

KERNFORSCHUNGSZENTRUM KARLSRUHE

November 1973

KFK 1882

Institut für Material- und Festkörperforschung Projekt Schneller Brüter

Das Zeitstandverhalten von Rohren aus austenitischen Stählen und Nickelbasislegierungen bei Belastung durch Innendruck

F. Polifka, L. Schäfer, H. Kempe

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNG\$ZENTRUM KARLSRUHE

KFK-1882

Institut für Material- und Festkörperforschung Projekt Schneller Brüter

Das Zeitstandverhalten von Rohren aus austenitischen Stählen und Nickelbasislegierungen bei Belastung durch Innendruck

von

F. Polifka L. Schäfer H. Kempe

Gesellschaft für Kernforschung m.b.H., Karlsruhe

Ubersicht

Die Ergebnisse von Zeitstandversuchen an Rohren aus sieben austenitischen Stählen und fünf Nickelbasislegierungen, die z.T. in verschiedenen mechanisch-thermischen Vorbehandlungszuständen vorliegen, werden berichtet. Die Rohre wurden durch Gasinnendruck einem mehrachsigen Spannungszustand unterworfen. Die Prüftemperaturen lagen zwischen 600^oC und 750^oC. Als Probenmaterial wurden nur sorgfältig auf Fehlerfreiheit geprüfte dünnwandige nahtlose Präzisionsrohre mit einem Außendurchmesser von etwa 6 mm verwendet. Die Ergebnisse werden dargestellt in Zeitbruchlinien, in Hauptkurven nach dem Zeit-Temperatur-Parameter von Larson und Miller, als Bruchdehnung in Abhängigkeit von der Standzeit und als Schliffbilder vom Bruchgefüge, sowie in verschiedenen Übersichtstabellen. Außerdem werden die Versuchseinrichtung, die Art der Versuchsdurchführung, das Auswertungsverfahren, die Berechnung der in der Probe auftretenden Spannungen und eine Vergleichsmöglichkeit mit Zeitstandversuchen im einachsigen Spannungszustand beschrieben. The stress-rupture behaviour of tubes made from austenitic stainless steels and Ni-based alloys under internal pressure

Abstract

The results of stress-rupture tests on tubes of seven austenitic stainless steels and five Ni-based alloys which, to some extent had different thermo-mechanical treatments, are reported. The tubes were loaded by internal gas pressure causing a blaxial stress state. The test temperatures were 600° -750°C. The thin walled seamles precision tubes were carefully checked before in order to detect defects and dimensional variations. The outer diameter was about 6 mm. Plots of stress-rupture curves, of master curves according to Larson and Miller, of strain at fracture curves in dependence of rupture-life are presented in addiation to metallographic pictures of the fracture area and different survey tables. A short description of the experimental procedures is given. How the stressses in the tube were calculated and how they are compared with stressrupture tests in uniaxial state of stress is discribed.

lnhalt

- 1. Einleitung
- 2. Versuchsmaterial
- 3. Versuchseinrichtungen und Versuchsdurchführung
- 4. Probenform und Auswertungsverfahren
- 5. Berechnung der Spannungen
- 6. Versuchsergebnisse
- 7. Bezeichnungen und Anmerkung
- 8. Literatur
- 9. Tabellen, graphische Darstellungen und metallographische Schliffbilder

1. Einleitung

Seit einigen Jahren werden im Institut für Material- und Festkörperforschung der GfK ausgedehnte Untersuchungen über das Zeitstandverhalten von Rohren aus hochwarmfesten austenitischen Stählen und Nickelbasislegierungen bei Belastung durch Innendruck durchgeführt. Die Materialauswahl erfolgte nach reaktorspezifischen Gesichtspunkten / 1 / bis / 4 / für die Brennstabhüllrohre eines Schnellen Brüters. Die Berichterstattung beschränkt sich auf reine Zeitstandergebnisse, weil Kriechkurven und deren Auswertung nur für einige heute noch für den speziellen Verwendungszweck aktuelle Legierungen vorliegen. Die Ergebnisse werden dargestellt in Zeitbruchlinien, in Hauptkurven nach dem Zeit-Temperatur-Parameter von Larson und Miller, als Bruchdehnung in Abhängigkeit von der Standzeit und als Schliffbilder vom Bruchgefüge, sowie in verschiedenen Übersichtstabellen. Außerdem werden die Versuchseinrichtung, die Art der Versuchsdurchführung, das Auswertungsverfahren, die Berechnung der in der Probe auftretenden Spannungen und eine Vergleichsmöglichkeit mit Zeitstandversuchen im einachsigen Spannungszustand beschrieben.

Die Untersuchungen wurden an sieben austenitischen Stählen und fünf Nickelbasislegierungen durchgeführt, die z.T. in verschiedenen Vorbehandlungszuständen vorliegen. Das Probenmaterial sind nahtlose dünnwandige Präzionsrohre mit einem Außendurchmesser von etwa 6 mm. Die Rohre wurden sowohl vom Hersteller als auch vom Abnehmer nach modernen Methoden sorgfältig auf Maßhaltigkeit und Fehlerfreiheit geprüft. Da auch die Versuchseinrichtung ständig kontrolliert und nachgeeicht wurde, ist die Streubreite der ermittelten Zeitstandwerte meist sehr klein.

2. Versuchsmaterial

Der Verwendungszweck der Rohre als Hüllmaterial für die Brennstäbe eines Schnellen Brutreaktors bedingt die Auswahl der Legierungen nach reaktorspezifischen Gesichtspunkten. Neben einer hohen Zeitstandfestigkeit und Korrosionsbeständigkeit sind vor allem ein geringer Neutronenwirkungsquerschnitt der Legierungselemente von Bedeutung. Untersucht wurden 7 austenitische Stähle und 5 Nickelbasislegierungen, die z.T. einer unterschiedlichen mechanischthermischen Vorbehandlung unterzogen wurden. Das Ziel der Behandlungen war es im allgemeinen, die Warmstreckgrenze der austenitischen Stähle durch Kaltverformung zu erhöhen und dann durch eine Auslagerung feindisperse Ausschei-

9.10.73

dungen zu erzeugen, die die Kriechgeschwindigkeit vermindern.

Die chemische Zusammensetzung der Legierungen ist in Tabelle 1 aufgeführt und der Behandlungszustand ist in Tabelle 2 wiedergegeben. Das Versuchsmaterial besteht aus dünnwandigen nahtlosen Präzisionsrohren mit einem Außendurchmesser von etwa 6 mm. Die Qualität der Rohre wurde vom Hersteller nach den allgemeinen Lieferbedingungen geprüft und in Werkszeugnissen ausgewiesen und vom Abnehmer mit modernsten Mitteln bezüglich der chemischen Zusammensetzung, der Maßhaltigkeit und Fehlerfreiheit kontrolliert.

3. Versuchseinrichtungen und Versuchsdurchführung

Die Zeitstandanlage für Rohrinnendruckversuche besteht aus einer Druckversorgungsanlage und den temperaturgeregelten Öfen. In der Druckversorgungsanlage wird das Druckübertragungsmedium Argon aus Stahlflaschen abgezapft, in einem Kompressor verdichtet und in zwei Autoklaven gespeichert. Von dort wird jede Probe einzeln über eine Druckleitung versorgt und von je einem Manometer mit Druckskala und elektrischem Widerstandsferngeber kontrolliert. Die Widerstandsferngeber sind an einem Druckschreiber angeschlossen. Der Druck wird auf + 1 atü gemessen und geregelt. Die Zeitstandöfen sind vertikal hängende Rohröfen mit je 3 Heizwicklungen, die einzeln über Regeltransformator manuell eingestellt werden. Die Netzspannung wird mit Spannungsreglern stabilisiert, und der Laborraum ist durch eine Klimaanlage temperiert, so daß die Probentemperatur auf + 2°C konstant gehalten werden kann. Sie wird mit 3 Thermoelementen entlang der Probenlänge täglich 3mal kontrolliert. Die Prüftemperaturen betragen 600°C, 650°C, 700°C (u.750°C). Die Versuche werden ohne Schutzgas an Luft gefahren, was bei der gewählten Prüftemperatur und den untersuchten Materialien noch zulässig ist. Wenn die Zeitstandproben in den vorgeheizten Ofen eingebaut sind, werden sie nach Erreichen der Solltemperatur mit dem Prüfdruck belastet.

