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Abstract:

In the nuclear beta decay the weak vector coupling constant
Gév) can only be determined from the O+- O+ superallowed
beta transitions., Because of the great 1mportance of Gév)
for all the theories of weak interactions a big effort has
been directed in the last years to the experimental and
theoretical investigation of the ft-values of these O+— O+

superallowed transitions.

In this paper a compilation of the experimental results for
the ft-values, and a discussion of the theoretical attempts

to calculate the necessary corrections 1s given. Nevertheless,
some existing discrepancies between experimentally measured
ft-values of different nuclei can not be explained. Finally

a value for Gév) will be derived and compared with the weak
vector coupling constants taken from other weak decay modes.
This offers the possibllity to discuss the concept of
universality of the weak interaction theory.

Zusammenfassung:

Die Vektor-Kopplungskonstante Gév) der schwachen Wechselwirkung
flir den B-Zerfall kann nur aus den supererlaubten O+— O+ Uber-
gidngen bestimmt werden. Wegen der grofen Bedeutung von Gév) fir
alle Theorien der schwachen Wechselwirkung wurden in den letzten
Jahren grofe experimentelle und theoretlische Anstrengungen
unternommen, um die ft-Werte der supererlaubten o*- o* tber-
gédnge zu untersuchen.

In folgendem Artikel werden alle experimentellen Resultate fir
die ft-Werte zusammenfassend dargestellt und die zur Berechnung
der notwenidgen Korrekturen unternommenen Versuche diskutiert.
Trotzdem kdnnen einige zwischen experimentell gemessenen ft-
Werten verschiedener Kerne auftretenden Diskrepanzen nicht

erkldrt werden.,

eingereicht am: 18, Juni 1973



Zum SchluB wird ein Wert fir Gév) aus den Daten abgeleitet
und mit Vektor-Kopplungskonstanten verglichen, die aus
anderen schwachen Zerfillen bestimmt wurden. Dieser Vergleich
gibt die Mdglichkelt, das Konzept der Universalitét der

schwachen Wechselwilrkung zu diskutileren.
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1. Introduction

Nuclear beta-decay is one form of the weak interaction in-
volving all elementary particles. The following article begins
with a short consideration of the present weak interaction
theory, together with a discussion of the concept universality
of the weak interactions. Concerning the universality of the
weak interaction,one essential point is the accurate determi-
nation of the vector coupling constant in the nuclear beta-
decay. This coupling constant can only be deduced from experimen-—
tal and theoretical investigations of the o*- o* superallowed
beta-transitions. The main object of this paper is to give a
survey of the present state and the unanswered questions con-
cerning the superallowed 0*- 0% beta-transitions. Finally, a
comparison of the weak vector coupling constants taken from
different weak decay modes and a discussion of the universality

of the weak interaction is given.

2. The phenomenological theory of weak interactions

We distinguish essentially between three classes of weak inter-
action processes. This is shown in tab. 1. Firstly, we have the
purely leptonic decays, where leptons, i.e. electron, muon, their
associated neutrinos and the corresponding antiparticles, inter-
act only. Since leptons are not subject to strong interactions,
we have no influence of the strong interactions on these decays.
Secondly we have the semi leptonic decays, where leptons together
with mesons or baryons are involved. Since mesons and baryons
also interact strongly we expect that the weak interaction will
be modified in those decays, or in other words, the coupling
constant will be renormalized. In the case of the semi leptonic
decays we distinguish between the hypercharge* conserving decays

*According to the so called Gell-Mann-Nakano-Nishijima (GNN)
relation, the hypercharge Y is related to the charge Q and
the third component of the isospin Iz by: Q = Iz + Y/2



Type | Examples

Purely leptonic P —e" + Ve + Vu

n—p + € + Ve

(a) AY=0
Tyt + oy,
Semileptonic
N—ep +e€ +V
b 1AY]=1 P ;
K'— u* + vy
Kt + 7
Hadronic

/\o—-—p + T

Tab. 1 WEAK INTERACTION PROCESSES

(AY = 0, Y = hypercharge) and the hypercharge nonconserving
decays (|AY| = 1). This distinction is obvious as the strength
oflAYl 1 decays in one order of magnitude weaker than those
of AY O decays. Finally we have the nonleptonic or hadronic
processes where the applicability of the present weak inter-

action theory is until now completely open.

i

1"

It is usually assumed (see for example [1], [2]) that all weak
interaction processes can be described by the phenomenological

. . . . *
hamiltonian (current current interaction) :

* o+ + + +
AA = AA for A = 1, 2, 3 and AA = -AA for A = 4




4(2)

(it 4 5t N
V2

ATA A

+
Ly) + X (1)

"oy
/2

+ +
(JiJi + Ji 72) +

The quantities G, G(O), G(i), G(g), G(3> and G(u) are the
coupling constants. Ji and Ji denote the AY = O andlAY|= 1
hadronic currents, respectively. Ly is the leptonic current,

which is given by*

Ly (x) = 1 g Evg(X) Yy (1 + vg) ¥, (2)

Because of complications induced by the strong interactions,
it is not possible to express the hadronic currents so simply
in terms of field operators as in the case of the leptonic

currents.

Another general remark to be made about Jg and Ji is that these
currents are composed of two components, a vector and axial

vector part. In particular we can write:

(3)

where VA is a vector and AA an axial vector operator.

* The field operators in eq. 2 are given by

1

q%r{eiqx ar(q) ur(q) + b;(q) 'iQX}

ar(q) is the annihilation operator for

Y (x) = v,.(q) e

a fermion of momentum g

and‘spin r and b3#(q) the corresponding
antiparticles. The uyn(q) and v,(q) are
Dirac spinors.

creation operator for the
both the free particle






+ + + 1+
15 A 2 I
Le7\ Ve t+ € —= Ve + €
Lj‘;\ M —=—e + Ve + Vu Vu o+ p,"'-»vp + p"
n —=p + € + Ve B+ p —=—n + Vy
I —=— A + e + v, T —= 0 + Yy,
JO
A _ _
T e + Ve n + p—=n + p
T —1m0 + e + Ve
AN—=—p + & + Ve N—=p + pu + 9, N—p T
I —n + e + Ve I —=—n + u + Y, I —=n T
4 - — AN + e + Ve Q — A K~
J » -
K= o+ ve K— g™+ Wy = —A L N+p—AN+p
K—=m% + e + 9, K— 1m0 + u + v, K — 2t
K— "+ T+ & + Ve K—n*+ "+ &+ v, | K =31
Tab. 2 WEAK PROCESSES ACCORDING TO CURRENT-CURRENT THEORY




In eq. 1 the term G/V2 LAL; is responsible for the purely

+
leptonic weak processes, for example the term G/V2 LKL?
especial%y for the muon-decay.

o, + s 1.+ ] .
JALA + JALA and JALA + JALA are the corresponding terms for
the AY +O and |AY| = 1 semi-leptonic weak processes, respectively,

etc. those for the hadronic weak processes.

