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A B S T R A C T

The comparison of calculated and measured reactivity
coefficients of individual isotopes or elements may
provide a fairly detailed check on the correctness of
the important nuclear data for these materials. In or­
der to be able to draw firm conclusions in this di­
rection, one must be sure that other possible sources
of error besides the data uncertainties can be excluded
or at least neglected.

The present work mainly deals with one specific source
of error namely with the influence of the energy reso­
lution used in the multigroup formalism on calculated
central reactivity coefficients of some isotopes and
elements, particularly of predominantly scattering ma­
terials in fast reactors. For the calculations we assumed
that first order perturbation theory can be applied.
The results are based on fundamental mode diffusion
calculations for the homogeneous composition. As starting
point we used the 208 group scheme which consists of
196 fine groups above 1 KeV. The transition to the coarse
group energy scheme of, e.g., 26 groups was obtained
by group collapsing. Besides the usual normal flux
weighting we have also applied bilinear weighting which
takes into account normal and,adjoint fluxes.

The results of this work indicate that the usual 26
group calculations of reactivity coefficients especially
for predominantly scattering materials may lead to appre­
ciable deviations from more refined treatments with
better energy resolution.It is shown that these deviations
are essentially due to discrepancies in the adjoint flux
obtained with flux weighted coarse group constants.
Bilinear weäghting for the preparation of coarse group
constants (e.g. for 26 groupS) advoids the difficulties
mentioned before.



KUR Z F ASS U N G

Die Güte wichtiger nuklearer Daten einzelner Isotope
oder Elemente kann durch den Vergleich gemessener und
gerechneter Reaktivitätskoeffizienten dieser Materialien
überprüft werden. Diese Uberprüfung kann nur dann zuver­
lässige Schlußfolgerungen liefern, wenn gewährleistet
ist, daß alle anderen möglichen Fehlerquellen außer den
Unsicherheiten in den nuklearen Daten ausgeschlossen oder
vernachlässigt werden können.

Als eine mögliche Fehlerquelle wird in der vorliegenden
Arbeit der Einfluß der Energie-Auflösung in dem allgemein
üblichen MUltigruppen - Formalismus untersucht:. Dabei
werden hauptsächlich Reaktivitätskoeffizienten von Streu­
materialien in schnellen Reaktoren betrachtet. Bei den
Berechnungen wird die Anwendbarkeit von Störungstheorie
1. Ordnung vorausgesetzt. Die Untersuchungen werden auf
der Grundlage von nulldimensionalen Diffusionsrechnungen
für eine homogene Mischung durchgeführt. Die Ausgangs­
resultate, die hier als Bezugsgröße dienen, werden in
einem 208-Gruppen-Schema ermittelt, bei dem der Energie­
bereich zwischen 1 KeV und 10,5 MeV in 196 Feingruppen
aufgeteilt ist. Durch Zusammenfassung von Gruppen (Kon­
densation) gelangt man zu gröberen Gruppeneinteilungen,
d.h. geringerer Energie-Auflösung.

Bei der Kondensation wurde neben der üblichen Wichtung mit
dem normalen (realen) Neutronenfluß auch die bi lineare
Wichtung betrachtet, die den normalen und den adjungier­
ten Fluß verwendet.

Die Ergebnisse der vorliegenden Arbeit zeigen, daß die ge­
bräuchlichen 26-Gruppen-Rechnungen bei der Bestimmung
von Reaktivitätskoeffizienten, insbesondere für Streumateria­
lien zu erheblichen Abweichungen führen können verglichen
mit genaueren Bestimmungsverfahren mit besserer Energie­
Auflösung. Diese Abweichungen sind in erster Linie auf
Abweichungen zurückzuführen, die im adjungierten Neutronen­
fluß auftreten, wenn zur Berechnung flußgewichtete Gruppen­
konstanten benutzt werden. Diese Schwierigkeiten können ver­
mieden werden, wenn die bi lineare Wichtung zur Bestimmung
der Gruppenkonstanten insbesondere bei weniger guter Ener­
gie-Auflösung z.B. 26 Gruppen angewendet wird.
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1. Introduction

The comparison of calculated and measured criticality parameters

of fast zero·power reactors provides an overall check on the cor~

rectness of the nuclear data,used in the calculations under

the implied assumption that the accuracy of the measurements

as weIl as that of the methods of calculation is sufficiently

high. The corresponding comparison of reactivity coefficients

of individual isotopes or elements provides a more detailed

check on the correctness of the important nuclear data for

these materials. There are several possible reasons and ex­

planations for discrepancies between calculated and measured

reactivity coefficients, e.g.:

a) The delayed neutron parameters

b) SampIe size effects

c) Mutual interaction of the sampIe and the surrounding

reactor region

d) Heterageneity effects caused py the heterogeneous arrange-

ment present in the region surrounding the sampIe

e) The space dependence of the real and adjoint neutron flux

f) The energy dependence of the real and adjoint neutron flux

g) The cross sections for the specific material considered

In order to draw firm conclusions on the last item, i.e. the

correctness of the cross sections of the specific material

studied, one must be sure that errors caused by any of the

other items a) to f) can be excluded or at least neglected.

Zum Druck eingereicht am 16.1.1973
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The delayed-neutron parameters of the fuel isotopes are

necessary in order to compare, on an absolute scale, the

calculated reactivity coefficients with the corresponding

measured quantities. Therefore these parameters - especial­

ly those of U 238 and Pu 239 - are a Like Ly source of

error if discrepancies in the absolute magnitude of reactivi­

ty coefficients are observed between theoretical and ex­

perimental results as indicated, e.g., by LITTLE and HARDIE

/1/ or BöHME et ale /2/. Sometimes one tries to avoid this

difficulty of absolute values in the following way:

for aseries of calculated reactivity coefficients for the

same reactor one normalizes all ,calculated values to that one

obtained for a reference material, e.g. U 235, and performs

the analogue procedure for the experimental results too,

so that only normalized reactivity coefficients are to be

compared. In the present work we are only comparing various

theoretical results with eachother but not with experimental

results. Therefore we may disregard in the following the

effect of item (a). The items (b) to (d) are to some extend

related to the methods of calculations, which should be able

to take into account the experimental arrangement in an

appropriate manner. The studies of FISCHER/3/, OOSTER-

KAMP /4/ and HEINDLER/4a/ besides many others are examples

for the efforts to describe adequately the effects of

sample size, heterogeneity, space- and energy-dependent

resonance self-shielding and mutual interaction of the

sample and its surrounding. Furthermore the work of OOSTER­

KAMP /4/ shows that specially deviced experimental set-ups

may lead to less complicated models for the calculations.

