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Interpretation der in den schnellen kritischen Anordnungen

MASURCA und SNEAK durchgefUhrten Substitutionsexperimente

Zusammenfassung

Verschiedene Substitutionsexperimente. die in den schnel­

len kritischen Anordnungen MASURCA und SNEAK durchgefUhrt

worden sind, wurden unter Verwendung der spektralen Syn­

thesemethode analysiert. Die Methode wurde verwendet, um

das Zweizonen-Reaktorproblem zu lösen, und die dabei er­

haltene kritische Gleichung wurde auf eine geeignete Form

gebracht, entsprechend derjenigen, die fUr thermische Re­

aktoren abgeleitet worden war. Die Abhängigkeit der Er­

gebnisse fUr das radiale Buckling von der Größe der sub­

stituierten Zone wurde auch untersucht.

17. Januar 1974



Interpretation of substitution experiments performed

in the fast critical facilities MASURCA and SNEAK

Abstract

Several substitution experiments performed in the fast

critical assemblies MASURCA and SNEAK are analyzed by

using the spectral-synthesis method. The method has

been applied to solve the two region reactor problem,

and the critical equation obtained is given in a suit­

able form, analogous to the one derived for thermal

reactors. The dependence of radial buckling values on

the size of the substituted region has been investi­

gated.
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1. Introduction

The application of progressive substitution technique, that

has been used very successfully in thermal reactor systems

for material buckling determinations, makes possible the

systematic study of various uranium and plutonium fuels, as

weIl as the extrapolationof results in multizone experiments

when only a small amount of the fissile material is available.

The theory, based on the use of the spectral-synthesis method

(known also as the space-energy method and the overlapping­

group method), for the interpretation of substitution experi­

ments in fast media, has been derived by Storrer and Chaumont

/1/, and Naudet /2/. Several substitution experiments per­

formed in the critical assembly MASURCA in Cadarache, have

been analyzed by the proposed method /3,4,5/.

In the present report, these experiments are recalculated by

the more suitable approach in solving the system of non lin­

ear equations. The critical equation has been written in a

very convenient form, analogous to the corresponding equa­

tion derived for thermal reactors /11/, so that instead of

the linearization of a system of equations, the buckling

difference between two media can be obtained by the proce­

dure of straight line fitting. Special attention has been

given in comparing the results obtained by varying the num­

ber of substitution steps in the analysis, and trying to

find a criterion forchoosingthe representative value of

the buckling differences.

The analysis of substitution experiments performed in the

critical facility SNEAK in Karlsruhe, is also included.
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2. Theory

In the spectral-synthesis method it is assumed that the space

and energy dependent neutron flux can be approximated by the

linear superposition of some specified functions ~' (E), i =
1

1,2, ••••• ,N,

-+­<lJ(r,E)
N

I
i=1

-+-
p. (r)'f.. (E).

1 1
(2.1)

-+­
~i(E) are linearly independent trial functions, and Pi(r) are

the combining coefficients that have to be found for a given
+ • . •problem. E represents here the energy and r 1S the pos1t1on

vector.

2.1 General spectral-synthesis equations

The diffusion equation for a given region with a constant

composition in a continuous energy notation can be written

in operator form as:

2 -+- -+-D(E)V <lJ(r,E) + H<lJ(r,E) = 0, (2.2)
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where:

and:

-+
H~(r,E)

00

-Ot(E)~(~,E) + J 0S(E'-+E)~(~,E')dE' +
o

K

The quantities D, 0t' Os and 0f represent the diffusion coef­

ficient, total, scattering and fission macroscopic cross sec­

tions respectively. X is the fission spectrum and v is the

mean number of neutrons per fission.

Applying the method of weighted residuals, i.e., substituting

the approximate form, Eq. (2.1), into Eq. (2.2), multiplying

by arbitrary weight functions Wj(E) and integrating over

energy, one obtains

- 2- --DV p + H p = 0,

where p = col { PI' P2' • • ••• 'PN }

D = f D •• }
J1

H = { H.. }
J1

using the inner product notation, matrix elements D.. and
J1

H.. are defined by:
J1

(2.3)



where

D.. =
JI.

