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Abstract—On the basis of friction factor relationships of a simple model a method is developed which
allows the prediction of friction factors for turbulent flow in non-circular channels if only the geometry
factor of the pressure drop relationship for laminar flow is known. The proposed method of calculation
is tested with numerous experimental results from the literature with respect to non-circular channels
such as triangular shaped ducts, eccentric annuli and rod bundles in hexagonal and square arrays in
circular tubes, hexagonal and square channels. It turns out that the proposed method provides an excellent
description of all the experimental data at hand.

NOMENCLATURE
geometry factor;
rod and tube diameter, respectively;
hydraulic diameter ;
flow cross section
geometry factor (turbulent flow);
geometry factor (turbulent flow);
geometry factor (laminar flow);
geometry factor for circular tube;
geometry factor for annular zone;
characteristic length ;
length in flow direction;
distance between rod centres;
pressure;
radius;

} radii of annular zone;

velocity;

velocity averaged over the cross
section F;

maximum velocity;

friction velocity U* = /(xw/p);

dimensionless velocity U* = U/U*;
wall distance in rod bundles = rod
diameter + closest distance between

channel wall and rods;

X, annular zone parameter ;
Y, wall distance;
Y*, dimensionless wall distance Y* =

YU#*/y;

A friction factor;

Ars friction factor of the circular tube;
I density ;

Ty wall shear stress;

v, kinematic viscosity.

1. INTRODUCTION

REesuLTS of pressure drop measurements have
been known for a number of years for turbulent
flow in various non-circular channels which can-
not be described in terms of the friction factors of
the circular tube when using the hydraulic
diameter as the characteristic length. Non-
circular tubes, i.e. rod bundles, are used especi-
ally in reactor technology.

Both in theoretical and experimental studies
of the friction factors of rod bundles the strong
influence of the type and arrangement of channel
wall upon the friction factor was soon dis-
covered, however, without there being a general
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solution to the dependence on geometry of the
friction factors.

Below, a method is developed and tested for
various non-circular channels by means of
numerous measured results which allows the
friction factor for turbulent flow to be indicated
in a simple way. The only condition on which the
method can be applied is the required knowledge
of the geometry factor of laminar flow. How-
ever, geometry factors of laminar flow are
known for a variety of non-circular channels or
else can be determined quickly and rather
accurately by numerical calculation procedures.

A few methods are mentioned in the literature
which can be used to calculate the friction factor
for turbulent flow on the basis of laminar solu-
tions [ 1-4]. These methods will not be mentioned
in more detail in this paper because the method
outlined here is basically different and refers only
to the geometry factors of the pressure drop
relationships. For this purpose, the geometry
factors will be explained very briefly.

2. GEOMETRY FACTORS OF THE PRESSURE
DROP RELATIONSHIPS

The pressure drop relationship for laminar
flow is

ARe=K )

where the constant K is a geometry factor,
because it is determined solely by the geometry.
It is the eigenvalue of Poisson’s equation.

For turbulent flow there is also a geometry
factor, as has been proved by Maubach [5]
for circular tubes, annular zones, and parallel
plates. This geometry factor G of turbulent flow
turns out to be

@

with the maximum velocity U,,,, the velocity
averaged over the flow cross section U,, and
the friction velocity U* = \/(z,,/p).

Maubach was able to show that this geometry
parameter G has a characteristic value for each
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shape of channel, which value is independent of,
for instance, the roughness of the channel or
the Reynolds number, if, in case of small Rey-
nolds numbers, the factor is left out of account
that the sublayer close to the wall gives rise to
a minor correction. :

Of course, this geometry parameter occurs
also in the pressure drop relationships of the
geometries studied by Maubach. Under the
condition of a universal velocity profile existing
for the channelsinvestigated, such as Nikuradse’s
profile,

ut =25mny* + 55 3)

the pressure drop relationships are written as
follows [5]:

16)->o

where L is the length characterizing the flow

cross section, which is the thickness of the flow

layer in the geometries studied by Maubach.
As is evident, the following questions arise
in the light of these facts:

(1) Can a relationship be established between
the two geometry parameters K and G
for laminar and turbulent flow, respectively?

