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Abstract

The most popular numerical method of solving one-
dimensional diffusion equations is Gaussian elimination
of three-~point difference formulas. However, other methods
have also been used, based on the factorization of the
differential equations. We attempt to clarify the theoretical
relationship of these alternative methods. Then some simple
numerical comparisons are made to find the most efficient
method. The Gaussian elimination procedure is found to be
more accurate, but to achieve this accuracy on the IBM
370/175 computer, it is shown one must use double precision
arithmetic.

The implementation of these results in the one~dimensional
diffusion program 06731 of the NUSYS program system is

documented in the Appendices.

Vergleich numerischer Methoden flir das eindimensionale
Multigruppen-Diffusionsproblem

Kurzfassung

Das meist benutzte numerische Verfahren zur L&sung
eindimensionaler Diffusionsgleichungen ist die GauB'sche
Elimination fiir Dreipunkt-Differenzenformeln. Manchmal
werden aber andere Methoden benutzt, die aus der
Faktorisierung der Differentialgleichungen folgen. Es wird
versucht, das theoretische Verhdltnis zwischen den beiden
Methoden zu kl&dren. Zur Beurteilung der Leistungsfdhigkeit
werden einige einfache numerische Vergleiche durchgefiihrt.
Es wird gezeigt, daB die GauB'sche Elimination genauer ist,
daB jedoch dabei auf der IBM 370/175 in doppelter Genauig-
keit gerechnet werden muB.

Die Anwendung dieser Ergebnisse auf das eindimensionale
Diffusionsprogramm 06731 im NUSYS Programmsystem wird in

den Anhdngen dokumentiert.
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Introduction

The investigation in this paper began with two problems:

1. ExXperience with existing one-dimensional diffusion
programs at the Karlsruhe Nuclear Research Center (programs
in NUSYS, /2/, and KARCOS,/11/) had shown their accuracy
to be unsatisfactory.

2. The technique of factorization of second-order
ordinary differential equations, although often mentioned
in the literature of numerical methods for boundary value
problems, holds an unclear position;in particular, there
seems to be no complete comparison, both theoretical and
practical, of factorization with the common method of
solving three-point difference equations by Gaussian

elimination.

The second point took on practical importance because
the existing one-dimensional programs at Karlsruhe do in
fact use variants of factorization. This suggested the
need to compare factorization with the three-point
difference equations, with the aim of finding the most
efficient method.

We consider homogeneous multigroup eigenvalue problems
in which no up-scattering is allowed. Using the common
fission source iteration (see e.g./3/), the problem
reduces to solving a two-point boundary value problem
for each energy group:

(1) ] (br $')' - ¢ = -f, Ri—l <r<Ri’ 1=1,..0,p

fi
(@)

n-1 ] -
a DR ' (R) - B_$(R )

]
o

n-1
OtpDRp ¢ (Rp) + Bp¢(Rp)



where f is a piecewise continuous and non-negative
function (comprising scattering and fission sources),
and D and © are piecewise constant and positive. At
points Ri where D and I are discontinuous, ¢ and D¢'
are required to be continuous. The value of n in the
differential equation is 3 for spherical, 2 for
cylindrical, and 1 for slab geometry. For this boundary

value problem we look at some alternative numerical methods
of solution.



Three-Point Difference Equations

A common numerical approach to solving (1) is to
choose a set of mesh points and approximate the
differential equation at each point by a difference
equation involving the two neighboring points. To obtain
difference formulas one can integrate the D.E. between
mesh points. Let Ty be a mesh point with neighbors

and r Call the midpoints of the respective

Tr-1 k+1°
mesh intervals rk—1/2 ’ rk+1/2. Allowing for nonh-uniform

mesh at r . we suppose the interval widths are h, h'

to the left and right of ry respectively.
< h > £ h'—>
1 . ] . |
T f ” i
Tr-1 k=172 Tk Te1/2 Tkl

First we integrate (1) from Ty-1/2 to r (after

a1, k+1/2

multiplying the D.E. by r ; over a discontinuity

this is done in two steps:

Tk-o0 Tk+1/2 -,
(2) '[ + j. (™ 9"y " dr

Te-1/2 Teto

k-0 Fk+1/2 -
—.{ - J. (Z¢~£)r™ 'dr = 0O

r

Tx-1/2 k+o



where rkt<> indicates T, approached from the right or
left. Now denoting ¢(rk) by ¢k' etc., and letting D,D'
and £, ' be the values on the left and right intervals

respectively, the first part of (2) becomes

n-1 ] - -1 ] ' n-1 ' T - n-1 ] ]
D [rk—o -0 Tr-1/2 ¢k—1/2J * D [rk+l/2 Y+1/2 " Tkto Pkto

By the continuity conditions,

(I = v
D tyso = Doyx—g
so the above reduces to

y L0 1 Drn—

1 — 1 1]
DT i1/2 Ske1/2 k-1/2 %-1/2

We now approximate the derivatives by, for example,

1 = -1 -
¢k"1/2 = h (¢k+0 ¢k"l)

and since again continuity of ¢ means ¢k+o =
the result from above is

y.n=1 n-1

D12 @ar T OB T Dy (O T /B



To integrate the second part of (2), ¢ and f are

approximated by their values at Yrio ygiving
-(5! - R R - ey o - L1l on
A R Ty e WPy
Defining

n

-1 ,n -
View T3 Car/z ~ T

which is (within a multiple of n) the volume of the
n-dimensional shell with inner radius rk and outer

radius r and defining Vk— similarly, the complete

k+1/2'
difference equation becomes

¢ ¢ ¢, = ¢
y 01 k+] - "k _ n-1 k k-1
(3) D rk+1/2 [ " ] D {—-—-————J

- t = -
WV + IV Oy Viefrro + Vie-fi-o)

At the boundary points RO =r, and Rp = a

Yoo
N
pair of difference equations are found by integrating

over a half-interval and using the boundary conditions.

For example, at the left boundary we integrate

r ‘ T
1/2 _ 1/2 -
J~ o™ 1y dr —J- o - £) £ lar = 0
r X

o} o



to get

n-1 ., _ n-1 ' _ _ L1l .. n  _ n
Dry/a /2 Dry 4, oy = £ 5 "y ~ x50 =0

We now suppose the boundary condition hascﬁf O (other-

wise the difference equation at r

o
further we suppose that if r2"1= O (i.e. n > 1 and

= R, is trivial);
RO = 0), then BO = 0 (i.e. we have the boundary condition

of symmetry). Then substituting the boundary condition to

remove ¢é yields

b, = ¢ B
n-1 1 0 0 _
Dr1/2 [ ] o d)o ZVo+¢o - Vo+fo

To include the case oy = 0O we may write

¢, =¢
n-l 1 0 -
(4a) ao Dr {———————]- Bo¢o aoZVO )

1/2 P T
h
and similarly at the right boundary
by~ @
n-1 N-1 N _
(4b) upDrN—l/Z {___T_.__] qu)N OLPZVN— ¢N = OLpVN—fN

Taken together, the difference équations (3), (4a), (4b)

form a system of equations of the form

A b1 7 B O O bper = T By



for the ¢ 1 in terms of the F Here A, = Cy = 0.