> 0O n

and JiJ

Tab. 2 gives a more explicit survey of how all the weak decays*
(and scattering processes) can be explained by the current
current interaction [1]. If the postulate, that

¢(®) = 6 cos o

¢ - @ sin o

G(g) = G cos2 0 (4)
G<3) = G cos © sin ©

G(u) G sin2@

is fulfilled one speaks of the Cabibbo form of universality
of the weak interaction. © is the Cabibbo angle. Then we have,

for instance,

Gév) = G cos © for the beta-decay (5a)

G. =G for the muon-decay (5b)

(V means the vector part of the interaction)

3. Transition probabilities and ft-values of allowed beta -

transitions

3.1 Allowed transitions in general

For a.f = or B+«transition between two nuclear states 1 >
and £ >, we obtained the well-known expression for the spectrum

* The corresponding transition matrix element is, for instance,
in the case of the beta-decay
n-+p+e—+.\7

Mpy= = < pe” v ,JHW(X) dxuln >

L

= o) (0]
where H (x) = Gg/v2 {vy + A, }L%




form using the theory discussed previously together with the
standard perturbation theory © (see for example 2], 3],

In 2 ;42 2 . 42
N(p)dp = =2 {6y Mo + Gf MZ}. (6)

« F(Z,W) p°(W, - W)°dp

where
N(p)dp = number of electrons or positrons in the
momentum interval between p and p + dp
p = electron (positron) momentum in units of m_c
W = total energy of the electron (positron) in
units of m 02
o
Wo = total end point energy of the electron (positron)
- (L) =
Mp = < £ ¢/ 1>
1 ——
= < f|T+| i> (Fermi matrix element)
>
M, = < f|z t(l)+(l)|1 > (Gamov-Teller matrix
i - element®*)
F(Z,W) = —15 { 1(O) + £° (O)} (Fermi function)
2p

g_l(r) and f+1(r) are the electron radial wave functions.
Contrary to F(Z,W) which is evaluated at r = R (the nuclear
radius) ﬁ(Z,W) is evaluated at r = O (the center of the nucleus)
[4], [5]. So for allowed transitions, less ambiguity and greater

accuracy is achieved.

* In the following we use natural units (h = m, = ¢ = 1).
Then K = 2m°(1n 2)
** t, are the usual charge lowering and raising isospin operators
ti = t1 + 1 t2
We have E+xp = X and t_xn = Xp
g = {01, Tss 03}
995 9, and o5 are the usual Paull matrices.



If we intend to experimentally determine the coupling constants
GV and GA’ we see from eq. 6 that the Fermi and the Gamov-Teller
matrix element should be known. Let us therefore discuss more

extensively the selection rules for these matrix elements.

We have (see for example [2], [3]:

Mp £ 0 only for AJ = [J, - Jp| =0 7
AT = [T, = T] =0
Ty Te = +1

M, ¥0 only for AJ = |J; - Jo| = 0,1 but not 0 - 0 (8)
AT = [T, - T.| = O,

where the quantities J, T and m are the spins, isospins and
parities of the initial and final nuclear states, respectively.
If we assume the isospin to be a good quantum number, the Fermi
matrix element is only different from O for transitions taking
place between component states of an isospin multiplet (i.e.
between analogue states). Such transitions are called super-
allowed transitions. Since in general the Gamov-Teller matrix
element depends on the details of the nuclear structure (with
exception of the neutron decay), for our purpose the decays

of the type Ji = 0%> g, = 0% are or particular interest, for

f
which the Gamov-Teller matrix element vanishes.

3.2 Superallowed 0¥ - of transitions

The Fermi matrix element remains to be discussed in more detail.
For a Of - ot beta transition between members of an isospin
multiplet, we may limit ourselves to positron transitions.

(B ~transitions are energy forbidden because of the Coulomb

energy differences between members of an isospin multiplet).




We have:

g =< T, Ty

=
u

+1 |T,| T, T4 >

(9)

+ 1)

- +
(T TB)(T T3
This result follows from the general angular momentum theory
which can also be applled, as is well-known, to isospin
formalism.

Superallowed

T=1,T,=0

J=0*
, T= 1 73

\-AT_U T3 =1

Fig.1 Superallowed B* decay of 0



The essential point is that eq. 9 is completely independent
of the details of the nuclear structure., So we are able to
calculate the Fermi matrix element for the superallowed

o" - o transitions without any ambiguity. This statement 1is
only based on the simple assumption that we have pure isospin
states in the nucleus. All the O+ - O+ superallowed beta
transitions experimentally investigated up to now, take place
between member states of an 1sospin triplet (T = 1). An

example 1is shown in fig, 1. In this case we obtalned from eq. 9

o)

Mg = < T =1, Ty =0 [T,| T=1, T;= ">
(10)
= v 2
We get the half t for a 0% -~ 0% transition by simply
integrating eq. 6
ft = —er (11)
G, M
V'F
where
pO
f = I F(Z,W) pz(wo- W)2dp (integrated Fermi function)
1
and
« - 2n’(in 2) H7
- 5 8
me C

2w3 1In 2 (natural units)

1]

1.230627 - 10-9uerg2cm6sec (cgs units)

This means that we have to lnvestigate experimentally the
ft=values of the superallowed 0" - 0% beta transitions if we
aim to determine the vector coupling constant of the nuclear
beta decay. For this purpose we have to measure the half lives
(tha partial half lives) and end point energies of these types
of beta transitions.




