formations:

a code number (nr) which identifies the error message and

a severity-code (s) deseribing the importance of the error

found.

The severity-eode varies between 0 and 16. Messages with codes

o to 4 are considered as warnings only. 5 to 8 are errors which

can be handled by the GRAPHIC system routines to continu8 the

execution and (very scarcely) 9 to 16 mark errors which should

result in an interruption of the interpretation of the command

actually processed. Moreover, the message may contain data

which identify the origin of the error or the state of the pro­

gram or data structures, the knowledge of whieh may help in un­

derstanding the reasons for the error.

All these informations are processed by the ERROR system in a

way which may be controlled by other GRAPHIC system routines

or by user's input statements embedded in other GRAPHIC state­

ments (see 9.2 and 9.3). The standard actio~ of the ERROR system

are as folIows: According to the code number of the error (nr)

a text, including format descriptors is read from the subsystem

data set. The values submitted are formatted as described by

this format. The message is completed with the error sequence

number, the name of the program issuing the message and the



m = 2

m = 1

99

actual (cpu) time since the start of the GRAPHIC execution.

The resulting character string is printed on a print file, which

is the standard print file by default. Thus the GRAPHIC program­

mer is supplied with a legible error message.

Besides, the ERROR system counts the number of errors of diffe­

rent "characteristics" (see below), so that system programs may

ask whether and how many errors have occurred and the user may

be informed of the total number of errors of different characte­

ristics found while executing his job. Moreover. the ERROR sy­

stem compares the actual accumulated number of errors of diffe­

rent kinds with predefined allowable numbers of these errors.

If any limit of this type is exceeded, the ERROR system calls

an exit program. By default this prints statistics, some mes­

sage buffers and inhibits execution of the subsequent GRAPHIC

commands, which are nevertheless checked for syntactical errors.

The "characteristic" of an error is identified by a figure (m)

and is defined by default as folIows:

every error has this characteristic, so the number

of errors with this characteristic is the total

number of errors reported.

an error message, which has been submitted to the

ERROR system after a predefined time measured from

the start of the GRAPHIC execution, has this charac­

teristic. The ERROR system contains a routine to

evaluate the maximum allowable step time for this

job. so time overflow may be detected.

m 3 to 19 the error message has the sevmrity-code 0 to 16

accordingly.

Additionally the user may redefine the characeristic figure and

define some "soecial" characteristics by adding ICETRAN subrou­

tines, which are called by the ERROR system to decide whether

the error message shall be qualified with this special characte­

ristic or not. This subroutine can ask for all informations

just stored in GRAPHIC to make its decision.



100

Besides the standard action described. the ERROR system may be

controlled in a flexible way by the user. Some of its possibi­

lities are:

Suppress comoletely execution of the ERROR system. favouring

effectivity against secu ty.

Suppress printing of messages at all.

Suppress actual printing of messages by storing the message

in a buffer of adjustable size. From there. messages may be

p nted later. if required to show the history of any

disastrous error situation.

Stop execution.

Save the aetual contents of the GRAPHIC data pool on any

file and then stop execution. A later job may be started to

read this data and continue the task including only some

correction statements. (Restart feature).

Plot the graohical data created until the error was found

and then stop execution.

Print informations.

Most of these possibilities may be achieved by just setting

some contral values as described in 9.2 and 9.3. For the other

ones the user has to supply an exit program by his own.

The format-texts which are read by the ERROR system according

to the code number nr of the error message and may be added to

the subsystem data set or changed. deleted or listed by using

the subsystem TAßlE-II /33/. Thus. the message text may be

written in English or German or other languages, may be shorte­

ned or extended for more detailed or clearer informations with­

out any modifications to the programs.

9.1.3 Error handling by leES execution or operating system

Although we t ed hard to program GRAPHIC so that no error

should be handled at the leES executive or operating system

level, this may neve heless happen. Reason for this may be er­

rors which may still exist in the GRAPHIC system routines or

error situations ich actually occur at the operating system

level as e. g. a data set, time or core storage-overflow. An



101

error found by the ICES executive results in a message and a

core dump of controllable contents and subsequentlythe job is

terminated with user completion code 256. Errors found by the

operating system usually result in a job termination with sy~

stem completion code. By submitting special job control cards

a core dump may be obtained in this case too.

9.2 GRAPHIC statements to control the ERROR system

The following commands of the GRAPHIC language control the

ERROR system

GRAPHIC

ERROR

GOON

END GRAPHIC

GRAPHIC and END GRAPHIC have other functions tao. as already

described.