This system has a tri-diagonil c0efficientNmatrix
which can be inverted by the Gauss method of forward
elimination and backward substitution. It is well
known that this procedure is numerically stable for
these difference equations (see e.g. /10/). The
approximation error goes to zero as h2 in the limit,
for continuous coefficients and constant h; this is
proved in /1/. For piecewise constant coefficients the
error is studied in /12/.

The elimination procedure can be described by the

following equations:

(5) E. = ~B - AC 1/ Bpm » B, = -B
G = i 7 MG /B » 6 = °F
be-1™ Cpmy™ Cm 1) Brmy » by = Cy/By
Here Ek is the diagonal entry and Gk the right-hand

side found by forward elimination; $yc is found from
right to left by the backward substitution.

We note that if points of discontinuity of f are
relatively few, it is convenient to normalize (3) by

dividing by Vk++ Vi with this normalization

F, = (V. f V£ - Y )

which reduces to Fk = fk if £ is continuous at rk.

Then we have

n-1
A = Dy yofp—172 [ Ot o Vet Vi) )



B = Cpmy/aVk= ¥ Tar2Vier? / Viat Vi) + A + G

k = Pre1/2 k+1/2 Fry o Vet Vi) )

where Ark+1/2 = Trpiq "Tpe Finally we remark that
before normalization the matrix of coefficients was
symmetric; after normalization this is only true

if A‘rk+1/2 is constant and n = 1.

Continuous Factorization

Discussions of numerical solution for (1) often
include a technique variously called "factorization",
"simple factorization", "method of sweeps", or "chasing"
Since all of these names might also apply to the
procedure (5), we shall use "continuous factorization"
to indicate that the continuous equation (1) is factored.

(Discrete factorization is discussed in the next section)
Continuous factorization transforms the second-order

linear boundary value problem (1) into three first-order

initial value problems, as follows. We assume the

second-order operator can be factored into

Expanding the right side, we find that the function o

must satisfy the condition

(7) o' + az/ bl - L2y



=0 o

This is a Ricatti equation for o. (For the equivalence
of Ricatti equations and second-order linear equations,
see /9/.) Once o is found, we can invert the operator
(6) by successively inverting the first-order operators
on the right. If

(8) pr® 1yt - ap = 8
then
(9) 8' + ap/Dr™ ! = 27l

The appropriate boundary conditions are found to be

n-1 _
for a: DRo u(Ro) = Bo/ao

for B: B(Ro) =0
-1
for ¢: DRY '6'"(R ) + B ¢(R.) = O
¢ o, DR ¢ (p) p¢>( p)
(1f o, = O, the factorization is slightly different.)
The continuity of ¢ and D¢' are implicit in the
n-1

continuity of o /Dr , B and ¢ .

The resulting method is analogous to the Gaussian
elimination in (5): one first determines the auxiliary
function o by solving an initial value problem from
left to right; then one integrates (9) from left to
right and finally (8) from right to left, which gives the

solution.
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Formal Comparison

The analogy between continuous factorization and the
process of Gaussian elimination raises an interesting
qguestion: Is there a discretization of (7) = (9) which
yields (5)? One might suspect there is, but the
question is complicated by the fact that there are
many possible discretizations of the continuously
factored equations, no one of which is obviously
preferable.

/1/ gives a result relating the two methods.
Considering the simple case n = 1 and h constant,
one can define quantities Oy and Bk by

(10) -E C, + ho

k k k

Gk = th

such that o Bk' ¢k gconverge to solutions of (7)-(9)
as h»+o. In fact, Oy s Bk'q’k satisfy the difference
equations:

o1
(11) O = Oyt B { S e * o Iee1y2
k=1/2"%-
- o
& - a  +m . B = 1%~1 .
k k-1 +hu k
D12
Bre1? %1%
bpoy= & -~ h -
k-1 % har
Dr-1/2

Clearly these define approximate solutions of (7)-(9).
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These equations can be rearranged to resemble
those in (5); in fact, an efficient computation of
Bk and ¢k would proceed similarly to the process
- for Gk and ¢, in (5).

On the other hand, (11) does not seem to arise
from (7)=(9) in a completely obvious way.

We remark that (11) would appear much more arbitrary
(as a discretization of (7)-(9)) in the general case;
the relative simplicity of (11) depends both on h
being constant and the coefficient matrix of the

Ak’ Bk’ Ck being symmetric,

Another way of comparing the Gaussian elimination
method with continuous factorization is to look for a
discrete factorization of the difference equation (4).
In /10/ this approach is used to derive the process
of Gaussian elimination; since we already have the
equations (5) at hand, we can easily recover the
factorization they represent. For example, the

recursion relation for G, can be rewritten

k
G = Gpq t (E * 1> Cp-1 = Ty
k-1
or
[A + (E___] + 1)} Gk = —Fk
where

Similarly the recursion relation for $p becomes

E
+ k _



=] D=

where
+

b = ey " 9%

Substituting the second relation into the first yields

- e "
(12) [A + < B + 1)] Cy [A +(Ck + 1)]¢k=—Fk

This is the desired discrete factorization of (4).
Again (12) is not an obvious discretization of the
continuous factorization (6); in particular

L) ()
(13) ( —_— | Fo= | =+ 1
Ek—l C

The fact that (12) converges in a sense to the right
side of (6) as h -+ o happens because the two unequal
quantities in (13) approach a common value in the limit.

To summarize: Although (7)-(9) are quite analogous to
(5), the discretization of (7)-(9) which yields a method
equivalent to (5) is not one which is obvious from the
equations (7)-(9) alone.

This unusual discretization appears as the dashed

arrow in the following commutative diagram:

factor st

nd order ODE Yy 3 1 order DEs

2

|
discretize :discretize

factor
3-point difference —————-) Gauss elimination

equation formulas
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Other Difference Formulas for the Continuously Factored

System.

Some authors (/11/, /5/, /1/, /4/) offer, or seem
to offer the continuously factored system (7)-(9) as a
practical approach to solving (1). Since the discretization
equivalent to (5) is somewhat unusual, we expect that
starting with (7)=(9) and attempting some prima facie
reasonable discretization, we would end with a method
not equivalent to (5).

One then has a practical decision to make:
whether to use (5), or some non-equivalent discretization
of (7)-(9). The criteria should be low approximation
error and computation time. To this end, a set of
numerical tests was undertaken, involving the Gaussian
elimination of three-point difference equations and
different discretizations of the continuously factored
equations. The following discretizations were
tested:

(A) The method of the one-dimensional diffusion
program in NUSYS, Program 06731. Unfortunately this
program is not well documented, so the precise difference
formulas are not understood. However, a numerical test
does have practical significance for NUSYS users.