Table 3a: Experimental data for the half-lives of the superallowed transitions

Nucleus t,(sec) Branching ratio % EC/B+—?atio (%) t (sec) Ref.
(according to ref.
(5D l l

c'O 19.42 + 0.04 1.465 + 0,01k 0.3122 1330 + 13 (7]

oth 70.58 + 0.035 99.328 + 0.012 0.0914 71.122 + 0.036 [9, 10]
wel® 1.655 + 0.025 7.65 + 0.26 0.0833 21.65 + 0.79 [15]

Mg 22 3.857 + 0.009 54.9  + 1.1 0.0700 7.03 + 0.18 [13]
4126m 6.346 + 0.005 100. 0.0837 6.351 + 0.005 [14, 16]
5126 2.202 + 0.023 749 + 0.9 0.0646 2.942 + 0.046 [13]

520 1.21 + 0.02 77.5  + 1.0 0.0659 1.562 + 0.036 [17] '
c13" 1.526 + 0.002 100. 0.0805 1.527 + 0.002 [16, 12
ar3H 0.839 + 0.01 9k.3  + 0.25 0.0694 0.890 + 0.011 [13]

goom 0.9292+ 0.0035 100. 0.0828 0.9300+ 0.0035 [16]

ca’® 0.439 + 0.012 Th. o+ b, 0.0722 0.594 + 0.035 [19)

52 0.6837+ 0.0009 100. 0.0968 0.6843+ 0.0009 [16, 18]
73 *2 0.202 + 0.005 bh1 o+ 1.2 0.0856 0.458 + 0.017 [19]

v 0.4259+ 0.0008 100. 0.0979 0.4263+ 0.0008 [18]

Mn>° 0.2857+ 0.0006 100. 0.1026 0.2860+ 0.0006 [18]

co>t 0.1937+ 0.001 100. 0.1060 0.1939+ 0.001 [18]

— - —— — ——— e m—— o — - e——




Table 3b: Experimental data for the end-point energies and ft-values (with screening) of super-

allowed Fermi transitions

Nucleus T3i E (keV) Ref. ro(fm) ft(sec)
according to ref.
[20, 21]
c10 -1 888.1 + 1.8 6] 1.47 3092. + 140
ol4 -1 1809.1 + 1.5 [e] 1.32 3043, + 11
Nel® -1 2383. + 5. 1] 1.36 2931. + 107
Mg 22 -1 3120. + 10. 1] 1.33 3021. + 88.
4126m 0 3210.6 + 1.0 4, 15] 1.28 3042, + 5.
5129 -1 3817. + . [13] 1.28 3023. + 50. !
530 -1 1439, + 11. [11] 1.28 3085. + 80. 5
c1>" 0 BUET .4 + 1.9 [i8, 12] 1.33 3048, + 7. !
arst -1 5021. + 12. [11] 1.33 2993. + 51.
x> 8m 0 5027. + 10 [T1] 1.32 3089. + 31.
ca’?d -1 5620. + 19 [11] 1.32 3254, + 200.
se 2 0 5409. + 2.3 [18] 1.31 3086. + 7
7112 -1 5964. + 7. f1] 1.31 3206. + 122
o 0 6032.1 + 2.2 18] 1.29 3093. + 8
M0 0 6609. + 2.6 [87] 1.25 3085. + 9
o2t 0 7227.7 + 3.8 [i8] 1.27 3089. + 16.

|
|
!
|
|
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A number of precise experiments to determine t and wO has
been carried out in the last years., In these experiments the
end point energy has always been derived from the threshold
of sultable reactions, for instance (p,n) reactions.

In table 3b a compilation of the experimental results for the
ot - o' superallowed transitions is given (see also [28]). It
can be seen that the various ft-values agree with each other
within 2% as 1is predicted by eq. 11. But if we consider the
compilation more accurately we see that there is no exact
agreement within the experimental error, especially between
the most accurately measured values of Oiu, Al26m and ClBu, and
he V46 Mn5o and CoSu, where

the other accurate cases of Sc ’

the error is smaller than 16,

Looking at table 3b we see also that in four cases, both
possible transitions in the isospin triplet have been measured
for A = 26, A = 34, A = 38 and for A = 42, In all four cases,
these ft-values agree within the margin of the experimental

error.

The question arises, whether of not we can explain the small
differences between the ft-values. To discuss this problem we
must consider various small effects hitherto neglected. This

is also necessary because we want to derive a reliable value

for Gyro The experimental accuracy 1is of the order of a few
tenths of a percent, so we have to take into account all correc-

tions of this order of magnitude.

4, Corrections

Here we have two kinds of corrections, first the uncertainties
in the calculation of the integrated Fermi function f, and
second, terms and effects which we have neglected in eq. 6

and eq. 11, respectively.



L,1. Uncertainties in the integrated Fermi function

Let us begin with the uncertainties in the value of f. For

the calculation of the integrated Fermi funtion f we need

the electron radial wave functions g_l(r) and f+1(r) evaluated

at the center of the nucleus r = 0 [5, 22] . The electron

radial wave functions are solutlons of the Dirac radial

equations with a potential corresponding to the extended nuclear
charge distribution of radius R and the charge distribution of
the electron cloud (screening). There are a number of detailed
calculations and tabulations of F(Z,W) and f(Z,WO), respectively
{5, 22, 23, 24, 25, 26, 27, 28]. The calculations carried out
after 1966 are all consistent with one another, although different
models for the screening by the atomlc electrons have been used.
It should be noted, however, that ft-values derived earlier from
various available tables of Fermi and related functions show

some discrepancies compared with the newer results (see the
discussion in [3] and [5]). The reasons for this fact are some
inconsistencies and errors in the older calculations [éu, 29, 3@].

A common factor of nearly all newer calculations is that they
nave been carried out by solving the Dirac equation for the
model of the uniform charge distribution of the nucleus (an
exception is ref [28]). The question is now, whether or not there
is a relevant change in the ft-~values, if instead of the uniform
charge distributlion of the nucleus a more realistic one, like
a Fermi or Gaussian distribution for instance, is used. In order
to decide this, the modified Gaussian distribution has been
taken [31]

, -5
Ny {1+ A" }e ° (12)

p(r)

where
8

(2 + 3A) a2 /n

0o

Since the nuclear radius R is a well-known quantity for each
nucleus, only the comparison charge distributions all having the
same nuclear radius have been considered. Therefore the modified

Gaussian distribution effectlvely contains only
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one free parameter A, while the other a is related to the nuclear

radius R by

_ 2(2 + 3A)
a = R //§T§—:~§KT

(13)
For most of the nuclei, especially the heavier, the Fermi distri-
bution is more appropriate than the modified Gaussian. The

former distribution is much closer to the uniform distribution
than the latter, and it has been shown by detailed investigations
that the same is true for the values of the Fermi functions [33].
30 by choosing the modified Gaussian distribution we get an

upper limit for the influence of realistic charge distributions
to the integrate Fermi function f. Calculated ft-values (without
sereening) for the uniform and the modified Gaussian distribution

are shown in table U4 [31].