4. Probenform und Auswertungsverfahren

Die Probenform einschließlich der Abschlußstopfen und der Druckzuführung ist in Abb. 1 dargestellt. Die Rohrlänge war durch Vergleichsuntersuchungen zu einem umfangreichen Bestrahlungsexperiment (Mol 2) mit 45 mm vorgegeben. Es konnte nachgewiesen werden, daß bei Probenlängen ab 25 mm die gemessenen Standzeiten und Bruchdehnungen von der Probenlänge unabhängig

-2-

sind. Die Standzeit der Probe ist der Zeitraum zwischen der Belastung mit Druck und dem Beginn des Druckabfalles, der bei Gefügeauflockerung langsam und beim Aufplatzen des Rohres plötzlich eintritt. Die Bruchdehnung wird an der ausgebauten und abgekühlten Probe mit einer Mikrometerschraube gemessen. Die Differenz des gemessenen Außendurchmessers und des Ausgangsdurchmessers bezogen auf den Ausgangsdurchmesser gibt die Dehnung an. Sie ist identisch mit der Differenz der Umfänge bezogen auf den Ausgangsumfang und wird als Tangentialbruchdehnung δ_+ bezeichnet.

$$\delta_{\dagger} = \frac{\Delta U}{U_{o}} \cdot 100\% = \frac{\Delta d_{a}}{d_{a,o}} \cdot 100\%$$

Eine Dehnung in achsialer Richtung findet nicht statt, d.h. die Rohre werden nicht länger. Daher ist die Dehnung in radialer Richtung (Wandstärkenverminderung) bei vorausgesetzter Volumen-Konstanz genauso groß wie in tangentialer Richtung (Umfangs- bzw. Durchmesserzunahme).

Da einige Proben sich über den Umfang nicht gleichmäßig dehnen, sondern einen ovalen Querschnitt annehmen, wird an der Stelle der stärksten Ausbeulung der Außendurchmesser zweimal gemessen und gemittelt, wobei die Probe azimutal um 90⁰ gedreht wird. Aufgeplatzte Proben werden an beiden Enden des in Längsrichtung liegenden Schadensrisses in der beschriebenen Weise vermessen, wobei die größere der Beiden Bruchdehnungen angegeben wird. Diese ist aber immer etwas kleiner als die auf der Höhe der Rißmitte vorliegende Materialdehnung. Solche Werte sind in den Tabellen durch Symbole gekennzelchnet. Zur Feststellung der Bruchart wird in der Höhe der Rißmitte oder an der Stelle der größten Ausbauchung ein Querschliff der Probe metallogaphisch untersucht.

5. Berechnung der Spannungen

In einem Rohr, das unter Innendruckbelastung steht, werden Spannungen erzeugt, die in den drei Hauptspannungsrichtungen zusammengefaßt werden können. Die drei Hauptspannungen liegen entsprechend der Rohrgeometrie in tangentialer, achsialer und radialer Richtung. Sie können aus dem Innendruck und den Rohrabmessungen berechnet werden. Bei den hier vorliegenden relativ dünnwandigen Rohren genügt es im allgemeinen, den Spannungszustand der Wandmitte zu berechnen und die Ortsabhängigkeit der Spannungen zu vernachlässigen. Genauere Analysen sind in der Literatur / 6 /, / 7 / insbesondere bei S. Schwaigerer / 5 / zu finden. Bei relativ dünnwandigen Rohren werden die mittleren Hauptspannungen wie folgt berechnet:

a) Tangentialspannung

$$P = \frac{F}{d_{i} \cdot l} ; \sigma_{t} = \frac{F}{(d_{a} - d_{i}) \cdot l}$$

$$\sigma_{t} = P \cdot \frac{d_{i}}{d_{a} - d_{i}}$$

b) Achsialspannung

$$P = \frac{F}{\pi/4 \cdot d_{i}^{2}}; \sigma_{ax} = \frac{F}{\pi/4 (d_{a}^{2} - d_{i}^{2})}$$
$$\sigma_{ax} = P \cdot \frac{d_{i}^{2}}{d_{a}^{2} - d_{i}^{2}}$$

c) Radialspannung

$$\sigma_r = -\frac{P}{2}$$

Als Näherungslösung gilt:

 $\sigma_{ax} = \frac{1}{2} \sigma_{t}$ und $\sigma_{r} = 0$

Für einen Vergleich der Zeitstandergebnisse aus Versuchen im mehrachsigen Spannungszustand mit solchen aus Versuchen im einachsigen Spannungszustand ist es notwendig, aus den drei berechenbaren Hauptspannungen eine Vergleichsspannung σ_V zu berechnen, die der Zugspannung gleichgesetzt werden kann. Dazu wird eine Festigkeitshypothese ausgewählt, die dem Material insbesondere seinem Bruchverhalten am besten entspricht / 8 /. In den meisten hier vorliegenden Fällen ergibt die Gestaltsänderungsenergiehypothese eine gute Übereinstimmung / 9 /. Sie lautet in der Anwendung auf ein Rohr:

$$\sigma_{\mathbf{v}} = \frac{1}{\sqrt{2}} \left[(\sigma_{\mathbf{t}} - \sigma_{\mathbf{ax}})^2 + (\sigma_{\mathbf{t}} - \sigma_{\mathbf{r}})^2 + (\sigma_{\mathbf{ax}} - \sigma_{\mathbf{r}})^2 \right] \frac{1}{2}$$

oder als Näherungslösung: $\sigma_{\mathbf{v}} = \frac{\sqrt{3}}{2} \cdot \sigma_{\mathbf{t}}$ Für die Dehung gilt: $\varepsilon_{\mathbf{v}} = \frac{2}{\sqrt{3}} \cdot \varepsilon_{\mathbf{t}}$ In der Literatur / 10 /, / 11 / werden die verschiedenen Festigkeitshypothesen und ihre Anwendbarkeit ausführlich beschrieben. Bei den hier vorliegenden Ergebnissen werden die Spannungen nicht als Vergleichsspannungen angegeben, sondern als nominelle, d.h. auf den Ursprungsquerschnitt bezogene, Tangentialspannungen der mittleren Wandfaser.

6. Versuchsergebnisse

Die Versuchsergebnisse sind in den Tabellen 4 bis 10 einzeln aufgeführt und in den Abbildungen 2 bis 44 grafisch dargestellt. Zur besseren Übersicht sind in Tabelle 3 die Werkstoffe und Werkstoffzustände mit den entsprechenden Abbildungsnummern zusammengefaßt.

In der Regel werden die Meßwerte eines jeden Werkstoffes bzw. Werkstoffzustandes in drei Abbildungen auf je zwei gegenüberliegenden Seiten dargestellt. Zwei Abbildungen zeigen im doppellogarithmischen Maßstab die Zeitstandfestigkeit und die Bruchdehnung in Abhängigkeit von der Standzeit während auf der gegenüberliegenden Seite eine Darstellung nach Larson und Miller gegeben ist, die im folgenden erläutert wird. Zeitstandversuche werden naturgemäß nur bei einigen Spannungen und bestimmten festgelegten Temperaturen durchgeführt. Um für alle Spannungen und Temperaturen die Zeitstandfestigkeit interpolieren und in begrenztem Maße auch extrapolieren zu können, wurde aus der Vielzahl von vorgeschlagenen Extrapolationsverfahren das ausgewählt, welches nach einer Untersuchung von Bungardt und Schmidt / 42 / die geringste Streubreite aufweist. Es handelt sich um die Darstellung der Meßwerte als Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson und Miller / 43 / in der Form $P = T_K (C + \log t_B) \cdot 10^{-3}$.

Darin ist der Wert C nach Hoznek / 44 / eine Funktion der Spannung und der Temperatur, was aber in dieser Arbeit vernachlässigt wird. Es genügt, die Konstante C individuell für jeden Werkstoff und Werkstoffzustand zu bestimmen. Weitere Extrapolationsverfahren sind in einer Literaturübersicht von Bungardt und Schmidt / 42 /, bei Granacher / 45 / und / 46 /, sowie in Einzelbeiträgen von Siegfried / 47 /, Pich / 48 /,Krisch und Wepner / 49 / und Krisch / 50 / beschrieben. Extrapolationen der Versuchstemperatur können meist nicht über mehr als 50[°]C und Extrapolationen der Standzeit um nicht mehr als eine Dekade gegenüber den gemessenen Werten vorgenommen werden.