H,. =
JI.

<w I A'f)
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00

J w(E)A(E)~(E)dE.
o

(2.4)

(2.5)

If the index j takes on N values, and if the weight functions,

Wj(E), are linearly independent, Eq. (2.3) represents N coupled

partial differential equations for the space functions p. (;).
I.

The boundary conditions for Eq. (2.3) at a material interface

are derived from the standard diffusion theory boundary con­

ditions. The continuity of flux and current across an inter­

face specifies that:

p-

D- '1p-

'" p+

'" D+ '1p+

(2.6)

(2.7)

where the superscripts li_li and "+" refer to the left and

right sides of the material boundary. Thus, the continuity

of flux requires that each p. be continuous across an inter-
I.

face, while the current is continuous in a weighted integral

sense.
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In order that expansion (2.1) be, as much as possible, an

accurate description of the system, one has to choose proper

trial functions. Series of investigations have been done in

choosingvarious trial functions, and it has shown /6,7/ that

for the core region a fundamental mode is an excellent choice.

Although, for small reactors with highly enriched fuel, the

asymptotic properties are in general not established in any

part of the core, so that the use of fundamental modes as

trial functions may lead to significant errors, very good

results that have been obtained /3,4,5/, justify such a

choice by interpretation of substitution experiments.

The choice of weight functions is of lesser importance. How­

ever, Kaplan /8/ has found that the variational choice is

most likely to lead to the best results; this has been proved

in many succeeding reports, e.g. /9,10/. The weight functions

are chosen as the adjoints to the trial spectra:

w. (E)
J

..= lf. (E),
J

(2.8)

where the adjoint flux, ~~(~,E), is approximated in the same

way as the neutron flux, and satisfies the adjoint equation,

corresponding to Eq. (2.2), with the same boundary conditions.

2.2 Two-region two-trial function problem

It is possible to obtain solutions of Eq. (2.3) for certain

simple geometries. Restricting themselves to the problem of

a bare reactor consisting of two homogeneous regions, Storrer
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and Chaumont /1/ applied the spectral-synthesis method in order

to describe such a system with only a few parameters. Their pro­

cedure will be briefly summarized her. For two reactor regions,

an expansion of the form (2.1) is terminated after the second

term:

(2.9)

The trial functions ~I (E) and ~2(E) are here the asymptotic

spectra of the reactor regions.

Applying the same method of solution as in the two-group, two­

region problem, the solutions of Eq. (2.3) can be expressed
• +) +as a linear combination of two elgenvectors, F(r and G(r),

whose eigenvalues, for each of the two zones, are given as

(i=1 ,2):

A!2 B. 2
=

1 1

(2.10)
A! ,2 2= - lli1

where Bi
2 is the material buckling of the region i,

are given by:

and ].1. 's
1

H(12)i H(21)i ~ H(ll)i H(22)i

D(12)i D(21)i - D(ll)i D(22)i
(2.11)
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-t-
The mixing funetions p.(r) ean then be expressed in the

1

following way:

-t-
P \ (r) =

in zone

in zone 2
(2.12)

(-;)

(-;)- E2 S2 G2 (~)

in zone

in zone 2
(2. \3)

where Ci and Ei are proportionality eonstants, and the eoef­

fieients S\ and S2 are given by:

S\ =
D(12) 1

D(1\) \

S2 =
D(2\) 2

(2.\4)
D(22)2

These are the equations derived by Storrer and Chaumont. It is

seen from Eqs. (2.\2) and (2.\3) that the flux in eaeh region

has two eomponents: the fundamental and a harmonie whieh de­

ereases with a relaxation length ~-1.