In the present work items (b) to (d) will not be considered.

We will assurne in the following that first order perturbation

theory is applicable.
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The space dependence of the real and adjoint neutron

flux is influenced by the method of calculation e.g.
diffusion - or transport - theory and by the diffusion

- or transport - properties of the composition. Errors

in the space dependence of the reactivity coefficient

of a specific material may therefore be caused by the

errors just mentioned or by errors in the cross

sections of this specific material. In this work we do

not study space dependent problems; only fundamental

mode calculationsa.re:. pez f ormedvand results for central
reactivity coefficients are derived.

The present work is mainly concerned with item (f), the

energy dependence of the real and adjoint neutron flux.

Generally, the energy scale is divided into a number

of energy groups and the equation governing the energy

distribution of the neutron flux is solved in the multi­

group formalism. It is evident that a good resolution

for the energy dependence of the neutron flux calls for

a large number of energy groups. In the following the in­

fluence of the energy resolution on calculated central

reactivity coefficients of some isotopes and elements

will be studied using the multigroup formalism. This

can be considered as an extension of an earlier work

/5/ /6/; but in the present work we use for the first

time a more narrow energy resolution i.e. a larger number

of energy groups. Since we are interested mainly in energy

dependent effects we confine ourselves to fundamental mode

calculations, which are suffient for this purpose. It is

weIl known(see e.g. /6/, /7/ and /7a/)that the reactivity

coefficients of predominantly scattering materials are

fairly sensitive to the number of energy groups. Therefore

in the present study we have mainly in view the reactivity

coefficients of these materials.
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The main purpose of this study is to get some experience for

the possible range of uncertainty which may be' inherent to the

methods of calculation usually applied for the determination

of the reactivity coefficients of predominantly scattering

materials. This experience is necessary for a judgement

of the reliability of the conclusions drawn from discre­

pancies between experimental results and those obtained

by the usual multigroup calculations.

Especially the conclusions with respect to item (g), the

accuracy of the cross sections or group constants for these

specific materials, are heavily dependent on the reliability

of the calculated reactivity coefficients.

2. Comments on the Formalism

We are considering the fundamental mode eigenvalue equation

for the diffusion approximation in the multigroup formalism:

(1 )

All symbols in this equation nave their usual meaning.

The buckling B2 is considered to be independent of the group

number which begins with i=l at the highest neutron energy.

Since we are dealing here only with fast reactors, the scattering

term includes only the sum of down - scattering terms. If we

are considering first order perturbation theory for a critical

reactor (k =1) we obtain the following expression for the

criticality perturbation caused by an overall change of the

composition in the whole reactor system.
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(2) ok I RC
1 I~[O:' xi] • S [(O\JI;f)j • ~jJ= - .
F j

S S [ ~: . oI;j+i • OjJ
i j< i

S [ O~ • oI;i · Oi]i ~ rem

- S [0: · oD i
• B

2
• Oini

In equation (2), ~+ is the adjoint neutron flux, i.e. the

solution of that equation which is adjoint to equation (1).

The normalization integral F is defined as

The integral reactivity coefficient okI RC' given in equation

(2), corresponds to an overall perturbation of the whole system.

It is fairly easy to see that omitting the last term, the

diffusion part, in equation (2) leads to a reactivity

coefficient given in equation (4), which is proportional

to the central reactivity coefficient CRC of aperturbation

in a reactor for which the energy distribution of the normal

and adjoint neutron flux in the core center can be described

by equation (1) and its adjoint, respectively •

( 4) okCRC
1 .{~ [0: • xi] • S [ (ovE f ) j · Oj]= F j

,.

Oj]- [< oE;em • OiJ }S s l ~: . oL: j+i • S
i j< i ~ i
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The last two terms of equation (4 ) can be rearranged to

give

{~ H xi ]

,~

~j J(4 a) ökCRC
1

· s l(ÖVEf)j= - . •F j

,-

~j ]+ s s I. (<P -: - <P ~) • ÖE j + i•

i j< i J. J

[~; . i .•}- S öE •
i

a

This formula. shows more clearly that the moderation - or

degradation - term - the double SUffi in (4 a) - is fairly

sensitive to the slope of energy distribution of the adjoint

neutron flux.

CRCs are measured frequently in critical fast zero power

reactors to determine the material worths of small sampIes

inserted in the core center. Therefore, we will consider in

the following only the theoretical results for the CRC of

some isotopes and elements, i.e. quantities which can be

determined by the application of formula (4) or (4 a),

respectively.
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3. Details of Calculation

The basic calculationG have been done in the 208-group

structure /9/, which below 1 KeV has the usual Russian

ABBN group structurei above 1 KeV each ABBN group is

subdivided into 14 fine groups of equal lethargy-width.

Since we wanted to get an impression of how accurate the

corresponding result in the usual 26-group ABBN structure

can be determined, we performed a group collapsing from

the 208-group to the 26-group structure. For'the reason

of comparison we collapsed also to some intermediate group

structures containing 110, 61 and 40 groups, respectively.

In each case the last 12 groups- below 1 KeV - remained

unchanged. This means that we collapsed 2, 4, 7 and 14

fine groups, respectively, to one coarse groupi the last

step leading to the usual ABBN structure. For collapsing

we used in all cases the results of 208 group calculations.