Auf eine Interpretation der Meßergebnisse und einen Vergleich der Werkstoffe und Werkstoffzustände wird im Rahmen dieser Datensammlung verzichtet, zumal andere Veröffentlichungen sich teilweise damit befaßt haben / 9 /, / 12 /, / 13 / und noch befassen werden. Stattdessen sei auf die Literatur verwiesen, in der neben aligemeinen Überblicken über das Zeitstandverhalten ähnlicher Legierungen / 14 / bis / 20 / auch die Einflüsse der Legierungselemente / 21 / bis / 30 /, der Ausscheidungen / 31 /, / 32 /, des Stabilisierungszustandes / 30 /, / 32 /, / 33 /, der Kaltverformung / 23 /, / 30 /, / 34 /, / 35 /, der mechanisch-thermischen Vorbehandlung / 23 /, / 36 /, / 37 / und der Korngröße / 38 / bis / 41 / eingehend behandelt werden. - Die gegebene Übersicht kann nicht vollständig sein, sie ermöglicht aber gegebenenfalls eine Erklärung für viele der hier berichteten Zeitstandergebnisse.

In den Abbildungen 45 bis 69 sind die Schliffbilder der Bruchgefüge von Zeitstandproben mit langer Standzeit in 200-facher Vergrößerung wiedergegeben. Mit zunehmender Verformungsgeschwindigkeit und abnehmender Temperatur tendiert die Bruchart vom interkristallinen über den gemischten zum transkristallinen Bruch. Dementsprechend findet man meistens mehrere interkristalline Anrisse, die zu einer allgemeinen Gefügeauflockerung mit langsamem Druckabfall in der Probe führen, oder es bildet sich ein dominierender interkristalliner Schadensriß, der sich je nach Temperatur und Prüfdruck im letzten Teil der noch intakten Rohrwand sehr schnell transkristallin mit starker Kornverformung fortsetzt.

Anmerkung

Außer den Autoren haben an der Inbetriebnahme der Zeitstandanlage, der Vorbereitung und Durchführung der Versuche und der Herstellung der metallographischen Schliffbilder in dankenswerter Weise die Angehörigen des Institutes für Material- und Festkörperforschung insbesondere Frau Schlenker, Herr Bürkle, Herr Dr. Kaupa und Herr H. Schneider mitgearbeitet.

-5-

7. Bezeichnungen

- a = Außenmand der Rohrwand
- d_a = Außendurchmesser des Rohres (mm)
- d_i = Innendurchmesser des Rohres (mm)
- F = Kraft(N)
- i = Innenrand der Rohrwand
- kv = Kaltverformung (%)
- 1 = Länges des Rohres (mm)
- L = Luftabkühlung
- LG = Lösungsglühung
- $P_i = Rohrinnendruck (N/mm^2)$
- P = Zeit-Temperatur-Parameter nach Larson u. Miller
- t_B = Standzeit (h)
- T = Prüftemperatur (^OC)
- T_K = Prüftemperatur (^OK)
- δ_{+} = Tangentiale Bruchdehnung (%)
- ε_{t} = Tangentialdehnung (%)
- ϵ_v = Tangentiale Vergleichsdehnung (%)
- σ_{ax} = Achsialspannung (N/mm²)
- $\sigma_r = Radialspannung (N/mm^2)$
- σ_t = Tangentialspannung (N/mm²)
- $\sigma_v = Vergleichsspannung (N/mm^2)$

9. Literaturübersicht

- 1) H. Böhm; KFK-985 (1969)
- 2) Gasbrüter-Memorandum; KFK-1375 (1971)
- 3) F. Rapatz, "Die Edelstähle", Verlag Springer, 1962, S.695-
- 4) J.O. Edström, L. Egnell, G.Lagerberg; Sandvik 67 1024
- 5) S. Schwaigerer, "Festigkeitsberechnung von Bauelementen des Dampfkessel-Behälter- und Rohrleitungsbaues", Verlag Springer, 1970
- 6) H. Buchter, "Apparate und Armaturen der chemischen Hochdrucktechnik", Verlag Springer
- 7) E. Siebel, S. Schwaigerer, Brennstoff, Wärme, Kraft, Bd. 3, Nr. 5, 1951
- 8) Wellinger, H. Dietmann, "Festigkeitsberechnung", Verlag Alfred Kröner, Stuttgart, 1968
- 9) K.D. Closs, L. Schäfer, in "Fast Reactor Fuel and Fuel Elements", Gesellschaft für Kernforschung mbH, Karlsruhe, S. 675-
- 10) H. Dietmann, "Spannungszustand und Festigkeitsverhalten",
 1. Teil, Techn.-wiss. Bericht, MPA Stuttgart, 1968
- Ryuichi Ohtani, "Creep and Creep Fracture of Metallic Materials under Multiaxial Stress at Elevated Temperatures", Ph.D. Thesis, College of Engineering, Kyoto University, Kyoto, Japan
- 12) K.D. Closs, L. Schäfer, KFK-1599 (1972)
- 13) K.D. Closs, L. Schäfer, ASTM STP 529
- 14) VDEh, "Ergebnisse deutscher Zeitstandversuche langer Dauer" Verlag Stahleisen, Düsseldorf, 1969
- 15) Escher Wyss, "Zeitstandversuche an Stählen"
- 16) Werkstoff-Handbuch Stahl und Eisen, Verlag Stahleisen, Düsseldorf
- 17) Werkstoff-Handbuch Nichteisenmetalle, VDI-Verlag, Düsseldorf
- 18) A. v.d. Steinen, Archiv f. d. Eisenhüttenwesen, 33. Jahrg., Heft 1,1962
- 19) H. Zeuner, Nickel-Berichte 25(1967) Nr. 6/7, S. 149-180
- 20) Smith, ASTM Data Series DS 552
- 21) K.Bungardt, A.v.d.Steinen, DEW Techn.Berichte 1961, H.4, S.138-150
- 22) A.v.d.Steinen, DEW Techn.Berichte 1969, H.2, S.134-146
- 23) A.v.d.Steinen, in KFK-985 (1969), S. 207-221

- 24) M. Lagerquist, R. Lagneborg, Scandinavian Journal of Metallurgy, 1 (1972) S. 81-89
- H. Jesper, W. Wessling, K. Achtelik, Stahl und Eisen 86, Okt. 1966, Nr. 21
- 26) P. Goodell, T. Cullen, J. Freeman, Transactions of the ASME Vol.-D.89, 1967, S. 517-24
- 27) A. Mercier, R. Lévéque, G. Remy, Revue de Métalurgie, Dec.1967,
 S. 1085-1094
- 28) L. Rohlin, B. Aronsson, Tagung des VDEh v. 3.5.-5.5.72 in Düsseldorf über Eigenschaften warmfester Stähle, Paper IX/4
- 29) H. Gerlach, H.R. Kautz, Stahl und Eisen 88, Nr. 25, 1968, S. 1422-23
- 30) K. Bungardt, G. Lennartz, Archiv f.d. Eisenhüttenwesen 34 (1963) Heft 7, S. 531-546
- 31) F. Garzarolli, A. Gerscha, P. Franke, Zeitschr. f. Metallkunde 60 (1969), Heft 8, S. 643-52
- 32) H.Gerlach, E.Schmidtmann, Archiv f.d. Eisenhüttenwesen 39 Jahrg. Heft 2, Febr. 1968
- 33) W. Ruttmann, H.Gerlach, H.R. Kautz, Archiv f.d.Eisenhüttenwesen 1967, Heft 4, S. 301-307
- 34) F. Garofalo, F.v.Gemningen, W.F. Domis, Trans ASM 54 (1961) S. 431-444
- 35) H. Böhm, M. Schirra, unveröffentlichte Arbeiten, GfK Karlsruhe
- 36) H.Böhm, M.Schirra, R.Solano, R.Garcia, KFK-1512(1971)
- 37) M. Schirra, KFK-1535 (1972)
- 38) K. Skuin, Neue Hütte, Heft 9 (1969), S. 547-552
- 39) J. Myers, G. Willoughby, Metalurgia, Jan. 1966, S. 6-7
- 40) H. Scholz, KFK-1855, (1973)
- 41) R.Brownsword, M.R.Hoar, Scripta Metallurgica, Vol.7, No.6, 1973, S.643
- 42) K. Bungardt, W. Schmidt, DEW-Techn.Berichte, 1.Bd.1961, Nr.3
- 43) F. Larson, J.Miller, Trans ASME 74, 1952, S.765-
- 44) J. Hoznek, Neue Hütte, 13. Jahrg., Heft 8, 1968
- 45) J. Granacher, Dissertation, "Zur Extrapolation der Zeitstandfestigkeit warmfester Stähle", 1970