9.2.1 GRAPHIC and END GRAPHIC

The GRAPHIC statement causes the initialization of the ERROR

system. At this time. all default values for the control para­

meters are assigned. END GRAPHIC causes (in connection with

the ERROR system) the printing of error statistics and of the

contents of the message buffer.

9.2.2 ERROR. the main control statement of the ERROR system

9.2.2.1 Control variables

The ERROR system is controlIed by the following control varia­

bles which may be altered by the statements described below.

The standard values are listed tao. The variable m refers to

the characteristic figure and varies from 1 to 19. For every

characteristic the following control parameters are stored:

ik (m) the allowable number of messages. If

sages is greater than ik (m) an exit

standard

ik(1) (total number of messages)

ik(2) (time overflow)

the number of mes­

program is called.

1 000 000

o



102

ik(3) (c o de 0)

ik(4) code 1 to 8)

ik( 2 to 19) (code 9 to 19)

1 000 000

1 000

o

nams (m) the name of the exit program, standard nams (m) ::

EREXIT'

ids (m) th messages, with sequence n

and

ers between ids (m)

ide (m) ide (rn ) (including both) e r-e printed immediately, o t ha r­

messages may be stored in the buffer or suppressed.

Sta d ar-d ids Irn l '" O. ide Irn l :: 100

icont(m) if icont (m) '" 1 messages

are not processed.Standa

Other contral values are:

ith this characteristic m

: icont Irn) :: 0

lcont

ne

ibuf

Ibuf

mst

mson

cpures

cpumax

if lcont :: 1 the ERROR system does nothing; so nearly

no time is exhausted. but on the other hand the user

gets no messages. Standard lcont '" 0

p nt-file of the ERROR system. Standard ne :: 6

if ib f :: 1 no messages are stored in the buffer.

Sta dard ibuf :: 0

n er of print-lines which may be stored in the buf-

fer. Sta da Ibuf:: 20

number of standard eharaete sties (mst = 19)

number of special charaete sties (mson = 0)

a e cp ur-s s sec, be re the maximum allowable CPU-time

for the actual job step all messages have the eharaete-

s ic m = 2 (time overflow).

St nda epures:: 15

a er cpumax sec., measured in CPU-time sinee the start

o GRAPHIC eX8C tio all messages hav8 the charaete

stic m :: 2(time ove low). Standard cpumax :: maximum

allowable step time after the GRAPHIe command minus

cpure



103

namson (ms) ms = 1,2, , mson, the names of the user delivered

programs which decide whether a message shall be

qualified by a special characteristic.

Standard mson = 0 and therefore no namson are de­

fined.

9.2.2.2 Syntax of the ERROR 5tatement

ERROR [:]

[
[AND] ]
values

information][ANDJ[

: : =

ON

OFF

PRINT [ON]

SET [FOR]

values

[FILE neJ information
CHARACTERISTICS m1 [TO m2] values

CODE c1 [TO c2] values

SPECIALCHARACTERISTIC namson values

PARAMETER parameter

FORMAT TEST [FROM nr1J [[TO] nr2 J

information : :={::;:~:TICS )

PARAMETERVALUES

[CONTROL] {g~F}
STDP [AFTER] ik [MESSAGESJ

[PRINTJ [FRDM idsJ TO ide [MESSAGES]
EXIT [PRO GRAM] nams

parameter: :=

PRINT [ON] [FILE] ne
[NUMBE~ [OF] STANDARDCHARACTERISTICS mst

[MAXIMUM] [CPU] TIME cpumax [SEC]

[CPu] RESERVETIME cpures [SEC]

[BUFFERSTORAGE] {g~F}
[BUFFERJ LENGTH lbuf

[
[AND] ]
parameter

rn l , m2, c t , c2, ik, ids, ide, ne, rns t , lbuf are integer values

cpumax and cpures are integer or real values

namson, nams are alpha strings with maximum length 6.



104

9.2 2 3 Sema tie t e ERR statement

se s leo t 1

FILE e informatio

standard

l s e e 9.2.2.1)

e 6 i rma ions are printed

a messages statistie is prin ed

8 c n ents 0 he message bu er is

cant '" 0

TA

'" BUF

setsERROR ON

ERROR OFF

ERROR INT 0

0 file ne

i f i

p e

R the alues of the control parameters

sted in 9.2 2.1 are p nted

ERROR SET FOR CHARACTERISTICS m TO values

For the araete stieß m1 t m2 the ~values~ are assumed.

