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Abstract:

In the nuclear beta decay the weak vector coupling constant
G(V) can only be determined from the 0+- 0+ superallowed

ß
beta transitions. Because of the great importance of G~V)
for all the theories of weak interactions a big effort has

been directed in the last years to the experimental and
+ +theoretical investigation of the ft-values of these 0 - 0

superallowed transitions.

In this paper a compilation of the experimental results for

the ft-values, and a discussion of the theoretical attempts

to calculate the necessary corrections is given. Nevertheless,

some existing discrepancies between experimentally measured

ft-values of different nuclei can not be explained. Finally

a value for G~V) will be derived and compared with the weak

vector coupling constants taken from other weak decay modes.

This offers the possibility to discuss the concept of

universality of the weak interaction theory.

Zusammenfassung:

Die Vektor-Kopplungskonstante G~V) der schwachen Wechselwirkung

für den ß-Zerfall kann nur aus den supererlaubten 0+- 0+ Uber­

gängen bestimmt werden. Wegen der großen Bedeutung von G~V) für

alle Theorien der schwachen Wechselwirkung wurden in den letzten

Jahren große experimentelle und theoretische Anstrengungen
+ + Uunternommen, um die ft-Werte der supererlaubten 0 - 0 ber-

gänge zu untersuchen.

In folgendem Artikel werden alle experimentellen Resultate für

die ft-Werte zusammenfassend dargestellt und die zur Berechnung

dernotwenidgen Korrekturen unternommenen Versuche diskutiert.

Trotzdem kBnnen einige zwischen experimentell gemessenen ft­

Werten verschiedener Kerne auftretenden Diskrepanzen nicht

erklärt werden.

eingereicht am: 18. Juni 1973



Zum Schluß wird ein Wert für G~V) aus den Daten abgeleitet

und mit Vektor-Kopplungskonstanten verglichen, die aus

anderen schwachen Zerfällen bestimmt wurden. Dieser Vergleich

gibt die Möglichkeit, das Konzept der Universalität der

schwachen Wechselwirkung zu diskutieren.
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1. Introduction

Nuclear beta-decay is one form of the weak interaction in­

volving all elementary particles. The following article begins

with a short consideration of the present weak interaction

theory, together with a discussion of the concept universality

of the weak interactions. Concerning the universality of the

weak interaction,one essential point is the accurate determi­

nation of the vector coupling constant in the nuclear beta­

decay. This coupling constant can only be deduced from experimen­

tal and theoretical investigations of the 0+- 0+ superallowed

beta-transitions. The main object of this paper is to give a

survey of the present state and the unanswered questions con­

cerning the superallowed 0+- 0+ beta-transitions. Finally, a

comparison of the weak vector coupling constants taken from

different weak decay modes and a discussion of the universality

of the weak interaction is given.

2. The phenomenological theory of weak interactions

We distinguish essentially between three classes of weak inter­

action processes. This is shown in tab. 1. Firstly, we have the

purely leptonic decays, where leptons, i.e. electron, muon, their

associated neutrinos and the corresponding antiparticles, inter­

act only. Since leptons are not sUbject to strong interactions,

we have no influence of the strong interactions on these decays.

Secondly we have the semi leptonic decays, where leptons together

with mesons or baryons are involved. Since mesons and baryons

also interact strongly we expect that the weak interaction will

be modified in those decays, or in other words, the coupling

constant will be renormalized. In the case of the semi leptonic

decays we distinguish between the hypercharge* conserving decays

*According to the so called Gell-Mann-Nakano-Nishijima (GNN)
relation, the hypercharge Y is related to the charge Q and
the third component of the isospin 13 by: Q = 13 + Y/2
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Type Examples

Purely leptonic Jl-- e- + ve + v)J

r- p + e- + ve
(al I1Y=O

'It'+--- }l+ + V,u

Semileptonic

r -1\ -- p + e + ve
(b) I~YI=1

K+--}J+ + vJ,A

t:-~+ +
'It'-

Hadronic
A---p + ,e

Tob. 1 WEAK INTERACTION PROCESSES

(6Y = 0, Y = hypercharge) and the hypercharge nonconserving

decays (16YI = 1). This distinction is obvious as the strength

of 16YI = 1 decays in one order of magnitude weaker than those

of 6Y = ° decays. Finally we have the nonleptonic or hadronic

processes where the applicability of the present weak inter­

action theory is until now completely open.

It is usually assumed (see for example [1J, [2J) that all weak

interaction processes can be described by the phenomenological

hamiltonian (current current interaction)~:

1, 2, 3 and A~ = -A+ for A = 4A
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G

12

(1)

The quantities G, G(o), G(1), G(2), G(3) and G(4) are the

coupling constants. J~ and J~ denote the 6Y = 0 and 16yI = 1

hadronic currents, respectively. LA is the leptonic current,
which is given by~

(2)

R, = e, u

Because of complications induced by the strong interactions,

it is not possible to express the hadronic currents so simply

in terms of field operators as in the case of the leptonic

currents.

Another general remark to be made about J~

currents are composed of two components, a

vector part. In particular we can write:

1and JA is that these

vector and axial

where VA is a vector and AA an axial vector operator.

~ The field operators in eq. 2 are given by

~(x) = -! I {e i qx ar(q) u (q) + b;(q) vr(q) e- i qx}
IV q,r r

ar(q) is the annihilation operator for a fermion of momentum q
and spin rand bt(q) the corresponding creation operator for the
antiparticles. The ur(q) and vr(q) are both the free particle
Dirac spinors.





e+ + 0+ 1+
L", ~ JA JA

LeA Ve + e--... Ve + e-

~ }J.- -- e- + Ve + p.- -- V;.;. + J.l-vJ-l V,u +

n ---p + e- + Ve J.l- P -- n + V;.;.+

r--- A + e- + Ve 1C-- u: V;.;.
J~

+

1T- -- e- + Ve n + p -- n + p

1t- __ 1'[0 + - Vee +

" -- p + e- + Ve
" -- P

+ }J- + V;.;. /\ -- P + 1t-

r----n e- Ve r- -- n - + V,u r- -- n + 1t-+ + + J.l

~ ---/\ e- + Ve 2--- A + K-
J~

+

K----e- K- -- }J- + =: -- /\ A+p~"+p+ Ve V,u + 1t-

K- ___ 1t 0 + e- + Ve K--- 1('0 + J.l- + V,u K -- 2rr

K- -- 1'(+ + 1t- e- Ve K--- j[+ + 1t- p.- V,u K -- 31t+ + + +

Tab. 2 WEAK PROCESSES ACCOROING TO CURRENT-CURRENT THEORY



- 4 -

In eq. 1 the term GII2 LAL~ is responsible for the

leptonic weak processes, for example the term GII2
especially for the muon-decay.
0++ 1 + t .JALA + J~LA and JALA + JALA are the correspondlng terms for

the ~y = 0 and ~YI = 1 semi-leptonic weak processes, respectively,
o 0+

and JAJ A etc. those for the hadronic weak processes.