- 46) ASM Publication No. D8-100, Time-Temperature-Parameters for Creep-Rupture Analysis
- 47) W. Siegfried, Archiv f.d. Eisenhüttenwesen, 33. Jahrg., Nr.3, 1962
- 48) R. Pich, Energie, Jahrg. 16, Nr. 16, 1964
- 49) A. Krisch, W. Wepner, Archiv f.d. Eisenhüttenwesen 28 (1957)
- 50) A. Krisch, Stahl und Eisen 83 (1963) Nr. 2

Tabelle 1: Chemische Zusammensetzung (in %)

1-5 X8CrNiMoVNb1613 1.4988 25116 0,05 0,63 1,35 16,2 13,7 1,44 0,75 Rest 0,65 0,67 0,67 6 " " 40344 0,05 0,59 1,36 16,7 13,6 0,06 1,2 0,6 1,43 0,78 " " <0,5	Nr.	Bezeichnung	Werkst.Nr.	. Charge	С	Si	Mn	Cr	NĪ	Co	Мо	v	W	Ti	AI	Fe	ppm B	Ta/Nb	N ₂
6 " " SL 733 0,08 0,35 1,27 16,9 13,6 0,06 1,2 0,6 1,43 0,7 " 0,7 0,7 7,8 " " 40344 0,05 0,59 1,36 16,7 13,6 1,43 0,78 " " 0,7 0,7 9-11 X8CrNiMoNb 1616 1.4981 HV 139 0,07 0,58 0,97 17,0 16,6 0,04 1,64 0,03 0,08 0,99 " 4 0,7 0,0 12,13 " 70015 0,05 0,37 1,11 16,5 16,5 0,002 1,76 0,03 0,5 0,01 " 0,79 0,70 0,22 1,15 15,9 12,9 0,12 0,35 0,01 " 0,79 0,02 0,05 0,01 0,0 0,00 0,00 0,01 0,0 0,00 0,00 0,00 0,01 0,01 0,0 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00	1-5	X8CrNiMoVNb1613	1.4988	25116	0,05	0,63	1,35	16,2	13,7		1,44	0,75				Rest		0,65	0,09
7,8 " 40344 0,05 0,59 1,36 16,7 13,6 1,43 0,78 " " 0,7 9-11 X8CrNiMoNb 1616 1.4981 HV 139 0,07 0,58 0,97 17,0 16,6 0,04 1,64 0,08 0,09 " 4 0,7 0,7 12,13 " 70015 0,05 0,37 1,11 16,5 16,5 0,002 1,76 0,03 " " 0,7 0,7 14-16 K10N1CrMoT1B1515 1.4970 8-2952 0,10 0,4 1,75 14,9 15,1 0,012 1,2 0,5 0,01 " 60 <0,55	6	79	11	SL 733	0,08	0,35	1,27	16,9	13,6	0,06	1,2	0,6				11	<0,5	0,7	0,07
9-11 X8CrNiMoNb 1616 1.4981 HV 139 0,07 0,58 0,97 17,0 16,6 0,04 1,64 0,08 0,09 " 4 0,7 0,0 12,13 " " 70015 0,05 0,37 1,11 16,5 16,5 0,02 1,76 0,03 0,08 0,09 " 4 0,7 0,07 14-16 (10N1CrMoTIB1515 1.4970 8-29052 0,10 0,4 1,75 14,9 15,1 0,012 1,2 0,03 0,5 c0,01 " 60 <0,05	7,8	11	77	40344	0,05	0,59	1,36	16,7	13,6		1,43	0,78			-	TT		0,7	
12,13 " " 70015 0,05 0,37 1,11 16,5 16,5 0,002 1,76 0,03 " " 0,79 14-16 (10N1CrMoT1B1515) 1.4970 8-29052 0,10 0,4 1,75 14,9 15,1 0,012 1,2 0,5 <0,01	9-11	X8CrNiMoNb 1616	1.4981	HV 139	0,07	0,58	0,97	17,0	16,6	0,04	1,64			0,08	0,09	TT	4	0,7	0,02
14-16 X10NICrMoTIB1515 1.4970 8-29052 0,10 0,4 1,75 14,9 15,1 0,012 1,2 0,5 \$0,01 " 60 <0,05	12,13	11	11	70015	0,05	0,37	1,11	16,5	16,5	0,002	1,76		0,03			11		0,79	;
17 X8CrNINb 1613 1.4961 33577 0,07 0,22 1,15 15,9 12,9 0,12 0,31 - - 0,01	14-16	K10NICrMoTIB1515	1.4970	8-29052	0,10	0,4	1,75	14,9	15,1	0,012	1,2			0,5	k0,01	11	60	<0,05	0,02
18 X4CrNiNb 2025 - SL 1918 0,02 0,65 0,71 20,2 24,8 0,02 - - 0,01 0,01 " 0,5 0,01 0,01 19 X10NICr 3220 1.4861 972554 0,016 0,6 1,35 20,6 31,9 0,02 <0,05	17	X8CrNINb 1613	1.4961	33577	0,07	0,22	1,15	15,9	12,9	0,12	0,31			<0,05	0,12	11	0,7	0,82	<0,01
19 X10NiCr 3220 1.4861 972554 0,016 0,6 1,35 20,6 31,9 0,02 <0,05	18	X4CrNiNb 2025	-	SL 1918	0,02	0,65	0,71	20,2	24,8	0,02	-	-	-	0,01	0,01	17	0,5	0,01	0,02
20 " " 1193-A 0,045 0,4 0,87 20,2 31,6 0,63 0,1 - - 0,41 0,47 " 3,5 0,05 0,05 0,06 21 " " S 2106 0,06 0,49 0,65 20,4 30,9 0,05 0,02 - - 0,41 0,47 " 3,5 0,05 0,05 0,06 22 A1S1 316 1.4401 T 4921 0,05 0,48 1,81 16,88 13,3 0,02 2,34 - - 0,41 0,47 " 3,5 0,05 0,06 0,06 23 Inconel 600 2.4640 12667 0,05 0,6 0,95 16,2 74,0 0,04 0,02 - - 0,3 0,13 3,0 1 3,45 0,06 24 Inconel 625 - NX832AV 0,03 0,07 21,8 Rest 0,045 8,5 - 0,3 0,13 3,0 1 3,45 0,06 25 Inconel 718 <t< td=""><td>19</td><td>X10NiCr 3220</td><td>1.4861</td><td>972554</td><td>0,016</td><td>0,6</td><td>1,35</td><td>20,6</td><td>31,9</td><td>0,02</td><td><0,05</td><td>-</td><td><0,05</td><td><0,05</td><td><0,1</td><td>Ţ</td><td>1</td><td>0,05</td><td></td></t<>	19	X10NiCr 3220	1.4861	972554	0,016	0,6	1,35	20,6	31,9	0,02	<0,05	-	<0,05	<0,05	<0,1	Ţ	1	0,05	
21 " S 2106 0,06 0,49 0,65 20,4 30,9 0,05 0,02 - - 0,4 0,34 " 2 0,05 0,0 22 AISI 316 1.4401 T 4921 0,05 0,48 1,81 16,88 13,3 0,02 2,34 - - 0,4 0,34 " 2 0,05 0,0 23 Inconel 600 2.4640 12667 0,05 0,6 0,95 16,2 74,0 0,004 0,02 - - 0,3 7,55 1 0,05 - - 2 0,05 0,07 - - 0,04 0,33 7,55 1 0,05 - - - 0,04 0,33 0,13 3,0 1 3,45 0,07 24 Inconel 625 - NX832AV 0,03 0,07 21,8 Rest 0,045 8,5 0,3 0,13 3,0 1 3,45 0,07 25 Inconel 718 - 7310-E 0,04 0,3 0,49 14,7	20	11	11	1193 - A	0,045	0,4	0,87	20,2	31,6	0,63	0,1			0,41	0,47	11	3,5	0,05	<0,01
22 A1S1 316 1.4401 T 4921 0,05 0,48 1,81 16,88 13,3 0,02 2,34 0,01 0,01 1 1 20 0,01 23 Inconel 600 2.4640 12667 0,05 0,6 0,95 16,2 74,0 0,004 0,02 <0,05	21	78	88	S 2106	0,06	0,49	0,65	20,4	30,9	0,05	0,02	-	-	0,4	0,34	11	2	0,05	0,035
23 Inconel 600 2.4640 12667 0,05 0,6 0,95 16,2 74,0 0,004 0,02 <0,05	22	AISI 316	1.4401	T 4921	0,05	0,48	1,81	16,88	13,3	0,02	2,34			0,01	×0,01	11	20		0,014
23 Inconel 600 2.4640 12667 0,05 0,6 0,95 16,2 74,0 0,004 0,02 <0,05																			
24 Inconel 625 - NX832AV 0,03 0,07 21,8 Rest 0,045 8,5 0,3 0,13 3,0 1 3,45 0,0 25 Inconel 718 - 7310-E 0,04 0,27 0,1 18,8 0,04 2,8 1,0 0,5 18,9 15 5,0 <0,0	23	Inconel 600	2.4640	12667	0,05	0,6	0,95	16,2	74,0	0,004	0,02	-		<0,05	0,03	7,55	1	0,05	-
25 Inconel 718 - 7310-E 0,04 0,27 0,1 18,8 " 0,04 2,8 1,0 0,5 18,9 15 5,0 <0,0	24	Inconel 625	-	NX832AV	0,03	0,03	0,07	21,8	Rest	0,045	8,5	×		0,3	0,13	3,0	1	3,45	0,037
26 Inconel X750 - HT-4362X 0,04 0,3 0,49 14,7 " 0,06 <0,05 2,46 0,5 6,9 6,5 0,75 <0,0	25	Inconel 718	-	7310 - Е	0,04	0,27	0,1	18,8	11	0,04	2,8			1,0	0,5	18,9	15	5,0	<0,01
	26	Inconel X750	-	HT-4362X	0,04	0,3	0,49	14,7	77	0,06 ·	0,05			2,46	0,5	6,9	6,5	0,75	<0,005
27 Hastelloy X - X4-4493 0,09 0,83 0,6 21,2 " 1,6 9,0 0,62 <0,05 0,16 17,9 3,5 0,05 0,0	27	Hastelloy X	-	X4-4493	0,09	0,83	0,6	21,2	97	1,6	9,0		0,62	<0,05	0,16	17,9	3,5	0,05	0,085
									-		1·			ł		1			
											Ì								

