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Abstract

The existence of a positive, greatest, single and unique
eigenvalue is proved for the discrete form of the multi-
group diffusion equations and for the discrete multigroup
Boltzmann equations; the convergence of outer iterations

may be concluded. The following assumptions are made:

1) A neutron introduced at any point in the reactor
may diffuse to all locations of the assembly (i.e.
the diffusion regions for all energy groups are
the same).

2) Only downscattering is permitted

3) The fission transfer matrix is multiplicative.

Then a necessary and sufficient condition is derived for
the existence of a greatest single eigenvalue (k-effective)

and the corresponding non-negative eigenvector (neutron
flux).

Sdtze liber Eigenwerte der diskreten Form der Multigruppen

Diffusions~- und Transport-Gleichung

Zusammenfassung

Flir die diskreten Multigruppengleichungen der Diffusions-
und Transporttheorie wird die Existenz eines groBten, re-
ellen, positiven und einfachen Eigenwertes mit einem zuge-
hrigen nichtnegativen Flufvektor sowie die Konvergenz der
duBeren Iterationen bewiesen. Dabei werden folgende Annah-

men gemacht:

1) Der zu berechnende Reaktor besteht aus nur einem
Diffusionsgebiet

2) Es gibt keine Aufwdrtsstreuung

3) Die Spaltguerschnitte sind multiplikativ (d.h.

° K
xg VO f).
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Introduction

When the diffusion- or transport—-equation is substituted
by consistent difference equations, the steady state neu-
tron reactor problem leads to a matrix eigenvalue problem

A x = e F x

1
A
It is of interest to know under what conditions the great-

est eigenvalue A (k-effective) is real, positive and single.

In 1958, G.Birkhoff and R.S.Varga (/1/) proved an existence
theorem for the diffusion theory problem. They assumed the
physical problem to be transitive {(a neutron of any energy
has non-zero progeny at all energies and locations), which

implies A~1 to be irreducible.

In 1968, R.Frbhlich (/4/) replaced the conditions of transi-
tivity by some weak conditions of connectedness which he
showed to be sufficient and necessary for the existence of
unique positive normalized eigenvector and a corresponding
single positive greatest eigenvalue. The diffusion theory
problem he considered was permitted to include arbitrary

up- and downscattering and a non-multiplicative fission

transfer matrix.

In this paper it is shown that, if the fission matrix is
multiplieative (i.e. with elements Xg-(vof)k) and only
downscattering is permitted, if furthermore the diffusion
regions are ildentical with the reactor assembly for each
group, the greatest eigenvalue A is positive and single,
provided that not all eigenvalues are zero. Contrary to

/4/ the corresponding neutron flux is not strictly positive
(i.e. it can have certain zero components). The existence

of non-zero eigenvalues depends on a graph theory condition

Zum Druck eingereicht am 15, Midrz 1973



which can be described as follows: Associate each energy
group g with a geometrisfl point Pg and connect P; with
Pj by a directed line Pin if neutrons located anywhere
in the region may change their energy by fission or scat-
tering from energy group i to energy group j. If and only
if there is at least one closed path, a greatest single

=

eigenvalue exists with a corresponding eigenvalue x 2 o.

In section I this is shown for the diffusion problem.
Section II is concerned with the transport theory problem.
Finally, in Section IV the Diamond Difference Scheme
(/2/) for the numerical solution of the transport problem

is treated as an example.

I. The Diffusion Equation

Section I is concerned with the diffusion equations, a

system of second order elliptic partial differential

equations:
(1) -D A29+0999- Z o @k =1 % X -v-ok-ék
g t Kk€g k+g Ak=1 g f
with boundary conditions
g
00 959 _
(2) st a0’ =0

where n is the outward directed normal. We suppose all
the coefficients to be non-negative. Our aim is to find
the greatest eigenvalue A and its associated solution
®.A is a measure of the reactivity of a reactor whose
materials are specified by the non-negative coefficients
of Eq. (1).