(2) What must be the structure of the pressure
drop relationships for channels with the wall
shear stress variable on the circumference
in order to fully take into account both
experimental and theoretical results?

*®
Ly +55-G

“)

3. MULTICHANNEL EFFECT

For more detailed studies of the pressure drop
behaviour of channels with wall shear stresses
variable on the circumference it is necessary to
visualize the characteristics of such channels.
One characteristic all these channels have in
common is a different curvature of the walls
either, as in the case of annuli, there are different
radii of curvature of the walls or, as in triangular
shaped ducts, discontinuities in the curvature
of the wall in the corners. Now, it has been
proved in a large number of experiments that
the velocity profile obviously is not influenced by
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the curvature of the wall [7-11]. Results
obtained on annuli by Brighton and Jones [12]
showing a dependence of the velocity profile on
the curvature of the wall do not agree with
measurements by Quarmby [18]. Quarmby
concludes that the results by Brighton and
Jones are wrong. However, we believe the
results by Brighton and Jones have been mis-
interpreted because of the assumption that the
line of maximum velocity was identical with the
line of zero shear stress [14], which results in a
dependence on wall curvature of the velocity
profile in the results of Brighton and Jones.

Another characteristic of the channels with
a wall shear stress variable on the circumference
is the existence of zero shear stress lines in the
flow area. Such flow channels can be sub-
divided along these lines because, averaged over
time, there is no momentum transport across
these lines. Such subdivision gives rise to
parallel subchannels which are independent of
each other. Since these subchannels in general
have different flow cross sections and wall
fractions, the way in which the individual
parallel channels interact and the relationships
that can be derived from such interaction must
be investigated.

Parallel circular tubes

These relationships will be derived by a
simple example which can be described un-
ambiguously in terms of the solutions available.
For this purpose, the model of parallel circular
tubes suggested by Maubach will be used.

We look for the friction factor of a number of
smooth, parallel connected circular tubes of
various diameters with inner flow, that is a
flow channel with several sub-channels.

An  incompressible, isothermal, fully
developed turbulent flow is assumed. In ad-
dition, the tubes are assumed to be long enough
to make the inlet and outlet losses small
relative to the friction pressure drop. Hence, it
applies for all the parallel channels that

% = const. (5)
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where p; is the pressure in the ith channel of the
diameter D,

Now, according to Maubach [5], the follow-
ing friction law (4) applies for smooth circular
tubes with L = D,/2 and

U* = Um \/<%> (6)
-l o o

with the geometry parameter for Reynolds
numbers Re < 108

G, =U}

max

— Uf = 3966. ©)

The equation defining the friction factor

ap [
9
ol '12 Unp, D, ©)
and (5) result in
U? 2
——> = const. = — =, (10)

i h
Finally, the continuity equation furnishes
n
U, F

i
ZUHIF—

i=

1. (11)

From (10) it is found that

BN
Z\/ @)% / @ =1 (13)
- DI N

In this way the wanted friction factor 4 of the
entire channel has been found.
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From (7) it follows with (12)

JG)-25m 135 )

D\ [ 4 _
<0 J3)£))+ 55 a9
or
8 A\ 1 /D)\*
/ (7) =23 [Re / @5 (3) ]
+55—G;. (16)

Substituting (16) in (14) yields

)36
ol 48] -

(17)

Now, the pressure drop relationship of the entire
channel can be written as

) 3]

(18)

A comparison of coefficients makes (17) and

(18) into
DA\F.
A= iyl
> 67 ®
i=1
1D, D,
* __ . -7t ZH G,
e== ) L 5) -
i=1
D\ F;
" /(5:.)? )
with the entire area
F=3 F, (21)

i=1
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and the hydraulic diameter of the entire channel