*Tab. 2 gives a more explicit survey of how all the weak decays

(and scattering processes) can be explained by the current

current interaction [1J. If the postulate, that

G(o) = G cos 8
G(1) = G sin 8
G(2) G 2 8 (4)= cos
GO) = G cos 8 sin 8
G(4) G . 2

8= Sln -

is fulfilled one speaks of the Cabibbo form of universality

of the weak interaction. 8 is the Cabibbo angle. Then we have,

for instance,

G(V) = G cos 8 for the beta-decay (5a)s

for the muon-decay (5b)

(V means the vector part of the interaction)

3. Transition probabilities and ft-values of allowed beta-

transitions

3.1 Allowed transitions in gen~ral

For a· ß-- or ß+-transition between two nuclear states i >

and f >, we obtained the well-known expression for the spectrum

* The corresponding transition matrix element is, for instance,
in the case of the beta-decay

Mß- = < p e

where Hw(X) = GßI 12 {V~

n -+- p + e + V

- J 4v I Hw(x) dx In

+ AO}L~A A

>
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form using the theory discussed previously together with the

standard perturbation theory * (see for example [2J, [3J),

N(p)dp ln 2
{G~ M

2 + G2
M~} • (6 )= -K- F A

F(Z,W) 2 2• p (Wo - W) dp

where

N(p)dp = number of electrons or positrons in the
momentum interval between p and p + dp

P = electron (positron) momentum in units of m c
0

W = total energy of the electron (positron) in
units of moc2

Wo = total end point energy of the electron (positron)

MF = < fli t~i) I i >
i

= < fIT+' i > (Fermi matrix element)

MA = < fli t~i)d(i) li > (Gamov-Teller matrix
i element**)

g_1(r) and f+ 1(r) are the electron radial wave functions.
Contrary_to F(Z,W) which is evaluated at r = R (the nuclear

radius) F(Z,W) is evaluated at r = 0 (the center of the nucleus)

[4J, [5J. SO for allowed transitions, less ambiguity and greater

accuracy is achieved.

In the following we use natural units (h = me = c = 1).

Then K = 2n 3 ( l n 2)

** t+ are the usual charge lowering and raising isospin operators

t+ = t 1 ~ i t 2

We have t+Xp = Xn and t_xn = Xp
d = {o1' 02' 03}

01' 02 and 03 are the usual Pauli matrices.
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If we intend to experimentally determine the coupling constants

GV and GA' we see from eq. 6 that the Fermi and the Gamov-Teller

matrix element should be known. Let us therefore discuss more

extensivelY the selection rules for these matrix elements.

We have (see for example [2J, [3J:

MF =1=0 only for b.J = IJ· - Jfl = 0
l

b.T = ITi - Tfl = 0

TI. TI f = +1
l

MA +0 only for b.J = IJ· - Jfl = 0,1 but not 0 - 0
l

b.T = ITi - Tfl = 0,1

TI. TI f = +1
l

(7)

(8)

where the quantities J, T and TI are the spins, isospins and

parities of the initial and final nuclear states, respectively.

If we assume the isospin to be a good quantum number, the Fermi

matrix element is only different from 0 for transitions taking

place between component states of an isospin multiplet (i.e.

between analogue states). Such transitions are called super­

allowed transitions. Since in general the Gamov-Teller matrix

element depends on the details of the nuclear structure (with

exception of the neutron decay), for our purpose the decays

of the type J i = 0++ J f = 0+ are of particular interest, for

which the Gamov-Teller matrix element vanishes.

3.2 Superallowed 0+ - 0+ transitions

The Fermi matrix element remains to be discussed in more detail.

For a 0+ - 0+ beta transition between members of an isospin

mUltiplet, we may limit ourselves to positron transitions.

(ß--transitions are energy forbidden because of the Coulomb

energy differences between members of an isospin multiplet).
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We have:

This result follows from the general angular momentum theory

which can also be applied, as is well-known, to isospin

formalism.

Fig.l SuperaUowed p+ decay of 140
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The essential point is that eq. 9 is completely independent

of the details of the nuclear structure. So we are able to
calculate the Fermi matrix element for the superallowed

+ +o - 0 transitions without any ambiguity. This statement is

only based on the simple assumption that we have pure isospin
+ +states in the nucleus. All the 0 - 0 superallowed beta

transitions experimentally investigated up to now, take place

between member states of an isospin triplet (T :: 1). An

example is shown in fig. 1. In this case we obtained from eq. 9

M :: < T
F

(10)

+ +We get the half t for a 0 - 0 transition by simply

integrating eq. 6

(11)

where
Po

f :: f F(Z.W) p2(Wo- W)2dp (integrated Fermi function)

1

and

K

:: 2n 3 In 2 (natural units)

6 -94 2 6 ( ):: 1.230 27 • 10 erg cm sec cgs units

This means that we have to investigate experimentally the
+ +ft-values of the superallowed 0 - 0 beta transitions if we

aim to determine the vector coupling constant of the nuclear

beta decay. For this purpose we have to measure the half lives

(tha partial half lives) and end point energies of these types

of beta transitions.



Table 3a: Experimental data for the half-lives of the superallowed transitions

Nucleus I to(sec) l:ranChing ratio joEC/ß+-:atio (%) 1 t (sec) 1 Ref. 1
(accordlng to ref.