We used three different procedures for group collapsing which

were already applied in the preceding work /5/ /6/:

(PI): Usual flux weighting, i.e. using only ~208 as weighting

function

(P2): Bilinear weighting, i.e. using ~208 and ~+208 as

weighting functions

(P3): Combined weightingi i.e. using ~208 for collapsing

group constants subsequently used in a few-group cal­

culation for the real flux ~FG' using ~+208 for

collapsing group constants subsequently used in a few­

group calculation for the adjoint flux ~+FG' and using

bi linear weighting for collapsing group constant differen­

ces (8~FG) subsequently used in a few-group perturbation

calculation, where we used also ~FG and ~+FG determined

in the way just mentioned.
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The formulae used for the different group collapsing schemes

are the usual ones. They are given, e.g., in the work of PIT­

TERLE /10/.

For the fundamental mode model applied here the two procedures

(P2) and (P3) lead to identical results for the few-group

CRCs as is shown in the Appendix and as could also be demon­

strated in the calculations except for small purely numerical

effects. Furthermore these identical results obtained with

both procedures are also in agreement with the corresponding

results obtained in the original 208-group structure. This

fact which is proved in the Appendix too, could also be veri­

fied in the numerical results. The small differences of less

than at most 2 % which we found in reality are probably due

to numerical effects: the moderation - or degration - term

in (4 a) is especially sensitive to the limited accuracy of the

computer because of the large number of addition operations

involved in the double sum particularly with 208 groups.

In all three collapsing procedures (PI) - (P3) we use the

results of the many-group calculations for the specific problem

i.e. ~208 and ~+208' respectively. We are therefore sure

that e.g. in (Pl)we are using the correct many-group flux for

group collapsing. This gives us an idea of the reliability of

the few-group results, e.g. for reactivity coefficients,

provided the correct many-group weighting function is exactly

known. In reality the few-group constants (e.g. for 26 groups)

are prepared for a specific class of reactors, e.g. those

using oxide fuel, stainless steel as cladding and structural

material and sodium as coolant. For the preparation of these

few-group constants a certain weighting function has to be

applied. The origin of this weighting function is generally

outside the scope of few-group reactor calculations.
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Sometimes it is based on a more or less sophisticated

decision, e.g. fission spectrum in the high energy range

and 1/E - dependence below that range as has been done

for the Russian ABBN set. Another possibility consists

in using some simplified analytical models for determining

the energy distribution as e.g. those mentioned by STACEY /11/

or to use the result of a fundamental mode calculation using

an ultrafine-group structure as e.g. provided by MC 2 /12/.

In any case the weighting function can at best be correct

for only one specific composition. For each of different com­

positions the application of the set of group constants

is due to some doubt, because for a rigorous treatment new

group constants should be used which were generated with

a new appropriate weighting function. This procedure is

generally not applied because it is rather inconvenient;

only for special cases a new weighting function is adopted.

For this reason the results for any few-group reactor

calculation depend to some extent on the weighting function

used for the preparation of the few-group constants. In

order to study the effect on the calculated reactivity co­

efficients we applied for the group collapsing some alternative

weighting functions besides the neutron flux which was

determined in a many-group calculation for the specific

composition considered. In accordance with the usual pro­

cedure we used a collision density F as basic function and

derived the weighting flux:

where E
t

is the total macroscopic cross section of the

specific composition in a many-group representation.
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In this way the resonance behaviour of the correct neutron flux

can, at least partially, be approximated.

The results for two collision densities will be discussed in .the

following: the first one is representative for the central zone

of the German prototype fast·sodium cooled power reactor and

will be labelled SNR-collision density; the second one is

similar to the Russian ABBN weighting function and is composed

of a fission spectrum above 2.5 MeV and a l/E - spectrum

below 2.5 MeV and will be named X + ~/E in the following.

Both collision densities are given in Fig. 1 as a function

of lethargy.
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4. Results-------

Our studies are done for two examples of critical ·fast zero

power reactors: SNEAK-3A2 and ZPR III-48. The first one has

already been considered in the preceding work /5/ and /6/.

The second one is a weIl known critical assembly for which

many evaluations have been published and which was the basis

of an international intercomparison /8/. The atomic number den­

sities used in the calculations are given in table 1. For the

buckling we used for both assemblies B2 = 25.549 • 10-4 cm- 2

which was originally derived for SNEAK-3A2 but is also an

acceptable guess for ZPR III-48.

Table 1 Data for SNEAK-3A2 and ZPR III-48

(atomic number densities in 1022/ cm3)

SNEAK-3A2 ZPR III-48

Al 1.2910 0.01090

C 0.0932 2.07670

Cr 0.3647 0.26810

Fe 1.2204 0.99850

H 0.1792

Mg 0.0064

Mo 0.0039 0.02060

Na 0.62310

Ni 0.1854 0.13300

0 1.4529

Pu 239 0.16450

Pu 240 0.01060

Pu 241 0.00110

Pu 242 0.00004

Si 0.0188

Ti 0.0040

U 235 0.2031 0.00160

U 238 0.8104 0.74270



Table 2 Central Reactivity Coefricients for SNEAK-3A2

I lNumber of1
Materiali

1 energy!
( groups!
!
1 Al C Fe H Mo Ni 0 U 235 U 238I
r
!CRC per atom nor- 208 -0.216 +0.589 -1.160 +13.53 -8.528 -1.808 +0.327 100. -8.072
;malized to U 235

r

1 . t" f[CorrtrLbu aon 0
!the degradation 208 +0.005 +1.232 +0.157 +1.041 -0.024 -0.058 +1.474 -0.004 +0.057term to the to-
ltal CRC

f
;Weighting func- keff 1
rt i.on for group Few group CRCs normalized to the corresponding 208-group results --k 1208:collapsing with eff 208
:flux-weighting

cP 208 110 0.9944 0.9826 0.9950 0.9991 1.0024 0.9927 0.9842 1.0001 1.0010 1.00001 0.9999

.eP 208 61 0.9608 0.9446 0.9894 0.9953 1.0010 1.0081 0.9725 1.0005 1.0027 1.00001 0.9994

icP 208 40 0.8624 0.8415 0.9770 0.9866 1.0013 0.9980 0.9695 1.0008 1.0068 1.00002 0.9991