2.3 Critieal eondition

For the bare, two-zone eylindrieal reaetor, the eigenfunetions
-t- -t-

F.(r) and G.(r) ean be separated in rand z direetions, where
1 1
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the radial parts, fi(r) and gi(r), satisfy the corresponding
. 1 . 'h' 1 ßZ Z.e~genva ue equat~ons w~t e~genva ues . and y. g~ven by:

~ ~

ß. z B. Z Z= - n.
1 1 ~

(Z.15)

Z Z Z
-Yi = -)li - ni .

ni is the axial buck1ing of the zone i. The solutions of the

eigenva1ue equations, omitting the proportiona1ity constants,

can be written in terms of Besse1 functions as:

f 1(r) = Jo(ß1r)

gl (r) = Io(Yl r )

fZ(r) = Jo(ßZr) + EYo(ßZr)

gZ(r) = Io(Yzr) + nKo(yzr).

The constants E and n are determined by the requirement that

the f1ux must vanish at the extrapo1ated boundary+):

J
E "" - (~)

Y
ßZRe0

I
n = - (~)

K
YZRe •0

+)
The notation ( ••••• )nR means that the argument nR is com­

mon to all the Besse1 functions appearing in the brackets.
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Applying the equations of Storrer and Chaumont to the boundary

conditions (2.6) and (2.7), at the zone interface R, Naudet /2/

has derived a critical condition of a two-zone reactor system,

which can be expressed as:

(X2 - Y1) (Y 2 - XI)

(Y 2 - YI)
(2.16)

where the following notations have been used:

J + e:Y
I (0 0)- e;- J

1
+ e:Y

t

=

I + nK
_1_ ( 0 0)

Y2 11 nKI y2R •

m is the average value of the weighted ratios of diffusion coef­

ficients, given as:



m••
lJ =

D(ij ) 2

D(ij ) 1

- 10 -

(i,j = 1,2).

In many cases diffusion coefficients D1(E) and D2(E) have nearly

the same variations with energy, so that the ratio DZ/D1 depends

very little on energy, what justifies the substitution of four

different coefficients, m.. , by their average value.
1J

With some rearrangements the critical condition (2.16) can be

expressed as:

u + Sv = I,

where the following symbols have been introduced:

(2. 17)

8 - I - 8 18Z

XI
(Z.18)u - Xz

(Y I - X ) (Yz - X
2

)
I

v - Xz (Yz - YI)

This equation, relating the interface radius to the extrapolated

radius, depends on six parameters: SI' ßZ' ~1' ~Z' m,and S. Para­

meter S gives indication about the migration of neutrons between

the two media. According to the expressions (Z.14), it is seen

that the product 818Z does not depend on the normalization of

applied spectra:
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=

The sign of 8 depends on whether the product 8182 is smaller

or greater than one. The two regions are weil adapted if 8

is small. For 8=0, equation (2.17) reduces to X1=X2, i.e.,

to the critical condition obtained by the one-group theory.

3. Application to substitution experiments

The substitution technique consists in replacing the central

part of a multiplying medium, taken as a reference, by another

medium whose properties are to be determined. The changes in

neutron balance, produced by such a procedure, allow the study

of some basic properties of the new medium. In general, one

is trying to evaluate the material buckling of the substituted

medium from the resulting critical configurations.

The form of the critical condition (2.17) is very suitable for

the analysis of the two-zone criticals. A similar equation has

already been used, very successfully, for the interpretation

of substitution experiments in thermal and fast reactors /3,11/.

3.1 Buckling difference determination

Trying to evaluate the radial buckling of the substituted re­

gion, ß1, from the difference between the radial bucklings of

the two regions:
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(3. 1)

where ß2 is the known radial buckling of the reference region,

all the other parameters that enter into Eq. (2.17) have to

be known. The radii Rand Rare known experimental data. Thee
radius of the substituted zone, R, is directly determined by

the number of substituted fuel elements NI' as

R = n1
d -

1T '

where d is the lattice pitch of the reactor core. The extra­

polated critica1 radius of the reactor, R , is obtained bye
measuring the change in reactivity and then finding the cor-

responding va1ue of the critica1 radius, or by changing the

critical radius itse1f, in order to reestab1ish the critica1ity

of the reactor system.