[5J)
--~-- --- ------------ --~------ ---

C10
19.42 .:t. 0.04 1.465.:t. 0.014 0.3122 1330 .:t. 13 [7J

014
70.58 .:t. 0.035 99.328 ~ 0.012 0.0914 71.122 ~ 0.036 [9, 10J

Ne18 1.655 ~ 0.025 7.65 + 0.26 0.0833 21. 65 ~ 0.79 [13J
Mg 22 -

3.857 .:t. 0.009 54.9 + 1.4 0.0700 7.03 + 0.18 [13J
A1 26m -

6.346 .:t. 0.005 100. 0.0837 6.351 ~ 0.005 [14, 16J
Si 26 2.202 .:t. 0.023 74.9 + 0.9 0.0646 2.942 ~ 0.046 [13J
S30 1. 21 + 0.02 77.5 + 1.0 0.0659 1.562 ~ 0.036 [17J
C134 - \D

1.526.:t. 0.002 100. 0.0805 1. 527 ~ 0.002 [16, 12J
Ar34 0.839 .:t. 0.01 94.3 + 0.25 0.0694 0.890 .:t. 0.011 [13J
K38m

0.9292~ 0.0035 100. 0.0828 0.9300~ 0.0035 [16J
Ca38 0.439 ~ 0.012 74. + 4. 0.0722 0.594 ~ 0.035 [19J
Sc 42 -

0.6837~ 0.0009 100. 0.0968 0.6843~ 0.0009 [16, 18J
Ti 42 0.202 .:t. 0.005 44.1 + 1.2 0.0856 0.458 ~ 0.017 [19J
V46 -

0.4259.:t. 0.0008 100. 0.0979 0.4263~ 0.0008 [18J
Mn 50

0.2857~ 0.0006 100. 0.1026 0.2860+ 0.0006 [18J
Co 54 -

0.1937~ 0.001 100. 0.1060 0.1939~ 0.001 [18J

. __...-._-- ----_-._-~----------------- ____ .-c- _________ _ __~______



Table 3b: Experimental data for the end-point energies and ft-values (with screening) of super­
allowed Fermi transitions

Nucleus I T
3i J E

o
(~eV:_J_Ref_.._ jt~~~:~!~~:~~_~:j ~:~:). __L

------------~ ---- -~-- -------.- -- -------- - -- - - --- -- - -- -------

C10

014

Ne18

Mg 22

A1 26m

Si26

S30

C134

Ar3 4

K38m

Ca38

Sc
42

Ti 42

v46

Mn 50

Co54

- 1
- 1
- 1
- 1

o
- 1

- 1

o
- 1

o
- 1

o
- 1

o
o
o

888.1 + 1.8

1809.1 .:t 1.5
2383. .:t 5.

3120. .:t 10.
3210.6 .:t 1.0

3817 . .:t 4.
4439. .:t 11.
4467.4 .:t 1.9
5021. .:t 12.
5027 . .:t 10

5620. .:t 19
5409. .:t 2.3

5964 . .:t 7.
6032.1 .:t 2.2
6609. .:t 2.6

72 27.7.:t 3.8

[6J
[8J

[11J

[11J
[14, 15J

[13J
[11J

[J8, 12J
[}1J
[J1J
[11J
@-8J
0. 1J
Q-8]
Q-8J
D-8]

1. 47

1. 32

1. 36

1. 33
1.28
1. 28

1. 28

1.33

1.33
1. 32

1.32
1. 31

1. 31

1.29

1. 25

1. 27

3092 . .:t 40

3043 . .:t 11

2931 . .:t 107

3021. .:t 88.

3042 . .:t 5.

3023 . .:t 50.
3085 . .:t 80.

3048 . .:t 7.

2993 . .:t 51.
3089 . .:t 31.
3254 . .:t 200.
3086. + 7

3206 . .:t 122

3093 . .:t 8
3085 . .:t 9
3089. + 16.

f.-.>.

o
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A number of precise experiments to determine t and Wo has

been carried out in the last years. In these experiments the

end point energy has always been derived from the threshold
of suitable reactions, for instance (p,n) reactions.

In table 3b a compilation of the experimental results for the

0+ - 0+ superallowed transitions is given (see also [28J). It

can be seen that the various ft-values agree with each other

within 2% as is predicted by eq. 11. But if we consider the
compilation more accurately we see that there is no exact
agreement within the experimental error, especially between

the most accurately measured values of 014, A1 26m and C134, and

the other accurate cases of Sc 42, v46 , Mn 50 and c054 , where

the error i8 smaller than ±16.

Looking at table 3b we see also that in four cases, both
possible transitions in the isospin triplet have been measured

for A = 26, A = 34, A = 38 and for A = 42. In all four cases,
these ft-values agree within the margin of the experimental

error.

The question arises, whether of not we can explain the small

differences between the ft-values. To discuss this problem we

must consider various small effects hitherto neglected. This

is also necessary because we want to derive a reliable value

for Gv• The experimental accuracy is of the order of a few
tenths of apercent, so we have to take into account all correc­

tions of this order of magnitude.

4. Corrections

Here we have two kinds of corrections, first the uncertainties

in the calculation of the integrated Fermi function f, and

second, terms and effects which we have neglected in eq. 6

and eq. 11, respectively.
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I~, '1., Qnc!.!'tainties in the integrated Fermi function

Let us begin with the uncertainties in the value of f. For

the calculation of the integrated Fermi funtion f we need

the electron radial wave functions g_1(r) and f+ 1(r) evaluated

at the center of the nucleus r = 0 [5, 22J • 'I'he electron

radial wave functions are solutions of the Dirac radial

equations with a potential corresponding to the extended nuclear

charge distribution of radius Rand the charge distribution of

the electron cloud (screening). There are a number of detailed

calculations and tabulations of ~(Z,W) and r(Z,Wo ) ' respectively

[53 22 s 23, 24, 25, 26, 27, 28J. The calculations carried out

after 1966 are all consistent with one another, although different

models for the screening by the atomic electrons have been used.

It should be noted, however, that ft-values derived earlier from

various available tables of Fermi and related functions show

some discrepancies compared with the newer results (see tte

cUscussion in [3J and [5J). The reasons for this fact are some

inconsistencies and errors in the older calculations [24, 29, 30J

A common factor of nearly all newer calculations is that they

,'lAve been carried out by solving the Dirac equation for the

modeI of the uniform charge distribution of the nucleus (an

exception is ref [28J). The question is now, whether or not there

18 a relevant change in the ft-values, if instead of the uniform

charge distribution of the nucleus a more realistic one, like

a Fermi or Gaussian distribution for instance, is used. In order

to decide this, the modified Gaussian distribution has been

taken (31J

A(E.)2
_CE.)2

per) = No {1 + } e a (12)
R

where

No
8=

(2 + 3A) a 3 /'11"

Since the nuclear radius R is a well-known quantity for each

nucleus, only the comparison charge distributions all having the

same nuclear radius have been considered. Therefore the modified

Gaussian distribution effectively contalns only
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one free parameter A, while the other a is related to the nuelear

radius R by

a = !2(2+3A~"'
R 5(2 + 5A)

For most of the nuelei, especially the heavier, the Fermi distri­
bution is more appropriate than the modified Gaussian. The

former distribution is mueh closer to the uniform distribution

than the latter, and it has been shown by detailed investigations

that the same is true for the values of the Fermi funetions D3J.