(B) The method of the KARCOS one-dimensional
diffusion program for a large number of energy groups.
These difference formulas are derived in /11/; we
here indicate the derivation for the case D, %, h
constant and n = 1. The basic idea is to integrate
each of the equations (7)-(9) over single mesh steps,
using the trapezoid rule where necessary.

For example, the B equation

B' + aB/D = -f



-1 4=

- 8 +h

Biyg ~ By + 7p (@

' h
+ uiBi) =-3 (f, + £.)

i+IBi+1 i+1 i

which is an implicit equation for Bi+1; being linear

it is easily solved for Bi explicitly. The same applies

+1
to (8). Equation (7) is also integrated, and the result

is a quadratic implicit equation for o One could use

+1°

the gquadratic formula to find o or one could use

+1 !
a Newtonian iteration. The latter method might be

advantageous since oy is available as a good initial

guess for the Newtonian iteration for Oiiqe The
three difference equations are finally:
(n+1) _ h  (n) (-1 _h_ 2 h
(1) ey 7= Ut ggagy ) (o= 35 95 + 38
(o)
*i+1 i
= h -1 _h_ _ h
Bivt = (v g5 05, (B;= 75 *3B; — 2(E5% 4,
= h_ -1 - h_ - h
-4 (55051 (057 35 93947 3(Bi1*8;))

We note that this process uses two values of f for
every mesh interval, making it possibly more costly than
(5) in calculation time.

(C) Difference equations using only one value of £
per interval. One way to achieve this is to follow an

analogy with (2) and integrate the B equation between

midpoints of successive intervals. The resulting difference

equation for B is
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1

(15) Bi ——-ui) (B 8 hfi)

- b -
i-1/27 20 %i"i-1/2
This could be used with equations (14) for o and ¢,

replacing (B + Bi)/2 by Bi in the latter.

i-1 -1/2

(D) An analytic expression for a. Since (7) is an
initial value problem (instead of a two-point boundary
value problem), a problem with piecewise constant
coefficients is equivalent to a sequence of initial
value problems with constant coefficients. Furthermore
(7) does not involve the source function f, so we might well
look for an analytic solution of (7). According to /9/,

one can make the transformation

o = __l.l_ Drn— 1
u
where u must then satisfy
wy Loy o2 o
+ u T 0

This is a transformation of Bessel's equation (/6/);

its solutions are

eir/L n=1

(16) u = Io(r/L),Ko(r/L) n=2
+r/L

(1/x) e n=23

where I = vD/r. Choosing the appropriate linear
combination to satisfy the initial condition, one can
use the analytic expression in place of the difference

equation for o in (14).
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Numerical Comparison

To compare the accuracy of (&), (B), (C), and
(D) with the method of Gaussian elimination, a simple
but not unrealistic problem which has been used in
/13/ was chosen. The problem represents a bare homo-
geneous core modeled on the ZPR-III-10 critical
assembly; the number of energy groups is 26.
The authbrs of /13/ used a zero-dimensional calculation
e = 1% 1-107°
From this buckling they determined the half-thickness

to find a buckling which would give k

of a slab with keff = 1. The resulting homogeneous problem,
although quite simple, illustrates the performance of the
various numerical methods well enough to warrant a practical
decision. (More complicated problems were checked for
methods (5) and (A); see Appendix C.)
We do not compare the calculation times for the
various methods in a precise manner. Appendix A gives
a programming strategy for the Gaussian elimination
method. We merely remark that similar strategies and
hence similar calculation costs apply to the other
methods, with one exception: as noted above, the
difference equation for 8 in method (B) uses two
values of £ for each interval, which might make it
slightly more time-consuming.
The numerical results below were calculated by
NUSYS Program 06731 running on the IBM 370/165;
Program 06731 was modified to use the various difference
equations above., For all methods, a series of mesh
interval lengths h was chosen such that each is about
half of the preceding one. In all cases , keff converged
to within £ 1.107°

discrete problem.

of the true value for the
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Table I shows results for this problem using
the methods (5) and (A), the o0ld NUSYS method.
One immediately sees that as h » o, keff does not seem
to converge to the correct answer 1; in fact, there
is no apparent converdgence at all.
For method (A) this fact was already discovered
in /13/.

The especially erratic behavior of (5) casts
doubt on the sufficiency of single precision
arithmetic for these calculations. One should recall
that the IBM 370 carries only about 7 decimal digits
for single precision arithmetic.

Table II shows the same problems calculated
with double precision arithmetic; more precisely,
the boundary value problems (1) for the individual
energy groups are solved in double precision, but
the fluxes ¢, once found, -are stored in single precision.
Using this partial strategy of double precision, both
(A) and (5) converge to the correct value keff =1,
with error falling off roughly as h2 (as one would
expect from the fact that approximation error for (1)

decreases like h2 in the limit.,)
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Table T,

Methods (5) and (A) in Single Precision

Intervals keff—(A) keff—(S)
9 1.00298 1.00088

17 1.00086 1.00024
34 1.00027 1.00002
68 1.00054 1.00010
134 1.00124 .99947

Table II,

Methods (5) and (A) in Double Precision

Intervals keff-(A) keff-(S)
9 1.00297 1.00088

17 1.00083 1.00024
34 1.00020 1.00006
68 1.00004 1.00000
134 1.00000 .99999




Table IIT.

Error in k for Methods
eff

(5) and (A)-(D) in Double Precision

Intervals Method (5) (a) (B) (C) (D)
9 .00088 .00297 -.00276 .04470 -.00605
17 .00024 .00083 -.00077 .01216 -.00172
34 .00006 .00020 -.00018 .00301 -.,00042
68 .00000 .00004 -.00003 .00074 -.00008
134 -.00001 .00000 +.00004 .00017 -.00002

=6l =
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Table III shows the results for methods (A)-(D)
using the partial strategy of double precision.
The practical conclusion is clear:
three-point difference formulas solved by Gaussian
elimination are substantially more accurate than
any other difference formulas tested.
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Conclusion

The theoretical and practical conclusions of this
investigations arxe:

(1) Single precision arithmetic on the IBM 370
(about 7 decimal digits) is insufficient for solving
one-dimensional multigroup diffusion problems;
one must solve the individual energy groups in double
precision, although fluxes may be stored in single
precision.

(2) The continuously factored differential equations
(7)=-(9) are analogous to the Gaussian elimination
procedure, and there is a discretization of (7)-(9)
which makes the procedures equivalent. But proceeding
directly from (7)-(9) would probably yield a method
not equivalent to (5).

(3) Gaussian elimination of three-point difference
equations was in practice clearly more accurate than
several different discretizations of (7) -(9) which were
tested.

These conclusions have been implemented by rewriting
NUSYS Program 06731 to use three-point difference equations
and Gaussian elimination in double precision; the new
version is documented in the Appendices. A replacement

for the KARCOS one-dimensional program is also planned.
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APPENDIX A

Following the conclusions above, Program 06731 in
NUSYS has been reprogrammed to use the three-point
difference formulas and to solve them by Gaussian
elimination. At the same time some other improvements
to 06731 have also been made. The purpose of this
Appendix is to document those changes.