2. Matrix Equations

The numerical solution of (1), (2) may be performed by sub-
stituting Egs. (1) and (2) by consistent difference equations
defining approximations 52 for discrete lattice points
(/5/). If Ug is a vector containing all the discrete values
5? for each group index g, from (1), (2), we obtain the

matrix equations

G
1
3 T -S u = = F.ou, + S .u
3) Tg8gg) U klxgk;kk kzggkk
(g = 1l 2] .7 G)
where 5i+
g X 0
_ o
(4) Sgk = k+g
0 © I
Ok+g
k
(\)of)1
k
(5) F = (Vog)y 0
O *
(Voe)
our assumptions yield:
= . 2= . =
(6) Sqk 501 Fi E0; x EO



We further assume that

(7) (Tg —“Sgg) >0 (g=1,2, ... G)

The physical meaning of (7) is that if any neutron with
the energy of group index g enters the region, it may
diffuse or be scattered to all locations of the space.
If T;1>O (i.e. neutrons may diffuse to all locations)
and the greatest eigenvalue of T;1Sgg is less than 1

(mostly satisfied if o < 0 then

grg® T¢)

-1 % = i1
T - S = °
( g gg) -Z (Tg Sgg) Tg
j=o0
and (7) is valid.

The matrix equation (3) may be written more compactly if

we define the vector

vV = (u1, Ugr eeer uG)'
and the matrices
(T1 - 544 0
(8) A= - 8)4 (Ty = 8y5)
- 834 - S35 (Ty = S33)
- Sg = Sgy reeeeereeeaans (T
(9) B= Xy 1 0
0
I



F1 Py Fa
F, F F
Fe 1 72 G

F1 F2 . FG
Then, from (3) we have
(10) Av = % BEv
It is easy to show that

Aq

. Byp Byp °

(11) A = A A

G1 G2 GG
with
_ _ -1
(12) Aii = (Ti Sii) >0
and

(13) Bivk,i= L

A s A
1=q,<qy<. . g, =17k 9n9n 9n9n-1 9n-19n-1

s A A s A
dp-19n-2 9p-295-2 dpdy d29q 9999

=
and, consequently, Ai+k,i = 0



i
<1 = >s.
Lemma 1.1 1) Let Tgk sgp Ok+g and r>s. Then,
A,.g>0 if and only if there exist some

integers S=q,<q,<g,<...<g_=r such that
1°92%d3% - - %9y

T v e e >
(15) dn9n-1 an—1qh-2 Tq2q1 ©

2) A,g>0 or A, =0

Proof: If each qu in any term of the sum (13) has at least

one diagonal element Op+g>o’ we have A >0 with re-

S A
949 9p PP
gard to (12) and, consequently,Ai+k,i>o. Thus, if (15) is
satisfied for some integers d4 s Aypg>0. On the other hand,

if A,g>0, there must be some matrices

S__ f o; 0} «o., S f o,

S
qnqn—1$ d2s

which implies (15).

Obviously, A__Zo if and only if all possible products (15)

rs
are zero (i.e. there exists no "matrix chain" Srq $o;
n

sqnqn_1$o;..., sqzs$o).

The geometrical interpretation of Lemma 1.1 by the graph
theory is useful. Consider G points P1,P2,...PG in the
plane. If Tgk>o, the points Pk and Pg may be connected

by a directed path from Pk to Pg' We shall say that there
is a path from Pi to Pj if there exist some integers
i=q1<q2<...<qn=j such that each directed path P_ P exists.

q; 94
For example, in Figure 1 * 141

1 2 3 4 5 6
\\_J,ﬂ\\\\_‘——////
fig. 1

a path from P, to P_. exists.

2 5



Lemma 1.1 implies then: A . >0 if and only if there exists
a path from Ps to Pr'

The physical meaning of Lemma 1.1 is: A__>o if and only

rs
if each neutron being located anywhere in the reactor
and having the energy of energy-group s, may be trans-
ported by diffusion and scattering to any point of the

reactor having the energy of energy-group r afterwards.

We obtain from Eq. (10) :Using (11),

(16) Mev = Aev
with
E,]'F1 E,]'F2 . E,]'FG
E,*F, E.,+*F .. E. *F
(17) M= 2 71 2 "2 2 °G
EG'F,| EG.FZ . EG.FG
and
18 E.= A + A, + ... + AL
(18) 37 X1%31 T X2Ty2 %3753
From Lemma 1.1 we have
E. > E. =
(19) . o or 3 o)
(20) Ej>o if and only if (a) or (b) is true:
a >0
(a) X5
(b) In a graph (see Fig.1) there exists at

least one path from a point Pi with i<j

and xi>o to Pj’



3. Mathematical Theorems

Matrix M from (16) may be transformed to some "normal forms"

which are given by (21):

(21a) M1=(A o)
B 0

(21b) M,= (A B)
0 0

(21¢c) M3=(M2 O):

where A is quadratic and Ao, Béo, C20. A is an irreducible

matrix and satisfies the assumptions of

THEGREM 1.1 Let A2o, irreducible and Ax=\x; x20; xfo.

