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Abstract

The existence of a positive, greatest, single and unique

eigenvalue is proved for the discrete form of the multi­

group diffusion equations and for the discrete multigroup

Boltzmann equations; the convergence of outer iterations

may be concluded. The following assumptions are made:

1) A neutron introduced at any point in the reactor

may diffuse to all locations of the assembly (i.e.

the diffusion regions for all energy groups are

the same).

2) Only downscattering is permitted

3) The fission transfer matrix is multiplicative.

Then a necessary and sufficient condition is derived for

the existence of a greatest single eigenvalue (k-effective)

and the corresponding non-negative eigenvector (neutron

flux).

Sätze über Eigenwerte der diskreten Form der Multigruppen

Diffusions- und Transport-Gleichung

Zusammenfassung

Für die diskreten Multigruppengleichungen der Diffusions­

und Transporttheorie wird die Existenz eines größten, re­

ellen, positiven und einfachen Eigenwertes mit einem zuge­

hörigen nichtnegativen Flußvektor sowie die Konvergenz der

äußeren Iterationen bewiesen. Dabei werden folgende Annah­

men gemacht:

1) Der zu berechnende Reaktor besteht aus nur einem

Diffusionsgebiet

2) Es gibt keine Aufwärtsstreuung

3) Die Spaltquerschnitte sind multiplikativ (d.h.

xg·va K
f ) ·
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Introduction

When the diffusion- or transport-equation is substituted

by consistent difference equations, the steady state neu­

tron reactor problem leads to a matrix eigenvalue problem

It is of interest to know under what conditions the great­

est eigenvalue A (k-effective) is real, positive and single.

In 1958, G.Birkhoff and R.S.Varga (/1/) proved an existence

theorem for the diffusion theory problem. They assumed the

physical problem to be transitive (a neutron of any energy

has non-zero progeny a't all energies and locations), which

implies A-1 to be irreducible.

In 1968, R.Fröhlich (/4/) replaced the conditions of transi­

tivity by some weak conditions of connectedness which he

showed to be sufficient and necessary for the existence of

unique positive normalized eigenvector and a corresponding

single positive greatest eigenvalue. The diffusion theory

problem he considered was permitted to include arbitrary

up- and downscattering and a non-multiplicative fission

transfer matrix.

In this paper it is shown that, if the fission matrix is

multipliuative (i.e. with elements Xg• (VOf)k) and only

downscattering is permitted, if furthermore the diffusion

regions are identical with the reactor assembly for each

group, the greatest eigenvalue A is positive and single,

provided that not all eigenvalues are zero. Contrary to

/4/ the corresponding neutron flux is not strictly positive

(i.e. it can have certain zero components). The existence

of non-zero eigenvalues depends on a graph theory condition

Zum Druck eingereicht am 15. März 1973
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which can be described as folIows: Associate each energy

group g with a geometrical point P and connect Pi with
~ g

P. by a directed line P.P. if neutrons located anywhere
J 1 J

in the region may change their energy by fission or scat-

tering from energy group i to energy group j. If and only

if there is at least one closed path, a greatest single

eigenvalue exists with a corresponding eigenvalue x ~ o.

In section I this is shown for the diffusion problem.

Section II is concerned with the transport theory problem.

Finally, in Section IV the Diamond Difference Scheme

(/2/) for the numerical solution of the transport problem

is treated as an example.

I. The Diffusion Equation

Section I is concerned with the diffusion equations, a

system of second order elliptic partial differential

equations:

(1)
k kX ·v·o .<p

g f

with boundary conditions

(2 )

where n is the outward directed normal. We suppose all

the coefficients to be non-negative. Our aim is to find

the greatest eigenvalue A and its associated solution

<P.A is a measure of the reactivity of a reactor whose

materials are specified by the non-negative coefficients

of Eq. (1).
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2. Matrix Equations