;cP 208 26 1.0208 0.7216 0.9755 0.9834 1.0052 1.0580 1.2110 1.0020 1.0212 1.00001 0.9976

,
!SNR-collision den-

26 0.8729 0.7347 0.9619 0.9722 1.0002 1.0108 0.9851 1.0018 1.0326 1.00240 1.0039
tsitY/Lt 208

Cx CE) + C/E)/Lt 208 26 0.8066 0.7997 0.9601 0.9371 0.9961 0.9866 1.0728 0.9961 0.9842 1.00529 1.0038

f-'
N



Tab1e 3 Centra1 Reactivity Coefficients for ZPR 111-48

Number of M a t e r i a 1
energy
groups

Al B10 B11 C Cr Fe Na Ni •
CRC per atom norma1ized 208 5.66 1000. 2.07 1.27 8.35 11.17 2.81 14.67
to B 10

Contribution of the I
degradation term to 208 0.7116 0.0028 0.7134 0.4116 0.5285 0.3541 0.3873 0.0511
Ithe total CRC

~eighting function for Few-group CRCs norma1ized to the corresponding 208-group

I
kef f 1

~roup co11apsing resu1ts --
kef f 208 1208

4>208 110 1.0087 0.9997 1.0222 1.0361 0.9967 0.9966 1.0042 0.9930 1.00001 0.9997

4>208 61 0.9845 0.9980 1 .0658 1. 1363 1.0027 0.9835 0.9983 1.0324 1.00002 0.9980

4>208 40 1.0180 0.9960 1.1348 1.3055 1.0217 0.9823 0.9242 1.0258 1.00002 0.9959

4>208 26 1 .0311 0.9872 1. 1251 1.4262 0.9755 0.9958 0.9604 1.0660 1.00001 0.9895

SNR-co11ision density/
26 1.0473 0.9873 1.2711 1.5445 1.0039 0.9600 1.0781 0.9965 0.99828 0.9864

l:t 208

fX(E) + C/E)/Et 208 26 0.9215 1.0085 0.7036 0.5484 0.9598 0.9520 0.7031 0.9427 1.00881 1.0140
r

1 i I

I-'
W
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In table 2 and table 3 the important results of the present

study are given. The magnitude of the CRCs of the various

materials can be found in the first line. The values are

normalized to U 235 or B 10, respectively. The CRCs of these

materials are fairly large and remain nearly unchanged upon

group collapsing irrespective of the weighting-spectrum and

collapsing procedure used. For each material the contribution

of the degradation term to the total CRC is shown in the

second line. As expected the degradation component is small

for the predominantly fissioning or absorbing materials. For

Al in table 2 and Ni in table 3 it is small because of com­

pensating contributions of different signs and approximately

equal absolute magnitude which appear in summing up the con­

tributions of all energy groups.

Using flux weighting, as is done in the next four lines in

table 2 and table 3, the deviation between the calculated

few-group results for the CRCs and the corresponding origi­

nal 208-group result generally increases with decreasing to­

tal number of energy groups used in the few-group calculations.

Using the two other weighting functions for collapsing to 26

groups, the deviation of the few-group results from the corres­

ponding many-group result is qualitatively the same as that

obtained when using the exact flux as weighting function for

collapsing to 26 groups. This means that the overall shape

of the weighting function has not a too pronounced effect on

the calculated few-group CRCs.Much more important is the

common fact that flux weighting is used for all three cases

shown in the last three lines of tables 2 and 3. Bilinear

weighting with exact normal and adjoint fluxes, of course,

would give 26 group results in agreement with the 208 group

results as mentioned before and as is shown in the Appendix.

From the results presented in tables 2 and 3 some conclusions

can be derived on the reliability or uncertainty which may

be expected from few-group (e.g. 26) perturbation calculations

for the CRC of a predominantly scattering material using few­

group constants prepared by normal flux weighting.
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Material Al Bll C Cr Fe Na Ni °
Uncertainty + 20% + 30% + 50% + 5% + 5% + 30% + 10% + 20%

These uncertainty ranges provide a certain guess for the possible

error of theoretical CRCs obtained in 26 group calculations

using group constants determined with flux-weighting or flux­

collapsing. For structural materials as chromium,iron, or nickel

the indicated uncertainty is probably small compared to uncer­

tainties contributed by other effects, as e.g.nuclear data un­

certainties or sample size- or heterogeneity-effects. For the

predominantly scattering materials, as Al, BII, C, Na or 0,

the uncertainty of 20 - 50 % caused by the too low number of

energy groups for the calculations with usually used flux­

weighted group-constants is quite remarkable. In the inter­

pretation of experiments and the discussion of discrepancies

between theory and experiment for CRCs of predominantly scat-

tering materials one should be aware of the possibility of such

a considerable source of uncertainty.

The reason for obtaining rather poor results in these cases

is caused by the fact that the few-group adjoint flux can not

be sufficiently well represented when its determination is

based on flux-weighted few-group constants. This disadvantage

can be eliminated by using bilinear weighted few-group con­

stants as has already been found in the preceding work /6/.

Fig. 2 shows the adjoint flux for the assembly ZPR III-48

in the energy range above I keV. In addition to the many-group

representation, two few-group representations are given. That

one obtained by using bi linear weighted few-group constants

corresponds" exactly to the values derived from the many-group

representation by averaging within the few-group structure,

whereas the other one, obtained by using flux weighted few­

group constants, deviates to a considerable extent from these

average values, especially in the energy range below 400 keV

as can be seen from Fig. 2. The differences are generally less
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than about 5 %. In accordance with this, the differences in 'the

26 group results for the neutron lifetime and for the reactivity

coefficients of fissile and absorber materials when determined

with flux weighted constants are generally less than 2 % com­

pared,to the corresponding 208 group results.