The other four parameters: m, ~1' ~2 and S, describing the

interface effect in the model, have to be ca1culated. Since,

in most cases, the two media (the reference and the substi­

tuted one) differ only in the fissile nuclei, the parameters

m.. are close to one, and it is supposed that they could be
1.J

calculated very precisely. The possible uncertainty in the

va1ues of these parameters, as wel1 as their substitution

by the average one, has re1atively small influence on the

value of ~ß. Still less inf1uence have the parameters ~1

and ~2. The way how these parameters are calculated by a

multigroup procedure is described in the next section.

Theparameters that plays the most important role in deter­

mining theradial buckling difference is the parameter S.



(3.2)
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Since it influences very much the value of ßß, it ought to be

very well known. Its sensitivity to the interface effect, how­

ever, may lead to significant errors in its computation. In

thermal reactors one has already been faced with this prob­

lem, and the way out has been found in applying the progres­

sive substitution technique. Instead of evaluating only one

multizone system, one replaces stepwise the fuel elements in

the reference core with new elements, starting from the reac­

tor center. After each substitution, the produced effect is

measured, as already explained, and analyzing the results it

is possible to determine the buckling difference and the cou­

pling parameters S at the same time.

For several substitution steps, one measures the critical extra-

polated radius, R l' for each radius R of the substitutede e
zone. From the system of n critical equations (1 = 1,2, •••• ,n),

it is possible to find the best solutions for ßß and S, apply­

ing the method of least squares. The radial buckling of the

substituted medium enters into the critical equation implicitly.

In order to obtain its value by that equation, it is necessary

to specify an initial value °ßt' or °ßß, and to apply the iter­

ative procedure. However, the critical equation will not be

satisfied in that core. It may then be represented as:

u + Sv = p ,

where p differs from unity, so much as the initial value °ß
I

differs from the exact one. The calculation procedure follows

than in this way: for each substitution step one measures the

extrapolated radius and calculates the quantities u and v

according to the Eqs. (2.18) with the initial value for buck­

ling difference, °ßß. Since u and v contain measured radii,

the system of critical equations can be represented as:
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(1=1,2, ••••• ,n) (3.3)

where Ul and V1 are ea1eu1ated va1ues of u and v, for the

substitution step 1. App1ying the method of least squares,

i.e., minimizing the sum of squared residuals El , one is

able to find the best solutions for p and S. With the ob­

tained value for p, after eaeh iteration step k, the new

input value for the buekling differenee is formed in the

following way:

k+1 6ß for 6ß > 0

for 6ß < 0

(3.4)

The iterations are stopped when the value of p beeomes elose

enough to unity. The fitting proeedure itself, eonsists in

minimizing the weighted squares of residuaIs:

= = (3.5)

The ehoiee of the weights wl is in a way arbitrary. One has

to deal not only with experimental errors by determining the

extrapolated radii Rel , but also with errors that are the
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product of the applied evaluation model, and errors arising

from calculating various parameters entering the critical

equation. All these errors can hardly be estimated, and in

a simplified manner if can be assumed that those weights

could be interpreted as differences in critical radii:

'VIRl-R \,e e

where Re is the extrapolated critical radius of the reference

core. Since each measurement of the radius is done with the

same absolute precision, the points with smaller change in

the critical radius will thus have a smaller weight.

(3.6)

The standard deviations 0' and 0' of the parameters p and Sp s
are obtained in the usual way by the fitting procedure. It

remains to determine the error of the buckling difference,

ßß. Again, taking into account only pure mathematical grounds,

since the parameter p was obtained by varying ßß, one can write:

()F

() (ßß) = ap
()F

äP'

where F is the implicit form of the critical equation (Z.17),

F (ß 1, ßz, 111' llZ' R, Re' m, S) = O.

For the series of substitution steps, one has:
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n= n

L
1=1

From the definition of symbols X, and Y" entering into the
1 1

critica1 equation, it can be seen that on1y the term XI de-

pends on ßI , Therefore, oF/oß I is given as:

where:

=

Denoting wi th:

= m·

1
- Xz

[

I + (~o) 2 ],

1 ß R
1

the standard deviation of the buck1ing difference can be

written as:

n

n [ Yz,1 - XZ , 1) ] 2
LXI ß,1 (1-S =:-''----=--'--

1=1 Y2,1 - Y1,1
(3.8)
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3.2 Reflector savings calculation

Until now, all the equations have been derived assuming the two­

zone reactor, consisting of reference and substituted medium.