SO by ehoosing the modified Gaussian distribution we get an

upper limit for the influenee of realistic charge distributions

to the integrate Fermi function f. Caleulated ft-values (without

screening) for the uniform and the modified Gaussian distribution

are shown in table 4 [31J.

Table 4: ft-values (without screening) of superallowed Fermi
transitions for several different nuelear charge 1/3
distributions (from [31J) and r o = 1.2 fm (R = roA )

nueleus uniform modified Gaussian
distribution distribution

A = 0 A = 1 A = 2
-----_.- --,---- --_._------._. -----

140 3039 3039 3039 3039
26Alm 3037 3038 3038 3037
34 CI 3043 3045 3044 3044

42Se 3080 3083 3082 3082

46V 3088 3092 3091 3090

50Mn 3082 3087 3086 3085

54Co 3087 3093 3091 3090
- -'--' --_.~ - ~------- ._------- ----_._-
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For light nuclei up to C1 3 4 the difference are seen to be

completely negligible. For Co 54 in the most unfavourable

case A = 0 there is a difference of 0.2%. Since the Fermi

distribution is an overestimation. Therefore the true difference

in the ft-value, due to the deviation of the charge distribution

from the uniform, is expected to be smaller than 0.1% and is

negligible (see also [32J). In addition i t should be ment ioned,

that the dependence of f on the nuclear radius R is also small,

however , a nearly correct value should be used here [22, 31J,

as has been done in calculating the ft-values of table 3.

4.2. Other corrections

Now we come to the terms and effects which we have neglected

in eq. 6 and eq. 11. If we want to have a more accurate formula

for the spectrum of a Fermi transition, eq. 6 has to be modi­

fied in some point s , We obt ain then [3, 34J

where

- 2 2• C(W) F(Z,W) P (Wo- W) dp
(14)

6~V) and 0R(W,z) are the model dependent and model independent

electromagnetic radiative corrections, respectively. 6~V)
depends on the details of the strong and weak interaction theories,

while I'o r- 0R(W,Z) this is not the case D5, 36" 37" 38J 0c takes

into account the modification of the Fermi matrix element due

to isospin impurities of the initial and final nuclear states

[3J. C(W) is the shape factor which contains the so-called

second forbidden terms [22" 31J.
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By integration we receive then in the place of eq. 11

where the bars in C(W) and öR denote

over the ß-spectrum funct1ons.

rt • CTWT(1 + !R) = K

appropriate average

4.2.1. Radiative corrections

Of the effects listed above, the most important ones are the

electromagnetic radiative corrections. The other corrections

are propably much smaller. Therefore we first discuss the

radiative corrections. If the decay of the nucleus can be

considered as the decay of one induvidual proton which is

bound in the nucleus, we have for the leading electromagnetic
correction terms of order a, Zn2 and Z2 n3, the Feynman

diagrams* [38, 40, 41} shown in fig. 2. For the model independent

part öR(W,Z) of the electromagnetic correction, i.e. the part
which depends neither on the details of the strong interaction

nor on the existence of an intermediate boson, we may write:

öR(\1,Z) = ö1(W) + -.«.» + ö3(W, Z) (16)

where ö1' ö2' and ö3
denote the terms of order n, 2 andZn ,

Z2 n3, respectively.

ö1 (W) can be written as [36, 38J

ö1 (W) = a, g(W,Wo) (17)
2'IT

where g(W,Wo) is a well-known analytic function. The numerical

values for the spectrum averaged radiative corrections ~' I;
and I3 are displayed in table 5 [40, 41, 42J.

in the form

that the radiativeshown by Beg et ale [3~

can generally be written

+ ß~V) = ! amn nm(Zn)n
m=1
n=O

i.e. each term contains a higher power of n than of Z.

*It has been

corrections



- 16 -

ß- decay wtthoul rcdictive correetions

terms of order oc

terms of order Zoc2

terms of order Z2 oc::

Fig. 2

Feynman diagrams for the radiative correetions to
P- - n + e+ + "



(18)
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Table 5: The model independent radiative corrections

6
1

, 6 2 and 8
3

(from [40, 41, 42J).

Nucleus °1(%) 82(%) 63(%)
-~- -,--~---- - -- ,- ----_.---- --_.._...... --_. - --------

e10 1. 48 0.18 0.01

014 1. 30 0.26 0.02

Ne18 1. 22 0.33 0.03

Mg 22 1.13 0.41 0.04

A1 26m 1.12 0.44 0.05

Si 26 1.07 0.49 0.06

S30 1. 02 0.56 0.08

e1 34 1.01 0.60 0.09

Ar3 4 0.98 0.63 0.10

K38m 0.98 0.67 0.12

ea38 0.94 0.71 0.13

Sc 42 0.95 0.75 0.14

Ti 42 0.92 0.78 0.16

v46 0.91 0.82 0.17

Mn 50 0.88 0.90 0.21

eo 54 0.85 0.97 0.24
,,----_._. _.-._._--_.- - -------_._---

Up to now, an exact value for the model dependent radiative

correction 6~V) does not exist. When current algebra methods

are us ed , one obtains [35,37,3 8J

6(V) =~ {3(1 + 2Q) ln(~) - 1}
R 2w Mp

Then 6~V) depends mainly on the average charge Q of the
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fundamental isodoublet underlying current algebra and on the cut­

off parameter A. If the weak interaction is based on the exchange

of an intermediate vector boso~ A is equal to the mass of the

intermediate boson MW' Otherwise A will be usually set equal to the
1nucleon mass Mp' For the fractional quark model we have ~ = - ~

and for the integral quark model Q = + i [38J. Note that

6~V)iS finite for Q=_l,i.e. no cut off A is needed. There is

an other comPletel; d~fferent calculation of 6~V) carried out by

Källen ([44J, see also [45J), who has taken into a.ccount the effects

of the strong interaction through their influence on various

nuclear form factors. Values of 6~V)for different models are given

in table 6. In conclusion we can say that there are big differences

between the values of 6~V) according to the different models.

Up to now this is one of the open questions in the whole discussion

on universality of weak interactions.