Table 4: ft-values (without screening) of superallowed Fermi
transitions for several different nuclear charge 4,3
distributions (from [31]) and rj = 1.2 fm (R = roA™" ")

nucleus uniform modified Gaussian
distribution distribution
A =0 A:lL A =2

14

0 3039 3039 3039 3039
26, pm 3037 3038 3038 3037
ey 3043 30L5 3044 3041
425, 3080 30873 3082 3082
46y 3088 3092 3091 3090
50un 3082 3087 3086 3085
S4co 3087 3093 5091 | 3090




1 34

the difference are seen to be
completely negligible. For 0054
case A = O there 1s a difference of 0.2%. Since the Fermi
distribution 1s an overestimation. Therefore the true difference
in the ft-value, due to the deviation of the charge distribution
from the uniform, is expected to be smaller than 0.1% and 1is
negligible (see also [32]). In addition it should be mentioned,
that the dependence of f on the nuclear radius R is also small,
however, a nearly correct value should be used here [22, 31],

as has been done 1n calculating the ft-values of table 3.

For light nuclei up to C
in the most unfavourable

4,2, Other corrections

Now we come to the terms and effects which we have neglected

in eq. 6 and eq., 11. If we want to have a more accurate formula
for the spectrum of a Fermi transition, eq. 6 has to be modi-
fied in some points. We obtain then [3, 34]

1 2 12
N(p)dp = == G}~ ML® {1 + 8 (W,Z)}
oqs V. F RS
. 2 2 (1%)
» C(W) F(Z,W) p~(W_ - W)“dp
where
2 _ 42 (V)
Gy~ = Gy (1 + Ag'/)
2
MES = 2(1 - §,)

Aév) and GR(w,z) are the model dependent and model independent
electromagnetic radiative corrections, respectively. Aév)

depends on the detalls of the strong and weak interaction theories,
while for GR(W,Z) this 1s not the case [35, 36, 37, 3§] §, takes
into account the modification of the Fermi matrix element due

to isospin impurities of the initial and final nuclear states

[3]. C(W) 1is the shape factor which contains the so-called

second forbidden terms [22, 31].




- 15 -

By integration we receive then in the place of eq. 11

~ - K

ft ¢« CTW)(1 + -8_};) = -—'?—-;—2- (15)
G M

\' F

where the bars in C(W) and GR denote the approprilate average

over the B-spectrum functions.

4,2,1., Radiative corrections

Of the effects listed above, the most important ones are the
electromagnetic radiative corrections. The other corrections
are propably much smaller. Therefore we first discuss the
radiative corrections. If the decay of the nucleus can be
considered as the decay of one induvidual proton which is
bound in the nucleus, we have for the leading electromagnetic
correction terms of order a, Za2 and 7° a3, the Feynman
diagrams* [38, 40, 41] shown in fig. 2. For the model independent
part GR(W,Z) of the electromagnetic correction, 1.e. the part
which depends neither on the details of the strong interaction
nor on the existence of an intermediate boson, we may write:

Sp(W,2) = 8§, (W) + 8,(W,z) + SB(W,Z) (16)

where 61, 65, and 63 denote the terms of order a, Za2, and

Z2 a3, respectively.

§,(W) can be written as [36;'38]

8, (W) = Z g(W,W,) (17)
2w
where g(w,wo) is a well-=known analytic function. The numerical
values for the spectrum averaged radiative corrections E;, 55

and E; are displayed in table 5 [4O, 41, 42],

*It has been shown by Beg et al. [39] that the radiative
corrections can generally be written in the form

s (v) . m n
GR + AR = mzi a O (Za)

n=0
i.e. each term contains a higher power of a than of Z.
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n/ vl &

terms of order Z2«”

Fig. 2

Feynman diagrams for the radiative corrections to
p—e=n+et+y
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Table 5: The model independent radilative corrections

845 S, and 53 (from [40, 41, 42]).
Nucleus EIT%) EEY%) 5;7%)
¢t 1.48 0.18 0.01 ﬂ
ot 1.30 0.26 0.02
Net® 1.22 0.33 0.03
Mg 22 1.13 0.41 0.0k
p126m 1.12 0. 44 0.05
5126 1,07 0.49 0.06
SEN 1.02 0.56 0.08
13" 1,01 0.60 0.09
a2t 0.98 0.63 0.10
g3 8m 0.98 0.67 0.12
ca’8 0.94 0.71 0.13
scte 0.95 0.75 0.14
712 0.92 0.78 0.16
yHo 0.91 0.82 0.17
Mn -0 0.88 0.90 0.21
o™ 0.85 0.97 | 0.2l

Up to now, an exact value for the model dependent radiative
correction Aév) does not exist. When current algebra methods
are used, one obtains [35,37,38]

o8 = & 51+ 29) ) - ) (18)

2 M
m p

Then Aév) depends mainly on the average charge 6 of the
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fundamental isodoublet underlying current algebra and on the cut-
of f parameter A. If the weak interaction is based on the exchange
of an intermediate vector boson, A is equal to the mass of the
intermediate boson MW' Otherwise A will be usually set equal to the
nucleon mass Mp. For the fractional quaik model we have Q = - %
and for the integral quark model Q = + z [38]. Note that

88" 1s finite for 9=-1,i.e. no cut off A is needed. There is

an other completely d?fferent calculation of Aév> carried out by
K51len ([44], see also [U5]), who has taken into account the effects
of the strong interaction through their influence on various

nuclear form factors. Values of Aév>for different models are given
in table 6. In conclusion we can say that there are bilg differences
between the values of Aév) according to the different models.

Up to now this is one of the open questions 1in the whole discussion

on universality of weak interactions.

