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Abstract

Although a simultaneous loss of both coolant pressure and all of the coolant

circulations appears to be too unlikely in a properly designed GCFR-System

as to be taken as design basis accident, the question about temperature and

heat-flux distribution in the molten core mass containing in a Core-Catcher

would be of great interest.

It was assumed in this paper that the molten core mass has reached the core

catcher after 100 sec~ and that the melt is separated into an oxide and a

metallic phase.

Depending on their state~ the fission products will be in the metallic or

oxide melt and in the helium main circuit, respectively. Based on indications

from the literature, the calculation of temperature distribution was made on

the assumption that 50% of the afterheat arises in the oxide~ 30% in the

metallic phase and 20% in the helium main circuit.

A first proposal for a possible concept of a core catcher is presented.

The calculation of the temperature distribution was based on a model in

which a solidified fuel layer on the core catcher cooled at the bottom is

followed by a stagnant liquid fuel layer, at the upper limit of which the

maximum temperature of the melt is reached. This maximum temperature line

represents the heat flux divide. Above this line heat in the liquid fuel melt

will be transported upwards by natural convection. According to this model

the steel layer is located above the fuel melt. Depending on the given heat

production in the core melt, additional layers are found in the model of

calculation. A numerical program was prepared which allows to calculate the

temperature and heat flux distributions in the melt. The material data required

for computation were taken from literature. In these initial computations

values have been used which do not completely take into account the inter­

actions of components present in the melt.

The results so obtained give already an indication of the design and tech­

nological measures which are necessary to solve the problem of the molten

core mass in a core catcher within the pressure vessel.



Temperatur- und Wärmeflußverteilung geschmolzener Core-Massen e~nes gasge­

kühlten schnellen Reaktors nach einem hypothetischen Niederschmelzunfall.

Zusammenfassung

Obwohl für einen riChtig konzipierten gasgekühlten schnellen Brüter e~n gleich­

zeitiger Abfall des Kühlmitteldruckes und Ausfall aller KÜhlgebläse zu unglaub­

haft erscheint 9 um als Auslegungsfall betrachtet zu werden 9 ist doch die Frage

nach der Temperatur und Wärmestromverteilung in einer geschmolzenen Core-Masse 9

welche in einem Core-Catcher aufgefangen wird 9 von großem Interesse.

In diesem Bericht wurde angenommen 9 daß die geschmolzene Core-Masse sieh nach

100 sec in dem Core-Catcher befindet und daß die Schmelze in eine oxidische

und metallische Phase getrennt ist.

Die Spaltprodukte werden sich je nach ihrem Zustand entweder ~n dem oxidischen

oder dem metallischen Teil der geschmolzenen Core-Masse bzw. in dem Gasraum

befinden.

Basierend auf Angaben aus der Literatur, wurden die Rechnungen unter der An­

nahme durchgeführt, daß 50% der Nachwärme in der oxidischen 9 30% in der metal­

lischen Phase und 20% in dem Heliumprimärkreislauf freigesetzt werden.

Ein erster Vorschlag für e~n mögliches Konzept eines Core-Catchers wird vor­

gestellt.

Die Berechnung der Temperaturverteilung basierten auf einern Model1 9 bei welchem

auf eine erstarrte Brennstoffschicht auf dem Boden des von unten gekühlten Core­

Catchers eine stagnierende flüssige Brennstoffschicht folgt 9 an deren Oberseite

die maximale Temperatur der Schmelze erreicht wird. Diese Linie der maximalen

Temperatur stellt die Wärmeflußscheide dar. Oberhalb dieser Linie wird die Wärme

in der flüssigen Brennstoffschmelze durch Naturkonvektion aufwärts transportiert.

In diesem Modell ist ferner angenommen 9 daß die Stahlschicht über der Brennstoff­

schmelze liegt. Je nach Größe der Nachwärmeleistung in der Core-Schmelze treten

zusätzliche Schichten im Rechenmodell auf. Es wurde ein numerisches Programm er­

stellt, mit welchem die Temperatur- und Wärmeflußverteilung berechnet werden

können. Die für die Berechnung erforderlichen Materialdaten wurden der Literatur

entnommen. Für die ersten Rechnungen wurden Werte verwendet, bei welchen die

Wechselwirkung mit den ~n der Schmelze vorhandenen Komponenten nicht voll be­

rücksichtigt wurde.

Die so gewonnenen Ergebnisse geben jedoch schon Hinweise auf das Konzept und

die technologischen Maßnahmen, die erforderlich werden 9 um das Problem der Be­

wältigung einer geschmolzenen Core-Masse in einern Core-Catcher innerhalb des

Druckbehälters zu lösen.
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1. Introduction

Although a core melt-down appear to be extremely unlikely in a properly designed

GCFR-system, it may be worth-while to investigate this problem since this question

has been raised for the Liquid Metal Fast Reactor as weIl.