In order to explain the much larger differences in the reactivi­

ty coefficients of scattering materials we have shown in Fig. 3

the differences in the 26 group adjoint neutron flux between

adjacent energy groups (i.e. Ä$; = $;+1 - $;). These differences

are important for the contribution of the moderation term to the

reactivity coeffient as can be seen from Eq. (4a). In addition to

the exact values (Ä~;' exact = Ä$;, bilinear weighted group con­

stants) obtained from the adjoint flux determined with bilinear

weighted constants we have also shown in Fig. 4 the deviations

from these exact values which are due to using the adjoint flux

from calculations with flux weighted constants. These deviations

0; (i.e. 0; = Ä$;, bi linear weighted group constants - Ä$;, flux

weighted group constants) are rather large compared to the basic

values Ä~; itself. Especially in the groups below about 1 MeV

the absolute magnitude of the deviations is frequentlyhalf as

large as the absolute magnitude of the basic values. Therefore,

it is not surprising that the moderation term and consequently

also the reactivity coefficients of predominantly scattering

materials can only be determined within 50 % uncertainty if

flux weighted few-group constants are applied in the correspon­

ding calculations. One possible way to avoid this difficulty

or at least to reduce its importance could probably consist in

using fairly accurate approximations for the weighting functions

each time when few group constants for a specific reactor con­

figuration have to be established. In this respect the continuous

slowing down theory of STACEY /11/ and particularly the approxi­

mations given by OUNN and BECKER /13/ in the form of analytic re­

presentations for the fast reactor normal and adjoint flux are

helpful indications in which way it may be possible to obtain

sufficiently accurate approximations for the energy-dependent

weighting functions without consuming too much computer time.
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Attention should also be given to another fact which can

be deduced from the results of the present study: If the

CRC of a material has a negative sign then the reactivity

coefficient of an extended sampIe or the reactivity effect

in an off-center position may have even a larger relative

uncertainty than indicated before, because of the positive

contribution of the diffusion term which can be omitted in

our calculations of CRCs. In particular, the correct spatial

position of the change of sign of the space dependency of the

reactivity coefficient may be affected by this increased

uncertainty-range. For fast power reactors this fact may be

important for the precise determination of the spatial

area in which the sodium void coefficient has a positive sign.

As already discussed by PITTERLE 110/, bilinear averaging

should be preferred to flux averaging also in those cases

where the weighting functions are not known exactly. This

suggestion has been checked in the present work for a few

test cases using as weighting functions the normal and adjoint

fluxes of the SNR composition. In addition to the collision

density weighting FSNR/~tot' where ~tot is the fine group

representation of the total cross section of the specific

mixture considered, we have tried for group collapsing to

26 groups in a few cases two different weightings: using

~SNR and using both ~~NR and ~SNRi i.e. flux weighting with

the fine group fluxes for the SNR-composition and bilinear

weighting using fine group fluxes and adjoints for the SNR­

composition. In almost all cases studied the results for

ke f f, 1 and CRCs obtained with the FSNR/~tot weighting have

been found to be slightly superior to the results obtained

with the two other weighting functions. The results with

these two latter weighting functions have been found fairly

similar. It was particularly interesting for us to note that

using approximate weighting functions practically no improvement

could be obtained when using bilinear weighting (i.e.~~NR and

~SNR) instead of flux-weighting (i.e. ~SNR) for the quantities

considered here namely k e f f, 1 and CRCs.
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This somewhat surprising fact is illustrated in the following

table 4

Table 4 26 group results obtained by group collapsing,

normalized to the corresponding basic 208 group

results.

ASSEMBLY

SNEAK 3A2 ZPR III-48

weighting

functions Quantity Quantity

keff 1 CRC (CI2) CRC (016) keff 11 ICRC(CI2
!
!

FSNR/};t 1.0024 1.0039 0.7347 0.9851 0.9983 0.9864 1.5445

;

<P SNR 1.0016 0.9945 0.6344 1.1163 0.9980 0.9660;1.5767
I

<P SNR ' I
+

1. 0058 0.9946 0.6498 1. 1847 0.9980 0.9706 !1.4258
<P SNR

I

The reason for obtaining essentially no improvement upon using

bilinear weighting instead of flux weighting when the weighting

functions are only approximately known is that the approximate

adjoint flux is in our case fairly dissimilar to the correct

adjoint flux if one considers its fine-group energy dependence

within one coarse group of the 26 group structure (the global

energy dependence of both, of course, shows some similarity).
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This means that using an adjoint flux which is a too crude ap-'

proximation to the correct one,one can not expect any considerable

improvement compared to taking an adjoint flux equal to unity

which is equivalent to the usual flux weighting.

In Fig. 5 are compared the adjoint fluxes obtained for the central

zone of the SNR and for the assembly ZPR III-48. In each of the

14 coarse groups the adjoints are normalized to unity so that

the different energy dependence within one coarse group becomes

evident, especially the discrepant behaviour in the coarse groups

6 - 10, i.e. in the energy range 20 keV- 1 MeV which is most

important in fast reactor calculations. Fig. 6 shows the analogous

comparison between the adjoint fluxes for the central zone of the

SNR and for SNEAK-3A2. Both figures demonstrate that with respect

to collapsing to coarse groups,~+ (SNR) is fairly dissimilar to

both ~+ (ZPR III-48) and ~+ (SNEAK-3A2). This is in accordance

with the results presented in Table 4 that practically no im­

provement could be obtained by using the approximate weighting

function ~+ (SNR) for collapsing of group constants subsequently

used for the calculation of ZPR III-48 and SNEAK-3A2, respectively.

One may expect that the superiority of bilinear weighting compared

to normal flux weighting becomes more apparent if the number of

energy groups in the few-group scheme is further reduced,

i.e., using less than 26 coarse groups. Fig. 7 shows that

above about 1 MeV the global behaviour of the three adjoints

is fairly similar whereas below 1 MeV the energy dependence is

quite different. Therefore we tried to collapse the energy range

above 0.8 MeV into one coarse group. Together with the normal

ABBN group structure below 0.8 MeV this leads to a total of 22

groups.
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22 group results obtained by group collapsing

normalized to the corresponding basic results.