Table 6: Model dependent part of the electromagnetic radiative

correction
(V)
_ I o T M N N
K&llen [44] 0.64 + 0.26
= 1
Q = 3 0.12
Q = O 0.1 - 0.9?2
1.0 - 0.12
5.0 0.4y
10.0 0.69
50.0 1.25
100.0 1.49
150.0 1.63
200.0 1.73
300.0 1.87
Q = % 0.1 - 1.19
1.0 - 0.12
5.0 0.63
10.0 0.95
50.0 1.70
100.0 2.02
150.0 2.21
200.0 2.35
300.0 2.53
———d S P R
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Fig. 3 Schematic representation of the energy levels
for different isospin multipletts

h,2,2, Isospin impurity corrections

4,2,2.1. General relations

The next point is to consider the influence of the isospin
impurities of the initial and final nuclear states (detailed
reviews of thils problem are glven in references [3, be, M@
where also older references can be found). Besides a small
charge dependence of the nuclear forces, which can be neglected
in a first approximation, the Coulomb interaction is the mailn
source of the isospin impurities. The Coulomb potentilal VC

can be expressed as a sum of a scalar, vector and second rank
tensor in isospin space (This 1is also true for the charge
dependent nuclear potential). The 1soscalar part of VC leads

to no isospin impurities and therefore is not of importance

in this case. In the first order perturbation theory, the
isovector and second rank isotensor part of the Coulomb potential
is able to admix states with isospin values T = TO+ 2, T+ 1,

Tys Ty- 1 and T - 2 into a state with isospin T (see fig. 3).
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Expanding the initial and final nuclear states in elgenstates
of the charge independent part of the nuclear hamiltonian,

we can write for a Fermi transition from Ti= 1, T31= -1 to
Te= 1, T3f= O (see references [3, U47])
by o= bouo (1, -1+ T (P oy (1, -1
Y (19)
+ {2, s+ 63y (3, -1))
Ve = agiy(1, 0) + I {2l y (0, 0)
v
+all oy (1, 0) 4 {2y (2, 0) (20)

+ 8\()3> IP\)(B, O)}

where in first order perturbation theory

a§T> < by (T o>lvcl‘wo<3:>gg_f 1)

E,(T) - E (1)

< (T, —1) ) (1, _1) >
béT) R Vel¥ S (22)
Ev<T) - Eo(i)

It is now straightforward to calculate the square of the Fermi
matrix element. Taking the condition that wi and wf are correctly

normalized we get

2 _
Mp© = 2(1 - ac) (23)

where
Gc _ Z Q(o))2 + (a61>- béi))Z

v \Y

+ {(a62>)2 - 2v3 aég)bé2)+ (bég))2}

+ {(aéB))2 - 2v/% aéB)b53)+ (béB))e}
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Thus the problem of determing GC is reduced to the calculation
(T) (T)
of a, and bv .

Let us first consider the admixing of T = 2,3 states. From the in-
vestigation of isospin forbidden (AT = 1 transitions) Fermi matrix
elements we know that < T + 1, TB!VCIT, ’I‘3 > is smaller than 60 keV
[3, 34, 49]. Further, for light nuclei it is known that

AE = E _(2) - E_(1) > 5 MeV [50]. Combining these two estimates

we get the upper limit
(2)) . (2) -2
lay” 1 = [/ ¢ 10
In addition)it should also be noted that we can assume

128371 < 1282 ana p{3) < p?))

Thus we expect that the overall contribution to GC of the
T = 2,3 states can be neglected (see also the discussion of

the core excited states).

By looking at eq. 23 we see firstly that if only T = O and

T = 1 admixtures contribute, GC is positiv, Secondly there

is an effect of admixing other T = 1 states into the zero order
states, if the aél) are different from the bél), i.e. if other
T = 1 states are mixed in the initial and final nuclear states
with different strength. This latter effect 1s called dynamic
distortion.

Eg. 23 has been derived for the transition T31= -1 to T3f= 0
which we denote with +, so we have now to discuss the transition
T31= 0 to T3f= + 1, which we denote with -,

By application of the Wigner-Eckart theorem we can easlly show

that [13, 28]

(al®)2 = ({02 (2b)
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and

@lt - p{t), = - o, x 30, (25)

where ., <¢v(1)|lvé1)||wo(1)>

1

/o' |E, (1) - E (1)

UNEN A SRR

P
—
/30 |E,(1) - E_(1)]

We are able to determine experimentally the difference

+ -
§, - 8, = 12¢, C (26)

between the two possible Fermi transitions in the T = 1
triplet by measuring the difference rt¥ - £t”. In this way we
can get an order of magnitude estimate of Gc. Many authors
have tried to calculate 6C. By using different models the

following results have been obtained:

h,2,2.2 Fermi gas model

In this model, which has been introduced by Mc Donald to
estimate isospin impurities, the nucleus is approximated by

an impenetrable box containing non interacting nucleons. Using
this model, values of 60 have been obtained which lie between
0.26% and 0,66% for the decays of ol to o [3, 48]. These
results should be considered more as upper limits as the real

values of éc.

4,2,2.3 Collective model

As usual, the nucleus is treated as a core plus two or more
valence nucleons. Thus we have first to consider the influence
of the core excited states to the isospin impurities. The
following types of core excited states are of interest in our
case which can be described macroscopically within the hydro-
dynamical model or microscopically by excited particle hole

states,
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(i) A o' monopole state with isospin 1 = 1 (polarization mode)
which can couple to the O+ T = 1 state of the valence nucleons
and build up states with T = 0, 1, and 2. In the hydrodynamical
model thils state corresponds to a mode, where neutrons and
protons move with respect to each other leaving the total
density constant [b1, 52].

Within the hydrodynamical model, one obtains for the excitation
energy of the polarization mode [51]
1

E = 169 A 3 Mev.

Within the one-particle-one-hole- picture by using realistic
residual interactions [52], lower values up to a factor two

have been obtained. As Bohr et al. [51] have shown, the polari-
zation monopole excitation causes an isospin impurity correction
Gc, which is different from zero only, since the energy of the

T = 0, 1 and 2 states resulting from the coupling of TValence
and T are split by the symmetry potential V1/A. They

monopole
find for the correction §, to the Fermi matrix element [51]

v
§ = + 4 a2(T = 1) E
(27)
= 2.0 (12(T = 1)
* A273

where a value of V1= 100 MeV has been used. In the past mgny
attempts have been undertaken to calculate the admixing o (To+1)
of the polarization monopole state in nuclear ground states

with isospin TO. To do this, different methods and models have
been used, the one-particle-one-hole picture [51, 53, 54, 55]
the two fluid 46 and three fluid [55] hydrodynamical model

and sum rule methods [56].



o?(T=1)
07
///////a
10_2 ////!,///’
c
/ //d
10~ / /
07 .
10 20 30 L0 50 60 A
Ground-states isospin impurities of N = Z nuclel in

a)
b)

c)
d)

the shell model without residual interactions [55]

the case that the mixing is entirely through the
giant monopole state (sum rules techniques have been

applied) [56]
the hydrodynamical model (two-fluid model) [51]

the shell model including residual interactlons. [55]
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The results of the most recent calculations [55, 5@ are

shown in fig. 4. From fig. 4 the necessity to include the
residual interaction in shell model calculations is evident,
otherwise the impurities would be too large by a factor of ten,
Applying eq. 27 we obtain

605 0.06%

for the considered superallowed transitions from C1O to 005“.