Then A=p(A) is a single eigenvalue and x>o.

Here p(A) means the spectral radius of A (=|Apax]|) -
x>0 means that each coordinate of x is greater than zero.

This theorem was proved by Perron and Frobenius (/3/,/8/).

THE@GREM 1.2 If Mj (j=1,2,3) are defined by (21) and if

AZo; B20;C20, the following statements are

true:
(1) If M.x.=A.X.: xjio; then A=0 or A is an

J37J) 173
eigenvalue of A.

(2) p(My) = p(My) = p(My) = p(A)



3) If A i i ducible; M.xX.=A.X_.;
(3) is irreducible ij ij

.=p (A) is a single

N to. )
X.20; xj$o, xj+o, XJ

J

eigenvalue.

The proof is simple. If, for example, M1x1=>\1x1 and x1$o;

then Ax%= k1x%; Bx%=%1x% and (1) is valid. The same is
true for M M

or Ma. (3) follows from (1), (2) and theorem
1.1.

Some properties of a matrix structured like (17) are

specified in

THE@GREM 1.3: Let E., Fj (j=1,2,...G) be nxn-matrices with

J
a) E.»>» or E.=o
J J
b) F.;o
J

c) M= (EiFk) (see (17))

Then there exists a permutation matrix P such
that PMPT adopts one of the following "normal
forms":

(1) PMPT=Mj (§=1,2,3) with A irreducible

(see (21))

(2) PMPT=0

(3) pmpT>o

T_[A 0)
(4) PMP —(é Ol)

with A= (nxn) and A=o.

(PT=transposed matrix)

Proof: If MZEo or M>o, (2) and (3) will be accepted. Let
Let Mfo and M}o. Then M contains an entry m; y=0. Thus,
Em-Fn = (§ eijfjk) contain o and ; eijfjk=o for at least
one i,k. From a) it follows that éither ei.>o and thus

fjk=o for all values of j, or eij=o for all values of j.



Consequently if mij=o, mij=o for all values of j or

mij=o for all values of i. Thus, if M has an entry o,

then the column or the row defined by the entry is zero.

Case 1: M has no zero-columns. Then a permutation matrix
P may be chosen such that all the zero-rows are trans-
ported to the bottom of the matrix and PMP =M with

2
A>0 (irreducible)

Case 2: M has no zero-rows. Then P may be chosen such
that all the zero-columns are transported to the right
side and PMPT=M1 with A>0 (irreducible)

Case 3: M has zero-rows and zero-columns. First a

permutation matrix P, may be chosen such that

P MPZ = M1 (see (21a))
If A=o, we have (4) of theorem 3. A D
If Afo, we chose P_ such that PrAPg = ( ;1 ()) with

A11>o. (This is possible because A has only zero—-rows).

~ Pr 0
Pr = o I it follows

For

~ TaT . . .
PrPcMchr = M3 with A11>o (irreducible) .

THEPREM 1.4 Let Ej’ Fj satisfy the assumptions of theorem

1.3, in addition, let

Mx=Ax; x20; xfo

Then

(1) A=o0 or A=p(M)>0

(2) p{M)>0 is a single eigenvalue

(3) A>o if and only if there exists a j
such that E,>o and Fj$o.



Proof: From theorem 1.3 it follows that A=o if the "normal
forms" (2) or (4) are adopted; otherwise A=p(M)>0 is a single
eigenvalue (see theorem 1.2). It remains to prove (3). Let
A=p (M)>0 and for all values of j:Eon or Fon. Then for
each j M has a zero-column and a zero-row, respectively.
Then, det (AI-M)=+\" and p(M)=o are in contradiction to
the assumption. If, conversely Ej>o, Fj$o for at least

one j, then Ej-Fj has a positive diagonal entry, and so

M has at least one positive diagonal entry. Consequently,
M may be transformed to the "normal forms" (1), (3) of
theorem 1.3 only which have none-zero positive eigenvalues.
From theorem 1.2, (3) it follows that p(M)=A is a single

eigenvalue.