Table 6: Model dependent part of the electromagnetic radiative
correction

6~V) (%)

Källen [44J 0.64 + 0.26

Q = 1
2

- 0.12

Q = 0 0.1 0.92
1.0 - 0.12
5.0 0.44

10.0 0.69
50.0 1. 25

100.0 1. 49
150.0 1. 63
200.0 1. 73
300.0 1. 87

._._---~- ----------- - --~- --_..---_.~----- ----

Q 1 0.1 1.19= Ei 1.0 - 0.12
5.0 0.63

10.0 0.95
50.0 1. 70

100.0 2.02
150.0 2.21
200.0 2.35
300.0 2.53

---- --- _._-----~-~-~-. -_.-- _.---..- _.-- -------- - _.- ---_.
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E
--- T=2

~ T=1
(+1 - trcnsition

(-) - transition

--- T=O

+2 +1 o -1 -2

Fig. 3 Schematic representation of the energy levels
for different isospin multipletts

4.2.2. Isospin impurity corrections

4.2.2.1. General relations

The next point is to consider the influence of the isospin

impurities of the initial and final nuclear states (detailed

reviews of this problem are given in references [3, 46, 4~

where also older references can be found). Besides a small
charge dependence of the nuclear forces, which can be neglected

in a first approximation, the Coulomb interaction is the main

source of the isospin impurities. The Coulomb potential Vc
can be expressed as a sum of a scalar, vector and second rank

tensor in isospin space (This is also true for the charge

dependent nuclear potential). The isoscalar part of Vc leads

to no isospin impurities and therefore is not of importance

in this case. In the first order perturbation theory, the

isovector and second rank isotensor part of the Coulomb potential

is able to admix states with isospin values T = To+ 2, To+ 1,

To' To- 1 and To- 2 into astate with isospin To (see fig. 3).
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Expanding the initial and final nuclear states in eigenstates

of the charge independent part of the nuclear hamiltonian,

we can write for a Fermi transition from Ti= 1, T
3i=

- 1 to

Tf= 1, T3f= 0 (see references [3, 47J)

where in first order perturbation theory

(20)

a(T) =
v

< l/J v

< l/J\)CT, -1)/vcll/Jo(1, -1) >
---

E\)(T) - Eo(1)

(21)

(22)

It i8 now straightforward to calculate the square of the Fermi

matrix element. Taking the condition that l/J i and l/J f are eorreetly
normalized we get

where

M 2 =
F (23)

Oe = l !Ca(O))2 + (a(1)_ b(1))2
\) \) vv

+ {(a~2))2 _ 2/3 a(2)b(2)+ Cb(2))2}
\) \) v

+ {Ca~3))2 _ 215 a O)b(3)+ Cb~3))2}1
\) \)
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Thus the problem of determing oe is redueed to the ealeulation
of a(T) and b(T).

v v

Let us first consider the admixing of T = 2,3 states. From thp in­

vestigation of isospin forbidden (6T = 1 transitions) Fermi matrix

elements we know that < T + 1, T31vc1T, T
3

> is smaller than 60 keV

[3, 34, 49J. Further) fOT' light nu c Le i Lt .i s known that

6E = Ev(2) - Eo (1) ~ 5 MeV [50J. Combining these two estimates
we get the upper limit

In additionJit should also be noted that we ean assume

Thus we expeet that the overall eontribution to oe of the

T = 2,3 states ean be negleeted (see also the diseussion of
the eore exeited states).

By looking at eq. 23 we see firstly that if only T = 0 and

T = 1 admixtures eontribute, oe is positiv. Seeondly there

is an effeet of admixing other T = 1 states into the zero order
states, if the a(1) are different from the b(1), i.e. if otherv v
T = 1 states are mixed in the initial and final nuelear states

with different strength. This latter effeet is ealled dynamie

distortion.

Eg. 23 has been derived for the transition T 3i = - 1 to T3f = 0

whieh we denote with +, so we have now to diseuss the transition

T3i = 0 to T3f = + 1, whieh we denote with -.
By applieation of the Wigner-Eekart theorem we ean easily show

t hat [13, 28J

(24)
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and

where <l/Jv(1) IIV~1) IIl/Jo(1»
C1= -

R /E v ( 1 ) - Eo ( 1 ) 1

<l/J (1) IIV(2) Ill/J (1»
C - v c 0

2-
/30 IEv ( 1 ) - Eo ( 1 ) I

(25)

We are able to determine experimentally the difference

.r:+ _.r: 12Cu u - Cc c - 1 2 (26)

between the two possible Fermi transitions in the T = 1
+ -triplet by measuring the difference ft - ft • In this way we

can get an order of magnitude estimate of 0c. Many authors

have tried to calculate 0 • By using different models thec
following results have been obtained:

4.2.2.2 Fermi gas model

In this model, which has been introduced by Mc Donald to

estimate isospin impurities, the nucleus is approximated by

an impenetrable box containing non interacting nucleons. Using

this model, values of 0 have been obtained which lie between
c 14 540.26% and 0.66% for the decays of 0 to Co [3, 48]. These

results should be considered more as upper limits as the real

values of 0 •c

4.2.2.3 Collective model

As usual, the nucleus is treated as a core plus two or more

valence nucleons. Thus we have first to consider the influence

of the core excited states to the isospin impurities. The

following types of core excited states are of interest in our

case which can be described macroscopically within the hydro­

dynamical model or microscopically by excited particle hole

states.
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(i) A 0+ monopole state with isospin T = 1 (polarization mode)
+whieh ean eouple to the 0 T = 1 state of the valenee nueleons

and build up states with T = 0, 1, and 2. In the hydrodynamieal

model this state eorresponds to a mode, where neutrons and

protons move with respeet to eaeh other leaving the total

density eonstant [51, 52J.

Within the hydrodynamieal model, one obtains for the exeitation

energy of the polarization mode [51J
1

Eo= 169 A 3 MeV.

Within the one-partiele-one-hole- pieture by using realistie

residual interaetions [52J, lower values up to a faetor two

have been obtained. As Bohr et at , [51J have shown , the polari­

zation monopole exeitation eauses an isospin impurity eorreetion

oe' whieh is different from zero only, sinee the energy of the

T = 0, 1 and 2 states resulting from the eoupling of Tvalenee

and Tmonopole are split by the symmetry potential V1/A. They
find for the eorreetion oe to the Fermi matrix element [51J

s + 4 a 2(T 1)
V1= =e E A
0 (27)

= 2.4 a
2(T = 1)
A2/ 3

where a value of V1= 100 MeV has been used. In the past many

attempts have been undertaken to ealeulate the admixing a 2(T
o+1)

of the polarization monopole state in nuelear ground states

with isospin To' To do this, different methods and models have

been used, the one-partiele-one-hole pieture [51, 53, 54, 55J
the two fluid 46 and three fluid [55J hydrodynamieal model
and sum rule methods [56].
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10 -1 I----,...-----------r----,---,----

A6050403020
10 -4 '--__L--_--l__--L__---l..__-l-__----!....