However, fast reactor assernblies are generally always reflected

by a blanket region. In principle, the described method could

be easily extended to take into account more than only two re­

gions. However, the spectrurn in the blanket region is largely

influenced by the leakage of neutrons from the reactor core,

and this effect cannot be accounted for by the infinite-medium

spectrurn. Calculating blanket trial functions for the physically

more realistic situation, i.e., taking the blanket center spec­

trum from a spatial diffusion calculation with the core leakage

into the blanket, leads to complex bucklings /6/. Since such

a solution in cylindrical geometry involves an infinite series

of Bessel functions, instead of the two-term expression for

real bucklings, it would not be possible to obtain the criti­

cal equation of such a system in a closed analytical form.

Therefore, it is more practical to use two-region theory also

in the case of reflected systems; one then must properly take

into account the changes in reflector savings during substitu­

tions.

For each substitution step 1 (see Fig. 1), the reflector saving

~~, defined as:

must be found. Applying the multigroup calculation to the given

reactor system, this difference can be calculated, and it may

be assumed that it can fairly well represent the experimental

value:

= (3.9)
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It follows that

= (3.10)

where R21 aremeasured critical radii of the reference zone

during substitutions. These radii are obtained by addition

or substraction of fuel elements at the core-reflector bound­

ary. In order to avoid any discrepancies between the experi­

mental and calculated values of the critical radii, one has

to correlate the experimental and calculated data. This cor­

rection procedure, as pointed out in /3/, consists in adjust­

ments of:

1) the reference medium in such a way that the calculated

radial buckling be identical with the measured one. This

is doneby changing the mean number of neutrons per fis­

sion of the reference medium.

2) the blanket medium, so that the measured reflector saving

of the reference core be equal to the calculated one (by

changing the diffusion coefficient of the blanket).

3) the substituted medium for each substitution step, so

that the calculated critical radius R21 be equal to the

measured one (by changing the mean number of neutrons per

fission of the substituted medium).

After these adjustments have been done,the two-zone calcula­

tion of the bare reactor gives the calculated extrapolated

radii Rel , i.e., the calculated reflector savings oRl • Ac­

cording to the Eq. (3.10), the corresponding experimental

values of the extrapolated radii during substitutions are

obtained.
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Besides the radial reflector, the fast critical assemblies have

usually an axial one, too. The method applied in the interpre­

tation of substitution experiments is based on the assumption

that the radial bucklings of the substituted and reference re­

gion remain constant during substitutions. The axial reflector

savings are different for the two media taken isolately. Since

the physical height of the both regions is equal and remains

constant during progressive substitution procedure, the axial

curvature of the neutron flux in the central region varies: at

the beginning it is approximately equal to the curvature of

the reference region, and it approaches the value of the sub­

stituted region alone, as the radius of the central zone be­

comes big enough. Since the material buckling of the region

is a constant, i.e., the sum of the axial and radial buckling

must remain constant during substitutions (one deals always

with a critical reactor), the radial buckling of the substi­

tuted region should vary too.

The axial and radial bucklings of the reference region are

supposed to remain constant, because the reference region

should always be thick enough in order to essentially sup­

press the influence of the central region on the flux curva­

ture. Otherwise, the applied method, taking this effect not

into consideration, would lead to wrong results.

The numerical experiment performed /5/, has shown that in

spite of small changes in axial buckling, the radial buck­

ling may still be assumed to be constant during substitu­

tions. No obserable effect On ß1 could be found. This cOn­

clusion was well supported by the excellent agreement bet­

ween the directly measured values of radial bucklings and

those obtained by the substitution procedure.
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3.3 Multigroup calculations

After determinating the critical extrapolated radii, Rel , one

has to calculate the values of parameters m, ~I and ~2 that

enter into the critical equation. As already said, the radii

of the substituted zone, R1I , as weIl as the material buckling

of the reference core are known quantities, and ß1 and S are

the parameters to be determined.