For reference, the multigroup eigenvalue problem
equations can be written

2 =
(A1) —V-(ng¢g) + (crem,g+ DgB ) ¢g =

I o + e L VO ..
hog | SCAE,IE by "k X fis,h%h

for g =1,2, ... G (g = 1 is the group of highest energy).
The coefficients are all non-negative (Dgare positive)
and assumed constant for each material region. The adjoint
problem is the same but with h and g interchanged in scat-
tering and fission cross sections. The external source

problem is

(A 2) -V'§D8Y¢g) + (o

2
+ D B =
rem,g g ),¢g

I o +
heg scat,hve’h Xg: Vgis,h *n * S
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where the Sg are the external source. To these equations

one applies fission source iterations, as described in

/3/.

Difference Equations and Computing Strategy

The process of one fission source iteration can be
summarized as receiving an n-th approximation of the
fission source

) * V9is,n %n
K h
eff

g () _ ! (n)

(n+1)

and using this to find new approximate fluxes ¢g

and the new approximate fission source

(n+1)

(n+1)
F fis,h h

= I VO
h

We denote this single iteration by the operator L:
(A 3) L: £™ o gD

(Although not explicitly indicated, we are referring to
the discrete problem for a certain spatial mesh.)
In NUSYS Program 06731, each application of L is calculated
by subroutine CORK1.,

CORK1 has been completely reprogrammed to use the
difference equations (3) (with the renormalization as
explained following (5)), and (4a) and (4b), solved by

Gaussian elimination (5) in double precision arithmetic.
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Of course the difference equations need not be set
up during each iteration. So long as the number of groups
is not too large (that is, provided the time spent summing
scattering terms is not overwhelming), one should try to
minimize the time spent solving difference equations during
each outer iteration. By using three words of storage per
mesh point per energy group, one could calculate and

Cc

store all the difference equation coefficients Ak’ Bk’ K

before iterations begin.

Still more time during the iterations can be saved
by observing that the first equation in (5) does not
include the source Fk‘ Hence it can be solved beforehand.
To solve the Gk and ¢k equations requires, for example,
that Ak/Ek—1' 1/Ek_1, and Ck-1/Ek—1 be stored and available
during the iterations - again three quantities per space-
energy point. This is the strategy employed in the subroutine
CORK1. During the outer iterations, inverting the difference
equations involves just three multiplications and two

additions per space-energy point.

Handling Discontinuities

Because discontinuities are allowed in the cross-sections,
and since we choose certain mesh points coinciding with
the points of discontinuity, the fission sources f(n)and
F(n+1)must in general be stored with two values for such
points. For example, let us consider a point of discontinuity,
and denote limit values from the left by | ] -, from the
right by [ | . According to the difference equations,

iteration n + 1 will require

V+ [ ng(n+l) ]
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where v, = V+/(V+ + V_), and the mesh point index has

been suppressed. If yx _1s not material dependent, then

. : 9 (n+1)
this is, neglecting keff ’
(n+1) (n+1)
v, Lxgi Vgiem th et V- lXg ﬁ VOtis,h tn -
} (n+1) (n+1)
Xg 1V, ﬁ [ Vi, h ] 4 o v i [chis,h] AN

In this case, even at points of discontuity it suffices
to use only one value, the quantity in braces, in
building F(n+1). If Xg 1s material dependent, however,
one must retain two separate values.

For this reason, Program 06731 was changed so that
fission sources are always handled internally with

two values at each material interface point.

Another problem with Program 06731 mentioned in
/13/ had been the sometimes slow convergence of outer
iterations. Formerly, the acceleration was by over-
relaxation; this has been replaced by Tchebyshev
polynomial acceleration. We include here a sketch of
this well-known method.

The process of fission power iterations without
acceleration can be written as

& 4 p@D | @)

f(n+1) _ F(n+1)/||F(n+l)||]



-29~

where
“ F”1 = I Fk AVk
and
[l IR

which is the largest eigenvalue of the operator L of
(A 3).
Now suppose f(o), the initial fission source guess,

has an eigenvector expansion

(o) _
f = blel + b2e2 + s
Here e, corresponds to the largest eigenvalue Ay o= keff’

while e, 1s associated with the next largest eigenvalue
A

5
Then
(A 5) g(m) _ m (blk?el + bzkgez o)
where
L T T
kets kets kegs

The first term above is the desired eigenvector ,the
second term is the dominant error term.
The method of polynomial acceleration consists of

choosing a polynomial with coefficients aj such that
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n
L a
=0

ey

(A 6) ¥ 5

J

will have the same e, term as f(n) but smaller error
terms. To achieve this, we first note that Hn- A?
approaches some finite limit as n»e~, We assume that
before polynomial acceleration begins, enough iterations
have been done that k(n)z A1 and hence Hn- AD=1 for

1
all n. Then

' n n
%(n)= b, £ a.e, + b, X

a, (A, / A)e, + ...
]j o d1 2 i 2 1 2

= b1 pn(l)e1 + bzpn(kz/ )\I)e2 + e

So we should choose a polynomial with pn(1) =1
and with the property of a minimized maximum value
in [O,Az/ A1] (and hence for A,/ x., i > 1).

The choice is solved by Tchebyshev polynomials;
following /14/ we choose

pn(X) = Tn(ZX/p-l)/Tn(Z/p—l)

where p = A, /A, is the dominance ratio.
Rather than save all fission sources f(J)to compute
3 (n)

; one can exploit the recursion relation for
Tchebyshev polynomials

T @) = 2z T, (@) - T ()
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to £ind **™) in terms of f(n+1), %(n)' ang ¥~ .
Letting

a7y ¥ o D0y g @) 3D,

n+l

one finds that

T. @2k =1)
(A 8) i n e = 2

nl 2/ - 1)

T'n+1

T 12/e=1)

B
n+1 ? 1
T @/e- 1)

It remains only to show how p = Az/ A1 is found.
For this purpose one performs preliminary iterations.
Referring back to (A 5), for unaccelerated iterations
we have

(m) _ (o-1) _ n n
-1 b e+ b AR e, 4 )
n-1 1t G177 Pty S T o
= o, " =" he w b 00 AT -0 e, )
S AL B S S AN IS 2 7827 e
n-1
= I by Ay (/A= Dey + L.