10

Fig. 4: Ground-states isospin impurities of N = Z nuclei in

a) the shell model without residual interactions [55J
b) the case that the mixing is entirely through the

giant monopole state (sum rules techniques have been
applied) [56]

c) the hydrodynamical model (two-fluid model) [51J

d) the shell model including residual interactions. [55J
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The results of the most recent calculations [55, 56J are
shown in fig. 4. From fig. 4 the necessity to include the

residual interaction in shell model calculations is evident,

otherwise the impurities would be too large by a factor of ten.
Applying eq. 27 we obtain

for the considered superallowed transitions from e10 to e054•

So the admixing of the core excited polarization mode on
the Fermi matrix element can be completely neglected.

(i1) A 0+ T = 0 monopole state (breathing mode) which cannot

give rise to isospin impurities, but to adynamie distortion

if it is admixed into initial and final states in different
amounts i. e. (a(1) - b(1» is different from zero.

\) \)

In the hydrodynamical model this state corresponds to

compressionaldilatational vibration with an excitation energy
of E = 75 A-1/3 MeV r52]. The excitation energy estimationo L -
of the breathing mode however, is much more uncertain than

those of the polarization mode 152, 57J. Also it is until now
+not possible to identify an excited 0 state, known from

experiment, with the breathing mode. Using the breathing mode

wave functions from [57J Damgaard [58J has calculated
(a(1) _ b(1»2 and shown that

\) \) ,

i. e. the influence of this mode is negligible.
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(iii) Two-partiele-two-hole (2P - 2H) or four-partiele-four­
hole (4P - 4H) states, respeetively. The 0+ eore exeited

states of this type have a mueh lower energy than the
exeited 0+ one partiele one hole states eonsidered before.

We will diseuss these states and their admixing on the

example of the T = 1 triplet ca42, Se 42, Ti 42, where we

have two valenee nueleons outside the doubly magie eore

of Ca40 (a very similar ease is the triplet 018, F1S, Ne1e).

Detailed theoretieal and experimental investigations of

these nuelei B9, 6~ have shown, that the seeond exeited
0+ T = 1 state (in Ca42 1.83 MeV) has probably mainly

+(4P - 2H) eharaeter. Assuming that the lowest 0 states

are a mixture of the simplest possible eonfigurations
2 4 -2 [ ](1f7 / 2) and (1f 7 / 2) (1d 3(i) Towner 61 has derived for

the dynamie distortion (av ) - b~1))2 a value of

Garvey et alt [62], as weIl as Kennedy and MeCullen [63J

have tried to test this predietion experimentally by

measuring the branehing ratio of the ß+-deeay of the Se 42

ground state to the 1.83 MeV state in Ca42

The latter authors reported as an upper limit for the

branehing ratio R <1.2 • 10- 4• This means we have

6 < 0.1%e

Thus this example suggests that the isospin mixing of this

type of states ean be negleeted. Nevertheless this aspeet

should be investigated more earefully in the future.
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4.2.2.4 Shell model

The valence nucleons which carry the nuclear isospin require

special treatment. The influence of the Coulomb interaction
can be divided into two types:

(i) Configurations of the same major shell (with T = 1)
are generally mixed due to the residual nuclear forces.

For nuclei with two nucleons outside a doubly magic core,

which we also have taken as an example before, the wave

function ljJ (J , T) looks like [59, 60, 64, 65J

018

F18 ljJ(O,1) 2 2 2= a1(1d5/ 2) + a2(2s 1/ 2) + a
3(1d 3/ 2)

Ne18

(28)

Ca42

Sc 42 ljJ(O,1) 2 2 2= a1(1f7 / 2) + a 2( 2P3/2) + a3( 2P1/2) +

Ti 42

2
+ a4(1f 5/ 2)

where ra ~ = 1.

The Coulomb interaction causes an additional mixing of these

states.

Since we have always in the initial state one proton more

than in the final the Coulomb potential and therefore also

the mixing coefficients are different in the initial and

final state of the ~+ - 0+ ß-transition [28, 66]. Or in

other words, the two or three higher J = 0, T = 1 states, which
can be built up from these configurations, are mixed in
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the lowest state with different amounts for the three members

of the isospin triplet. So we have adynamie distortion.

In a very recent and detailed calculation using the Rochester­

Oak-Ridge shell model code Towner and Hardy [2UJ have estimated

the effect on the Fermi matrix element. For 0 they obtainedc
the values shown in table 7.

(ii) The radial wave funetions of the valenee nucleons are

different for neutrons and protons since the proton wave functions

are dilated by the single particle Coulomb potential, i.e. by

the average electrostatic field of the other protons in the

nueleus. The radial overlap between the initial and final

nuclear states is therefore not perfeet. So we obtain a de-

crease in the Fermi matrix element which is equal to the

deerease in overlap from 1.

Ta ealculate this effect we can apply alternative methods

[;:8 ~ 46, 58]

a) One particle, for instance, the last proton can be excited

by the Coulomb force in astate with the next higher radial
42 42quantum number, for example in Ti or Sc from the

1f7 / 2-shell to the 2f7 / 2-shell. The excited states of

this type ean have T = 1 and T = 0 (in the N = Z nueleus).

The admixing E of this excited states can be, for instanee,

ealculated in first order perturbation theory by using

the harmonie oseillator model [46, 58J. According to

Damgaard [58J we obtain then

0 2
2.7

-5 Z2
{v (v + Q, + i)} (29)= E = . 10 -:273e 2A

where v is the radial quantum number and Q, the orbital

angular momentum.
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b) The radial wave funetions of the valenee nueleons ean be

ealeulated by solving the Sehrödinger equation within a

potential well, whieh is different for neutrons and protons

beeause of the Coulomb potential. The remaining potential

parameters well-depth, surfaee thiekness, radius and strength

of the spin-orbit term should be chosen to be the same for

both the proton in the initial and the neutron in the

final state.

Otherwise (if we inelude, for example, a finite symmetry

potential) our result would not be eorreet, sinee our

states then eontain spurious isospin impurities, even

without the Coulomb interaction [46J. As before the square

of the deerease in overlap from 1 gives oe [58J.

By applying method a (eq. 29) and method b (Woods-Saxon

potentials with the parameters from [67, 68]) values for oe

have been ealeulated. They are shown in table 7.

4.2.2.5 Other methods

To elose the diseussion of isospin impurity eorreetions we

should mention two other attempts to estimate this effeets;

In the one, Jaus [69J has treated the nueleus as an elementary

partiele and made use partly of the teehnique of dispersion

relations and partly of perturbation theory. He obtains a

value of

with a negative sign.

In the other orie , Fayans [70J has used the finite Fermi systems

theory and obtained

for the superallowed 0+ - 0+ transition from 014 to Co54•



Table 7:
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Isospin impurity correction 0c
a) from charge dependent configuration mixing (from ref.