The numerical solution of (1), (2) may be performed by sub­

stituting Eqs. (1) and (2) by consistent difference equations

defining approximations ~~ for discrete lattice points
1

(/5/). If ug is a vector containing all the discrete values

~~ for each group index g, from (1), (2), we obtain the
1

matrix equations

(3 ) (T -8 )g gg

(g = 1 , 2, ... , G)

where 1
O'k +g

0

(4 )
0'2

8 gk = k+g

0 . I
O'k+ g

(5 )

o

o

our assumptions yield:

( 6 )
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We further assume that

(7 ) (T -8 ) -1 > 0
g gg (g= 1 ,2, ••• G)

The physical meaning of (7) is that if any neutron with

the energy of group index g enters the region, it may

diffuse or be scattered to all locations of the space.

If T- 1>O (i.e. neutrons may diffuse to all locations)
g -1

and the greatest eigenvalue of T 8 is less than 1g gg
(mostly satisfied if G < Gt ) , theng-+g

and (7) is valid.

The matrix equation (3) may be written more compactly if

we define the vector

and the matrices

(T 1 - 8 1 1 0

(8 ) A= - 8 2 1 (T - 8 2 2)2

- 8
3 1 - 8 32 (T

3
- 8 3 3)

e 0 •••••••••••••••••••••••••••••••

(9 ) B=

o

o
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F=

Then, from (3 ) we have

( 10) A v 1 BFv= >;:

It is easy to show that

A1 1

A2 1 A2 2 0
-1( 1 1 ) A = A3 1

A
32 A33

.............
AG1 AG2 .... AGG

with

( 12 )

and

A ..
11

-1= (T. - S .. ) >0
1 11

( 13) Ai+k , i = ): ,A S A
i=q1<q2< ... qn=i+k qnqn qnqn-1 qn-1 qn-1

S A ..... A S A
qn-1 qn-2 qn-2 qn-2 q2 q2 q2 q1 q1 q1

and, consequently, A'+k . ~ 0
1 ,1
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Lemma 1.1: 1) Let T
gk

Ars>O if

= sup a~+g and r>s. Then,
i

and only if there exist some

( 15)
T °T

qnqn-1 qn-1qh-2

Proof: If each S in any term of the sum (13) has at leastqp
one diagonal element a >0, we have A S A >0 with re-p+g qq qp pp
gard to (12) and, consequently,Ai+k,i>o. Thus, if (15) is

satisfied for some integers qi' Ars>o. On the other hand,

if Ars>o, there must be some matrices

which implies (15).

Obviously, Ars=O if and only if all possible products (15)

are zero (i.e. there exists no " matrix chain" Srqn$o;

Sq $0; ... , S $0).
nqn-1 q2 s

The geometrical interpretation of Lemma 1.1 by the graph

theory is useful. Consider G points P1,P2, ... PG in the

plane. If Tgk>O, the points Pk and Pg may be connected

by a directed path from Pk to Pg. We shall say that there

is a path from Pi to P j if there exist some integers

i=q1<q2<. ··<qn=j such that each directed path P +p exists.
qi qi+1

For example, in Figure 1

1 2 3 4 5 6

fig. 1

a path from P2 to P
5

exists.
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Lemma 1.1 implies then: Ars>o if and only if there exists

a path from Ps to Pr.

The physical meaning of Lemma 1.1 is: Ars>o if and only

if each neutron being located anywhere in the reactor

and having the energy of energy-group s, may be trans­

ported by diffusion and scattering to any point of the

reactor having the energy of energy-group r afterwards.