Dropping the terms with smaller eigenvalues, we take

the inner product
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(f(n) - f(n-l),f(n) f(n-l))
) Hﬁ—l bg Ag(n—]) Ayl Ay 1 (e;5e))
and
(A 9) ™D - @, £ ¢, . Hfz . xg " (—ﬁ)2
(f(n) _ f(n—l)’ g _ f(n-l)) LA A

If, as in Program 06731, both the problem for
L and the problem for its adjoint L¥ are solved

concurrently, we may use instead of (A 9) the expression

., e(n+l) (n) #(n+1) #(n)
(A 10) (f - £ , £ - f ) N

(£ _ g(am1) gx(n)_ m(am1),

Finally we note that the preliminary iterations, used
to reach an estimate of p, can also be accelerated, at
least by over-relaxation. An over-relaxation parameter

can be found from the Tchebyshev polynomial T1 to be

o = =2
2-p
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Then for preliminary iterations we replace (A 4)
by

(A 11) ALY
f@) _ pan), HF<n+1)||1
(1) _ 2(n) (n+1) _ 2(n)
£ = £ 4a (£ £77)

One finds that the dominance ratio of an over-

relaxation step, p(an) ;y 1s estimated by

(an(f(n+l)_ GV an(fx(n+])_ ST

(A 12) p(un) =
(%(n) _ %(n—]), g%(n)_ %x—(n—l))

and is related to p by

(A 13) p = p(un)/ocn + 1 - l/ocn

So for the eigenvalue problem we proceed as follows.
Preliminary iterations are performed using over-relaxation.
We begin with o, = 1; after each step we get a new
estimate of p using (A 12) and (A 13). If this estimate
is not close enough to the previous estimate, we continue
with over-relaxation (using a new parameter based on the
new estimate of p). Once the estimate of ¢ converges
sufficiently, we use the last estimate to begin

Tchebyshev acceleration using (A 8).
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Convergence acceleration for external source problems
is essentially the same. The fission source iterations
without acceleration are

(A 14) p@D o pm g p© _ g

where K is the result of the external source with
a fission source guess of zero. If F is the exact
solution, then defining

70 (n)

F - F

and

F(o) + b.e, + ...

where e, are the same eigenvectors as before, we
find

plotl) ;1 a(n)
and so
p® b Nje, * bzxgez + e
from which
p_ p-D) g =Dy blx(“'l)(x] - Doe * ...

]

and hence
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(F(n+1)_ F(n{) p@t) F(n)) 9

2
~ )\1 =05,
(F(n)_ F(n-l)’ p()_ F(n-l))
Again defining
'E.((n) = g a, F(j)
j=o J
we seek polynomials pn(x) with pn(1) = 1 which minimize
' n . n .
A T 1 D T T ¢ A
j=o 3 j=o J
n A
= I a.F(J)—bp ;) e, + ...
j= i 1 1

So the appropriate polynomials are

pn(X) = Tn(ZX/p - D/T 2/p- 1)

and the acceleration method is just as for the eigen-

value problem.

Bounds for the Eigenvalue

Using matrix properties of L it is possible to
establish general bounds for the true value of keff
for the particular discrete problem (/14/, p.32).

Applying these to our case we have
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,_F(n+l) F(n+l)
(A 15) A, = min ;GIT skeffsmax f(—n)— = Ay

where the minimum and maximum are over points in

the space mesh. Program 06731 now prints the bounds
Ao and Am together with the final estimate of keff'
Furthermore, for each iteration the value (AM- Am)/AM
is printed as a measure of convergence of the fission

source.

Prbogram 06731 has also been changed by adding some
program options,

(1) The external source problem (A 2) can now be
solved; convergence is guaranteed for subcritical
problems.

(2) A radius criticality search can be performed
in two ways. Formerly the size of a single material
region was varied; that is, outer regions were displaced
parallel. Now it is also possible to shift one material
region into the neighboring region, so that only one
material interface is moved.

(3)Time-~eigenvalue calculations are now available.
This involves augmenting the removal cross section

by a term to read

o + D B2 + o/V
Yem,g 8 8

where Vg is the mean neutron velocity for the group.
The user may give values of a for which keff is to be
found; or he may request a criticality search by

varying o.
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APPENDIX B

Program Listing

The following is a FORTRAN source statement listing
of the subroutine CORK1 in NUSYS Program 06731, as
reprogrammed for three-point difference equations and
Gaussian elimination.

CORK1 performs a single fission source iteration,
as denoted by the operator L in Appendix A.
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SUBROUTINE CORKYIT (XL yNXLySIGMAHF,EL;AFK,NGRU)
. SURPOUTINE FOR A SINGLE TAVERSION CF A SET CF MULTIGROUP EQUAT ICNS.
C REPRNGRAMMED FOR STANDARD 3-POINT DIFFERENCE FCRMULAS AND
C CAUSSTAN ELIMINATION IN DCUBLE PRECISIONe (CePe IS ANECESSARY
C WITH I8M 2¢0 T AVCID RCUNDCFF ERROR,)
C REPROGRAMMED  £/173 BY HeRe STEWART
DIMENSTON  XLUTYoNXL(L) ySIGMA(L) sHF(NPKSNCRU,2) 3 ELANFKyNCRU, 2)
COMMON  /MNET3Y Y/ SWw(BC), FPS(3),
RANTUS(3&) 5y INTERVIRSY, DELTA{25),
FM(28), FP(35), NGENZ2(35), LGECZ2(35),
VELINV{EC), RDBFD(60,4), ALFARC{20), LF{12), LFENI(12),
DSU185),
FHILF1(188), FHILF2(185),
FADJ(185) 3 FNEU(185), FNCRM({185), FALT(185),
DTAGYI(150)Y,y, DTIAG2(150), DIAG3(150)
DOURLE PRECTICINN  DIAGY DIAG2,DIAGR,QU{150), TS,TS1,4TS2
DIMENSTON  RNML(150)
EQUIVALENCE (DPIAGI(1), QULIYY, (RNMI{1), FHILF2(1)}))
C PRORLEM SPECIFIFRSosoo
FOUTVALERNCE  (Sw(1) ¢NGRUPY, (SW(2) ,NVICNE), (SWI(3),NFKT),

~N Oy D WY -

1 (SW4) ZJNGEQ) 3 (SWIS) ,NZCNEY, (SW(19) 4, NPKTZ),
? (SWE3E) s NI XYy (SW(3B) M2}y (SWI(39),NC)

£ SWITCHRES HAVE THF FOLLCOWING VALUES AND MEANINGS

r NADJ =0 FCR NCRNAL PRCBLEM

c =1 FCR ADJCINT

C NHOM =0 FCR HCMOGENEOLS FICENVALUE PRCRLEV

C =1 FQR EXTERNAL SCURCF PRCRLEV

r NGAMMA =C CN FTRST CALL CF CCRK1

r =1 TN SUBSFQUENT CALLS

FOUTVALENCE  (SW(20) 4NaDJYYy (SWI21Y,NHCM), (SW(22),NCANMA)
¢ POIMTERES TN SPECTIFIC KINDS CF GROUP CONSTARTS WITHIN SIGMA ..
EQUIVALENCE  (SwW(42)yNH) , (SW(43) yAHB), (SK{44) 4 NHF),