ERROR SET FOR CODE e TD c2 va ue

For the eharaeteristics c1+3 to c2+3 the Mvalues" are assumed.

ERROR SE FOR SPECIAL CH ,. namson values

The p gram namso decides over a special characteristic and

r th s characte stic the Mvalues" are assumed

ERROR SET PARAMETER paramete

For some of the characteri t e - indeperdent parameters

is ed n 9.2.2.1 the alues defined in ~parameterM are

assumed.

values :'" CO OL ON s e t s icont (m) ee 0

CO OL OFF s e t s icont Im) "" 1

STOP AFTER ik se s ik (m '" ik

PRINT [FROM ids] TO ide s s t s I ds Im) '" ids

and ide m "" ide; s a da values for ids is 0

EXIT s s t s nams (m) nams

parameters "" FFERST AGE ON sets ibuf '" 0

BUFF ST R GE OFF sets ibuf 1

T oth parameter - commands set the values

as defined b ame in the syntax and in 9.2.2.1

ROR ORMAT TEST FR DM nr TO

The ormat texts st red r the error code numbers nr1 to

nr2 on t 8 S bs stern data set are used to p nt test-error­

messages with some assumed values if necessary). Thus. the



105

system programmer may test. whether the format texts are

correct and clear or not. If changes are necessary. they

can be done by using the TABLE-2 Subsystem.

9.2.3 The GOON statement

Syntax: GOON

Semantic: This command causes an ENABLE request 6f the CDL

to be executed. Any preceding INHIBIT request is

canceled. If an INHIBIT has been executed,no

GRAPHIC system programs have been called by the

command interpreter since that time.

This statement should be used just before same "conserving"

statements, as e. g. ENDGRAPHIC, so that. if an error caused

an INHIBI~ this conserving statement may be executed never­

theless.

9.3 ICETRAN statements to control the ERROR system

There are many programs of the ERROR system which may be

called by LINK statements in GRAPHIC system programs to con­

trol the ERROR system. The full details of these calls will

be described elsewhere in a following publication. Here the

possibilities are listed only.

The ERROR system provides programs which may be called to

create messages

ask for the error codes of messages produced in subprograms

of the just executed system program

ask for statistical informations (number of messages with

same characteristic since initialization or since the last

question)

get the contents of the message buffer

sanction aprevias error-message; this means that for same

message characteristics the number of allowable messages

is incremented by one

test for time overflow

change all values which control the ERROR system and which

are described in 9.2.2.1

cause printings of statistics and the message buffer.



106

10. S

The following figures demonstrate same capabilities of the

GRAPHIC system.

o
o

.00 2.00 4..00
T

6.00
(SEC)

8.00
I

10.00

Fig 33 GRA IC programming example

20 CM 14 CM
2 0 2 3 10 3 END

81 VA lUES ACCORDING TO

EGRAPHIC
S A GRAPHIC E MPLE
OPEN PLO ON DIMENSIONS
SET INP' POLYGON 0 0
SET 'OUTP' PO GON WITH

TAU se 1­
00 1 I ::: 1,81
XCI) ::: ( 19.)/10.

1 YCI) ::: 3 .• C1.-EXPC-(X(I)-2.)/TAU))
END

S 'U1 TEXT 'U1' 1.21.5
SET 'U2 TEXT 'U2 2.8 1.5
SET XAX X-AXIS TITLE 'TCSEC)' TO ( 'INP','OUTP' )
SET VAX' Y-AXIS TITLE 'U(V)' TO ( 'INP','OUTP' )
SET 'TRANS' TRANSFORMATION TO 'XAX' 'VAX' OF

( INP', 'OUTP', 'U1', 'U2' ,SHAOE 01ST 0.4 8ETWEEN 'INP' AND 'DUTP' )
STANDARD UNIT CM
SET ARROW' POLYGON 12.5 6.4 12.5 4.6 12.45 5.1 12.55 5.1 12.5 4.6 END
SET 'CIRCUIT' C 'ARROW',TEX 'U1' 11.55.25, POL 12.5 6.513.56.5

13.5 6.35 14.5 6.35 14.5 6.65 13.5 6.65 13.5 6.5 END, POL 15.5
5.4 15 5.4 16 5.4 15.5 5.4 15.5 4.5 END, SH1FT 4 0 'ARROW',
TEX 'U2' 16.6 5.35, POL 16.5 4.5 12.5 4.5 END)