We obtain from Eq. (10) : Using (11 ) ,

( 16 ) Mev = Aev

with

E1 "F 1 E1eF2 E1 "FG

( 17 ) M=
E2"F 1 E2eF2 E2eFG

......................
EGeF1 EGeF2 ... EGeFG

and

( 18) + .•. + X·A ..
J JJ

From Lemma 1.1 we have

X .>0
J

( 19 )

(20 )

E. > 0 or E. - 0
J J

E.>o if and only if (a) or (b)
J

(a)

is true:

(b) In a graph (see Fig.1) there exists at

least one path from a point Pi with i<j

and X. >0 to P ..
1 J
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3. Mathematical Theorems

Matrix M from (16) may be transformed to some "normal forms"

which are given by (21 ) :

(21 a) M1~ (: ~)

(21 b ) M = (A :)2 0

(21 c) M = (M2 ~)~ ($)3 C

h . d d':" ~ » . . d . blw ere A lS qua ratic an A=o, B=o, C=o. A lS an 1rre UC1 e

matrix and satisfies the assumptions of

THE~REM 1.1 Let A~o, irreducible and AX=AX; x~o; x$o.

Then A=p(A) is a single eigenvalue and x>o.

Here p(A) means the spectral radius of A (=IAmaxl).

x>o means that each coordinate of x is greater than zero.

This theorem was proved by Perron and Frobenius (/3/,/8/).

THE~REM 1.2 I f M. (j = 1 ,2, 3) are de f ined by (21) and i f
J

A~o; B~o;C~o, the following statements are

true:

(1) If M.X.=A.X.; xJ.$o; then A=O or A is an
J J J J

eigenvalue of A.

(2) P(M1) = P(M2) = P(M3) = p(A)
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1f A is irreducible; M.X.=A.X.;
J J J J

x.~o; x.$o; A.fo, A.=p(A) is a single
J J J J

eigenvalue.

The proof is simple. 1f, for example, M1x1=A1X1 and x 1$0;

then AX 1= A1X1i BX1=A1x~ and (1) is valid. The same is

true for M2, M3. (3) follows from (1), (2) and theorem

1.1.

Some properties of a matrix structured like (17) are

specified in

THE~REM 1. 3 : Let E., F. (j=1,2, ... G) be nxn-matrices with
J J

a)

b)

c)

E. >0 or E. =0
J J

>F.=o
J

M= (E i Fk ) (see (1 7 ) )

Then there exists a permutation matrix P such

that PMpT adopts one of the following "normal

forms" :

( 1 )

(2 )

PMpT=M. (j=1,2,3) with A irreducible
J

(see (21))

PMpT=o

(3) PMpT>o

(4) PMPT=(~ ~ )

with A=(nxn) and A=o.

(pT=transposed matrix)

Proof: 1f M=o or M>o, (2) and (3) will be accepted. Let

Let M$o and Mto. Then M contains an entry m.. =0. Thus,
1J

E·F = (~ e .. f 'k) contain 0 and L: e .. f 'k=o for at least
m n J 1J J . 1J J

one i,k. From a) it follows that ~ither e .. >0 and thus
1J

fjk=o for all values of j, or eij=o for all values of j.
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Consequently if m.. =0, m.. =0 for all values of j orlJ lJ
m.. =0 for all values of i. Thus, if M has an entry 0,lJ
then the column or the row defined by the entry is zero.

Case 1: M has no zero-columns. Then a permutation matrix

P may be chosen such that all the zero-rows are trans­

ported to the bottom of the matrix and PMpT=M
2 with

A>o (irreducible)

Case 2: M has no zero-rows. Then P may be chosen such

that all the zero-columns are transported to the right

side and PMpT=M
1 with A>o (irreducible)

Case 3: M has zero-rows and zero-columns. First a

permutation matrix Pe may be chosen such that

P MpT = M
c c 1 (see (21a))

If A=o, we have (4) of theorem 3. (A
T 11

If A$o, we chose Pr such that PrAPr = 0

A11>0. (This is possible because A has only

For

~) with

zero-rows) .

°1 ) it follows

P P MpTpT = M
3

with A
11>0

(irreducible).
r cer

THE<ßREM 1.4 Let E., F. satisfy the assumptions of theorem
J J

1.3, in addition, let

MX=Ax; x~o; x$o

Then

(1 ) 1..=0 or A=p(M»o

(2 ) p(M»o is a single eigenvalue

( 3) 1..>0 if and only if there exists a j

such that E .>0 and F.$o.
J J
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eigenvalue (see theorem 1.2).