4. Existence Theorems

The numerical formulation of (1), (2) was given by (see(3))

G
1
T =S = = F + S

where Sgk’F are defined by (4), (5) and

k

> >
S = =

gk 0; F

k O.

We further assumed:

_.1 _é
T >0; T <1
g "0 P{TgSgq)

or
(T - s_ ) Tso.
g~ “gg

On these assumtions we immediately obtain from theorem 1.4



THEPREM 1.5: If ugio and u fo for at least one h, if
further A$o, then

(1) A is real

(2) A>o

(3) A is the greatest eilgenvalue
(4) X is a single eigenvalue.

The question whether A>0 exists can easily be answered by
the graph-theory. In (20) it was stated that Ej>o if and
only if either Xj>o or if a path exists from a point Pi
with i<j, Xi>o to Pj. We now extend the concept of our
graph by drawing an additional directed path from Pr to
Ps if XS-(voff5o for at least one special point. (i.e. if
Xs>o and Fr$o). If Xk(vof)k>o, we combine P, with itself
as shown in Figure 2:

k

1 2 3 4 5 6
\//’
Figure 2.

If G(M) is the graph of M in the meaning of Fig.2, we say
that G(M) contains a closed path, if for at least one point

Pj a path combining Pj with itself exists.

From (20) we get the equivalence of the two statemants:

(1) There exists a j such that Ej>o and Fj$o

(2) G(M) contains at least one closed path.

From this and from theorem 1.4 it follows immediately:

THEPREM 1.6: On the assumptions made in theorem 1.5 the

greatest single eigenvalue A>0 exists if

and only if the graph G(M) contains at least
one closed path.

If no closed path exists, all eigenvalues of

M are zero.



The physical meaning is clear: Neutron having changed
their energy due to fission must be able "to return" by
scattering. If no path exists, no neutron circulation
occurs and the multiplication factor is zero. If neutron
circulation exists, the greatest eigenvalue is real,

positive and single.

II. The Transport Theory Problem

Section II is concerned with the linear Boltzmann equation

(1) a.ved + ogég - k;g Ok—*gwk - % kixg(\)gf)kwk

with 29 = 09 (r,q)

(2) e =f®g(r,m @

r is a space vector and § is a direction vector with||Q[|=1.

9?9 is the neutron flux dependent on space, angle and the
energy-group~index g. The integral (2) is extended over the
unit sphere, ¢ and A (= k-effective) exist if some boundary
conditions are defined. They usually are given in one of

the following forms:

(3a) Vacuum: @g(r,Q)=o for Q+en<o if n is an outward
directed normal vector on the boundary.

(3b) Reflexion: @g(f,ﬂ1)=®g(?,ﬂz) if 92 is the direction
of neutrons having been reflected at
the boundary.

(3¢) Periodicity: 09 (%,0)=09 (¥+a,0), if T and ¥+a are
boundary points and a=(lX,O,O)' and
a=(0,1_,0)' and a=(O,O,lZ), respec-

y
tively, (d=diameter of the reactor).



2. Matrix Equations

For the numerical solution of the eigenvalue problem

(1), (3) by the difference method we substitute the so-
lution @g(er) by a set of function values ®g,ﬁv®g(ri,9m)
(i=1,2,...,1I; m=1,2,...,M). The discrete directions Qm

may be chosen such that
g =Tol T g
(4) }@ (r,Q)dQ =~ W q)i,m
m=1
with suitable associated weights wm;o. We assume Zwm=4ﬂ
(see /5/,/7/). Substituting (4) into (1) and replacing

the left side of (1) by consistent difference equations
(/2/,/5/), we obtain, observing (3):