] (SW(45) JNHCY , (SW{46) ,NHCYy (SW{4T)4NER),
2 (SW48) 4NHD) 3 (SWI49) ,NET) 4 (SWI(50),NKS)
RETURN

ENTRY €CCPKI1
TEF (NGAMNA FQ, ) 6 TC 6C
20 NGL = MGRYD
3y Mmoo Ko= 1, NPKT?
22 FMEU(K) = 0
TADD = NADJ + 1
MCY1 = MHC
NC2 o= 0b
IF {NADY «FQs ) GO TC 23
MO1 = NHF
NC 2 = NHO

13 NT = 7
233 NT NT ¢+ 1
TF (NI .67, MG1)  RETURN
€ RUTLE THFE SNURCE FUNGTINN FOR THIS GRCUP
34 MT4 = MGRUD = NT + 1
IF (MADY) 28,178,718
A5 NT4 = NT
TF (NHOM) 26 ,16,36

il
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36 nn 27 K = 1, NPKT
37 QUIK) = HF{K{NI4,2)

IF (NGAMMAY)  4C,41,4C
38 DO 39 K = 1, NPKT
40 CALL  QUCALC (ACIgNT4,GUIL)YFALTIL) )
SUM SCATTERING CONTRIBUTIONS FRCM HIGHER ENERGY GRCUPS
41 LZ22 = 0
42 L2722 = L7272 + 1

IF (LZ2 oEQe NI) GO TO 48

NI11 = LZ?
NZ2 = NI
NTT = NT1
IF (NADJ) 44,45,44
44 NT1 = NI4
NZ2 = NGRUP - LZ2 + 1
NIT = NZ2
45 CALL QSCALC (NT14+(NZ2-1)*¥MIX#(NGRUP+7)+AHS,
* QUILYy HF{1 ,NII,TACJ))

46 GO 10 42
48 CONTINUE
GAUSSIAN ELIMINATICN TC SOLVE THE DIFFERENCE EGQUATTIONS, USING
PARTTALLY ELIMINATED COEFFICIENTS IN EL
QUIT) = = QUILY*RDBED(NI4,2)
QUINPKT) = QUINPKT)ARDBEDINI4 ,4)
50 QUILY = QUEY) * ELI1,NT4,1)
DO 51 K = 25 NPKT
51 QUIK) = ELIKyNT4,1) * (QUIK) = ELIK,NI4,2) % CUIK=1))
TS = 0.D0
K = NPKT
52 TS = ELIK,NT4,2) * TS + QU(K)
FFIKyNT4,1ADJY = TS
K=K~-=-1
IF (K 6T, C) GC TC 52
CONTRIBUTION TOQ THE NEXT FISSION SCURCE
54 CALL QNCALC (NC2,NT14, FNEU(1), HF(1,NT4,12CJ))
GO TO 32232

INITIALIZATION. SET UP COEFFICIENT MATRIX FCR EACH GRCUP AND
PERFORM FCRWARD FLIMINATICN, STORE THE PARTIAL RESULTS IN EL,
ALSO OTHER CONSTANTYS RELATED TC GECMETRY,

60 DD 61 NZ = 1, NICNE

61 NDELTA(INZ)Y = (RADIUS(NZ+1)-RADIUS(NZ)) /FLCATUINTERVINZ))

K2 =1
DO 64 NZ = 1y, NZICNE
Kl = K2
Kz = K2 + INTERVINZ)
T51 RADIUS{(NZ) - DELTA(NZ)
7152 DELTAINZY /2
PO 64 K = Kl, K2
TS1 = TS1 + DELTA(NZ)
IF (NGEOQ oNEe C) GC TC 63
RNM1{K) = 1,
GO TC ¢é4
€3 RNM1(K) = TS1 + TS2
IF (NGEO .ECs 1) GC TO 64
RNMI{K) = PNMI(K) % RNM1(K)
64 CONTINUE
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VOLUME FLEMENY ASSOCIATED WITH EACH FISSICN SCURCE PCIANT
{1eFoy ZONF BCUNDARY POINTS COUNTED TWICE)
Lz MGED 4+ 1
K2 -1
N 66 NZ = 1, NZCNE
K1 = K2 + 2
K2 + INTERVINZ) + 1
TS1 = RADIUSIND)
TS52 = DELTAINZY /2
Do e¢ K = Kl, K2
DSEKY = ((TS14TS2)V¥*%L2 = TS1l=%|7) /L2
66 TS1 = TS1 + DELTA(NZ)
K2 = C
Do 67 N7 = 1, NICNE
K1 = K2 + 2
K2 = K2 +« INTEPVIANT) + 1
TS1 = PADTUSINZ)
TS2 = DELTA(NZY /2
nnoo 67 K = Kl, K2
TSl = TS1 + DELTA(NZ)
IF (K oEQe K?2)} DSI{K}) = 0,

1o

Py
S
il

67 NDS(K) = DSIK) + (TSL#*LZ - (TS1-TS2)%3L72) /L2
FMy, FP (VOLUME WLEIGHTS FOR POINT PAIRS CN ZCNE BCUNECARIES)
Fe(l1) = 1,

FM{NZONE) = 1,
N71 = NZIOME - 1
TEF (NZ1) 72472,7C
7C K =0
pno 71 NZ = 1y, NZ1
K = K 4 INTERV(NZ) + 1

Kl = K + ]
TS1 = DS(K)
TR2 = DSLK1)

Te = T81 + 71§82
FMINZ) = TS1 / TS
71 FPINZ41) = T<€2 / T8
7?2 CONTINUE
NG1 = NGRUP
N 99 NT = 1, N5G1
NHE NT =+ M7
Lz NGEDZ(1Y + NH + NHD
LZ1 = NGERZ(1) + NH + NHT
CONSTRPUCTINN GF NIFFERENCE FQUATICNS
TS1 = RADIUSI(1)
IF (NGEN oFQe 0) TS1 1,00
IF (NGEO oFQe. 2) TSl TSI # TS1
TS2 = RADTUS(L1) + DELTA(L)} /2
IF (NGED oEQs 0) TS2 = 1.D9
IF (NGFD EQe 2) 1€2 = T82 & TS2
TS = DSC1Y * DELTAC(Y) / SIGMA(LZ) / TS2

DIAGI(]1) = 0,D0O
DIAG2(1) = — RDBEDI(NI,2) % (SIGMA(LZ1) ¢ 1,C0/TS)
¥ + RDOBED(NI,1) * DELTAC(L) * TSl / 7852 / TS
DYAG3(]1) = RDBED(NT42) / TS
K2 =1
Ng  7¢ NZ = 1, NICNE
Kl = K2 + 1}
K2 = K2 + TRTERVINZ)
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ng 75 K = Klg K2
KK = K+ NZ =1

TS2 = DS{KK)
TS1 = RNMI(K-1)
NDIAGI(K) = = SIGMA(LZY % TS1 / DELTA(NZ) / TS2
TS1 = BNM1(K)
DIAG3(K) = = SIGMA(LZ) * TS1 / DELTA(NZ) / TS2
DIAG2({K) = SIGMA(LZY) - DIAGL(K) = LIAG3(K)
75 CONTINUE