So the admixing of the core excited polarization mode on
the Fermi matrix element can be completely neglected.

(i1) A ot 1 =0 monopole state (breathing mode) which cannot
give rise to 1sospin impurities, but to a dynamic distortion
if it is admixed into initial and final states in different
amounts i. e. (aél) - bsl)) is different from zero.

In the hydrodynamical model this staté corresponds to
compressionaldilatational vibration with an excitation energy
of E = 75 A~3 yev [52]. The excitation energy estimation

of the breathing mode however, is much more uncertain than
those of the polarization mode [52, 57]. Also it 1s until now
not possible to identify an excited 0¥ state, known from
experiment, with the breathing mode. Using the breathing mode

wave functions from [57] Damgaard [58] has calculated

v N and shown, that

(a

Gc < 0.03%

i. e. the influence of this mode 1is negligible.
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(iii) Two-particle-two=-hole (2P - 2H) or four-particle-four-
hole (4P - UH) states, respectively. The 0" core excited
states of thilis type have a much lower energy than the
exclted ot one particle one hole states considered before,
We will discuss these states and their admixing on the
example of the T = 1 triplet Caug, 8042’ Tiuz, where we

have two valence nucleons outside the doubly magic core

of ca’ 18 518 neld),
Detailed theoretical and experimental investigations of
these nuclei [59, 60| have shown, that the second excited

0" T = 1 state (in ca*? 1.83 MeV) has probably mainly

(4P - 2H) character. Assuming that the lowest O+ states

are a mixture of the simplest possible configurations

2 4 -2 .
(1f,,,)° and (1f,,,) (1d,,,) ~ Towner [61] has derived for
7/2 7/2 3(2) (D)2
v v

0 (a very similar case is the triplet O

the dynamic distortion (a a value of

6c= 0.18%

Garvey et al. [62], as well as Kennedy and McCullen [63]
have tried to test this prediction experimentally by
measuring the branching ratio of the 3+-decay of the Sc
ground state to the 1,83 MeV state in Ca“z.

The latter authors reported as an upper limit for the

branching ratio R <1.,2 « 10" ', This means we have

42

GC < 0.1%

Thus this example suggests that the 1sospin mixing of this
type of states can be neglected. Nevertheless this aspect
should be investigated more carefully in the future.
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4,2.2.4 Shell model

The valence nucleons which carry the nuclear isospin require
special treatment. The influence of the Coulomb interaction
can be divided into two types:

(i) Configurations of the same major shell (with T = 1)
are generally mixed due to the residual nuclear forces.
For nuclei with two nucleons outside a doubly magic core,
which we also have taken as an example before, the wave
function ¢(J,T) looks like [59, 60, 64, 65]

018
pld ¥(0,1) = a,(1d,,,)2 + ay(2s,,,)° + az(1d5,,)°
NelB
(28)
Ca42
712
) 2
voay(1fy,5)
where Zas = 1,

The Coulomb interaction causes an additional mixing of these

states,

Since we have always in the 1nitial state one proton more

than in the final the Coulomb potential and therefore also

the mixing coefficients are different in the initial and

final state of the $+ - ot B-transition [28, 66]. Or in

other words, the two or three higher J = 0, T = 1 states, which
can be built up from these configurations, are mixed in
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the lowest state with different amounts for the three members
of the isospin triplet. So we have a dynamic distortion.

In a very recent and detailed calculation using the Rochester-
Oak-Ridge shell model code Towner and Hardy [28] have estimated
the effect on the Fermi matrix element. For dc they obtained

the values shown in table 7.

(ii) The radial wave functions of the valence nucleons are
different for neutrons and protons since the proton wave functions
are dilated by the single particle Coulomb potential, i.e. by

the average electrostatic field of the other protons in the
nucleus. The radial overlap between the initial and final

nuclear states is therefore not perfect. So we obtain a de-

crease in the Fermi matrix element which is equal to the

decrease in overlap from 1.

To calculate this effect we can apply alternative methods

(28, 46, 58]

a) One particle, for instance, the last proton can be excited
by the Coulomb force in a state with the next higher radial
quantum number, for example in Tiu2 or ScLl2 from the
1f7/2—shell to the 2f7/2-shell. The excited states of
this type can have T = 1 and T = O (in the N = Z nucleus).
The admixing € of this excited states can be, for instance,
calculated in first order perturbation theory by using
the harmonic oscillator model [46, 58] . According to
Damgaard [58] we obtain then

2 _ =5 22 1
§. =€ = 2.7 ¢« 10 -A-2-7-3-{v(v+l+-5)} (29)

where v is the radial gquantum number and 2 the orbital

angular momentum,
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b) The radial wave functions of the valence nucleons can be
calculated by solving the Schrddinger equation within a
potential well, which is different for neutrons and protons
because of the Coulomb potential. The remaining potential
parameters well-depth, surface thickness, radius and strength
of the spin-orbit term should be chosen to be the same for
both the proton in the initial and the neutron in the
final state.

Otherwise (if we include, for example, a finite symmetry
potential) our result would not be correct, since our
states then contain spurious isospin impurities, even
without the Coulomb interaction [46]. As before the square
of the decrease in overlap from 1 gives §_  [58].

By applying method a (eq. 29) and method b (Woods-Saxon
potentials with the parameters from [67, 68]) values for 60

have been calculated. They are shown in table 7.

4,2,2,5 Other methods

To close the discussion of isospin impurity corrections we
should mention two other attempts to estimate this effects.

In the one, Jaus [69] has treated the nucleus as an elementary
particle and made use partly of the technique of dispersion
relations and partly of perturbation theory. He obtains a
value of

|6 .| < 0.08%

cl

with a negative sign.
In the other one, Fayans [70] has used the finite Fermi systems
theory and obtailned

0.03 < GC < 0.4%

14

for the superallowed of - O+ transition from O to Cosu.