G
1 .
(5) (T =S _Ju_ ==Y ) Fu, + ) S .,u
g 499" ¢ A g k=1 k k k<g gk 'k
where ug is a vector with
— g ., &9 g9 g g g
ug = (@1,1, ®1,2""’®1,M,®2,1,'"’®1,M,"'®I,M
and Sgk’ Fk are block matrices
W1
s
2
B W 0
(6) Sgk ]
(0] .
WI
S
1
We
W2
f 0
(7) Fk=
0 .
WI



with
i i i
Ok+g W1 0k+g W2 . Ok+g'WM
i_ i, i, i,
(8) WS— Ok+g W1 Ok+g W2 . 0k+g WM
1‘ i i o
%+g" W1 Tksg W kg Wy
(vo )iW (vo )iW (vo )iW
£ £ 2 °° £ M
i i ' i i
(9) Wf— (\)Of) W1 (Vaf) W2 (VOf) WM
i i i
(vcf) W1 (vcf) W2 (vcf) WM

Tg igs a (I*M)x(I+<M)-matrix (difference operator). We

make the following assumption:

>
(10) Sgk = o
(11) F) 2 o
(12) X = ©
_ -1
(13) (T, = 8.7 >0

(10), (11), (12) imply the positivity of the cross—-sections.
(13) guarantees that a neutron of energy g may travel
everywhere by diffusion or by scattering. As we have

assumed an isotopic scattering, this assumption is physically

convenient.



Matrix Equation

(5)

define the vector

u, \
Uy
V:
U3
o/
and the matrices:
(T1=844) 0
=851 (Ty78,,)
A= =834 =83,  (T37S33)
Sy e
B= 0
Xgl
Feo By Fa
F= F.F, Fi
Fg

may be written more compactly if we



Then, from (5) we obtain

(14) A v = % BF v

As in chapter I, it is easily shown that

Bqq
Bor By ©
(15) A" A3 B3y Agy
Boq  Bgy  reeeeeeenes Bog
with
(16) A.. = (T, - 5..) 1o
ii i ii
and
(17) A, =y - A S A
i+k,1i f=q, < <. . .<q_=i+k Andn 9n9n-1 9n-19n-1
s A .. A S A
An-19n-2  9p-29-2 dpdy 994 9994
and consequently, A, Zo.

i+k, i

(6) implies that Sgkto if and only if 0i+g>o for at least
one i. Consequently, the considerations of the proof of
Lemma 1.1 (chapt.I) can be applied to the matrices accuring

in (17). This leads to



- 18 -

i
Lemma 2.1: 1) Let Tgk—sip 0k+g

and only if some integers §=q,<g,<e e e<q =r

and r>s. Then, Ars>o if

exist such that T T es o 56
qnqn—1 qn—1qn—2 q2q1

2) A__>0 or A_=o
rs rs

As in chapter I we state: Ars>o if and only if the graph

G(M) (see I,4) contains a directed path from PS to Pr'

From (14) we obtain using (15):

(18) Mv=2\XVYV
where
E,]F1 E1F2 ..... E1FG
(19) M= EZF1 E2F2 ..... EZFG
EGF1 EGF2 ..... EGFG
and
20 E. = FXYAA AT e e +yY_ A
(20) j = XaBgrtXofyy X323
From Lemma 2.1 we have
21 E.> E.=
(21) 3 o or 3 o)
(22) Ej>o if and only if (a) or (b) applies:
a >0
(a) X5

(b) In a graph G(M) there exists at least one
path from a point Pi with i<j and X;>©0 to
Pj (Definition of G(M): chapt. I,4).



3. Existence Theorems

As in I,4 we obtain from theorem 1.4 assuming (10}, (11),
(12), (13):

THEQREM 2.1: If ug;o and uh$o for at least one h, if
further Afo, then

(1) A is real
(2) A>o
(3) A is the greatest eigenvalue

(4) X is a single eigenvalue

The question whether A>0 exists may be answered by the
graph theory. Having G points (one for each group), we

draw a directed line from Pk to Pg if
i

(a) o >0 for one i at least or
k»g

i .
(b) Xg(v cf)k>o for one i at least.

Then, in analogy with I,4 we obtain:

THEPREM 2.2: On the assumption made in theorem 2.1 the

greatest single eigenvalue A>0 exists if
and only if the graph G(M) contains one

closed path at least.

If no closed path exists, all the eigen-

values of M are zero.

The existence of A>0 is not dependent on the choice of
the discrete directions Qm or the weights Wm' This is
due to the fact that the source was assumed to be iso-

tropical.