The central problem in this context is how to contain, for a very long time, the

molten core mass on the floor of the reactor cavity in the prestressed concrete

pressure vessel. The knowledge of temperature and heat flux distribution in the

molten core mass contained in the crucible of the core catcher is necessary to

be able to design this catcher properly.

2. Core-catcher concept

Figure 1 shows the schematic outline of the core-catcher proposed for a GCFR.

The core catcher is planed on the floor of the reactor cavity of the concrete

pressure vessel. It is assumed that the molten core mass is fallen inside the

core-catcher and that the core debris can be cooled by all the sides. This is

essential rof one wants to avoid that all the reactor cavity internals are melted

by the heat radiated by the molten core. As we will show later in the paper, the

heat radiated above the core debris is always considerably higher than the heat

flux going downward to the crucible, even with very effective floor cooling.

To increase as much as possible the beat flux going downward, we assumed that

the floor of the crucible was made of graphite, which among refractory materials

has a very good thermal conductivity~ the lower surface of the graphite layer

being kept at 4000K by cooling coils. To avoid formation of CO/C02 by the con­

tact of hot fuel (U02, Pu02) with the graphite, the graphite floor is protected

by a tungsten liner.

3. Distribution of the Decay Heat Sources

As shown by the experiments of Fischer et.al. 11/, the fuel and steel of the

cladding are always separated, not only during the melt down, but also in the

Zum Druck eingereicht am 8.8.1973
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core-catcher. Due attention must be paid to this fact in the assessment of the

distribution of the fission products which constitute the decay heat sources.

Table I shows the fission products generated during operation of the reactor

divided into three groups.

In the group A the fission products are listed which are gaseous or which have

at the interesting temperatures such a high vapour pressure that they are

volatile. Apart of this fission products are released already during normal

operation and collected in the venting system. A part will be released when the

clad starts to fail and the rest will surely escape during the melt-down of

the core. Thereby the condensable vapours will condense on the colder parts of

the helium primary circuit t for istance on the liner of the concrete vessel or

on the cold parts of the steel-graphite reflector.

The second group B includes such fission products t which have stable oxides in

the interesting temperature range. Essentially these oxides are in homogeneous

solution in the fuel melt.

In the last group C are listed the metallic fission products with low vapour

pressure. Since these metallic fission products are very soluble in the molten

steel t we will find these products mainly in the steel area. They are trans­

ported from the fuel to the steel with a time constant which depends on the

transport mechanism from the melt to the fuel-steel interface. In the fuel

layer this transport is controlled by natural convection and we can assumet

according to Wantland and Fontana 12/t a fast separation of fission products.

On the basis of these considerations we assume that 50% of the decay heat due to

the fission product group B is uniformely distributed in the fuel melt and 30%t

due to the fission product group Ct in the steel melt. We assume furthermore that

this relation is constant over the time.
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4. Steady State Temperature Distribution in the Core-Catcher

The investigation was made for a 1000 MWe Gas Cooled Breeder with steel clad

pins and oxide fuel /3/. It was assumed that the whole core, including the axial

and radial blankets, is molten down. With a surface of the crucible on the floor

of the reactor cavity of 40 m2, we get the following layer thicknesses for the

melt:

- height of the fuel layer, including breeding material: hf uel := 35.1 cm

- height of the steel layer

4.1 Calculation Model

:: 13.7 cm

The melt in the crucible was divided into several layers, each of the layers

being characterized by its heat transport mechanism and by its state of aggre­

gation.

At the bottom of the crucible lies a (solidified) frozen fuel layer followed

by a stagnating li~uid fuel layer, at the upper surface of which the highest

temperature will be reached. In these both layers the heat is transported only

by heat conduction end the temperature profile is parabolic. In the molten fuel

below the maximum temperature convection does not occur, because the buoyancy

forces are missing, due to the fact that the temperature at the top of the liquid

phase is the highest.

Above the molten stagnating fuel layer, another molten fuel layer folIows, where

the heat is transported by natural convection. This convection is made up of

many little eddies (whirIs) /4/, which form an he~agonal flow pattern (Benard­

celle). For such a flow, Nusselt numbers relationships for water with momo­

geneously distributed heat sources have been meassured and calculated /5/,

with which the temperature difference between the limits of the layer can be

calculated.