Table 7: Isospin impurity correction GC
a) from charge dependent configuration mixing (from ref.
[28])
b) from imperfect overlap calculated by using perturbation
methods in the harmonic oscillator model (eq. 29),
¢) from imperfect radial overlap calculated by using
Saxon-Woods wave functions [27] or Hartree-Fock
(density dependent theory) wave functions [68]
Ngcleus Gc(a) % Gc(b) % Gc(c) %
¢10 0.001 0.036
olH 0.09 0.056 0.065
Neld 0.14 0.109 0.318
Mg22 0.07 0.143
p26m 0.05 0.152
5126 0.0b 0.178
50 0.26 1 0.308
A 0.19 0.226
ar3t 0.15 0.255
g5 om 0.10 0.265
Ca38 0.20 0.296
o b2
Se 0.18 0.394 0.3%78
Tiu2 0.11 0.434
]
y o 0.0% 0.448
Mn 20 0.02 0.505
co?™ 0.03% 0.563




- 31 -

From table 3, we have in the A = 26 and A = 34 triplet
for both the mirror decays (see eq. 26)

A = 26 67 - 8 = = (0.6 * 3)%
A = 34 GZ - 87 = - (1.8 £ 1.7)%

This is 1n agreement with the theoretical estimations. The
errors, however, are not small enough to confirm the theoretical

calculations experimentally.

4,2,%3 Corrections from forbidden contributions

The last correction which we have to consider 1s produced by

the so-called second forbidden terms. These terms are responsible
for the energy dependent shape factor C(W). In obtaining the
vector part of eq. 6 we have neglected the relativistic parts

of the beta decay hamiltonian and the variation

of the electron and neutrino radial wave functions over the
interior of the nucleus. In fact we have [71]

(v) Gév) 3
v) _ o+
HB = - = J JA (x) LA(X) a-x
(v)
G
B o ot 3

variation of L(x)
over the interior
of the nucleus

- j by O Vp) T(x) a3x

relativistic terms

>, .
where o is the Dirac operator.

Thus in order to know the energy dependence of C(W) we have to
consider the following two types of form factor coefficient or

matrix elements, respectively [22, 31, 71]
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- (1) .
VFégg(l, m, n, o) < f g dJ(l"i) b, 12 (31)
a2
VP (minye) = <o |fote —2 s 1 s (32)
i R

where r.

d(r;) = (7)) I(1,m,n,05r;)
The operators should alwéys be applied to the ith nucleon,

and a summation of all nucleons must be carried out.
The functions

(ZLy2N

I(l,m,n,o;ri)
R

which essentlally determine the variation of the electron
radial wave function over the region of the nucleus, depend

on the shape of the nuclear charge distribution [?ﬂ . Since
the matrix elements just mentioned do depend on the specilal
nuclear structure it is very important to look for a suitable
way to calculate them. Fortunately we are able to simplify
this problem by making use of the conserved vector current
(CVC) theory. This theory says that the isovector part of the
electromagnetic current and the weak current can be considered
as different components of one current in the isospin space.

So for our case we have [72]

(V) GéV)
OB z - ;__/_2. [T+, oel] (33)

(V) (V)
where OB and Oel

beta transition and for the electromagnetic case, respectively

are the corresponding operators for the

(e elementary charge).
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If we apply equation 30 to our case of a transition between
members of a T = 1 triplet we get

(34)
0. |~ (V) 1 Gév) 1
< f(1,1)‘oB i(1, o) > = + /2 5 < f(1,+1)]oelli(1,+1) >
Applying this equation we obtain (see ref. [73])
<1, D] srpeP i, (35)
1
= ¥ /2 < £(1,70)|] otrp) t50 f1aLE1)
1

1
+ 1

2 N < ¢ (r) > -2 < ¢ (r) >}

where N and Z are the neutron and proton numbers in the nucleus

for T3 = + 1, respectively. < ¢(r) > is defined by

< ¢y (r) > = J d(r)p(r) r2dr (36)
(o]

where p(r) is the neutron (x=n) or proton (x=p) distribution normalized
to unity in the nucleus. If we assume that the distributions for

neutrons and protons are identical we get simply

P (1,m,n,0) = /2 ch)zN I(1,m,n,0;r) p(r) rodr (37)
o)

Because of I(1,m,n,03r) = 1 this equation contains as a

special case the well known result for the Fermi matrix element.

We see the form factor coefficient Fégg (1,m,n,0) does only

depend on the shape of the nucleon distribution, but not on the

special nuclear structure.

(N)

The second type of form factor coefficient Foll(l,m,n,d) repre-
sents a relativistic matrix element. By using the CVC-theory
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as in the forgoing case we can derive the following relation

(58, 71, 74, 75, 76]

—Fégzl)(19m:n>0) = < f '[%o’ g ¢'(Pi) tii)J

i > (38)

where

r
$' (ry) = J (%)2N_1 I(1,m,n,o0;x) dx
0

HO is the charge independent part of the nuclear hamiltonian.
For a beta transition between different member states of an
isospin multiplet we get by application of eq. 38

N (1 mn,0) = (B(T,T50) - E(T,T450)) (39)

Even if we take into account that the initial and final nuclear
states are not pure isospin states one can show that this matrix
element is negligible small [31, 58, 71]. Therefore neglecting the
contributions from all relativistic matrix elements and other
small terms one finds [31, 71]

Vg (1) Vp(1)
F F (1,1,1,1)
1 2, 1 2, 2 ooo _2 ooo 2777
C(W) = 1-{z(WR)"+ 3(qR)"+ §<qR><WR>}v§757 ~5(a2) (qR)——r5y——"

000 o0
(40)
Vell) Vp (1)
- g(az)(WR) FOOO(1’2’2’:]:Z _ l(az)z FOOO (192’?,2)
3 VF(OB 3 VF(O)

000 000
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Here q = WO - W is the neutrino energy in natural units,

as usual, and Z the nuclear charge number of the daughter
nucleus (for positron decays and negative value of Z has

to be inserted in eq. 40). When we assume a uniform nucleon

distribution in eq. 37 we have

V(1)
coo _ 3
VFZo5 -5
000
V(1)
Fooo (151:1,1) 27
Vp(o) T35
000
(41)
V(1)
Fooo (1,2,2:33 57
VF(o) - 70
000
V(1)
Pogo (1525252) 533
VF<07" - 210
000

These matrix elements are the same for all decays under
consideration. Inserting them in eq. 40 we get the numerical
values of the shape factor ETWT averaged over the beta-
spectrum, They are listed in table 8. A very similar result
has been obtained by Jaus [77] using a completely different
method and a little larger result by Fayans [70] applying
the finite Fermi systems theory.
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Table 8: C(W)-1 for the superallowed Fermi transitions
|according to [31]]