The parameters m, ~I and ~2 are expressed in terms of coef­

ficients D.• and H.• given by Eqs. (2.4) and (2.5). These
J:J. J:J.

coefficients have to be calculated by the available multi-

group cross-section data, and can be represented as:

D(" ) "" (\f'~g D
g 'f~ )

J:I. Z J ' z :I.

<~g g> (i, j ,z 1,2) ,== '{'. ,H 'f. ==
H(" ) J Z 1.

J 1. Z

where index z stands for the substituted and reference zone,

and g denotes the energy group. Taking into account the de­

finition of the operator H, and proceeding the calculation

in G energy groups, one can write:

G
Dg i'~g \f~D( ")

c; LJ:J. z g=1 z J 1.

G g
g'+g~'

G

L 'f~g (-0 g ~ L X
g - g'+g~' (3.11 )He' ) c; + o . + L vof .) •

J 1. Z g= 1 J t,z :I. g' ='1 s,z :J. z g '= 1 ,Z:J.

Introducing the concept of a "removal" cross-section:
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g+g
a

s

- g' - g'+g
and writing vaf = vaf ,the equation for the coefficient

H(,.) can be written as:
J1 Z

H(, ')J 1 Z
==

G * g-I" G , ,L ''f, g (-ag .~ + Lag
+g'f~ +Xg Lvag 'f~ ).

1 J rem,z 1 '1 s,z 1 Z '1 f,z 1g== g == g ==
(3.12)

3.4 Adjustment of the model

The applied spectral-synthesis method is based on the assumption

that the spatially dependent neutron spectrum could be adequately

represented by a linear overlapping combination of a few infinite

medium spectra that are characteristics of the subregions of the

reactor system. This assumption can hardly be justified in small

systems, where generally no asymptotic properties are present

in any of the regions. On the other hand, the approximation of

four different m., parameters with a single value m, that was
1J

introduced in thederivationof the critical equation, may also.

influence the obtained results if the energetic dependence of

diffusion coefficients in the two media is not nearly the same.

Calculating the changes in reflector savings during substitu­

tions, the group constants of the reactor regions are adjusted,

so that the multigroup theoretical model describes the critical

system accurately. Numerical solutions of the multigroup dif­

fusion equations can then be considered exact with respect to

the applied synthesis approximation. An adjustment of the model

to the multigroup calculations is thus necessary.
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As al ready pointed out in /2/ and /12/, parameters ~, as well

as parameter S, cannot be calculated accurately, since the

interface effects are represented in a very simplified way.

However, the buckling difference is much less sensitive to

~ than to S. The parameter ~ can then be chosen as an adjust­

ment parameter.

Adjustment of the substitution region, as described previously,

gives values for radial bucklings of the substituted zone for

each substitution step. Critical equations, corresponding to

each step of the substitution, can then be considered as equa­

tions with two unknowns: ~1 and ~2 (actually YI and Y2), where

other parameters are obtained by multigroup calculations. Try­

ing to solve them, an infinite set of solutions for YI and Y2

would be obtained. Indetermination can be eliminated by adding

a supplementary condition:

adjusted

=
calculated

(3.13)

as given in /3/, where the calculated values are obtained

according to Eq. (2.11). Finally, the system of critical

equations is to be solved for ßI and S, applying the proce­

dure described in Section 3.1.

4. Results of the experiments

Six different substitution experiments performed in the fast

reactor assemblies MASURCA in Cadarache, and SNEAK in Karls­

ruhe, were analyzed by the described method. The necessary
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multigroup calculations for evaluation of parameters D.. and
1J

H.. , as well as reflector savings during substitutions, were
1J

done using the existing NUSYS-program system with KFKINR cross-

section set /13/, developed in Kernforschungsze~trumKarlsruhe.

26-group diffusion theory calculations in one dimension were

applied, expressing the axial leakage through the measured

axial buckling of the reference core. Calculations of the

various parameters entering the critical equation, adjustment

of the equation to the multigroup calculation through para­

meters ~1 and ~2' and the evaluation of experiments according

to the procedure described in the Section 3.1, were done with

a FORTRAN-IV program SUBSTI that was written for these purposes.