IIT. Outer and Inner Iterations

The computation of the greatest eigenvalue may be performed
by the following well-known procedure (/5/,/10/):

n

>
1f v°>0 and vn+1 = TTﬁynTT (outer iterations) (M=0)
v
. S
then ||v']|=1, v'Z20 and, consequently there exist integers
q; such that
d4 ,
v — (i — o)

with

V=TTV ]

From the assumptions of M we may conclude, using theorem
1.5 (theorem 2.1, respectively) that the normalized

vector v is a unique fix point so that

vi— v and |[mMv?|] — A (n->°)

The inversion of the matrix M may be accomplished by the

following iterations

p+1

T u. =s uP +r
99 99 g g
with
G
_1 n n+1
Tg =% Xg z Fru, + 1 S gk %k

1 k<g

where n is the iteration index of the outer iterations.

We assumed

(T - S ) »>o
g g9



If the difference equations provide non-negative fluxes,
then

Qi

and R=Tg—Sgg is a regular splitting. This implies (/9/,
page 89):

(23) p(Tg 'Sgg)<1

Consequently, the inner iterations converge.

Summarizing we can state:

. =1 :
THEGREM 3.1: Let Ty = A><gk£1Fkuk +kz SqkU With
5= 1
> > > - -
Fk=o; Sgk—o; xg—o; Tg =0; (Tg—Sgg) >0

for all k,qg.
Let further the graph G contain at least
one closed path. Then the outer and inner

iterations converge.

Omission of the assumption T;1 2o implies convergence

of outer iterations only.



_22_.

IVv. Example: The Diamond Difference Scheme

The Diamond Difference Scheme provides numerical solutions
for the Boltzmann equation. A description is found in /2/
and /5/. For one-dimensional fluxes 9 (x,u) the difference

equations are written as

g - 49
1) Pivim ~ %im 9 49 o
m Ax i+d,m™ g
g _ . (09 g
(2) 0341, = 905 Ofhq,m T 01, )
2
where
G
_ 1 k k k ,
m‘M m<M

with non-negative cross-sections.

Substituting ¢i+1 in (1) by (2) gives omitting the index qg)
(4) ¢i+1,m = (2“m¢i}m + Ax-sg)/(zum + Axe o)

and from (2):

(5) Oi4q,m = 2 ¢i+%,m - ¢iom

(2um - Ax-Ot) Qi,m + 2°AXx°S

2um + Ax-°0C

t

If um>o, ¢1,m is an inward directed boundary flux and

therefore defined by boundary conditions. Formula (5)

enables us to compute ¢2 m~®3 oot successively. If
4 ’

¢1’m%o, S 20, 2u_~Ax°0

g m téo, then



_23_

> .
@i n=° for all values of i. In the case of pm<o we use a
[

formula which can be evaluated as (5):
) . _ (2] [-Axeo,) 2ipq,m * 2TAx"S,
i,m °
r 2|Um)+AX Sg

Then, starting with the inward directed boundary flux

> .
@I'm—o, we get ®1—1,m’ ¢I—2,m oo ®1,m sucSe851vely, each
being non-negative if S _=o and 2|um|4Ax-0t=o. This im-
plies that under vacuum boundary conditions a non-negative

source leads to non-negative fluxes if

(7) Ax = 2fu | Ag

with Af=1/ot (mean free path). In the formalism of

chapter II we obtain:

v

-1
(8) Tg

Furthermore, it can be proved that

_ -1
(9) (Tg Sgg) >0

if (7) is satisfied and Gg+g<0t (/6/). Thus, from theorem
3.1 we may conclude the convergence of outer and inner
iterations if the graph theory condition is satisfied).

Applying theorem 2.1 and theorem 2.2 we can summarize.

THEPREM 4.1: Let the difference equations (1), (2),(3)

be given to solve the transport-problem

defined in Ii. Let all the cross sections

and Xg be non-negative and

axs2lu | Ag (g = 1/09)

g
Pgrg < Ot



for g=1,2,...G; m=1,2,...M. Let further

the graph defined in I contain one closed

path at least. Then we have:

(1) There exists a greatest single eigen-
value A>0 with non-negative fluxes

(2) If ugéo (g=1,2,...G) are elgenvector-
fluxes, then the associated eigenvalue
is the greatest one

(3) The outer iterations converge

(4) The inner iterations converge.
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