[28J)
b) from imperfect overlap calculated by using perturbation

methods in the harmonie oscillator model (eq. 29),

c) from imperfect radial overl~ calculated by using
Saxon-Woods wave functions L67J or Hartree-Fock
(density dependent theory) wave functions ~8J

Nucleus

e10

014

Ne18

Mg 22

A1 26m

Si 26

,,30
o

C134

Ar34

K38m

ea38

" 42-.Je

Ti 42

Lt6
V'

Mn 50

e054

0 c(a) % 0c(b) %
-_._.-_.~--- ~--_._- ._-'~--._.

0.001 0.036

0.09 0.056

0.14 0.109

0.07 0.143

0.05 0.152

0.04 0.178

0.26 0.308

0.19 0.226

0.15 0.255

0.10 0.265

0.20 0.296

0.18 0.394

0.11 0.434

0.03 0.448

0.02 0.505

0.03 0.563

--_._--_ .. _-

0.065

0.318

0.378
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From table 3, we have in the A = 26 and A = 34 triplet

for both the mirror decays (see eq. 26)

A = 26

A = 34

8- - - (0.6 ± 3)%
c

This is in agreement with the theoretical estimations. The

errors, however, are not small enough to confirm the theoretical

calculations experimentally.

4.2.3 Corrections from forbidden contributions

The last correction which we have to consider is produced by

the so-called second forbidden terms. These terms are responsible

for the energy dependent shape factor C(W). In obtaining the

vector part of eq. 6 we have neglected the relativistic parts

of the beta decay hamiltonian and the variation

of the electron and neutrino radial wave functions over the

interior of the nuc Leus , In fact we have [71J

G(V)
= __S_

n

G(V)
+ _S_

n
L 4( x ) d 3x

~ variation of L(x)
over the interior
of the nucleus

f
+ + + 3

i(~N a ~p) L(x) d x

-,
relativistic terms

+where a is the Dirac operator.

Thus in order to know the energy dependence of C(W) we have to

consider the following two types of form factor coefficient or

matrix elements, respectively [22, 31, 71J
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VF(N) (1 m, n , o )
000 '

= < f Ir tJ>(r.) t(i)!.1+
1

i > (31)

VF (N) (1 )
011 ,m,n,a i > (32 )

where
r·

"'( ) = (2)2N 1(1 )~ ri R ,m,n,a;ri

The operators should always be applied to the i t h nucleon,

and a summation of all nucleons must be carried out.

The functions

which essentially determine the variation of the electron

radial wave function over the region of the nucleus, depend

on the shape of the nuclear charge distribution [7~ . Since

the matrix elements just mentioned do depend on the special

nuclear structure it is very important to look for a suitable

way to calculate them. Fortunately we are able to simplify

this problem by making use of the conserved vector current

(CVC) theory. This theory says that the isovector part of the

electromagnetic current and the weak current can be considered

as different components of one current in the isospin space.

So for our case we have [72J

a(V)
o(V ) = - _ß_ IT 0 J (33 )

ß e 12 L" +, el

where o~V) and o~i)ar~ the corresponding operators for the

beta transition and for the electromagnetic case, respectively

(e elementary charge).
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If we apply equation 30 to our case of a transition between
members of a T = 1 trip let we get

(34 )

Applying this equation we obtain (see ref.

(35 )

= '+ 12 < f(l,'+l) II cp(ri) t~i) li(l,+l) >

= '+ 12 {N < cp (r) > - Z < cp (r) -l
n P

where N and Z are the neutron and proton numbers in the nucleus

for T
3

= ~ 1, respectively. < cp(r) > is defined by

00

= J
o

2cp (r ) p(r) r dr (36 )

where p(r) is the neutron (x=n) or proton (x=p) distribution normalized

to unity in the nucleus. If we assume that the distributions for

neutrons and protons are identical we get simply

00

F(N)(l,m,n,a) = 12 J(~R)2N I(l,m,n,a;r)'p(r) r 2dr
000

o

(37 )

Because of I(l,m,n,O;r) = 1 this equation contains as a

special case the weIl known result for the Fermi matrix element.
We see the form factor coefficient F(N) (l,m,n,a) does only

000

depend on the shape of the nucleon distribution, but not on the

special nuclear structure.

The second type of form factor coefficient F~~l(l,m,n,a) repre­

sents a relativistic matrix element. By using the CVC-theory
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as in the forgoing case we can derive the following relation

[5 8 , . 71, 7 4, 75, 76J

08 )

where r

= f
o

x 2N-1(R) I(1,m,n,a;x) dx

Ho is the charge independent part of the nuclear hamiltonian.

For a beta transition between different member states of an

isospin multiplet we get by application of eq. 38

(N-1)-F011 (1,m,n,a) = {E(T,T3f) - E(T,T3i)}
I

• < fl~ ti i
) <j>'(ri)/i >

1

09 )

= 0

Even if we take into account that the initial and final nuclear

states are not pure isospin states one can show that this matrix

element is negligible small [31, 58, 71J. Therefore neglecting the

contributions from all relativistic matrix elements and other

small terms one finds [31, 71J
V
F(1)

C(W) = 1-{3(WR)2+ 3(qR)2+ ~(qR)(WR)}v (~)
Fooo

VF(1) (1 2 2 1)
2 000 ",- - ( o. Z ) (WR) --_.-
3 VF(o)

000

1 2- -(aZ)
3

VF (1 ) (1 2 2 2)
000 ",
VF(~---

000

(40)
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Here q = Wo - W is the neutrino energy in natural units,

as usual, and Z the nuclear charge number of the daughter
nucleus (for positron decays and negative value of Z has

to be inserted in eq. 40). When we assume a uniform nucleon

distribution in eq. 37 we have

VF (1 )
3000

VF(o) = "5
000

VF (1 ) (1,1,1,1) 27000

VF(o) = 35
000

(41)

VF (1) (1,2,2,1) 57000

VF(o)
- -_.~- = 70

000

VF (1 ) (1,2,2,2) 233000

VF(o) = 210
000

These matrix elements are the same for all decays under

consideration. Inserting them in eq. 40 we get the numerical

values of the shape factor C(W) averaged over the beta­

spectrum. They are listed in table 8. A very similar result

has been obtained by Jaus [77J using a completely different

method and a little larger result by Fayans [70J applying

the finite Fermi systems theory.
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Table 8: C(W")-1 for the superallowed Fermi transi t i on s

Iaeeording to [31J I

Nueleus

C10

0 1 4

Ne1 8

Mg 22

Al 26m

Si 26

S30

Cl 3 4

Ar 3 4

K38m

Ca38

Se
42

Ti 42

V
46

Mn 50

C054

C(W) - 1 (%)

- 0.0235

- 0.0442

- 0.0790

- 0.1032

- 0.1268

- 0.1452

- 0.1885

- 0.2120

- 0.2347

- 0.2670

- 0.2915

- 0.3332

- 0.3607

- 0.4007

- 0.4801

- 0.5522

---------------~----_._._.._----_._--

5. Conelusions

Our final ft-values whieh additionally inelude the 'outer'

radiative (to order Z2a 3) and the so ealled seeond forbidden

eorreetions are listed in table 9. Correetions for isospin

impurities in the initial and final nuelear states have not been

applied sinee, as diseussed before, all the ealeulations eon­

tain a large number of approximations and uncertainties. We are

able to give the sign and an order of magnitude of oe only. All

theoretical ealeulations agree that oe will be positive, increase
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with the atomic number A and lie between 0 < 8c < 0.5 %.