4% F,
D=1zt .
2 P
i=1
Since the quantities of 4 and G* defined in (19)
and (20) depend only on the diameter and area
relationships and the geometry parameter G,
A and G* are two new geometry parameters
which are independent of the flow condition,
i.e. the Reynolds number.
For laminar flow in the sub-channels it applies
for each tube that

(22)

64
= 23
4 Re; (23)

and for the entire channel

ngs

24)
The continuity equation (11) and (10) can be
used to find for the geometry factor of the entire
channel in the case of laminar flow

64
Kpy=— . (25)

DY Fy

i=1

For calculation of the friction factors for laminar
and turbulent flow it is assumed that a tube of the
diameter D, with n tubes of the diameter D,
make up a channel. Hence, the channel is
determined by D,/D, and n.

Table 1 is a compilation of the K ., 4 and G*
determined for various parameters investigated.
Moreover, the friction coefficient referred to the
circular tube value is indicated for Re = 10*
and Re = 10,

In Figs. 1 and 2, the relative friction factors
are plotted over the diameter ratio with the
number of parallel tubes as a parameter for
laminar and turbulent flow, respectively. It is



PREDICTION OF FRICTION FACTORS

Table 1. Results for parallel circular tubes

(G = 3:966)
dy/d, 005 001 03 05 09
n=1
K. 5859 5449 4865 5229 6348
A 1021 1037 1051 1031 1001
G* 5650 5603 5520 5575 5694
J/Agx Re = 10* 0947 0911 0874 0919 0997
fAzx Re = 10° 0950 0915 0881 0923 0998
n.=2
Koo 5369 4716 4042 4800 6350
1:042 1070 1084 1042 1001
G* 5599 5504 5380 5521 5695
MAg Re = 10* 0899 0838 0804 0892 0998
AfAg Re=10° 0904 0846 0814 0898 0998
n=735
K, 4251 3291 3000 4534 6366
A 1-101 1156  1-129 1-044 1.001
G* 5436 5198 5135 5494 5696
2/Ag Re = 10* 0781 0684 0717 0-885 0998
Ax Re =10° 0791 0697 0731 0892 0999
n=10
K. 3063 2127 2538 4691 6378
A 1187 1265 1140 1-035 1000
G* 5143 4706 5014 5527 5697
AAg Re = 10* 0643 0540 0694 0906 0-999
Ap Re = 10° 0657 0557 0709 0912 0999
1.0
X ]
Kr
n
0.5 i P 1
2
5
—"
\ ' }
0 D,/D, 1.0
FiG. 1. Tubes in parallel: laminar flow.
10 —
A
AR n
1
05 2
5
0 02 /01 1.0

F1G. 2. Tubes in parallel: turbulent flow.
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evident that the friction factor is decreased with
irregular flow distribution. Depending upon the
number of tubes the minimum of the overall
friction factor is shifted towards the other
D,/D,. For a large number of tubes the friction
factor is decreased significantly below the value
of the single tube. This behaviour is typical of
friction factors in the case of parallel connection
of channels of different cross sections and shapes
of cross sections. The effect is called the multi-
channel effect.

4. NEW METHOD OF CALCULATING FRICTION
FACTORS

A comparison of Figs. 1 and 2 clearly indicates
that the friction factor in turbulent and laminar
flows show a similar behaviour. In laminar flow,
the dependencies are more marked than in
turbulent flow, but the basic shape of curves is
the same. The same results are found by com-
paring the measured results obtained from tri-
angular shaped ducts, eccentric annuli, and rod
bundles for laminar and turbulent flows. It
turns out that if, for a specific geometry, the
friction factor for laminar flow drops below the
circular tube value, also the friction factors for
turbulent flow are lower than the circular tube
values, and vice versa. '

If this effect can be ascribed mainly to the
geometry factors of the pressure drop relation-
ships, it must be possible to establish a relation-
ship between the geometry factors. Since, in
laminar flow, only one geometry factor K is
needed to describe the pressure drop relation-
ships, whereas it takes two, namely 4 and G*,
in the case of turbulent flow, as we have seen,
the geometry factors 4 and G* are plotted over K.