Nu := 0.177 R 0,295 (1)o a

where 2s 0

qfuel
Nu

aos (2):= :=x 2 0 ). et.T
cond , cond.
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q = heat source density in the fuel [W/cm3Jfuel

s

Acond

~T

Ra

s

v

a

=thickness of the convection layer Lem]

=thermal conductivity [W/cmoK]

= temperature difference ~K]

~·ß·T.s3 .= =Rayle~gh-numberva
. ..,0 -1'J=volume expans~on coeff~c~ent L K

= kinematic viscosity LCm2/sec]

= thermal diffusivity ~m2/seGl

The liquid convection layer is followed by a layer of solid fuel, where the

heat is transported again only by conduction. In this layer the transport

of heat is much less effective than in the convective layer, therefore this

layer is much thinner than the convection layer. Because the density of the

solid fuel is higher than that of its liquid phase, the forming of this layer

is only possible as a result of a dynamic equilibrium between solid fuel

particles falling down and fuel freezing at the interface. This layer dissappears

at high heat fluxes. A layer of liquid steel through which the heat is trans­

ported by convection follows above this. To describe the heat transport

herein the equation (1) is easily modified, to take into account that, in

this layer, the heat flux resulting of the volume heat source and the heat

flux coming out of the lawer layers have to be added.

The core melt ends with a frozen steel layer in which heat is transported

by conduction only.

The heat from the surface of this steel layer is carried off by radiation

on the surrounding ambient, i.e. in our case on the cooled radiation shiel­

d.ing ,

Depending on the value of the volume heat source, the layers of frozen fuel

and frozen steel can disappear. With low heat fluxes all layers are solid.

In the numerical calculations all these possibilities are treated by asking

the value of the temperature at the interfaces.
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4.2 Program

The problem is treated as one dimensional and stationary, i.e. no time

dependenz effects like the establish~ng of the temperature profile are

considered. This will be the object of future work. For the numerical

calculations a FORTRAN-program was written. This gives the possibility to

calculate the fol~owing:

1. The temperatures on the interfaces of the various layers.

2. The thickness of these l~ers

3. The heat fluxes at the bottom of the core-catcher and at the surface

of the melt.

In the program the power densities in the fuel and steel melts can be

optionally varied.

4.3 Materials Physical Properties

The physical properties of the materials required for the calculations are

taken from the literature. The most important of these properties are summa­

rized in Table 11. For the first calculations reported here, only values of

the pure materials are used. The influence of the fission products and all

other impurities present into the melt by interaction with other materials

are not considered here.

To investigate the influence of the uncertainty of the material properties

on the results, the values of these have been varied during the calcula­

tions.

4.4. Results

Temperature profiles and heat fluxes are calculated for varmous power

densities in the bed.

Fig. 2 shows a temperature distribution in the melt at a total delay

heat of 15 MW (~o.6% of reactor nominal thermal power) at which all

possible l~ers are builded. In this case the highest temperature T
3

lies

only 43 degree Kelvin over the melting point of the fuel.
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On Fig.3, three temperature distributions are drawn for a total delay

heat of 60 MW and 80 MW respectively. In these two last cases shown the

upper lalfer of frozen fuel and steel do not appear. Fig.3 shows also the

temperature distribution with 60 MW delalf heat and a crucible having a

thermal conductivity equal to only 1/5th of that a graphit. In Fig.4 the

maximum temperatures in the fuel and in the steel T
3

and T
5

and the tem­

perature of the surface of the crucible T1 and of the surface of the melt

T7 have been plotted against the total delalf heat Ptotal' The results show

that above a total power of 10 MW the first liquid layers appear and that

above 80 MW not only the fuel but also the steel begins to boil.

Boiling in the melting is being investigated now and will be the object

of a future paper.

In Fig.5 the heat fluxes downward in the crucible and upward on the sur­

face of the melt are plotted against the total delalf heat. It is shmwn,

that above the limit, where natural convection occurs, the heat radiated

aWalf by the melt upper surface is considerably greater than that which

goes to the floor cooling coils. At 80 MW for istance the ratio Jo/J7
1S

0.184.

An increase of 100% in the values of the viscosity of the molten fuel

and steel, which are affected with the greatest amount of uncertainty,

produces an increase of the maximum temperature of the melt of only 96°K.

5. Conclusions

The calculation show, that at higher total delay heat maximum tempera­

tores are reached, which lie over the boiling points of both steel and

fuel. Further it is shown, that the greatest part of the delalf heat, also

for the aase of boiling is radiated away at the upper surface of the melt.

In the design of the core-catcher one has therefore to pay the greatest

attention to shielding of this heat flux to avoid the melting of the

reactor cavity internals.
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TABLE I Fission-Product Decay Heat *

Fission-product Percent of Total Heat at

Element 85 sec after Shutdown

Group A

I 11. 1

Cs 6.9

Kr+Xe 6.5

Sb 3.9

Te 3.3

Group B

y 7.8

La 7.6

Sr 4.5

Ba 3.9

Zr 2.8

Pr 3.6

Ce 2.2

Nb 8.0

Group C

Nb

Mo 6.0

Tc 8.0

Ru 2.7

Rh 2.0

Other elements each <1.0

* J.FISCHER~ J.D.SCHILB and M.G.CHASANOV~ Investigation of the

Distribution of Fission Products among Molten Euel and Reactor

Phases~ ANL-7864



TABLE 11 Physical Properties of Fuel and Stainless Steel for the Calculation of the Temperature Profile in

the Core-Melt.