Tabelle 2 Kurzzeitfestigkeit und Behandlungszustand

	DIN-Bezeichnung				Channe		Kurzzeitf	estigkeit b	el RT	
Nr.	(bzw.AlSi-Bezeichng)	WerkstNr.	werksbezeichng.	Hersteller	unarge	Benandlungszustand	σ _B (kp/mm ²)	σθ.2 (kp/mm²)	<u>م</u> (۶)	
1	X8CrNIMoVNb 1613	1.4988	16/13 (AN 31)	Mannesmann	2516	lg+ <u><</u> 5% kv	72,4	43,2	51,3	163
2	11	TT	11	11	n	lg+ <u><</u> 5%kv+750 ⁰ 3h/L	-	-	-	-
3	11	11	"	11	n	lg+<5%kv+750° 20h/L	-	-	-	-
4	n	п	**	11	"	lg+ <u><</u> 5%kv+800 ⁰ 1h/L	67,2	34,3	50,3	163
5	н		11	11	"	lg+ <u><</u> 5%kv+800 ⁰ 20h/L	-	-	-	-
б	n	11	п	11	SL 733	1g+ <u>></u> 12%kv	86,3	73,3	33,3	279
7,8	п	п	11	11	40 344	lg+	66,2	38,0	34,6	177
9	X8CrN1MoNb 1616	1.4981	16/16 (AN 15)	11	HV 139	1g+ <u><</u> 5% kv	65,0	37,5	46,6	152
10	п	11	п	11	п	lg+ <u><</u> 5%kv+750 ⁰ 20h/L	-	-	-	-
11	п	11	11	Ħ	TÎ	lg+<5%kv+800° 20h/L	-	-	-	-
12	"	π	**	T	70 015	lg+∿7% kv	59,2	29,0	48,1	141
13	11	11	Ħ	11	11	1g+∿13% kv	71,6	60,2	26,1	239
14	X10NICrMoTIB 1515	1.4970	12R72HV	Sandvik	8-29052	lg+∿16% kv	74,7	61,4	23,0	242
15	"	11	n	11	17	lg+∿16%kv+800 ⁰ 2h	71,0	47,0	19,3	239
16	11	ŧŦ	11	11	11	lg+∿16%kv+800 ⁰ 23h	-	-		-
17	X8 CrNiNb 1613	1.4961	16/13 (AN 10)	Mannesmann	33 577	lg+ <u><</u> 12% kv	65,0	29,9	50,0	140
18	X4 CrNINb 2025	-	20/25 CrNi	11	SL 1918	lg+ <u><</u> 12% kv	62,6	56,0	35,0	258
19	X10 NICr 3220	1.4861	Incoloy 800	п	972554	lg+ <u><</u> 12% kv	55,0	26,5	50,0	129
20	11	п	IT	Superior Tube (USA)	1193-A	lg+ <u><</u> 12% kv				152
21	11	17	11	Wiggin	S 2106	1g+ <u><</u> 12% kv				153
22	AISI 316	1.4401		Accles a. Pollock	T 4921	lg+ 10-15% kv	73,8	65,0	39,0	238
23	NiCr 16 Fe 8	2.4640	Incone[600	Mannesmann	.12667	lg+ <u><</u> 12% kv	81,8	67,4	30,0	222
24			Inconel 625	Superior Tube Comp.	NX 832 AV	lg+ <u><</u> 12% kv	87,9	75,5	7,5	452
25			Inconel 718	"	7310-E	lg+ <u><</u> 12% kv	149,5	130,0	6,5	462
26			Inconel X750		HT-4362-X	1g+ <u><</u> 12% kv	133,0	-	6,0	415
27			Hastelloy X	11	X4-4493	lg+ <u><</u> 12% kv	80,1	-	32,5	222
1	1		1_]	1]

Tabelle 3 Verzeichnis der Abbildungen

Nr.	DIN-Bezeichnung (bzw.AISI-Bezeichng)	Werkst.Nr.	Numme Weitstandf.	ern der Abbil Larson u. Miller-D.	dungen für Bruch-	die Abmessung (mm)
	VPC-NIMOVALD 1613	1.4988	1 2	3	45	6 Ø × 0,38
		11	4	5	46	11
2	11	**	6		47	11
ر ۱		ŧŧ	7	8	48	11
4			6		49	11
	11	11	9	10	50	7 Ø × 0.4
0	11	11	11			6.35Ø x 0.4
		11	11			5,4Ø x 0,25
× ×	VACENIMOND 1616	1.4981	1 12	13	51	6Ø×0,38
9		11	14		52	11
	11	11	14		53	11
		11	15	16	54	F1
17	11	11	17	18	55	11
	VIONIC MOTIR 1515	1.4970	1 19	20	56	11
14		11	21	22	57	17
16	11	11	23	24	58	**
17	VRCENING 1613	1.4961	25	26	59	17
10	XAOPNINE 2025		1 27	28	60	7 Ø × 0,4
10	X401 N10 2025	1.4861	29	30	61	**
19		"	31	32	62	11
20	"	11	. 33		63	7,4Ø × 0,5
	AIST 316	1,4401	34	35	64	6Ø×0,38
22		and the state of t				
23	NICr 16 Fe 8	2.4640	36		65	7 Ø × 0,4
24			37	38	66	7,1Ø × 0,4
25			39	40	67 ·	11
26			41	42	68	11
27			43	44	69	11
27						