Table 9: ft values of the superallowed Fermi transitions
including the outer radiative and the second forbidden
corrections

Nucleus ft-values (sec)
---~ --.-- - -- ---..--_--~----- ---- - - --_-.-_-"-

C10 3143 + 40
01 4 -

3090 + 11
18 -

Ne 2975 + 109
Mg 22 -

3066 + 89
A1 26m -

3087 + 5
Si 26 -

3068 + 51
S30

-
3130 + 81

C134 -
3093 + 7

Ar3 4 -
3037 + 51

K38m -
3135 + 31

ca38 -
3302 + 203

42 -
Sc 3132 + 7
Ti 42 -

3254 + 124

V46 -
3139 + 8

Mn 50 -
3131 + 9

C054 -
3135 + 16-
--.-._---,- --- ---- - -_.-

It can be seen from table 9 that there is not exact agreement

within the experimental error between the different ft-values

as predicted by the theory. The last accurate ft-values (Sc 4 2,

v46 , Mn 50 and co 54) lie significantly higher (1.5 %) than the

first (0 1 4, A1 26m C134). If this discrepancy can be attributed to

an underestimation of the isospin impurity correction 8c we should

prefer the lowest ft-values, since we know 8 is positive, and alsoc
the lightest nuclei, since the lower the atomic number A, the smaller
8 . Thus for adetermination of the vector coupling constant GVc. 14 26m 34the most rellable ft-values are those of 0 ,Al and Cl
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For these cases ° should be smaller than 0.5 %. If the differencesc
in ft-values are based on experimental faults then again the values

14 26m 34for 0 ,al and Cl should be chosen because these deeays

have been recently reinvestigated very earefully 18, 12, 14, 15/.

By averaging the three ft-values of 0 1 4, A1 2 6m and C13 4 we obtain

ft = 3089.1 ~ 3.8 sees

By applieation of eq. 15 this eorresponds to an effeetive eoupling

eonstant

GI = (1.4113 + 0.0009)' 10- 49 erg cm3 if oe = 0V -

GI = (1. 4149 + 0.0009)' 10- 49 erg em3 if ° = 0.5 %V - e

The true effeetjve coupling eonstant should be between these two

limits.

Toeonsider the question of universality of the weak interaetion

we have, as diseussed at the beginning, to relate this value of G~

to the coupling constant of the muon decay ~8J

These quantities are related by (see eqs. 5a and 5b)

1
(42)

From the discussion of radiative eorrections we remember that there

are different values for 6~V) (see table 6).

Unfortunately it is therefore not possible to give a single repre­

sentative value of the Cabibbo angle G
V

determined from ß-decay,

but only a relation between G
V

and the model dependent part of

the electromagnetic radiative correction 6~V). This relation is

shown in fig. 5 for the probable range of 6~V) (see table 6).
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This has to be compared with the Cabibbo angle derived

from other decays.

As we have seen in chapter 11) especially from table 2) the

Cabibbo angle 0V can be obtained by investigating the

semileptonic decays of baryons. A fit of the Cabibbo angle
0V (together with the other parameters of the Cabibbo theory)

to all the experimental data has been carried out by Brene

et a l., [35J and by Ebenhöh et al. [79J. The result of the
fit obtained by the latter authors (one angle fit) was

0V= 0.239 ± 0.005 radians

0V can also be d~termined from the decay K+ ~ TIoe+v) but the

result depends on the details of the Ke 3 form factor (an

extensive discussion of this problem is given in ref [SOJ).

The K~3 decay leads to the following value for the Cabibbo

angle [SOJ

0V= 0.214 ± 0.005 radians

This value does not include the radiative and SU(3) - symmetry­

breaking corrections [34) SOJ to the Ke 3 form factor.

lt
Fischbach et al. [S1J have used a Kemmer equation instead of
a Klein Gordon equation in order to describe the pion and kaon.
They obtained another value for the K 3 form factor and therefore
a different Cabibbo angle [S~ e

0V= 0.192 ± 0.016 radians.

It is remarkable) that this value of 0V is in excellent agreement
with 0V derived from nuclear beta decay if we take for the model
dependent electromagnetic radiative correction

6~V)= (0.64 ± 0.26)%

the value calculated by Källen [43J (see table 6). This author
has used a local model of weak interactions and has taken into
account the strong interactions by including electromagnetic
and weak form factors.
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Fig. 5 Plot of the Cabibbo angle Sv against the model I
dependent electremuqnetie rndietive correctien ä(~
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Looking at fig. 5 we see that the model dependent part of the

electromagnetic radiative correction should have a value of

1.5 % < ~~V) < 3.3 %.

Only in this case the Cabibbo angle 8~ determined from nuclear

ß-decay agrees with 8V obtained from the analysis of the semi­

leptonic decays of baryons and of the Ke 3 decay (see also ref.

[3 4J ).

As we have discussed in chap. IV (see table 6) such an order of

magnitude of ~~V) can only be obtained by assuming a nonlocal weak

interaction Hamiltonian Hw' which requires the existence of an

intermediate vector boson W with a mass in the range 50-300 Mp'
Thus in the moment it is not possible to test the universality

of the weak interaction in the Cabibbo form as long as we have

no calculation of the radiative electromagnetic corrections

admitting but one interpretation.

Note added in proof:

The half-lives of v46 , Mn 50 and C05 4 have been recently

remeasured by Alburger [83J. The results, which are shown

in the following table, agree with previous work.

Nucleus half-lives (sec)

V46
0.4253 ± 0.002

Mn 50 0.2851 ± 0.0009

C0 5 4 0.1931 ± 0.0008

These results, therefore, do not change the conclusions

drawn in this paper.
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