Figure 3 is a plot of the magnitudes of G*
obtained from the multi-tube model. It appears
that for K > 20 the points can be arranged on
a curve with only a small amount of scatter.
Geometries so far investigated experimentally
and applied in practice always have values in
excess of K = 20. For geometry factors K > 64,
the respective G* values were determined from
the annular zone solution. In this case, the
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laminar solution of the annular zone turns out
to be [15]

64(x* — 1)°
K =
ik v e e S ey S
with the annular zone parameter (cf. Fig. 4)
x="2 27)
7

z

The values of the parameter G* for the annular
zone in a turbulent flow are obtained from
Maubach [5] as

_ 3966 + 125x

G =
1+x 28)

for smooth walls and in an analogous way as
in (7)

8 L-U*
J(a=25m —+55-G (29)
10
4
9
G)K
8 L/ ||
7 |
A
6 vai |
/#
s fﬁ1
e .l
/] s
o
. v ?rnwurzo]m
w! w0? K 0

Fi1G. 3. Geometry parameter G*.

and with (6) and
L (rq —r,)2r, _ 1

D E—rp ai+w 0
to be
8 A
—}=25InR / - .
\/@ ! e\<8>+55
—[G + 25In2(1 + x)]. (31
A comparison with (18) results in
Gi{, =G+ 251n2(1 + x) (32)
and with (28) in
3966 + 1-25x
% T - - Tt .
.Gz = . +25In2(1 + x). (33)
©

Fi1G. 4, Annular zone.

Tz

Table 2 lists the values of the geometry factors
K and G* for various values of x. In addition, it
is seen that 4 = 1 for annular zones, which is
no surprise because there is a constant wall
shear stress on the circumference and no sub-
channels can be generated.

The parameters A in Fig, 5 obtained from the
multitube calculation also can be represented
in a curve in good approximation which, in this
case, is a straight line.

The geometry factors A and G* represented
above for turbulent flow in channels can now
be used to establish pressure drop relationships
also for other geometries, if the geometry para-
meter K for laminar flow is known.

For a number of flow channels, the laminar



PREDICTION OF FRICTION FACTORS

Table 2. Values of the geometry parameters of the annular
zone in laminar (K) and turbulent (G*) flows

% K G*
0 64-000 56988
01 64-604 56902
02 66217 5-7020
03 68:574 5-7280
05 74836 58072
09 91-200 60170
10 96000 6:0737
11 100912 61310
15 122-183 6-3600
2:0 152:091 66327
50 393-638 79149
10-0 993-546 9:2245

solution is known from the literature. For
triangular shaped ducts, an approximative solu-
tion is found with Carlson and Irvine [16],
theoretical data are also given by Sparrow [17]
and Sparrow and Haji-Sheikh [18]. For eccentric
annuli Tiedt [19] has compiled the laminar
solutions for all diameter ratios and eccentrici-
ties. For rod bundles there are solutions by
Sparrow and Loeffler [20] and Sholokhov,
Buleev and Gribanov [21] for rod bundles of
infinite extension. For rod bundles with seven
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rods in circular tubes laminar solutions are
indicated by Courtaud, Ricque and Martinet
[22], Axford [23, 24] and Min, Hoffman,
Tucker and Peebles [25]. For rod bundles in
hexagonal and square channels, the author has
elaborated laminar solutions by numerical
integration of Poisson’s equation for the sub-
channels in such rod bundles (centre, wall and
corner channels for a wide range of rod distance
ratios P/D and wall distance ratios W/D [15, 26].
With these sub-channel geometry factors, the
geometry factors for laminar flow can be cal-
culated in a very simple way for all rod bundles
so far investigated experimentally. For ducts
with arbitrary cross-section Pendergast, Cobble
and Smith [27] reported analytical solutions of
Poisson’s equation.

The method suggested for calculation of the
pressure drop relationships for turbulent flow
from the laminar solutions, called the G*-
method below, can be justified only by saying
that the measured results available for various
channels with non-circular cross sections are
described sufficiently well by the pressure drop
relationships obtained in this way.