Zeitstandergebnisse

Austenitischer Stahl X8 CrNiMoVNb 16 13 (Werkst.-Nr. 1.4988)

Charge: 25 116

		600	°C			650	0 ^o C		700 ⁰ C				
Zustand	$\left(\frac{\sigma_{t}}{mm^{2}}\right)$	P; (atü)	t _B (h)	⁸ t (%)	$\left(\begin{array}{c} \sigma_t \\ \left(\begin{array}{c} N \\ mm^2 \end{array} \right) \end{array} \right)$	P _i (atü	t _B)(h)	⁸ t (%)	$\left(\frac{N}{mm^2} \right)$	P _i (atü)	^t B (h)	⁸ t (%)	
lg+ <u><</u> 5% kv	338 304 270 243 216 -	500 450 400 360 320	34 75 224 660 1566 -	5,8 4,3 5,8 4,5 7,7	270 236 203 182 162 -	400 350 300 270 240 -	30 66 228 760 1158 -	3,3 2,7 6,5 4,3 1,0	203 169 148 142 122 101	300 250 220 210 180 150	23 115 152 272 830 2407	5,3 6,0 4,0 4,5 5,0 6,0	
lg+ <u><</u> 5% kv +750 ⁰ C 3h	352 338 304 284 270 250	520 500 450 420 400 370	43 148 477 600 750 1710	12,0 9,2 5,5 5,2 3,0 4,7	270 243 223 203 189 155	400 360 330 300 280 230	34 130 242 410 600 2485	4,7 4,3 3,8 6,0 3,8 5,0	169 148 135 114 101 -	250 220 200 170 150 -	54 170 410 810 2277 -	4,8 8,5 15,2 16,2 6,8	
lg+ <u><</u> 5% kv +800 ⁰ C 1h	311 298 270 250 230 -	460 440 400 370 340 - -	38 110 548 1090 2867 - -	8,2 4,8 4,2 3,2 5,5	243 230 203 169 155 -	360 340 300 250 230 -	51 85 386 950 2132 - -	5,2 5,5 4,3 7,0 5,4 -	189 182 175 148 114 101 81	280 270 260 220 170 150 130	10 44 68 190 580 928 1474	8,3 8,2 7,5 8,3 3,8 7,8 13,8	
lg+ <u><</u> 5% kv +750 ⁰ C 20h			61 65 65		63 79 79	954 185 185 185		9	169 135 118 108	250 200 175 160	34 276 495 769	12,8 10,9 9,9 12,8	
lg+ <u><</u> 5% kv +800 ⁰ C 20h		55 105 105	-	1 1 1			1 1	a a 1	169 135 114 94	250 200 170 140	22 147 710 1455	8,8 13,6 9,5 13,3	

Zeitstandergebnisse

Austenitischer Stahl X8 CrNiMoNb 16 16 (Werkst.-Nr. 1.4981)

.

		600 ⁰	°C			650 ⁰ C				700 ⁰	°C	
Werkstoff	$\left(\frac{\sigma_{t}}{mm^{2}} \right)$	P _i (atü)	t _B (n)	⁵ t (%)	$\left(\frac{\sigma_{t}}{mm^{2}} \right)$	P _i (atü)	t _B (h)	δ _t (%)	$\left(\frac{N}{mm^2} \right)$	P _i (atü)	t _B (h)	⁸ t (%)
Chg.:HV139 1g+ <u><</u> 5% kv	359 338 304 250 203	530 500 450 370 300	26 84 310 1475 6759	XX 13,7 11,5 7,8 6,5	270 236 203 169 135	400 350 300 250 200	48 154 516 1624 3205	13,7X 8,3X 6,7X 8,0 19,3	203 169 135 101 67	300 250 200 150 100	32 132 296 1435 4635	11,7 12,5 13,6 22,8 19,0
Chg.:70015 g+∿7% kv	325 304 284 270 236 -	480 450 420 400 350 -	20 110 430 500 2084	13,9 8,5 8,9 8,5 8,3	-				203 155 135 122 108 101 81	300 230 200 180 160 150 120	2 16 104 121 245 454 1057	15,3 24,3 14,4 24,0 23,3 16,2 22,5
Chg.:70015 Ig+13% kv	474 406 372 325 304 270 243	700 600 550 480 450 400 360	10 84 146 288 479 907 1619	3,1 1,2 1,3 1,1 2,2 1,5 4,2			-		189 155 155 148 135 108 -	280 230 230 220 200 160	34 120 108 115 189 710 -	2,7 2,8 2,3 1,3 1,3 1,0
Chg.:HV139 g+ <u><</u> 5% kv +800 ⁰ C2Qh	-	-	-		-			-	169 135 101	250 200 150	36 170 715	- X 15,0 X 22,0
Chg.:HV139 g+ <u><</u> 5% kv 750 ⁰ C20h			-		-			-	169 135 101	250 200 150	73 207 1116	14,5 22,2 18,2

Austenitischer Stahl

X10 NICrMoTIB 1515 (Werkst.-Nr. 1.4970)

Charge: 8-29052

		600 ⁰	Ċ		650 ⁰ C				700 [°] C				
Zustand	$\left(\frac{\sigma_{t}}{(mm^{2})}\right)$	P. (atü)	t _B (h)	⁸ t (%)	$\left(\frac{N}{mm^2} \right)$	P _i (atü)	t _B (h)	δ _t (%)	$\left(\frac{N}{mm^2} \right)$	P _i (atü)	t _B (h)	⁸ t (%)	
g+∿16% kv	440 406 372 325 304	650 600 550 480 450	8 34 135 277 6000≁	- - 3,2 2,3 -	338 311 304 270 250	500 460 450 400 370	10 32 53 356 1176	- 2,0 1,9 3,2 2,5	270 256 253 236 216	400 380 375 350 320	35 97 167 311 1100	2,0 2,2 1,7 2,5 2,2	
lg+∿16% kv +800 ⁰ C 2h	440 392 372 - -	650 580 550 - - -	21 461 1128 - - -	2,2 1,9 1,5 - -	-	-			304 291 270 250 236 216	450 430 400 370 350 320	34 54 133 238 435 1045	4,3 6,0 4,7 3,2 2,3 2,5	
lg+∿16% kv +800 ⁰ C 23h	366 352 338 318 298 284	540 520 500 470 440 420	12 22 82 319 1375 2995	3,3 4,7 5,0 4,3 4,2 5,5	304 284 270 243 - -	450 420 400 360 - -	18 51 156 1073 - -	5,3 5,3 3,2 3,8 -	256 236 223 210 189 -	380 350 330 310 280 -	15 71 124 248 1054 -	4,0 3,8 4,1 3,3 2,7	