PLOT C 'XAX', 'YAX', 'TRANS', 'CIRCUIT' )
SAVE 'FIG.33' 'KEY1'
END GRAPHIe



107

STANDARD UNIT CM
OPEN PLOT DIN A 4
Z FIGURE 34
SET 'P1' POINT 2 22
SET 'P2' POINT 2.5 15
SET 'P3' POINT 2 8
SET 'P4' POINT 4.2 17.7
SET 'P5' POINT 4.2 12.3
00 20 TIMES
PLOT SPLINE CLOSED ( 'P1' 'P4' 'P5' 'P3' 'P2' )
SET 'P1' SHIFT 0.4 -0.25 'P1'
SET 'P2' SHIFT 0.375 0 'P2'
SET 'P3' SHIFT 0.4 0.25 'P3'
SET 'P4' SHIFT 0.69 -0.135 'P4'
SET 'P5' SHIFT 0.690.135 'P5'
END

Fig. 34 Example 2



108

STANDARD UNIT C~

OPEN PlCT DIN A 4

PROCEOURE 'PATTERN' ( 'OS','N','M','Pl','P2' »

SET t(JBl' ::: '[ß'

00 'N' TIME S

SET IUB2' = 'GB1'

DO 'M' TI ME S

PLer 'iJ EZ'

SET 'Oß2' SHI FT TOWARD 'PI' OF 'OBZ'

EN C

SET ·UßP SHIFT TOWARO 'P2' OF 'OB1'

END

END

CA l L • P AT TER!\j! ( CIRe LE CENTER') Z5 RAD I USI, Z , 3, Pur NT ­
1.5 O. POl NT 0-1.5 )

CALl • PATTER!\P ( POLYGOf\ CLOSED 9 19 10 ZO 11 20 1Z 19 11 18 ­
10 18 END, 3, 3, POINT Z.Z -1., PCINl -2.2 -1 )

Fig, 35 Example for using a procedure



109

SET 'CURVE' POLYGON WITH 100

READ (12,10) (X(I),Y(I),I=1,100)

10 FORMAT (10E14.7)

END

OPEN PLOT DIN A 6

SET 'XAX' X-AXIS 'CURVE'

SET 'YAX' Y-AXIS 'CURVE'

SET 'C1' TRANSFORMATION TO 'XAX' 'YAX' OF 'CURVE'
PLOT ( 'C1' 'XAX' 'YAX'

OPEN PLOT DIN A 6

PLOT ( APPROXIMATION OF DEGREE 2 'C1' 'XAX' 'YAX' )
END GRAPHIC

\

\

lU~~(f)--l

I
U r

I
CI o I

I Cl I

;-~~
I

oi
Oi

I
• I

~ ~----- -----,-------
12 . 0 0 12.00

X-RCHSE

gl
~l

1--"'-
oi ">.

~~I \
:r.
u
CI o
10

>-~~

I

~I
01
(Y1+__ ~__ ~_~--,- _

12 . 0 0 12.00
X-RCHSE

Fil!. 36 Examole for coordinate axes and an

aoproximation



IN 4.001.!

y

M

E -O.SMV
! ......... 0

J

K +O.SHV
B -10 V

F

N +10V

2M2222A

IN 4.009

9. 1 K

s. 1 K

6

X
-lSV +lSV 0 A

100 K

l!. 7 NU E F I I I I 9. 1 K

o
f-'.

'1
o
c
f-'.
cT

W
'-l

m
I-'
CO
o
cT
'1
f-'.

o
DI
I-'

11
f-'.

JCl.

GFK IR [TRKTGEBER FUER MRGNETBRND
. 'G/Rm-KONTRuLLEINSCHUB

1546



FLANSCH

-"
-"
-"

w
IBEHRELTEAMANTEL

SCH~CKBLECHE

A~HAPLRTTE

SCHWIMMK~PF

lENTAALAClHA

SEKUNDAEAEA

EINTAITTSSTUTlEN

I I PA I MAEAEA

EINTAITTSSTUTlEN

o
::J'

C\J
C\J

11......
J"Q

LU
ClJ

[J)

o
o,
......
c
3

I
zr
ro
QJ

ci""
I

m
X
C1
zr
QJ

::::J
J"Q

co...,

8UFB8U EINES NR-ZHISCHENWRERMETRUSCHERS o .~.............J

==t



I I I I i I li ,---r---
0.15 0.20 0_25 0.30 0.35 0.40 0.45 0.50 u.ss 0.60 (l.6S

R~HRRUSSENDURCHMESSER (M)

'l

......