;\=p(M»o and for all values of

- 11 -

Proof: From theorem 1.3 it follows that ;\=0 if the "normal

otherwise ;\=p(M»o is a single

1t remains to prove (3). Let

j;E.=o or F.=o. Then for
J J

each j M has a zero-column and a zero-row, respectively.

Then, det (;\1-M)=±;\n and p(M)=o are in contradiction to

the assumption. 1f, conversely E.>o, F.$o for at least
J J

one j, then E.oF. has a positive diagonal entry, and so
J J

M has at least one positive diagonal entry. Consequently,

M may be transformed to the "normal forms" (1), (3) of

theorem 1.3 only which have none-zero positive eigenvalues.

From theorem 1.2, (3) it follows that p(M)=;\ is a single

eigenvalue.

4. Existence Theorems

The numerical formulation of (1), (2) was given by (see(3))

(T -8 ) ugg gg
1 G

= ,X L Fkuk+ L 8 kUk
A g k=1 k<g g

where 8gk , Fk are defined by (4), (5) and

>
0;

We further assumed:

> o.

or

-1
T >0'g , p(T-~ )<1

g gg

On these assumtions we immediately obtain from theorem 1.4
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THE~REM 1.5: >
If ug=o and uh$o for at least one h, if

further AfO, then

( 1) A is real

(2) A>O

(3) A is the greatest eigenvalue

(4) A is a single eigenvalue.

P,
1

concept of our

The question whether A>O exists can easily be answered by

the graph-theory. In (20) it was stated that E,>o if and
J

only if either X.>o or if a path exists from a point
J

with i<j, X,>o to P,. We now extend the
1 J

graph by drawing an additional d~rected path from Pr to

P if X • (va f )So for at least one special point. (i. e. ifs s
Xs>o and Fr$o). If Xk(vaf)k>o, we combine Pk with itself

as shown in Figure 2:

1 5 6
~

Figure 2.

If GXM) is the graph of M in the meaning of Fig.2, we say

that G(M) contains a closed path, if for at least one point

P. a path combining P. with itself exists.
J J

From (20) we get the equivalence of the two statemants:

(1) There exists a j such that E.>o and F.$o
J J

(2) G(M) contains at least one closed path.

From this and from theorem 1.4 it follows immediately:

THE~REM 1.6: On the assumptions made in theorem 1.5 the

greatest single eigenvalue A>O exists if

and only if the graph G(M) contains at least

one closed path.

If no closed path exists, all eigenvalues of

M are zero.
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The physieal meaning is elear: Neutron having ehanged

their energy due to fission must be able "to return" by

seattering. If no path exists, no neutron eireulation

oeeurs and the multiplieation faetor is zero. If neutron

eireulation exists, the greatest eigenvalue is real,

positive and single.

11. The Transport Theory Problem

Seetion 11 is eoneerned with the linear Boltzmann equation

( 1 )

with

(2 )

r is a spaee veetor and n is a direetion veetor withl Inl 1=1.

~g is the neutron flux dependent on spaee, angle and the

energy-group-index g. The integral (2) is extended over the

unit sphere. ~ and A (= k-effeetive) exist if some boundary

eonditions are defined. They usually are given in one of

the following forms:

(3a) Vaeuum: ~g(r,n)=o for n'n<o if n is an outward

direeted normal veetor on the boundary.

(3b) Reflexion: ~g(r,n1)=~g(r'~2) if ~2 is the direetion

of neutrons having been refleeted at

the boundary.