Austenitische Stähle

	$\begin{array}{c c} 600^{\circ}C \\ \hline \sigma_{\mu} & P, t_{p} & \delta_{\mu} \end{array}$				600°C				l	65	0 ⁰ C			700	°c	
Werkstoff	$\left[\frac{\sigma_{t}}{\left(\frac{N}{mm^{2}} \right)} \right]$	Pi (atü)	t _B (h)	^δ t (%)	$\left(rac{\sigma_t}{(mm^2)} \right)$	P. (atü)	t _B (h)	⁸ t (%)	$\left(\frac{m_{t}}{mm^{2}} \right)$	P. (atü)	t _B (h)	⁸ t (%)				
X4CrNiNb 20.25 Chg.SL 1918 Ig+ <u><</u> 12% kv	266 228 209 190 171 152 133 114	350 300 275 250 225 200 175 150 -	10 38 136 189 442 1182 2859 8919 -	7,6X 8,3X 10,8X 6,7X 4,6 3,6 5,1 2,4	190 152 133 114 106 92 - -	250 200 175 150 140 120 - -	28 110 362 483 708 2280 - - -	7,7X 5,3X 3,9 2,6 1,9 4,6 - -	152 137 106 84 76 69 61 54 46	200 180 140 110 100 90 80 70 62	9 18 100 269 531 658 977 1970 2391	stark X 3,9 2,3 1,0 1,6 0,9 0,7 1,1 0,9				
X8CrNINb 1613 W.Nr.1.4961 Chg.33577 Ig+ <u><</u> 12% kv	298 270 250 236 203 -	440 400 370 350 300 - -	30 212 457 704 1587 -	6,7X 4,7X 4,2X 3,9 5,2 -	230 203 169 148 108 -	340 300 250 220 160 -	50 154 508 778 2105 - -	5,7X 5,0X 4,8X 3,7X 6,8 -	169 135 118 101 81 67 50	250 200 175 150 120 100 75	40 131 242 377 696 1543 3300	6,7X 6,3X 10,0 9,0 12,2 15,3 16,3				
X8CrNiMoVNb 1613 W.Nn.1.4988 Chg.SL 733 Ig+∿20% kv	380 360 342 319 304 288 266 235 - -	500 475 450 420 400 380 350 310 - - -	107 181 300 561 758 721 1158 3768 - -	X X 1,28X X 1,71X 1,14X X 1,42X - - -	304 281 266 258 228 190 152 - - - -	400 370 350 340 250 200 - - - -	59 94 226 470 745 1440 3301 - - - - -	3,8X 1,42X 1,57X 2,42X 2,56 1,99 1,99 - - - -	266 228 209 190 164 150 137 121 102 98 76	350 300 275 250 215 197 180 160 130 125 100	17 35 54 121 276 440 680 852 1657 1494 2969	1,72 1,85 1,99 2,42 2,56 2,85 2,84 2,00 3,84 4,27 3,65				
X8CrNiMoVNb 1613 W.Nr. 40344 5,4Øx0,25 und	-		-	1 1 1 1		-		-	216 178 140 125 106	225 185 145 130 110	32 88 400 519 1103	3,5 4,1 7,2 4,4 5,0				
6,3Øx0,38			-			-		1 1 1 1	215 179 143 132 115	300 250 200 185 160	27 88 243 338 742	7,3 6,5 9,1 9,2 9,5				
A S 316 W.Nr.1.4401 Chg. T4921 g+10-15%kv	304 270 256 243 230	450 400 380 360 340	42 192 247 627 1103	3,0 5,0 6,5 5,7 4,5		-		-	169 155 135 122 -	250 230 200 180	94 120 427 685 -	5,3 1,8 5,8 4,0 -				

Zeitstandergebnisse

Austenitischer Stahl

X10NiCr 3220 (Werkstoff-Nr. 1.4861)

Werksbez.: Incoloy 800

l		60	0°C		650 ⁰ C				700 ⁰ C				
Zustand	$\left(\frac{m_{t}}{mm^{2}} \right)$	^P i (atü)	^t B (h)	⁸ t (%)	$\left(\frac{\sigma_{t}}{mm^{2}} \right)$	P _i (atü)	t _B (h)	⁸ t (%)	$\left(\frac{\sigma_{t}}{m^{2}} \right)$	P _i (atü)	t _B (h)	δ _t (%)	
Chg.972554 g+ <u><</u> 12% kv	213 190 175 152 137 122 106	280 250 230 200 180 160 140	22 61 142 250 717 1334 3636	16,0 14,5 19,8 23,6 14,6 19,0 19,3	152 133 114 99 84 -	200 175 150 130 110 -	37 100 177 472 861 -	19,3 19,0 21,0 17,3 12,0 -	137 114 103 92 69 54 46 39	180 150 135 120 90 70 60 50	13 21 45 99 331 1266 4450 7790	22,0X 17,0 21,2 17,6 18,3 9,6 8,1 6,3	
Chg. 1193-A g+ <u><</u> 12% kv	304 296 281 266 258 250	400 390 370 350 340 330	39 198 665 1053 951 1966	8,6 12,4 5,6 4,9 9,2 5,0	213 190 171 152 137 -	280 250 225 200 180	48 72 484 335 2433 -	14,3 12,6 16,3 12,3 15,0	152 133 114 95 -	200 175 150 125 - -	35 124 353 2472 - -	15,0 17,9 6,7 8,3 - -	
Chg. S 2106 g+ <u><</u> 12% kv		-	-			-	400, 4100, 510, 510, 510, 510, 510, 510, 510,		157 138 113 94 75	250 220 180 150 120	14 46 190 1590 6943	5,7 4,8 2,4 1,1	

Tabelle 8

Zeitstandergebnisse

Nickelbasislegierungen

		650 ⁰ 0	0			700 ⁰ 0	;			750 ⁰	°c	
Werkstoff	$\left(\frac{N}{mm^2} \right)$	P _i (atü)	t _B (h)	^δ t (%)	$\left(\frac{m_{t}}{mm^{2}} \right)$	P _i (atü)	t _B (h)	δ _t (%)	$\left(\frac{\sigma_{t}}{mm^{2}} \right)$	P i (atü)	t _B (h)	⁸ t (%)
lnconel 625 Chg.NX832AV Ig+ <u><</u> 12% kv	387 364 348 310 286 271 248 232 221 186 156	500 470 450 400 370 350 320 300 285 240 200	156 184 259 358 409 593 789 1366 1555 1780 3094	-X 1,1 2,0 1,6 1,4 1,7 2,3 2,8 2,4 3,5	372 290 271 232 213 194 175 156 132 124 109	480 375 350 275 250 225 200 170 160 140	38 49 85 188 244 347 442 655 1465 1287 2340	-X -X 6,0 4,3 4,0 6,0 5,6 4,0 5,6 3,7 4,4	263 213 194 156 117 94 83 64 48 -	340 275 250 200 150 120 110 80 60 -	15 55 33 109 263 484 595 1106 1944 -	7,3 5,8 5,7 9,0 9,6 5,7 16,1 16,5
lnconel 718 Chg. 7310-E Ig+ <u><</u> 12% kv	372 368 348 326 294 279 256 232 217 156	480 475 450 420 380 360 330 300 280 200	223 206 258 347 480 442 740 864 1218 3205	5,0 5,0 -X -X 5,0 4,4 6,5 7,4 6,1 8,2	348 310 271 232 194 156 132 117 -	450 400 350 250 200 170 150 -	43 70 105 164 275 538 739 1263 - -	6,1 10,9 9,6 11,3 8,9 13,5 11,2 18,3 - -	194 156 117 94 78 58 40 - -	250 200 150 120 100 75 50 - - -	39 72 164 312 443 913 2091 - -	11,2 20,1 14,0 27,3 23,1 33,1 11,0 -
Hastelloy X Chg.X4-4493 Ig+ <u><</u> 12% kv	310 271 232 217 194 194 178 156	400 350 300 280 250 250 230 200	31 119 333 292 583 573 1748 2789	7,6X -X 12,7X 7,8X 15,2 16,9 10,9 7,8	310 271 232 194 170 156 136 117 102 94	400 350 250 220 200 175 150 132 120	5 11 28 93 158 271 719 1190 2232 3728	18,5X 21,5X 22,6X 18,6X 19,4X 12,0X 7,5X 7,9 4,8 6,6	156 136 117 102 78 64 - - - -	200 175 150 130 100 80 - - -	34 80 133 342 594 2105 - - - -	19,3X 10,0X 7,5X 9,0 3,5 4,2 - - -

.

Nickelbasislegierungen

		600	o ^o c			650 ⁰ C		i		70	0 ⁰ C	
Werkstoff	σ_{t} $\left(\frac{N}{mm^{2}}\right)$	P. i (atü)	t _B (h)	⁸ t (%)	$\left(\frac{\sigma_{t}}{mm^{2}} \right)$	P. (atü)	t _B (h)	⁵ t (%)	$\left(\frac{\sigma_{t}}{(\frac{N}{mm^{2}})} \right)$	P (atü)	t _B (h)	δ _t (%)
Inconel X750 Chg.HT-4362X Ig+ <u><</u> 12% kv	372 329 310 263 232 213	480 425 400 340 300 275	20 62 1 58 210 512 1736	0,04 0,04 0,14 0,14 0,14 0,35	271 232 213 194 156 136	350 300 275 250 200 175	66 80 173 299 489 2698	0,15 0,14 0,42 0,28 0,57 1,98	348 271 170 140 117 78	450 350 220 180 150 100	6 19 111 153 348 996	0,21 0,50 0,64 0,50 0,78 4,1
	194	250	5239	1,27					40	00	5054	4,1
Inconel 600	-	_		-		-	-	-	137	180	13	2,84X
W.Nr.2.4640	-	-	-	-	-	-	-	- 1	122	160	33	2,14
Chg.12667		_	-	-	-	-	-	-	114	150	50	1,99
lg+ <u><</u> 12% kv	-	-	-			-	-		99	130	72	1,14
	-	-	-	-	-	-	-	-	84	110	116	0,71
	-	-	-		-	-	-	-	69	90	222	1,00
	-	-	-	-	et a	-	-	-	46	60	943	1,57
	-	873		-	_	-	-	600	35	45	2435	2,56

.