......
N

NR

O. 2000[ +01 1
0.7000[+01 2
0.8000[+01 3

0.2500E+03
0.5500E+03
0.3800E+03
0.5300E+03
0.3400E+03
0.8000[+01
0.1200[+02
0.5000[-00
0.5000E-00

WERKSTOFF
WERKSTOFF
WERKSTOFF

KONSTRNTE ORTEN

PRRRMETER

~RERMELEJSTUNG fMW)
PRJ.EJNTR1TTST. [GRO C)
PRJ.RUSTRJ1TST. [GRD C)
SEK. RUSTR J11ST. [GRD C)
SEK.EIN1RJ11ST. (GRD C)
PR J . E1NTR JT1S0RUCK fATA)
SEK.EINTRITTSORUCK(R1R)
ORUCKRBFRLL ROHR JS. (RT)
ORUCKRBFRLL MRN1. S. fRT)

0..CO\
\.0..'0

co\.\
\.'J..'0

r::,CO\
\.'J..'J..

':1 ~t- '0'Ö\."
C:,'l \. (0,.

() t-'<'
s"'?- .

t-~
()

"co\
\.'J..'J..

~~
()

S'l-'(,.·

:0.CO'
00)

~~
()

cj'(,.

~

0
0

ci
:':

0
0

ci
~

11
/-'-

JQ I 0
0

ci
LU

I
N
~

tD

0
0

CO -0 ". 0
X ...... O~

'1 /-'-0
.....~

(flrr :v:

U rt" 0
C /-'. rr 0

o-:::l:T ci
...... JQ W 0

/-'. rt" ~~

o '0
::;::

W '1:T
0

rt"OW 0
/-'. (JQ (fl Zo

0 '1
W·0

:::l WO- I-a>

3 co cn
EJ

C CD ::s::
(fl W :::l 1-0
/-,.:::l EO
:::l 0. rt" a:-

JQ W cn:i5
w

:T 7' C)

C1WCO
;(J(fl:::l 0

» 0

-00-0 ci
ICO< r-

HCOCO
n:::l'1

I
0

co-+, 0

0.'1 ci
/-,·0 <D

rt"3
m
o.w I 0

:::l 0

ci
~_IO

GESRMTKOSTEN RLS FUN~\TION DES ROHRRUSSENDURCHMESSERS
MIT DEM WERKSTOFF RLS PRRRMETER



11 3

,.... I;;,' J 251: ;l69
ffEGE ~ Ul'JlF
PH,Jl J ERB PHruPP

1:M In lIil~ 11X1 no
lJj4062 2564 256l.1

,.I OR. .R., 'R. 'UHH

C«SI 1t1l~U 05...

MAlM­."".
n.

''':lne U7Oft. FR. ~
FISCHER ,f'LfLI ~~

PHS 1pws ci'"
0:

40~O lI.OOO 3203

1«1 CClLlOQU/UH5AAUM

2. OBERGESCHOSS

OBERGESCHOSS1.

" J "±. .2SS812837 25!HI 2SS8 2513"..".~'" -"i~Fft. HlTlSCHK

ftO:ITßCti I icrt tot ,ft

!:l =GMI m l(Ii m 'ei

kflRMf:1'I KLEEFELO fNGELIfAAOT CAAMER
It I GER ING LANG SCHf'lAMf'I

W;.11 • \<tlII. 29'i~ ~557 3~67 26;2

3765

FR. GTTlUlfII
FAL. STUTZb

"252&

CHNAUOf
SPIU([A

'"

3766 a L2550 Cl ~<?5611~S50 J 25;2

BESl"l'IfCHUNGSAßUM PMf. 01'1. 514101 ffilL. 6I8LlOTH(Kn""TE.AHH FR. JA.""

1=======210 U'====,!U",.==tltcL U\l

lR80f'l

KRaLEC

21&0&

LA86f'l

AI"I"Ell

2S~. ±2.~5
LRSOR LA86f1 LR80R

SCHUIHG-lA80f1 MHA8flCHEPl 8ASltEfI
Il.lT.'UINTfIICLl8ll'l. HtJLlIHGEft

,,'===,==1('" ur h~
c 22BG 2995 29 ...8 25\48

~ lRBefl ElEKTFldlllEftl<5TlIIrT LR801'! LAl!JOO

~ ~NSWRLO HAKOSCH BftUfGG[MAHN kOl'lNEL50N

! ."RTHl5UtMAY 1\6(1401... ...