(3e) Periodieity: ~g(r,~)=~g(r+a,~), if rand r+a are

boundary points and a=(lx'O,O)' and

a=(O,ly'O)' and a=(O,O,lz)' respee­

tively, (d=diameter of the reaetor).
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2. Matrix Equations

For the numerical solution of the eigenvalue problem

(1), (3) by the difference method we substitute the so­

lution ~g(r:~) by a set of function values ~~ ~~g(rl"~ )l,m m
(i=1,2, ... ,I; m=1,2, ... ,M). The discrete directions ~m

may be chosen such that

(4) ~~l,m

with suitable associated weights wm~o. We assume IWm=4TI

(see /5/,/7/). Substituting (4) into (1) and replacing

the left side of (1) by consistent difference equations

(/2/,/5/), we obtain, observing (3):

(5 ) (T -S ) u
g gg g

where ug is a vector with

and Sgk' Fk are block matrices

W1
s

(6 ) Sgk
W2 0

= s

0 .
W1

s

W1
f 2

W
f 0

(7 ) F =k

0 .
W1

f
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with

.. ~ .

i
°k-+gOWM

i
°k-+gOWM(8 )

(9 )

Tg is a (IoM)X(IoM)-matrix (difference operator). We

make the following assumption:

( 10)
>

o

( 11 )

( 1 2 )

( 1 3)

(10) I (11) I (12) imply the positivity of the cross-sections.

(13) guarantees that a neutron of energy g may travel

everywhere by diffusion or by scattering. As we have

assumed an isotopic s catt.e r Lnq I this assumption is physically

convenient.
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Matrix Equation (5) may be written more compactly if we

define the vector

u 1

u 2
V=

u 3

u G

and the matrices:

A=

(T
1-S 1 1)

-S21

-S31

o

-SG1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (TG-SGG)

X1 1

X21

B= 0

0

XGI

F 1 F 2 FG

F= F 1 F 2 FG.............
F 1 F 2 o 0 0 FG
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Then, from (5) we obtain

( 1 4 ) A v

As in chapter I, it is easily shown that

( 15 )

with

-1
A =

o

••.•••••.• • A
GG

( 16 )

and

A ..
11

( 17 ) A'+k .1 ,1

S A
qn-1 qn-2 qn-2 qn-2

>
and consequently, A'+k ,=0.

1 ,1

(6) implies that S k$o if and only if cr k
i

>0 for at leastg +g
one i. Consequently, the considerations of the proof of

Lemma 1.1 (chapt.I) can be applied to the matrices accuring

in (17). This leads to



Lenuna 2.1:

_ 18 _

i
1) Let T k=suP a and r>s. Then, Ars>O ifg i k~g

and only if some integers s=q1<g2<ooo<qn=r

2) A >0 or A =0rs rs

As in chapter I we state: A >0 if and only if the graphrs
G(M) (see 1,4) contains a directed path from Ps to Pr.

From (14) we obtain using (15):

( 18 )

where

M v = A v

( 19 )

and

M=

From Lenuna 2.1 we have

(21 )

(22)

E. >0 or E. =0
J J

E.>o if and only if (a) or (b) applies:
J

(a) X
J

>0

(b) In a graph G(M) there exists at least one

path from a point P. with i<j and X.>O to
1 1

P. (Definition of G (M): chapt. 1,4).
J
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3. Existence Theorems

As in 1,4 we obtain from theorem 1.4 assuming (10), (11),

(12),(13):

THE~REM 2. 1 : >
1f ug=o and uh$o for at least one h, if

further A$O, then

(1) A is real

(2) A>O

(3) A is the greatest eigenvalue

(4) A is a single eigenvalue

The question whether

graph theory. Having

draw a directed line

A>O exists may be

G points (one for

from Pk to Pg if

answered by the

each group), we

(a) i for i at leastO'k >0 one or+g

(b) i for i at least.Xg(voO'f}k>o one

Then, in analogy with 1,4 we obtain:

';r'HE~REM 2.2: On the assumption made in theorem 2.1 the

greatest single eigenvalue A>O exists if

and only if the graph G(M} contains one

closed path at least.

If no closed path exists, all the eigen­

values of M are zero.