R- Rohrprobe

F – Füllstab

- S-Schweißnaht
- D-Druckzuleitung

Abb.1 Zeitstandprobe

Maßstab : 2:1

Austenitischer Stahl X8CrNiMoVNb1613 Werkstoff-Nr. 1.4988

Abb. 3 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson-Miller

Austenitischer Stahl X 8 Cr Ni Mo V Nb 1613 Werkstoff – Nr. 1.4988

Abb.5 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson-Miller

Austenitischer Stahl X 8 Cr Ni Mo V Nb 1613 Werkstoff – Nr. 1.4988

Werkstoff-Nr. 1.4988

Austenitischer Stahl Werkstoff-Nr. 1.4988

Abb.8 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson-Miller

Austenitischer Stahl X & Cr Ni Mo V Nb 1613 Werkstoff-Nr. 1.4988

Abb.10 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson-Miller

Austenitischer Stahl X8 Cr Ni Mo VNb 1613 Werkstoff – Nr. 1.4988

Abb. 12 Zeitstandfestigkeit und Bruchdehnung Austenitischer Stahl X8CrNiMoNb 1616 Werkstoff-Nr. 1.4981

Abb.13 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson-Miller

Austentischer Stahl X8 Cr Ni Mo Nb 1616 Werkstoff – Nr. 1.4981

Werkstoff – Nr. 1.4981

Abb.16 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller

Austenitischer Stahl X8CrNiMoNb 1616 Werkstoff-Nr. 1.4981

Abb. 18 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller

Austenitischer Stahl X&CrNiMoNb 1616 Werkstoff-Nr. 1.4981

Abb. 20 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller

Austenitischer Stahl X10 NiCrMoTiB 1515 Werkstoff-Nr. 1.4970

Abb. 22 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller

Austenitischer Stahl X10NiCr MoTi B 1515 Werkstoff-Nr. 1.4970

Austenitischer Stahl X10NiCrMoTiB 1515 Werkstoff-Nr. 1.4970

Abb. 24 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller

Austenitischer Stahl X10NiCrMoTiB 1515 Werkstoff-Nr. 1.4970

Abb. 25 Zeitstandfestigkeit und Bruchdehnung Austenitischer Stahl X8CrNiNb 1613 Werkstoff-Nr. 1.4961

Abb. 26 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller

Austenitischer Stahl X 8 Cr Ni Nb 1613 Werkstoff-Nr. 1.4961

Abb. 28 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller Austenitischer Stahl X4CrNiNb 2025

Austenitischer Stahl X10 Ni Cr 32 20 Werkstoff – Nr. 1.4861

Abb. 30 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller

Austentischer Stahl X 10 Cr Ni 3220 (Jncoloy 800) Werkstoff – Nr. 1.4861

Austenitischer Stahl X10NiCr 3220 Werkstoff-Nr. 1.4861

Abb.32 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller

Austenitischer Stahl X10 Cr Ni 3220 (Jncoloy 800) Werkstoff – Nr. 1.4861

Abb.34 Zeitstandfestigkeit und Bruchdehnung Austenitischer Stahl AISI 316 Werkstoff-Nr. 1.4401

Abb.35 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller

Austenitischer Stahl AISI 316 Werkstoff – Nr. 1.4401

Abb.37 Zeitstandfestigkeit und Bruchdehnung Nickelbasislegierung INCONEL 625

Abb.38 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller

Nickelbasislegierung Jnconel 625

Abb.40 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson-Miller

Nickelbasislegierung Jnconel 718

Abb.42 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller

Nickelbasislegierung Jnconel X 750

Abb.44 Hauptkurve nach dem Zeit-Temperatur-Parameter von Larson - Miller

Nickelbasislegierung Hastolloy X

Charge: 25116 ; LG+≤5% kv

Abb.45 Austenitischer Stahl X8CrNiMoVNb 1613 Werkstoff – Nr. 1.4988
Charge: 25116 ; LG+≤5%kv+750°C 3h

Abb.46 Austenitischer Stahl X8CrNiMoVNb 16 13 Werkstoff-Nr. 1.4988

Charge: 25116; LG+≤5%kv+750°C 20h

Abb. 47 Austenitischer Stahl X8CrNiMoVNb 1613 Werkstoff-Nr. 1.4988

Charge: 25116 ; LG+≤5% kv +800°C1h

Abb.48 Austenitischer Stahl X8CrNiMoVNb 1613 Werkstoff-Nr. 1.4988

Charge: 25116; LG+ 5% kv+ 800°C 20h

Abb. 49 Austenitischer Stahl X8 CrNiMoVNb 1613 Werkstoff-Nr. 1.4988

Charge: SL 733 ; LG +≥12% kv

Abb.50 Austenitischer Stahl X8CrNiMoVNb 1613 Werkstoff-Nr. 1.4988

<u>Charge: HV 139 ; LG + ≤ 5°/₀ kv</u>

Abb.51 Austenitischer Stahl X8CrNiMoNb 1616 Werkstoff-Nr. 1.4981

Charge: HV 139; LG+≤5%kv+750°C 20h

Abb.52 Austenitischer Stahl X8CrNiMoNb 1616 Werkstoff-Nr. 1.4981

Charge : HV 139 ; LG +≤ 5% kv +800°C 20h

Abb. 53 Austenitischer Stahl X8 CrNiMoNb 1616 Werkstoff – Nr. 1.4981

<u>Charge: 70015; LG+~7% kv</u>

Abb.54 Austenitischer Stahl X 8 CrNiMoNb 1616 Werkstoff – Nr. 1.4981

Charge: 70015 ; LG +~13% kv

Abb.55 Austenitischer Stahl X 8 Cr NiMoNb 1616 Werkstoff – Nr. 1.4981

Charge: 8 - 29052; LG + $\sim 16 \%$ kv

Abb.56 Austenitischer Stahl X10NiCrMoTiB 1515 Werkstoff-Nr. 1.4970

Charge: 8-29052; LG + ~16 %kv +800°C 2h

Abb. 57 Austenitischer Stahl X 10 NiCrMoTiB 1515 Werkstoff-Nr. 1.4970

Charge: 8-29052; LG+16% kv + 800°C 23h

Abb.58 Austenitischer Stahl X10NiCrMoTiB 1515 Werkstoff-Nr. 1.4970

lΫ

Abb.59 Austenitischer Stahl X8CrNiNb 1613 Werkstoff-Nr. 1.4961

Charge: SL 1918 ; LG + ≤ 12 % kv

Abb.60 Austenitischer Stahl X4CrNiNb 2025 Werksbezeichnung: 20Cr/25Ni

Charge: 972554; LG+≤12%kv

Abb. 61 Austenitischer Stahl X 10 Ni Cr 32 20 Werkstoff-Nr. 1.4861

Charge: 1193-A ; LG + ≤ 12 % kv

Abb.62 Austenitischer Stahl X10NiCr3220 Werkstoff-Nr. 1.4861

Abb. 63 Austenitischer Stahl X10 NiCr 32 20 Werkstoff – Nr. 1.4861

Charge: T4921; LG+10-15% kv

Abb.64 Austenitischer Stahl AISI 316 Werkstoff-Nr. 1.4401 Charge: 12667; LG+≤12%kv

Abb. 65 Nickelbasislegierung NiCr 16 Fe 8 (INCONEL 600) Werkstoff-Nr. 2.4640

Charge: NX 832 AV ; LG + ≤12% kv

Abb.66 Nickelbasislegierung INCO

INCONEL 625

Charge: 7310-E; LG +≤12% kv

Abb.67 Nickelbasislegierung INCONEL 718

<u>Charge: HT-4362-X ; LG+≤12%kv</u>

Abb. 68 Nickelbasislegierung INCONEL X 750

Charge: X4-4493; LG+≤12%kv

Abb.69 Nickelbasislegierung HASTELLOY X