Influences of anisotropy of the turbulent
transport quantities or by secondary flows

A N
e\
1.2
1]
o]
(6]
[
o]
1.4 o
A
n o
A
e 1 0 2
a2 S8\,
® 5 i
® 1
1.0 _
10 20 40 K 100

Fi1G. 5. Geometry parameter 4.
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observed in non-circular channels of course are
not taken into account in a method like this.

In the same way, a momentum exchange
between the individual sub-channels of a rod
bundle is neglected because the lines for which
the momentum transport disappears are selected
in the calculations to be the lines resulting if the
rods proper and rod and channel wall, res-
pectively,aresubdivided at their closest distances.

However, in general these simplifications
have but a negligible effect on the friction factors,
as has been proved by various authors.

5. COMPARISON BETWEEN CALCULATED AND
AND MEASURED DATA

The method suggested above will be tested
with triangular shaped ducts, eccentric annuli,
and rod bundles.

Figure 6 shows the data measured by Carlson
[28], which were reported also by Eckert and
Irvine [16,29], obtained from triangular shaped
ducts. Agreement between the measured values
and the calculated ones is good. For small
angles, the transition from laminar to fully

K. REHME

developed turbulent flow obviously is-not yet
complete, hence, the slightly greater deviation,

For eccentric annuli, Fig. 7 contains the data
measured by Johnson [30] for a diameter ratio
of di/d, = 075 and dy/d, = 0-281, respectively.
In the case of the lower diameter ratio there is
excellent agreement between measured and
predicted values; this is not the case for the
higher diameter ratio. The data measured by
Tiedt [19] show the same behaviour (Fig. 8).
For low diameter ratios, again, experiment and
theory are in excellent agreement; for high
diameter ratios agreement is excellent for the
concentric case only. Figure 9 shows the
measured data by Bourne, Figueiredo and
Charles [31] fora diameter ratio of d,/d, = 0-813
(top). In the turbulent region, the predicted line
fits the data excellently, even for a high diameter
ratio. Data by Lee [32] are shown in Fig. 9
(bottom) for a diameter ratio of d,/d, = 0-387.
In this case, there would be excellent agreement
with the predicted values if all the data were
shifted by about 10 per cent, a margin which is
necessary also for good agreement between the
predicted and the measured values for other

oMy m=4 A/N
\\
=3 N
.0 o232 as
AR
, P o] \x} (7 [oNoPoy
m= N | NG & e
\7\; 3\\\ \ N R
< N N T
m=1 \\b\a\ b\‘b@@ﬁb\\‘e@\\ 2 50 = 38,80
B N RS~
5 \\ X P - TR '>\<~\

m=0 AN 4 20=223°

. \a\ KR\\ N )\E"W)ﬁ;_;:\\\ 20=223
' ENEAN g ]
NN u\q\ “e o N 1 2g = 12°
G\E\\\o (N : N L
o -+ S
t\\ NG 0%30;:% ™ 2a=7.96°

---Circular tube 4 2a=4,01°

—Theary { \
0.01 L .

24102 10? 0 Re 10°

FI1G. 6. Triangular shaped duct: Carlson.
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0.04
~,
A Y 0.4\
v 075. ©
s ® o.sQ %
@ 1.0 ©
0.02 \E\N ~—_s m%
. B _ B \\
‘\\Y.\FNQ\
e a m‘h\\\
o] a [
a @ s . ]
d, fd,=0.75
- Theory
0.0t = o 05
0.04
A \ e @
_—
\ . o.sx
™~ a 0.8¥ o
0.02 & 09 NK
o IAO/\\e\ EN Q
T\ a] o8
d,/d, = 0.281
— Theory
-0, 0°

Re

FiG. 7. Eccentric annuli: Jonsson.

diameter ratios tested by Lee and not shown here.
The assumption that the data by Lee are too
high is reasonable, if one considers the excellent
agreement between theory and experiments of
different authors in the case of concentric
annuli [33].