Besides the progressive substitution experiments, in the assembly

MASURCA, the critica1 experiments with core regions consisting

of substituted medium on1y, were also made. Thus, the va1ues ob­

tained by the app1ication of synthesis approximation in the treat­

ment of substitution experiments, were tested with the direct1y

measured ones.

In all the experiments, the substituted zone extended axia11y

throughout -the whole core.

4.1 Experiments performed in the critica1 faci1ity MASURCA

The fol10wing MASURCA substitution experiments were eva1uated:

1) IB/IA', where the uranium fuel (30% 235u, 70% 238U) in the

reference core, IB, was rep1aced by the plutonium fue1 (25%

Pu, 74% 238U, 1% Fe) giving the substituted core IA';

2) R2/Z2, where also the uranium fuel of the reference core, R2,

was replaced by the plutonium fuel, forming the substituted

core Z2;
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1R2/R2 2 Na, where one half of the sodium present in the

reactor cell was simply taken out, forming thus a void in

the substituted core, R2 t Na.

All the experiments are described in detail in /3/, /4/ and

/5/, respectively. The experimental data for critical radii

during progressive substitutions, as well as the calculated

corresponding extrapolated radii, are given in Tables 3, 4

and 5. It should be noted that the data for the experiment

tB/tA' were obtained using the Karlsruhe cross-section sets,

while for the other two, the results obtained in Cadarache

are presented. The composition of the reactor cores IB and

lA', used in multigroup calculations, is given in Table I.

The measured values of radial bucklings for all the investi­

gated assemblies, by means of the fission rate traverses /12/,

are given in Table 2. Expressing the results of these experi­

ments in terms of radial buckling differences, ~ß (in ern-I),

one obtains:

~ß (tB/lA')

~ß (R2/Z2)

= - 0.00198 + 0.00014

= 0.00274 + 0.00016

~ß (R2/R2 I Na) = - 0.00233 + 0.00015 ,

where the value for the reactor system IB/IA' is taken frorn

/12/. These values, denoted as "measured", are to be compared

with those obtained by substitution experiments and inter­

preted by the described spectral-synthesis approach.
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4.2 Experiments performed in the critical facility SNEAK

A detailed description of the experiments performed in the assemb­

lies SNEAK-3A and 3B is given in /15/ and /16/. In the reference

uranium core 3A2, the plutonium zone was introduced giving the

core 3B2. The final plutonium zone radius reached 29.9 cm, so

that the 3B2 core consisted of two zones (the uranium zone radius

extended to 44.9 cm). The reflector saving of the reference core

3A2 was estimated to be 13.53 cm /17/, and the radial buckling

was (in cm- I ):

ßref : 0.04133 + 0.00020.

Although these data are not known accurately, it can be expected

that the buckling differences obtained by the substitution tech­

nique are well determined.

The two-zone core 3B2 served as a reference core to the partial

replacement of the steel by nickel and molybdenum for the simu­

lation of Inconel. The substitution was performed in 5 steps

with a final radius of 20.59 cm. Since the evaluation method

cannot be applied to multi-zone cores, it was assumed that the

two-zone treatment will provide good results as long as the

substituted zone does not significantly approach the plutonium­

uranium interface. The whole reference core was treated as

consisting of Pu-zone only, with the radial buckling of (in cm- I
)

= 0.04084 + 0.00026 ,

obtained by the 3A2/3B2 substitution experiment.
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The radius of the cylindrized blanket zone was in both cases

80.86 cm, and the axial buckling according to the measurements

/16/ was estimated to be 0.02864 cm- I • The material composi­

tion of these assemblies is given in Tab1e 6, and the experi­

mental data for both substitution experiments are given in

Tab1es 7 and 8.

In the assemb1y SNEAK-7B /14/, here denoted as a reference

core 7BO, the uranium-oxide was rep1aced by p1utonium­

uranium-oxide fue1 (3% Pu), forming the substituted zone 7BI.