Nucleus CW) - 1 (%)
c10 | - 0.0235
olH - 0.04k2
Nel8 - 0.0790
22

Mg - 0.1032
p126m - 0.1268
5126 - 0.1452
530 - 0.1885
c134 - 0.2120
A 34

r - 0.23U47
x> om - 0.2670
cad8 - 0.2915
g 42

C - 0.3332
i 42 - 0.3607

46
v - 0.4007
Mn 20 - 0.4801
co2t - 0.5522

5. Conclusions

Our final ft-values which additionally include the 'outer!
radiative (to order Z2a3) and the so called second forbidden
corrections are listed in table 9. Corrections for isospin
impurities in the initial and final nuclear states have not been
applied since, as discussed before, all the calculations con-
tain a large number of approximations and uncertainties. We are
able to give the sign and an order of magnitude of 60 only. All

theoretical calculations agree that S, will be positive, increase
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with the atomic number A and lie between O < GC < 0.5 %.

Table 9: ft values of the superallowed Fermi transitions
including the outer radiative and the second forbidden
corrections

Nucleus ft-values (sec)
c10 3143 + 140
olh 3090 + 11
neld 2975 + 109
Mg 22 3066 + 89
pa120m 3087 + 5
5126 3068 + 51
SE 3130 + 81
c134 3093 + 7
ar?" 3037 + 51
x3m 3135 + 31
ca>® 3302 + 203
scH? 3132 + 7
7142 3254 + 120
Vu6 3139 +

Mn 20 3131 +
co?" 3135 + 16

— e — o S—— — ——— A i+ o

——r - -

It can be seen from table 9 that there is not exact agreement

within the experimental error between the different ft-values

as predicted by the theory. The last accurate ft-values (Scuz,

Vu6, MnSO and 005“) lie significantly higher (1.5 %) than the

first (Oiu, Al26m ClBu). If this discrepancy can be attributed to

an underestimation of the isospin impurity correction GC we should
prefer the lowest ft-values, since we know 60 is positive, and also
the lightest nuclei, since the lower the atomic number A, the smaller
60. Thus for a determination of the vector coupling constant GV

the most reliable ft-values are those of Olu, A126m and Clzu.
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For these cases GC should be smaller than 0.5 %. If the differences

in ft-values are based on experimental faults then again the values
14 26m

for 07, al

have been recently reinvestigated very carefully |8, 12, 14, 15].

By averaging the three ft-values of 014, A126m

and 0134 should be chosen because these decays
and 013 we obtain

ft = 3089.1 + 3.8 secs

By application of eq. 15 this corresponds to an effective coupling

constant
Gy = (1.4113 + 0.0009)- 1079 erg om’ if 8, =0
G% = (1.4149 + 0.0009)- 10_49 erg cm3 if 60 = 0.5 %

The true effective coupling constant should be between these two
limits.
To consider the question of universality of the weak interaction
we have, as discussed at the beginning, to relate this value of G¢
to the coupling constant of the muon decay [78]

3

6, = (1.4349 + 0.0003)" 107" erg om’.

These quantities are related by (see eqgs. 5a and 5b)

G
= ot m——— b2
cos Oy = g = (42)

From the discussion of radiative corrections we remember that there
are different values for Aév) (see table 6).

Unfortunately it is therefore not possible to give a single repre-
sentative value of the Cabibbo angle OV determined from B-decay,
but only a relation between OV and the mod?%)dependent part of

the electromagnetic radiative correction AR . This relation is
shown in fig. 5 for the probable range of Aﬁv) (see table 6).
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This has to be compared with the Cabibbo angle derived
from other decays.

As we have seen in chapter II, especially from table 2, the
Cabibbo angle OV can be obtained by investigating the
semileptonic decays of baryons. A fit of the Cablibbo angle
Oy (together with the other parameters of the Cabibbo theory)
to all the experimental data has been carried out by Brene

et al. [35] and by Ebenhth et al. [79]. The result of the

fit obtained by the latter authors (one angle fit) was

6V= 0.239 * 0,005 radians
OV can also be détermined from the decay K+ -+ w°e+v, but the
result depends on the detalls of the Ke3 form factor (an
extensive discussion of this problem is given in ref [80]).
The K 3 decay leads to the following value for the Cabibbo

angle” [80]

OV= 0.214 £+ 0,005 radians

This value does not include the radiative and SU(3) - symmetry-
breaking corrections [34, 80] to the Koz form factor.

Fischbach et al. [81] have used a Kemmer equation instead of

a Klein Gordon equation in order to describe the pion and kaon.
They obtalned another value for the K e3 form factor and therefore
a different Cabibbo angle [82]

@V- 0,192 * 0,016 radians.

It i1s remarkable, that this value of Oy 1is in excellent agreement
with Oy derived from nuclear beta decay 1f we take for the model
dependent electromagnetic radiative correction

Aév)= (0.64 + 0.26)9%

the value calculated by Killen [U43] (see table 6). This author
has used a local model of weak Interactions and has taken into
account the strong interactions by including electromagnetic
and weak form factors.
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radians
0.26

B, -
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Fig. 5 Plot of the Cabibbo angle B, against the model »
dependent electromagnetic radiative correction A
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Looking at fig. 5 we see that the model dependent part of the
electromagnetic radiative correction should have a value of

1.5 ¢ < Aév> < 3.3 4.

Only in this case the Cabibbo angle OS determined from nuclear
R-decay agrees with @V obtained from the analysis of the semi-
leptonic decays of baryons and of the Ke3 decay (see also ref.

ELIDE

As we have discussed in chap. IV (see table 6) such an order of
magnitude of Aév) can only be obtained by assuming a nonlocal weak
interaction Hamiltonian HW, which requires the existence of an
intermediate vector boson W with a mass in the range 50~300 Mp-
Thus in the moment it is not possible to test the universality

of the weak interaction in the Cabibbo form as long as we have

no calculation of the radiative electromagnetic corrections

admitting but one interpretation.

Note added in proof:

The half-lives of Vu6, MnSO and 005u have been recently

remeasured by Alburger [83]. The results, which are shown
in the following table, agree with previous work.

Nucleus half-1lives (sec)
yHo 0.425% + 0.002
Mn>© 0.2851 + 0.0009
0054 0.193%31 + 0,0008

These results, therefore, do not change the conclusions

drawn in this paper.
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