To illustrate the difference between the pre-
dicted values and the measurements for high
diameter ratios, Fig. 10 shows all measurements
known to the author which are related to the
concentric values for maximum eccentricity
(e = 1-0) and different diameter ratios.

The values measured by Jonsson [30] and
Tiedt [19] are the lowest for high diameter
ratios ;they are correlated rather well—especially

with respect to the dependence on the diameter
ratio—by the calculations of Eifler and Nijsing
[34]. The experimental results of Bourne et al.
[31], Lee [32], Denton [35], and Dodge [36]
are higher and well correlated by the method
suggested above. It is impossible to decide at
this time which experimental values are best,
even in the light of the data measured by Diskind
[37] for eccentricities between e = 09 and
e = 097 tending to the higher values, and the
investigation of Stampa [38] who reported ““the
influence of eccentricity measured by Tiedt
could not be verified by our experimental
studies”.

Now for the rod bundles. For seven rods in a
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Symbol Author

A ® BOURNE et al,
Acone . A LEE
8 DODGE
° TIEDT
0.9 s a JONSSON
\ v DENTON
\‘\ 5
\Q{ Re=10

0.8
\§ Re=10* °
@
e 2 =

0.7 @

0.6

—.—.— Theory: EIFLER, NUSING
Theory: G¥- method

0.5 | 1
0 0.2 0.4 06 0.8

10
dl/ d,
F1G. 10, Eccentric annuli: e = 1-0.

circular tube Courtaud et al. [22] performed
experiments with a large number of rod distances.
The results are shown in Fig. 11. Except for
the extreme position, in which the rods contact
each other, there is excellent agreement between
the calculated and the experimental data. The
same applies to the studies conducted by the
author on rod bundles in hexagonal channels
with rod distance ratios P/D equal to the wall
distance ratios W/D [39, 40] for different rod
distance ratios and rod numbers, as is shown in
Figs. 12-14. Also for other wall distances there
is good agreement between experiment and
theory. This is shown by the measured data of
Galloway and Epstein [41, 42] for 19-rod
bundles with half the rod distance as the wall
distance (Fig. 15). The results measured by Gunn
and Darling [1, 43] for rod bundles in a square
array could well be described also by the curve
determined by the G*-method (Fig. 16). The
excellent description of the experimental results
by the theoretical method is shown especially
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F1G. 11. Rod bundles : Courtaud et al.

by extreme shapes of channels such as those
occurring for rod bundles with P/D =1 and
W/D = 1, respectively.

For the square array, Gunn and Darling
[1, 43] have performed measurements on one
centre, side and corner channel each. Figure 17
shows the results. Agreement with calculated
data is good. The theoretical geometry factors
for laminar flow [15] were used for calculation.
The values measured in the laminar area are
slightly higher than the theoretical solution. The
agreement would be perfect if the values
measured by Darling were used for K. For
P/D =1 in a square array, measured results
have been communicated also by Ushakov et al.
[44]. Agreement is good (Fig. 18).

For P/D = 1in a hexagonal pin array, Fig. 19
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shows the results measured by Subbotin et al.
[45], and Levcheko et al. [8]. All measured
values are excellently described by the curve of
the friction factor by the G*-method.

6. CONCLUSIONS

In summary it can be said that the friction
factors calculated by the method outlined for
turbulent flow in channels with non-circular
cross sections very“well describe the experi-
mental data at hand.

The method is very simple because it requires
only knowledge of the geometry factor for
laminar flow, which is a condition that can be

fulfilled as a rule for the channels occurring in
practice.

In that case, the geometry factors 4 and G*
can be taken from two diagrams in which the
pressure drop relationship

)= pse (5]

for turbulent flow is determined.