...~...~...~...===r"':l:'" ,'" '". 1 ........ PfMTE
EHDEI'ILE IUUHGS IRen ICH ~~CHOVR1 KATZ ~ iE LA~GEH-
SCHUSTEfll rEE ~~~Eß fIL. LEI ~ ~~~ 8EIN ~

2885 25&7 251&1 2S3l 9/4/40 37Be 316t 3762
Q" .. .. ..

Q",~u

ERDGESCHOSS

Afl8EfTSfL
JAE 3

HES5Gf'I'lA!T

·~·i·AI'lI!EITSfl. RAI!EITSfl. RASEI1S!'L
JA[ 5 JI'IE 5 ::~~:~~

III ra 10

.. ;;, "f"~"1"1"T" ri '"HR"flILA801l SAtIALOCI'I. OUNKfLAAUM ~~ A[,J-
IftE 7 s rfIRKTlKUM JftE 1 c_ 1 ZEHTftAlE... ~~

:n8~ In.. .. PUHR d~ wc.~; ..

fAR-RNLRGE

RHALOGflECHN(R

25145

TEAK/HALS

KELLERGESCHOSS

INSTITUT FUER RERKTDRENTWICKLUNG
BAU 521

I:··· 'c HC 2930 ,...
OR. HUSER SCHLEI-
f"[I"PLfA HATTES SI'

L, l-'" ._L- l-"'_~_

~ -~r- -r- - ~ -~ ~--
illl ~ll JIlJ IUI

WRlZEI'I F"ft. au.. WEIHHOLO I'lRISEA LABClft
f'IRUrp T1LL H8THEI'I O(CKEI'I

2998/
211.06 1&026 2585 2HZ 2572

TECHNIKUM
BAU 522

fftlEL

2511

BAl'IlI+6U'lMAE
FiscHE"
KeEHlEFI
WOEfIZ

UfEHTH.
!'lAUM HADER

HUFtlllGEl
LI tlOEHFEl,ni
sUESS

T-HRLLE
ZQSll..,.
ll.027

STRNo 01.09.72

Fig. 40 Building layout of the Institut fDr

Reaktorentwicklung



A end!x A

Concrete syntax of the GRAPHIe language

1

o

<program> : : :;

<block> ..
<group> ; ;; ~

<declaration> : : =:

<proc-decl> : ::=

<name-decl> : :::

<name-init> ;; ;;;;;;0

<do> : : ==

<statement> : : ::

<la-at> : : ::

<la-expression> : : lIl:

<la-term> : : 11:

<la-factor> : : ==

<comparison-op> : : ::

<a-expression> : : .
<a-op1> : : =:

<term> : : a

<a-op2> : : ::

<factar> : : ::

<a-value> : : =

<l-value> : : ==

<system-st> : : =:

GRAPHIC block~ END GRAPHIC

BEGIN g r-o up > END I <da> <group> END I <g r-o up >
,1 * -.*., ~

[declaration>-l statement

<name-decl>l<proc-decl>

PROCEDURE <n erne > [ ([<:name>J*) ] ~ -i8statement END [RETURN <object

DECLARE <name> <name-init>

-11 INITIAL <ob j e c t > -i
00 <a-expression>D-1! 00 <e r e xp r-e s s i o n > D WHILE <La r axp r-e s s Lo n >

<graph-st>-i I <la-st>-i I <s ye t.em--s t > I <p r-oc r s t > I <b Lock >

<: s t - i d > 0 <: 1e - e x p re s s i 0 n >
-\4­

< Le r t e rrn> [.! P <la-term>]

*<la-factor> [& <la-factor>]

<e r exp r-e e s Lo n> [<:comparison-op> <a-expression>] ~

.. I..,'" I > 1-p I < 1-, <

'*<term> [<a-op1> <term>]

+ I -
*"<factar> [<a-op2> <factor>J

*'1 I
<e - val ue > [* ~ <e - val ue >J O

<real> I <integer> I <Lr v a Lue >

TRUE I FALSE I <n ems > I -o<l-value>1 «la-expression»

<standard> I <time> 1<trace> I <test> , <take> I <r-e s ar-ve > I <r-e l e e s e > I <g s t > I
<put> 1 <de lete> I <fi le> I <compi 18> I <li nk > , <g o >

-'"
...>.