ASS E M B L Y

Iweighting SNEAK-3A2 ZPR 111-48

function Quantity Quantity

keff 1 CRC CRC keff 1 CRC
(C12 ) (016) (C12)

</>SNR 1.0004 0.9994 0.5601 0.7665 0.9972 0.9700 2.0201

+ 1.0057 0.9973 0.6616 1.2261 0.9977 0.9728 1.4815</>SNR' </>SNR

The results presented in Table 5 indicate that in this case bili­

near weighting indeed is superior to the normal flux weighting. The

22 group results with bi linear weighting in this case show approxi­

mately the same deviations from the 208-group results as those

obtained for the 26 group results presented in Table 4 whereas

with normal flux weighting the 22 group results, as could be

expected, show larger deviations from the corresponding 26 group

results, which leads to an increasing disagreement with the

original 208 group results for the reactivity coefficients.

These results underline the condition that the approximate

adjoint weighting functions have to be fairly similar to the

correct adjoint weighting functions in order to obtain improvedre­

sults with bilinear weighting when approximate weighting func­

tions are used.

We have also studied the merits of the combined weighting, which

is also sometimes called consistent weighting (see e.g.
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GREENSPAN /14/). Table 6 shows the results for some fairly sen­

sitive quantities obtained by collapsing from 208 to 26 groups.

As before/we have used the approximate weighting functions for

the SNR composition. No major improvements can be found compared

to both normal flux- and bilinear- weighting. This result is not

in agreement with that one obtained by GREENSPAN. The reason

is probably that, contrary to GREENSPAN, we have used rather

crude approximations for the weighting functions which are

fairly dissimilar to the correct weighting functions for the

two compositions studied. Especially the adjoint fluxes show

a remarkably different energy dependence below about 1 MeV

as discussed before. This is, e.g., illustrated by the fact

that using ~~NR as weighting function for adjoint weighting

within the procedure of combined weighting we obtained

rather poor results for the criticality in the subsequent

26-group calculations for the coarse-group adjoint flux: for

SNEAK-3A2 we are off by about 1.4 %, for ZPR 1II-48 by about

0.3 %. Both deviations are larger than the corresponding values

with flux- and bilinear weighting.

Table 6 26 group results obtained by flux-, bi linear­

and combined-weighting, normalized to the

corresponding basic 208-group results.

ASS E M B L Y

Iweighting

ISNEAK-3A2 ZPR 1II-48

i
I

1Ike f f 1 CRC CRC I
keff CRC

I
(CI2) (016) I (C12 )

i I

F'lux 1.0016 0.9945 0.6344 1.1163 1 0.9980 0.9660 1.5767

:

ßILINEAR 1.0058 0.9946 0.6498 1.1847 10.9980 ! 0.9706
,

1.4258
i

,

! ,
~OMBINED 0.9844 0.5611 0.9557 , 0.9701 , 1.3956

I·
r I
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5. Summary

The results of this work indicate that the usual 26 group ca1­

culational procedure for determining reactivity coefficients

in fast reactors may lead to appreciable deviations from more

refined treatments with better energy resolution. This state­

ment especially holds for predominantly scattering materials

such as structural materials or the coolant material sodium.

Deviations of 30 - 40 % have been obtained for C12 if the ap­

propriate normal flux weighting is used to prepare the group

constants for the 26-group scheme. It has been shown that these

deviations are essentially due to discrepancies in the adjoint

flux obtained with flux weighted coarse group constants.

In those cases where the appropriate weighting flux is not known

precisely and an approximate weighting flux has to be used in­

stead of the correct one, the deviation may become even larger.

The central sodium void coefficient may become inaccurate by

about 30 % in that case.

If the appropriate normal and adjoint weighting functions are

available, bilinear weighting turns out to become highly pre­

ferable compared to normal flux weighting.

If the normal and adjoint weighting functions are not known

accurately and some approximate functions must be taken instead

of the correct ones, biline~r weighting does not generally lead

to improved results. Only if the approximate adjoint function

is fairly similar to the correct one, some improvement may be

expected by using bi linear weighting.

The same statements apply to a modified weighting procedure,

called combined or consistent weighting, which has the additional

drawback, compared to flux- or bilinear-weighting, that three

different sets of coarse group constants have to be established

and handled for the coarse group calculations.
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As a conclusion of the present work we have found that one has

to be cautious in the interpretation of calculated results

for reactivity coefficients of predominantly scattering

materials in fast reactors and eventual discrepancies to

corresponding experimental results because the usual 26 group

calculational procedure may not in all cases be considered

to be sufficiently reliable as has been shown in the preceding

chapters.
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6. Appendix

Comparison of the collapsing procedures (P2) and (P3) and

comparison of the derived few-group results with the corres­

ponding many-group results in the case of fundamental mode

calculations.

The following considerations and conclusions can partially be

found in the work of PITTERLE /10/ too. They are included here

for the sake of a complete and comprehensive presentation. We

start from equation (Al) and its adjoint (A la) which are con­

sidered as many-group (MG) representation for the following.

(Al) i 2
D ·B • efl i

(Ala)

Di.B2• efl: + Ei • efl: =]. t ].

These forms are more general than equation (1) and can be

handled easier in the following, because the in-group scat­

tering is included on both sides of the equation but has

been .omi t.t.ed in order to obtain equation (1). By collapsing

to fewer groups we obtain the analogous few-group (FG) repre­

sentation:
(A2 )

D
1.B2·efl

I + E~'eflI =

(A2a)

D+~ B2·efl+ + E+1·efl+ =
I t I

S E+I +J + 1 (v Ef) +I • S +J +
J 'efl J + k~G • J X • efl J
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We assume for the following that the number of coarse groups

is larger than one because for only one coarse group it is

no longer meaningful to speak of a few-group formalism. This

case would correspond to the case of mono-energetic neutrons,

so that some of the following considerations especially with

respect to degradation - or moderation effects are no longer

applicable as is e.g. mentioned in 17a/.

The criticality values in (A2) and (A2a) have been given

an index to indicate that they are representative of the FG

result. Furthermore they are distinguisted from each other,

because it is not evident apriori that they should be

identical. The same applies to the FG constants.