Because of its easy application and yet high
accuracy, this method of calculation of friction
factors in turbulent flows is superior to all the
methods of calculation previously suggested.
Hence, it can be used also for other,shapes of
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channels to predict friction factors for turbulent
flow with sufficient accuracy and in a simple way.
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METHODE SIMPLE DE CALCUL DES FACTEURS DE FROTTEMENT POUR
L’ECOULEMENT TURBULENT DANS DES CANAUX NON-CIRCULAIRES

Résumé— A Paide des lois régissant la perte de charge dans un modéle simple une méthode est mise au
point qui permet de calculer le coefficient de perte de charge d’un écoulement turbulent dans les canaux
non-circulaires, supposant seulement la connaissance du facteur de géométrie de la loi régissant la perte
de charge de ’écoulement laminaire. La méthode de calcul proposée est vérifiée sur de nombreux résultats
expérimentaux dérives de la littérature et portant sur des canaux non-circulaires, p.ex. des triangles
acutangles, des fentes annulaires excentriques et des faisceaux de barres disposés de fagon hexagonale et
carrée dans des tubes circulaires et des canaux hexagonaux et carrés. Il apparait que l'ensemble du
matériel expérimental peut 8tre trés bien décrit a I’aide de la méthode mise au point.

EINFACHE METHODE ZUR BESTIMMUNG VON REIBUNGSKOEFFIZIENTEN FUR
TURBULENTE STROMUNG IN NICHT-KREISFORMIGEN KANALEN

Zusammenfassung— Anhand der Druckverlustgesetzmissigkeiten eines einfachen Modells wird eine
Berechnungsmethode fiir den Druckverlustbeiwert bei turbulenter Strémung in nicht-kreisférmigen
Kanilen entwickelt, wobei nur die Kenntnis des Geometriefaktors des Druckverlustgesetzes fiir die
laminare Strémung vorausgesetzt wird. An zahlreichen Versuchsergebnissen aus der Literatur beziiglich
nicht-kreisformiger Kanile wie spitzwinklige Dreiecke, exzentrische Ringspalte und Stabbiindel in
hexagonaler und quadratischer Anordnung in Kreisrohren, Sechskant- und Vierkantkanilen wird das
vorgeschlagene Berechnungsverfahren gepriift. Es zeigt sich, dass das gesamte Versuchsmaterial mit
dem entwickelten Verfahren sehr gut beschrieben werden kann,
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I[IPOCTOA METO]I PACUETA KOO®OUIIUMEHTOB TPEHHUA TYPBYJEHTHOTO
TEYEHUA B HEKRPVYITJIBIX HAHAJIAX

Annoranua—Ha ocHOBe BaKOHOMEpHOCTEH THAPABAMYECKOr0 CONPOTHBIEHUS IIPOCTOrO
Mofiednsi PaspaGoTaH METOR BHYHCIeHHA K0d(duumeHTa THAPABIMYECHOTO COLPOTHBIEGHIIA
mpu TYpOYNEHTHOM TIOTOKE JKH[KOCTH B HEKPYTIHX KAHAIAX, TPHUYeM IPENIOIaraeTcH
TOJIHKO BHAHHE T'eOMeTPHYECKOro (axTOpa BAKOHA TIHAPABIMYECKOTO COIPOTHBIEHUS JUIA
NAMEHAPHOTO HOTOKA. 1Ipenmaraemslii METOR, pacdeTa IPOBEPEH € IOMOILBIO MHOTOUNCISHHEIX
HKCIEPUMEHTANBHEIX NAHHEIX B JIMTEPAType OTHOCHUTEIBHO TAKMX HEKPYITHX KaHAJOB,
KAK : OCTPOYTONbHEIE TPEYIOMBHUKI, SKCIEHTPUYHbIEe KOJBIEBLIE 3a30PH M HYUYKU CTeDKHeN
¢ UIECTHYTOJBLHOI ¥ KBAXPATHON peIeTKoll B KpyTasix Tpy0ax I KAHAIAX YeTHPEeXyroIbHOTO
U WeCTHYTONEHOTO ceveHuii, OKaBEIBABTCA, YT0 BECH HKCIIEPHUMEHTAJBHHI MaTepuaj OYeHb
XOpPOINO OMUCHBAGTCA IIYTEM BTOTO PaspaGoTAHHOTO METORA.