IF (NZ .EQe NICNE) &Q TD 76

K = K2

DIAGI(K) = DIAG1{K) * TS2

TS2 = TS2 + DS{KK+])

DIAG1I(K) DIAGL(K) 7/ TS2
DYAG2(K) SIGMA(LZY) * DS(KK)
LZ = NGENQZ(NZ+1) + NH + NHD
LZ1 = NGEOZ(NZ+1) + NH + NHT

" H

DIAGR(K) = —=SIGMA(LZ) * TS1 / NELTA(NZ+1) / TS2
DIAG2(K)Y = (DIAG2(K) + SIGMA(LZ1) * DS(KK+1)) / TS2
* = DIAGI(K) - DIAG3(K)
76 CONTINUE

TS1 = RANDIUS(NZCNE+1)

IF (NGEO o.ECe 0) 7TS81 = 1.D0

TF (NGED oEQe 2) TSI = TS1 * TS1

7S2 = RADIUS(NICNE+1) - DELTA(NZICNE) /2
IF {(NGED oEQe C) TS2 = 1,D0

IF (NGED oEQe 2) TS2 = TS2 * 1S2

TS = DSINPKTZ) % DELTA(NZONE) / SIGMA(LZ) / TS2

NIAG3(NPKT) = CeDC
DIAG2{NPKT) = RDBED(NI,4) * (SIGMA{(LZ1) + 1.CO / TS)
* + RDBED(NY,3) ¥ DELTA(NZICNE) * TS1 / TS2 / TS

i

DTIAGI(NPKT) - ROBEDI(NI;4) /7 7S
€ PERFNDRM FIRST FLIMINATICN, STCRE RESULTS IN EL
TS = 1.N0 / DIAG2(1)
TS = = DIAG3(1) * TS
EL(1¢NIs1) = TS
EL{1,NT,2) = 751
DO 77 K = 24 NPKT
TS = 1,00 / (DIAG2(K) + DIAGL(K) * TS1)

TS1 = = TS * DITAG3{K)
FL(K,NIyl, = T8
EL{K¢NI,2) = TS1
ELIKyNT2) = DIAGL(K)
77 CONTINUE
90 CONTINUE
GO TO 20

END
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SURROUTINE

QUINIT (MZ,NZCNEoNGRUP 4STGMA 4XL)

FORP THE ADDITICN CF VARICGUS CCNTRIBUTICNS TC SCURCE TERNMS

NN -
[ Ren

30
40

60

COMMON /MOET21/7 SWlBC), EPS{3), RADIUS(26), INTERV(35]),
1 DELTA(25), FM(35), FP(35), NGEQZ(35}), LCELZ(35)
DIMENSTON  SIGMA(1), XL(1)y F(L), FF(1), HI(1)
NDOVURLE PRECISICN F
FPETURN
ENTRY QUCALC (NZ1, NI4, F, FF)
NH = M7 %+ NI4 + NZ1
K2 =0
nn 29 NI = 1, N2CNE
LZ = NH + NGECZINZ)
TS = SIGMA{LZ)
Kl = K2 + 2
K2 = K2 + INTERVINZ)
IF (TS ,FQ, Q) GC TC 20
FIK1=-1) = F(K1-1) + TS % FP{NZ) * FF(K1¢NZ=2)
FIK2+41) = F{K2+1) + TS % FM(NZ) * FF{K24N12)
I8 (K2 LLTo, K1) GO TC 20
Do 10 K = Kl, K?
FIK) = F(K) + TS % FF{K+NZ=-1)
CONTINUE
RETURN
ENTRY QSCALC (NI2,y, Fy H)
K2 =0
DO 40 NI = 1, NICNE
K1 = K2 + 2
K2 = K2 4+ TNTERVI(NZ)
LZ = NT2 + {(LGEOZ(NZ) =1} * (NGRUP + T7)
TS = XL{LZ)
IF (TS EQ. 0) GC 10 40
FIK1=1) = F{KI=1) + TS * FP(NZ) * H{K1-1)
F{K241) = F(K2+1) + TS # FM(NZ) * H(K2+1)
TF (K2 LT, K1Y GO TC 40
nao 20 K = Kly K2
FIK) = F{K) + TS % H({K)
CONTINUE
RETURN
ENTRPY OQONCALC (NZ1, NI4, FF, H)
NH = M7 * NT4 + NZ1
K2 =0
DN A0 NZ = 1, NICNE
L7 = NH 4+ NGECZ{(NZ)
TS = SIGMA(LZ)
Kl = K2 ¢+ 1
K2 = K2 + INTERVINZ) + 1
1F (TS -EQs C) GC TC 60
no 50 K = Kl,; K2
FFR{K) = FF{K} + TS % HI{K=NZ+1)
CONTINUFE
RETURN

END
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APPENDIX C

Program 06731 Checkout

To check the new version of Program 06731 a set
of test problems were prepared and run.
These problems actually serve three purposes: to
verify and document the performance of the new version;
to assist the user in the transition by comparing the
new with the o0ld version; and to provide benchmarks for
any future changes. The test problems cover three
aspects of Program 06731: numerical accuracy, effectiveness
of convergence acceleration, and the proper functioning
of search options and communication with other NUSYS

programs.

Accuracy Tests

A number of accuracy tests has been performed using
problems from /13/, where these problems are completely
described.

The first type of problem uses a 26-group representation
of a single homogeneous mixture (Z1-Core of SNEAK-6A),
with boundary conditions of zero current at both endpoints.
Thus the flux in each group should be independent of
position, and one should be able to vary the total
length and/or the mesh size without changing the value
of keff'

To check this, a first series used different values
for the total width ranging O.1 c¢cm to 1 m. In each

case a mesh of ten steps was used,.
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Table C-I shows the calculated eigenvalues. In all

cases, convergence was obtained to 1°1O_6

iterations; the true value should be 1.007439 + 1+10

in three

6.
Further series involved varying the number of mesh

steps from 1 to 144 for a constant value of the step

width. For step widths of 10 cm and 1 cm, all values

® of the value 1.007439.

For step width of O.1 cm, the results are shown in

were within the range + 2-10

Table C-II; we remark that in this case the dimensions
probably do not correspond to the geometry of realistic
reactor diffusion problems.

For results previously obtained with Program 06731
(i.e., method (A) in single precision), one should
consult /13/.