-l::>



<graph-st> : :::

<st-id> : : =

<name> : :::

<gr-outp> : : =:

<la-st> : : =
<control-st> : : :.:

<clause> : :::

<object> : :-=

<specification> : : =

<transformation>

<proc-st>

<co11ection>

<char>

<alpha>

<digit>

<sig>

c s t r i.d » 0 <object>

SET [0 BJECT 0 ] <n ame > I 0 EFI NE [ (J BJ ECT 0 J <name > I <g r - 0 u t p >

I [<char>] ~'

PLOT I PRINT

<s t r i d > <la-expression> I <co n t r-o l r s t >

IF <la-expression> THEN <clause> FI ~

<b Lo e k > I <b Lo c k > ELSE <b l o c k>

<name> I <specification> I <transformation> I <p r-oc r s t >

<point> I <line> , <text> 1<c i r-c l e > I <axis> , <polygon> I <spline> I
<approximation> , <arc> I <semicircle> I <intersection>! <extrem-element> 1

<shade> I <ob j e c t r n erne d > I <x r ax i s > I <y r ax Ls > I <s p e c c r o u t p > ] <npoint>

<n 1 i n e > I <t ra n s format i on > I <co 11e c t i on > I <0 p e n >

:: '" <shift>! <enlargement> I <diminution> I <rotation> I <image>

<transf. to axis>

::'" CALL <name> [([<object>J~)J6
: : = 0 ([<object>J~)

::= <alpha> I c s i g > I <d i g i t >

::'" AIBlcl···!Y!Z
::= 1!2131 .. ·19Io
::= +I~I:'·!-I/'=''''

......

......
U1



116

The GRA IC language accepts as delimiters

f> • , o r- -I .
The describing metalanguage uses the following symbols:

<

: :::

[

-I

o
I

>

] ~

Angular brackets enclose non-terminal variables

to distinguish from terminals

This symbol is used to define a rule for generating

valid syntax by substitution of left parts by right

parts.

All elements within the brackets may be repeated

from n-through m-times. If n is omitted. one is as­

sumed. If m = ~ the bracketed item may be repeated

a deliberate number of times.

End of card

This symbol ie placed for ignorable worde

Separates alternative right parts of rules.

All non-terminals, ich are not explained - like <point>,

<line> etc. - should be taken from their description in

chapter 4.



117

Appendix B

Abbreviations used in this report

AEO

CAO

COl

CPU

OV

GOP

GDPS

GE

GO

IBM

ICES

ICETRAN

IRE

I'1FT

MVT

OS

REGENT

RSUB

RSUP

TNl

Automated Engineering Design

Computer Aided Design

Command Definition language

Central Processing Unit

Datenverarbeitung

Graphical Data Pool

Graphical Oata Processing System

Graphical Element

Graphical Operation

International Business Machines

Integrated Civil Engineering System

ICES-FDRTRAN

Institut für Reaktorentwicklung

Multiprogramming with a Fixed Number of Tasks

Crefers to DS/360 or OS/37D)

Multiprogramming with a Variable Number of Tasks

Crefers to OS/360 or OS/370)

Operating System

Rechnergestützter Entwurf

Ring with Common Subobject

Ring with Common Superobject

Temporary Node list



118

References

/ 1/ Enderle, G.• Katz, F., Leinemann, K., Schlechtendahl, E. G.,

Schnauder, H., Sc hurne nn , U., Schuster, R.:

Erster REGENT-Halbjahresbericht, KFK-Externer Bericht

8/72-2, Juni 1972

/ 2/ Enderle, G., Leinemann, K., Schlechtendahl, E. G., Schnauder.

H., Schumann, U., Schuster, R.:

Zweiter REGENT-Halbjahresbericht, KFK-Externer Bericht

8/72-4, Oktober 1972

/ 3/ Roos, O. (ed.):

lCES System: General Description, MIT, Department of Civil

Engineering, R 67-49, September 1967

/ 4/ Schumacker, B. (ed.):

An lntroduction to ICES, MIT, Department of Civil Enginee­

ring, R 67-47, 1967

/5/ Jordan, J. C. (ed.):

ICES-Programmers Reference Manual, MIT, Department of Civil

EngineerinE, R 67-50, October 1967

/ 6/ Schlechtendahl, E. G., Schumann, U., (ed.):