Using the MG fluxes and adjoints we define the following

usual FG quantities which are correct in the sense that

they correspond to the correct integral and average values,

respectively,of the MG results.

(A3 )

(A3a)

<j> =I S
ie::I

(The summation is extended over all groups i which are

collapsed into the coarse group I; 6ü. is the lethargy width
1.

of group i)

Using the collapsing procedure (P2) with bilinear weighting

we obtain the following definitions of the FG constants

(see also e.g. 110/):
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01 0+1
S ~~ Oi /

N+
~1= = • • ~i ~1

.
ie:I 1

EI E+ I
S ~~ Ei /

N+
~I= = • • ~i ~I •t t ie:I 1 t

(A4) I +I
S

i
~~ /

N+
X = X = X ~I

ie:I 1

I (VEf)+I i
/(vI: f) = = s (VE f) • ~i ~I

ie:I

J-+I +J-+I
S S ~~ Ej-+i

~j /
N+

~JE = E = • • ~I •
je:J ie:I 1

1nserting these definitions into (A2) and (A2a) it can be

easily verified that these eigenvalue-equations are satis­

fied if

+= k FG = k

(A5) and

~I = ~I and ~;

This means that for the fundamental mode problem the collapsing

procedure (P2) with the above mentioned definitions (A4) of the

FG constants leads to solutions of the FG equations which

produce:

a) an eigenvalue identical to that of the MG equation.

b) neutron fluxes and adjoints which agree with those collapsed

from the original MG solutions.
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This equivalence of both collapsing procedures of course is

only valid, if the exact solutions in the MG-representation

have been determined in advance and are then used as weighting

functions for group collapsing.

Using the collapsing procedure (P2) for the generation of the

FG constants it is fairly easy to see that the FG reactivity

coefficients defined in an analogous manner to equations (2)

to (4a) are in exact agreement with the corresponding quanti­

ties obtained in the original MG representation: because of

the definitions given in (A4) and the equivalence established

in (A5), each term in the FG-representation of the reactivity

coefficient is in exact agreement with the corresponding term

in the MG-representation. Therefore, as should be demonstrated,

the FG-reactivity coefficient is equal to the corresponding

MG-reactivity coefficient provided the collapsing procedure

(P2) is applied for the generation of the FG-constants.

It is also fairly easy to show that for the fundamental mode

problem both collapsing procedures (P2) and (P3) lead to

identical results for the FG-reactivity coefficients:

The collapsing procedure for the group constant differences

(0 L FG) in the FG-representation is identical in both cases.

The flux weighting for the FG-constants used for the calcu­

lation of the FG-neutron flux ~FG corresponds to taking ~r = 1

in (A4) and (A3a). As is plausible from physical reasons, and

can be shown easily in a rigorous manner the flux determined,
as solution of the FG-equation using the FG-constants derived

in the above mentioned collapsing procedure is equal to the

corresponding result obtained upon collapsing the original

MG solution for the neutron flux. It should be pointed out,

however, that the FG-constants obtained by flux-weighting are

definitely different from those obtained by the bilinear

weighting procedure (P2) and furthermore, although the FG­

flux agrees with that obtained using bilinear weighting,
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the corresponding FG-adjoint generally is definitely different

in the two cases. Therefore the adjoint obtained upon using

flux-weighted FG-constants in the adjoint FG equation does

no longer agree with the average of the corresponding MG

result as defined in (A3a).

The adjoint flux weighting is similar to the flux-weighting

just mentioned and corresponds to taking • i = 6 ui in equa­

tions (A4) and (A3). In the same way as for the flux-weighting

it can be shown that the FG adjoint flux obtained as solution

of the FG adjoint equation using the FG-adjoint weighted

constants is equal to the corresponding result obtained upon

collapsing the MG result according to (A3a). In general the

FG adjoint weighted constants are different from both the

flux weighted and the bilinear weighted few-group constants.

The FG flux obtained as solution of the normal FG equation u~ing

adjoint weighted FG-constants generally differs from the corres­

ponding result (A3) of the MG representation.

Summarizing the results presented in the Appendix we have

shown that for the fundamental mode problem:

a) the two collapsing procedures (P2) and (P3) lead to the

same results with respect to the few-group results for the

normal and adjoint neutron flux and for the reactivity

coefficients

b) these few group results, just mentioned, are in exact

agreement with those considered to be correct because

they are derived directly from the corresponding many­

group solution.

c) as could be expected the three different kinds of collapsing

using normal flux, adjoint flux and bilinear weighting,

respectively, yields different results for the few-group

constants
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d} the solution of the adjoint few-group equation with

flux weighted constants does provide an adjoint flux

which is not in agreement with the corresponding correct

result obtained by collapsing the many-group adjoint flux

e} the analogous statement holds for the solution of the

normal few-group equation with adjoint weighted constants

which does not agree with the corresponding correct flux

obtained by collapsing the corresponding many-group solution

f} the bilinear weighting, however, produces the correct

normal and adjoint few-group fluxes.

It should be stressed, however, that bi linear weighting is not

the appropriate procedurerif few-group reaction rates are to

be determined accurately. This has already been reported,

e.g., in /6/ and /10/. In this case, normal flux weighting

of course will provide the best results. This statement is

valid only for the collapsing procedures considered here.

However, using specially suited adjoint functions as is done

in generalized perturbation theory and in variational methods

(see e.g. /15/), it is possible to achieve collapsing procedures

which are superior to normal flux weighting for the special

pu~pose of determining reaction rates or reaction rate ratios

in few-group calculations.



- 30 -

AC KNOWLEDGEMENT

The author would like to thank Mr. J. Braun for his assistance

in the numerical work and Mr. D.I. Broeders and Mr. D.P. Thiem

for their help in the preparation of the computer drawings.



7. Referenees

/1/

/2/

/3/

/4/

/4a/

/5/

/6/

/7/

/7a/

/8/

/9/

/10/

- 31 -

W.W. Little, Jr. and R.W. Hardie: Nuel. Sei. Eng.