Table C-I. Keff

for Flat Flux Tests,

Ten Step Mesh

Table C-II. Keff for Flat Flux Tests,

Mesh Step = O.1cm

144

Number of keff
Steps (new 06731)

1 1.007438

2 1.007438

3 1.007437

4 1.007436

5 1.007435

7 1.007433

10 1.007432

20 1.007426

50 1.007409

100 1.007390

1.007371

Total Width keff
(cm) (new 06731)
0.1 1.007435
0.2 1.007432
0.5 1.007434
1.0 1.007432
2.0 1.007535
5.0 1.007534

10. 1.007435
20. 1.007536
50. 1.007439
100. 1.007439
200. 1.007439
500. 1.007438
1000. 1.007440

Exact value:

k

eff

= 1.007439 + 1-10

6

_(__I“p_
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A second type of test problem includes the
ZPR-III-10 model already used in the main body of this
report. In addition to the 26-group bare core model used
above, /13/ also used a 26-group model with a core and
a blanket region. Furthermore, the cross sections were
condensed to a single energy group, giving one-region
and two=region models. All four models were established
in slab, cylindrical, and spherical geometries.

Table C=III shows 26-group one~zone results for both
the new 06731 and the 0ld version. In all cases the

5

error criterion for keff was + 10 ° between successive

iterations, while the pointwise criterion for the fission

. -4
source was one part in 10

These results appear as
the upper curves in Figures 1 and 2 for slab and
spherical geometries, respectively.

For these 26=-group one-zone problems 06731 now
converges to the correct value keff = 1, with error
decreasing roughly as h2. In every one of these'cases,
06731 gives a noticeably better keff value than the

old version.
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Table C-IIT. Keff for ZPR-II-10 26-Group One-Zone

Models
Geometry gi:hs keff keff
p (new 06731) (old 06731)
18 1.00106 1.00504
35 1.00028 1.00135
Sphere
70 1.00006 1.00032
140 1.00001 1.00049
14 . 1.00100 1.00431
27 1.00027 1.00118
Cylinder
54 1.00006 1.00028
108 1.00000 1.00050
9 1.00088 1.00298
17 1.00024 1.00086
Slab
34 1.00006 1.00027
68 1.00000 1.00054
136 .99999 1.00124
Exact value: =1+ 1-107°
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Since the one-group one-zone problems show the
same effécts, we do not set them forth in detail.

Table C-IV shows one-group two-zone results for
the new and old versions of 06731, again in three
geometries. For each geometry, keff for the continuous
problem was found by a program which uses the analytic
solutions (16) in each zone. We remark that to test
the new 06731, a new condensation to one group was
performed, using 26-group fluxes calculated by the
new version of 06731; for this reason the one-group
cross—sections given to the new and old versions of
06731 are slightly different. However, the difference is
not noticeable in Figures 1 and 2, where the results
appear as the middle curves.

Here one sees that the magnitude of error in
k

from former results. In fact, in two cases the keff

of f for the new version of 06731 is not so different

values for slab geometry were better with the old
version, although the finest mesh overshot the true
value. To understand this better , values of the flux
were also checked.

Table C-V gives the flux found in slab geometry at
the far left (where the boundary condition is
zero current) and at the material interface. From
this table it is clear that the oid version of 06731
was not superior for pointwise values. One also sees in
the values for the o0ld version how compensation of
errors could yield better values of keff‘

The bottom curves in Figures 1 and 2 show the results
of two-zone 26-group calculations. Since no exact
solution of the continous problem is available, one
cannot draw rigorous conclusions for thesé cases.
However, one does note that with the new version of 06731,
convergence for the 26~-group problem resembles that

for the condensed one-group problem.



Table C-IV. K_¢¢ for ZPR-III-10 One-Group

Two-Zone Models

Table C-V. Flux at Selected Points for

One-Group Two-Zone Slab

!

Exact value:

Mesh Flux error |[Flux errorxr
Point Steps (new 06731)|(old 06731
28 +.0034 +.0038
beft 56 +.0009 +.0010
boundary
112 +.0003 +.0002
Exact value: 2.1718 2.1719
28 -.0029 -.0035
Material 56 -.0007 -.0008
interface
112 -.0002 -.0001
1.0208 1.0207

Geometry gizgs kefferror kefferror
(new 06731)|(0ld 06731)
31~ -.00108 -.00118
62 —-.00025 -.00019
Sphere 124 -.00006 -.00006
Exact value: .99214 .99213
32 -.00081 -.00045
' 64 -.00021 -.00006
cylinder 128 -.00005 -.00003
Exact value: .97957 .97976
28 -.00040 -.00017
56 - .00009 - .00000
Siee 112 —.OOOOZ +.00006
Exact va}ue: .96566 .96505
T~

Exact values are within %1 in the least

significant figure.

_LS_
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Finally a simple external source problem was
tried. Using the 26-group one-zone problems above,
one can create an external source problem with known
solution as follows. First one does a radius criticality
1.'One then
takes the resulting geometry and fission source £, and

search for, say, the value keff = (1.1)

sets

S = (0.1)

£
“g Xy

Then the solution of this external source problem
should have the same solution as the eigenvalue problem
with 1/keff = 1.1,

Trying this with ten space mesh points in slab
geometry produced the following results: an error
criterion of one part in 10”° for the magnitudes of
successive fission source estimates was specified,
and the final fission source differed by 3 parts in
10—5 from that of the eigenvalue problem. The point-
wise flux values also differed by about 3 parts

in 10-5 from those for the eigenvalue problem.

Convergence Acceleration

Good convergence acceleration is important when
the dominance ratio p is nearly 1. For external source
problems, this happens if the reactor model is néarly
critical; a keff eigenvalue calculation may have
p nearly 1 for a large power reactor.

The convergence acceleration for keff calculations
was checked with a model of the proposed SNR-2
fast power reactor. The problem was supplied by
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E. Kiefhaber as a case for which convergence
acceleration had previously been unsatisfactory;

the dominance ratio is about 0.92. If one sets

the pointwise criterion for fission source convergence
at one part in 10™%, one finds that the final estimate

. . , -5
of keff is within * 2-10

of the true value for the
discrete problem, and this is achieved in fewer than
30 iterations.

For external source problems, one can easily
create a test problem with any desired p by first
performing a radius search for keff = p. This was
done for the external source problem mentioned above
as an accuracy test. With p = (1.1)—1, the total power
for the external source problem changed less than one
part in 10—5 per iteration after about twenty iterations.
For p = (1.01)_1, the same criterion was satisfied after

about seventy iterations.

Proper Functioning

Finally several test problems were run to check
that program control functions properly for more
complicated calculations. The purpose was not to
check numerical accuracy, but simply to verify that
the calculations are completed without disruption.

One such test was the large reactor problem
mentioned above. This was actually an enrichment
iteration, which involves repeated communication
between 06731 and another NUSYS program which adjusts
the enrichment. Since the enrichment iteration did
converge to a solution with the desired properties,
we assume that the communication between programs

has not been disturbed.
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The two types of radius iterations were tried,
using one-group two-zone problems from the accuracy
test series. The input geometry was perturbed, and
the previously obtained values were requested; in
both cases the original geometry was found.
Finally, the two types of time-eigenvalue calculations
were tried. Although the correct solutions of the
problems are not known, the program did produce plausible

answers without difficulties.