Erfahrungen mit dem Programmsystem lCES bei ingenieurtech­

nischen Anwendungen, KFK 1586, Mai 1972

/ 7/ Calcomo GmbH, Düsseldorf:

Programme für Calcomp-Plotter der Serie 500, 600 und 700

/ 8/ Schumann, U., Schlechtendahl, E. G.:

Algorithmen zur Verarbeitung von Baumstrukturen und ihre

Anwendung in ICES, KFK 1536, Januar 1972

1 91 Knuth, D. E.:

The Art of Computer Programming, Vol. 1, Reading 1963

1101 Schumann, U., Schlechtendahl, E. G.:

ICETRAN-Treestructure Routines to Save Direct Access Space

and Debugging Time, Report, 8th Semiannual ICES Users Confe­

rence, San Francisco, January 1972



119

1111 Encarnacao, J.:

Datenstrukturen für graphische Informationsverarbeitung,

eine Übersicht, Computer Graphics Symposium, Berlin.

October 1971

1121 Williams, R.:

A Survey of Oata Structures for Computer Graphics Systems.

Computing Surveys 3, No , 1, March 1971

1131 Lang, C. A., Gray, J. C.:

ASP - A Ring Implemented Associative Structure Package.

CACM 11, No. 8, August 1968

1141 Gray, J. C.:

Compound Data Structure for Computer-Aided Design - a

Survey. Proceedings ACM National Meeting 1967

1151 Sutherland, 1. E.:

SKETCHPAD. A Man- Machine Graphical Communication System,

Spring Joint Computer Conference, Proc. 329 - 345, 1963

1161 Encarnacao, J. L.:

PRADIS, Ein Programmsystem für räumliche Darstellungen

auf Displays, Elektronische Datenverarbeitung 7, 1970

1171 Encarnacao, J., Hunger, J.:

Das interaktive Entwerfen und Zeichnen in drei Dimensionen

auf Computer-Bildschirmgeräten, Elektron. Rechenanlagen 13,

No. 1, Januar 1971

1181 Leinemann, K., Schumann, U.:

KDSPRA - Entwurf einer Konstruktionssprache zur Beschrei­

bung der Geometrie technischer Objekte, KFK-Externer Be­

richt 8/72-6 (1973)

1191 Ross, D. T.:

The AED Approach to Generalized Computer-Aided Design.

Proc. ACM 2nd Annual Conference. pp. 367 - 385. 1967

1201 Kulsrud, H. E.:

A General Purpose Graphic Language. CACM 11, pp. 247 - 254,

1968



120

/21/ Cornb e , P. G.:

A Language for Three-dimensional Geometry, IBM Systems

JournaL Val. 3 and 4, pp , 289 - 307, 1968

/22/ Nn t l ey , M. G.:

A Graphical Picture Orawing Language, The Computer Bulle­

tin, i'1arch 1970

/23/ Srn i t h , O. N.:

GPL/I-APL/I Extension for Computer Graphics, Proc. Sprin~

Joint Computer Conference, pp. 511 - 528, 1971

/24/ Bracchi, G, Fe r-r-ar i , 0.:

A Lan~uage for Treating Geometric Patterns in a Two-dimen­

sional Space, CACM 14, pp. 26 - 32, 1971

/25/ Herzog, B.:

A Comouter Graphics Language (ORAWL 70), National Techni­

cal Information Service, AD 715 952, August 1970

/26/ Mier, M. G.:

Versatile FORTRAN IV Computer Program for Producing Line

Drawings Suitable for Publication Using the Calcomp Plot­

ter, Air Force Avionics Laboraties, AFAL-TR-70-107, 1970

/27/ PL/1 Language Reference Manual, IBM Order No. GC 28­

8201-3

/28/ Schnauder, H.:

GRAPHIC - Handbuch, to be published

/29/ FORTRAN IV CE Level Subset)

IBM Order No. C 28-6513-0

/30/ Gries, 0.:

Compiler Construction for Digital Computers, John Wiley &

So ns , New York, 1971

/31/ IBM System 360/0S, Supervisor and Data Management Services,

Order No. C 28-6646-1

/32/ Schumann, U.:

Verwaltung von dynamischen Symboltabellen nach der HASH­

Methode mit ICETRAN-Unterprogrammen, KFK-Externer Bericht

8/71-7, Oct. 1971



121

1331 Lo gch s r-, R. 0 •• .Ie c k s cn , J. N.:

leES TABLE 11 - Engineering User's Manual. MIT.

R 69-34. June 1969