36, 115 (1969)

R. Böhme et al.: Reaktortagung, Bonn, 30.März ­

2. April 1971, Tagungsbericht p.114

E.A. Fischer: KFK 995, EUR 4301e (1969)

W.J. Oosterkamp: KFK 1036, EUR 430ge (1969)

M. Heindler: Acta Physiea Austriaca, 33, p. 349 (1971)

E. Kiefhaber: Nuel. Sei. Eng. 38, 178 (1969)

E. Kiefhaber: KFK 882, EUR 4161e (1968)

T.A. Pitterle et al.: Proe. of the 2nd Conf. on

Neutron Cross Seetions and Teehnology, Washington,

D.C., March 4-7 1968, p. 1243

W.W. Little, Jr., R.W. Hardie: Nucl. Sei. Eng. 29,

402 (1967)

W.G. Davey: ANL-7320, p. 57 (1969)

H. Husehke et al.: Reaktortagung Bonn, 30. März­

2. April 1971, Tagungsbericht p.ll0

T.A. Pitterle: Bilinear Averaging for Diffusion

Theory Parameters, Phil. Diss., University of

Wiseonsin (1965)



/11/

/12/

/13/

/14/

/15/

- 32 -

W.M. Staeey Jr.: Nuel. Sei. Eng. 41, 381 (1970)

B.J. Toppel, A.L. RAGO, and D.M. O'Shea:

"MC 2, A Code to Caleulate Multigroup Cross

Seetions", ANL-7318 (1967)

F.E. Dunn and M. Beeker: Nuel. Sei. Eng. 47,

83 (1972)

E. Greenspan: Trans. ANS 10, 583 (1967)

W.M. Staeey Jr.: Nuel. Sei. Eng. 48, 444 (1972)



COLLISION DENSITY

F(u}

15

u- 10·0

..NGR

LETHARGY5-0

o COLLISION DE"NSITY

COMPOSED OF

C·X(u) AND 1.0

CORRESPONDING TO

C·X(E} AND tfE

o COLLISION DENSITY OF THE

CENTRAL ZONE OF THE SNR

105

tf)
I-

Z
:::I

>­
oc
«
oc
l-

m
oc
«

4·OC-Oi

1-2E 00

8·QE-Ol

Fig. t: Comparison of different collision densities



1·25

1·20

<1> % ADJOINT NEUTRON FLUX

FOR AS SEM BL V Z PR 1[-48

1·15

1·05

1·00

0·95

0·90

0·85

FINE

/
GROUP REPRESENTAT ION

COARSE GROUP REPRESENTATtONS

OSTAINED WITH COARSE GROUP

CONSTANTS DETERMINED SV

A) BILINEAR (<l>+4» WEIGHTING

B) NORMAL FLUX (4)) WEIGHTING

E[MeV]
•

l·OE 001·0E-03 1·0E-02 l·DE-Ol

7 5 3
NGR

1-

l·,OE 01

Fig,2: Energy dependence of adjoint neutron fluxes



0-14

0-12

0·10 ßJ-----I!J

0·00

O·(l)

0-04

0-02

RE5UL T5 OBTAINED WITH

COAR5E GROUP CON5TANT5

DE1ERMINED BV

A) BILINEAR (<t>+ <t» WEIGHllNG

B) NORMA L FLUX (<t» WEIGHTING

E

1· 03 1-OC-02 1· 01

-0-02

-0·04

-o-a.;

-0·00

-0-10

-0-12

-0-14

-0-16

Fig~ 3: Differences of adjoint fluxes

-Cf 01 MeV



0-00+

+A +
O-iO-ar~_...fi)/~<I> I = ~<I>l. EXACT

=~ <t> ~. BILINEAR WEIGHTED GROUP CONSTANTS

r

0.06 f-

0.04 f-

0·02-

i·CI 03

-0·02-

-0·04 ­
1ll---i!J

1·CI 02

\
D+ = ~<t>+A _ ~<I>+B

I I I

.L' f'L. lA

E
I

~Oi MeV

-O-(lj
(~ <1> +B - ~ <1> +

1 - I.FLUX WEIGHTED GROUP CONSTANTS)

-0-00 f-

I r----I

-O·iO f-

I r----ol

-0·12
lil---€>

f-

-0.14 f-

-0,16 I 13 I I 11 I I 9 I I 7 I I 5 I 1 3
1 I 1 1-:--1

Fig. 4 : Comparison of adjoint flux differences



es
...-l

~.
..-l

H

L'>'
11I

6
w

I
U1

8
~
~

~

a.
::J
0...
Ol

11I
VI...
0
0
U

..-l
s:

0 o
I 0

~ 11I

~ C.-
rn >.-c

::J

0

"0
11I
N

0
E

;:l
...
0
c

~
I VI
~ -
~

c
0

::J
.~

"0
<3 0

H

(J).~ a.
::J

............... 0...
~ Ol

::J
+ .- <3 11I

Ce- + .-
B- u,

(J)'i;;
LO

rn Ol
0

I u,

ru 0 ~ ~
..,.

~ 8 s:l lfl
..,. ~

...-l ...-l 0 cn ~. . . . . . . . . 6...-l ..-l ..-l ..-l ..-l ..-l ..... 0 0



t·12

1·10

1-08

1·a;

1·04

1-0~

1·00

0-98

0-96

0-94

O-g,

1-0E-03

ct>~
I

s e' ßu.jSßu o

ie I I I ie:! I

1-0[-02

SNEAK-3A2

\

9

1-0[-01

7

i-OE 00 -E [MeV] 1-OE 01
Fig. 6: Fine group adjoints. normalized to unity in each coarse group I



Fig. 7: Fine group representation

1-25~ oll;

1·20

i·15

1·iO

i·05

1·00

0·95

0·90

O·Efj

0·80

i·QE-03 i·CE-02

SNEAK-3A2

/

I~·

5 . 3

i·CE-Oi i·CE 00 -- E[Me VJ .
of adjoint fluxes for SNR. ZPR J[-48. SNEAK-3A2

i·CE 01