The existence of A>O is not dependent on the choice of

the discrete directions ~m or the weights Wm. This is

due to the fact that the source was assumed to be iso­

tropical.
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111. Outer and Inner Iterations

The computation of the greatest eigenvalue may be performed

by the following well-known procedure (/5/,/10/):

oIf v >0 and n+1v
>

(outer iterations) (M=o)

then
. i>I Iv11 1=1, v =0 and, consequently there exist integers

q. such that
1

with

q.
V l~ V (i --+ 00)

v = Mv
TTMVIT

From the assumptions of M we may conclude, using theorem

1.5 (theorem 2.1, respectively) that the normalized

vector v is a unique fix point so that

(n-+oo)

The inversion of the matrix M may be accomplished by the

following iterations

p+1
T u. = S uP + rg g gg g g

with

where n is the iteration index of the outer iterations.

We assumed
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If the difference equations provide non-negative fluxes,

then

o

and R=T -S is a regular splitting. This implies (/9/,g gg
page 89):

(23)
-1

p(T -s )<1g gg

Consequently, the inner iterations converge.

Summarizing we can state:

+ I
kSg
>­
=0;

SgkUk with

(T -s )-1 >0
g gg

for all k,g.

Let further the graph G contain at least

one closed path. Then the outer and inner

iterations converge.

-1 >Omission of the assumption T =0 implies convergenceg
of outer iterations only.
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IV. Example: The Diamond Difference Scheme

The Diamond Difference Scheme provides numerical solutions

for the Boltzmann equation. A description is found in /2/

and /5/. For one-dimensional fluxes ~(x,~) the difference

equations are written as

( 1 ) ~m S
g

(2 )

where

,+. g 1 = O. 5 ° (~gl'+ 1 , m + cP gl' , m)'I'i+_,m
2

( 3) S g
G kLW (va f )

k=1 rn
m~M

k
cP,+1 + L1 -,rn

2 k=g
m-s.M

o ,+.k .w
k+g 'I'i+l,m /J1

2

with non-negative cross-sections.

Substituting cPi+1 in (1) by (2) gives omitting the index g)

(4 ) = (2~ cP' + LlxoS )/(2~ + LlX Or:!1t)

m l,m g, m

and from (2):

(5 )

=
(2~m - Llxoat)~' + 2 oLlx oS

l,m g

If ~ >0, cP 1 is an inward directed boundary flux andm ,m
therefore defined by boundary conditions. Formula (5)

enables us to compute cP 2 o~3 ... successively. If,m ,m
cP ~o, S ~o, 2~m-Llxoat~0, then1, m g
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>
~. =0 for all values of i. In the case of ~ <0 we use a1,m m
formula which can be evaluated as (5):

(6 ) <P. =1,m

(21 u I-!':..x· 0t) ~. + 1 + 2·!':..x· Sm 1 ,m g

21~ l+!':..x·sm g

Then, starting with the inward directed boundary flux

~I ;'0, we get ~I-1 ' 4>1-2 ... ~1 successively, each,m ,m,m,m >
being non-negative if S =0 and 21~ 1~!':..x'Ot=o. This im-g m
plies that under vacuum boundary conditions a non-negative

source leads to non-negative fluxes if

(7)

with Af = 1/ 0 t (mean free path). In the formalism of

chapter 11 we obtain:

(8 )
-1 >

T =0g

Furthermore, it can be proved that

(9 )

if (7) is satisfied and ° <0 (/6/). Thus, from theoremg+g t
3.1 we may conclude the convergence of outer and inner

iterations if the graph theory condition is satisfied).

Applying theorem 2.1 and theorem 2.2we can summarize.

THE~REM 4.1: Let the difference equations (1), (2), (3)

be given to solve the transport-problem

defined in 11. Let all the cross sections

and Xg be non-negative and

og+g <: Of
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for g=1,2, ... G; rn=1,2, ... M. Let further

the graph defined in I contain one closed

path at least. Then we have:

(1) There exists a greatest single eigen­

value A>O with non-negative fluxes

(2) If Ug~O (g=1,2, ... G) are eigenvector­

fluxes, then the associated eigenvalue

is the greatest one

(3) The outer iterations converge

(4) The inner iterations converge.
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