Property Value Reference Year Remarks

Thermal conductivity of 2.09 x 10-2 ANL-7859, S.27 1969

(UO• 8PuO• 2)02 near the ANL-7947, S.102

melting point (Slightly

above or beLov) 3.0 x 10-2 GEAP-13733 1971 Extrapolation of

A[--LJ H.Friedrich, Siemens

cmoK (10.10.72)

4.75 x 10-2 AI-TI-015-23-052 1970 molten füel

3.5* x 10-2 Atom.wirtschaft 1972 m.olten fuel at

17 (1972) S.37 2800 0 c

3.415 x 10-2 solid fuel

Specific Heat of (UO• 8 0.460 ANL-7947, S.102 1969 for U0
2

Puo• 2)02 near the GEAP-10059

melting point

c [w sec ] 0.521
ANL-7800 1971 for U02

p grOK ANL-RDP-2 1972 for U02

0·513 ANL-7610 1970 for T > 31150K

* The underlined values are those adopted in the calculations.

I

\0

I
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Property Value Reference Year Remarks

Density of liquid 8..7 ANL-RDP-2 0
1972 for U02 at 2800 C

(UO• 8PuO• 2)02 {gr/cm3)
8.8 from various sources

for (UO•8PuO•2)02
at 2800 0 c according t

Friedrich, Siemens

(10.10.72)

8 ..14 ANL-1610, S.331 1910

Heat of fusion 282 ANL-1800 1911 for U0
2

~ [W ~ec ]

Boiling point of 3119 ANL-1859, S.21 1911

(UO• 8PuO• 2)02 ~c) 3200 ANL-RDP-2, S.8, 36 1912

3300 UKAEA (Farmer) 1912 private communication

from Friedrich

3450 ANL-1150, S.59 1910 for U02 extrapolated

3816 AJ-TI-095-23-052 1910 Author unknown

Dynamic viscosity of liquid 1.00 AJ-TJ-095-23-052 1910 Author unknown

(UO• 8PuO•2)02
0.46 ANL-RDP-2 1912 0for U02 at 2800 C

[ gr ]n cm sec



Property Value Reference Year Rema.rks

Kinematic viscosity of 4.1 x 10-2 BNWL-1279 2795
0C

(UO•8PuO•2)02

'J = 11 tCm2jp sec

Volume expansion coefficient 1 x 10-4 RW-76559, 8.113 1963 U02
of liquid (UO•8PuO•2)02 -4 AI-TI-095-23-052 1970 assumed for1.05 x 10

s [~J (UO•8PuO•2)02

1.05 x 10-4 ANL-7610, 8.337 1970

Thermal conductivity of 0.3 Thyssen 1969 extrapolated from

stainless steel near the 900°C for 1.4948

melting point (slightly
0.26 DEW-Techn.Ber. 1969 ectrapolated from

above or below) 9.Bd.Heft 2 10000C for 1.4981

A [cmWoKJ 0.42 Arch. Eisenhütten- 1970 for fraze iron

wesen, 41( 1970) 1536 - 2027°C

8. 965

0.242 800°C

........



Property Value Ref'erence Year Remarks

Specif'ic heat of' stainless

steel near the melting point

(slightly above or below)

c [wsec]
p gr °K

0.65 - 0.8 I Inf'ormation f'rom

various f'irms f'or

1.4948,

<AISI 304, AISI 347

0.72 and higher

steel solid at 14000 c

• • < 0
steel l1qu1d at 1500 C

Density of' liquid steel

p [gr/cm'3j

Heat of' f'usion of' stainless

steel

1.4948

1.4988

C1m [W~ec ]

0.58

0.749

7.2

210 -;-290

DEW-Tehhn.Ber.

9. sa., Hef't 2

Bull. 605,

Bureau of' Mines

Transact.of' Met.

Soc.AlME 224(1962)

S.818

Nucl.ScLEng. 18

(1964) 280

various standard

publications

1969

1962

1964

extrapolated f'rom

10000 C f'or 1.4981

ro



Property Value Ref'erence Year Remarks

Boiling point of Fe : 30000C Handb •of Chem.and Phys , 1963

stainless steel Ni : 2900 0C

[>c) Cr : 2480 0 c The Chem.Rubber

Publishing Co.(1963)

Dynamic viscosity of' liquid -2 Arch.Eisenhüttenwesen4.76 x 10 1970 average temp. of

stainless steel 41 (1970)S.965 16270C

[ gr Jn cm sec

Volume expansion coef'f'icient -4 Transact. of' 19621.157 x 10

of liquid steel Met.Soc.AlME

s [ o~J
224 (1962) 818

VJ

I
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