The substitutions were performed in five successive steps with

2, 4, 6, 8 and 16 elements rep1aced. The cross-section of the

core for the 1argest substituted region is given in Fig. 2.

The material compositions of both core media and a surrounding

ref1ector (radial b1anket) are given in Table 9. Since no con­

tro1 and no shim rods were present in the centra1 substituted

region, the compositions of the two cores has been assumed as

consisting of normal ce11 p1ate1ets on1y.

The effect measured after each substitution was the reactivity

change of the reactor, combined with the change of the radius

of the reference core. The data, obtained by the cy1indrization

of regions, are given in Iab1e 10. The measurements on the re­

ference core a10ne have given the radial ref1ector saving of

12.0 cm, and a radial buck1ing (in cm-I):

0.04825 + 0.00010.

Two more data used in

of the radial b1anket

ling of the reference

the analysis were the cylindrized radius

- 67.84 cm, and the measured axial buck-
-I

core - 0.03386 cm •

The final substituted zone radius was 12.28 cm, which is

approximately one third of the radius of the reference core
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of 37.84 cm. Although the substituted zone was very small, the

measured reactivity changes were very marked, as can be seen

in Table 10.

4.3 Analysis of the results and conclusions

The results obtained for the synthesis parameters entering the

critical equation, are given in Tables 11 and 12. The complete

calculations were done for the SNEAK substitution experiments

and the MASURCA IB/IA' substitution. All cases show a very

good spectral matching between the substituted and reference

media, leading to small values of the parameter S, and very

similar values of different diffusion coefficients, qualify

ing their representation through the average one.

In Tables 13 to 18 are given the results of radial buckling

differences obtained by varying the number of substitution

steps in the analysis. Starting from the smallest number of

the first three substitution steps, it can be seen that the

results obtained show a tendency of having a minimum value

if the substituted zone was large enough. The inconsistency

in the results may be attributed to the following reasons:

I) the theory itself, since for the small test regions the

choice of the asymptotic trial function is a poor one.

On the other hand, for large test regions, the inter­

action between the test and reflector zones becomes

significant, which has been neglected in the analysis.

2) approximate treatment of the radial reflector and the

changes in the material composition during substitutions

(because of the presence of control and shim rods).
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The comparison between the values obtained for radial buckling

differences and the corresponding volumes of the substituted

zone, shows that the more or less stationary values of 6ß

coincide with the replacement of about 25% to 30% of the vol­

ume of the reference core. These values show, at the same

time, the best agreement with the directly measured ones, as

can be seen in Table 19, where V2 f stands for the volume,re
of reference core. The ratio (6ß) b/(6ß) for varioussu meas
substitution steps that were taken into account, is shown

in Fig. 3.

The results obtained for substitution experiments performed

in MASURCA indicate a certain unreliability for the buckling

difference in the SNEAK-7B experiment, since the substituted

region was too small. Only 1/10 of the reference core has

been replaced by the new fuel elements. It might be expected

that the real value for 6ß should be smaller. In addition,

the material buckling difference was calculated by a one­

dimensional diffusion program with 26 energy groups giving

B - Bsub ref = 0.00670 -Icm

The asymptotic properties of the cores 3A2 and 3B2 were very

similar, and the changes in the critical radius during sub­

stitutions were small. Inconsistency of the results, when

only a small number of fuel elements were replaced, as can

be seen in Table 16, is due to numerical difficulties arising

in such cases.

From the results obtained for the 3B2/3B2-In substitution

experiment, it may be concluded that there were no inter­

actions between the substituted inconel zone and the uranium
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zone. The volume of the substtituted zone was below the optimum

one, but the consistency of the results for the last two sub­

stitution steps, as shown in Table 17, gives a certain confi­

dence in the value of the buckling difference.

All the results have been obtained by applying the weights

defined by Eq. (3.6) in the least squares method. If these

weights were omitted ( ascribing thus the same weight to

each measurement), one gets results which differ up to about

10% compared with those given in Table 19. Another way of

finding the solutions for ß1 and S from the system of n non­

linear equations by their linearization /4,5/, where no

weight factors can be used, seems to be less precise.

The results given in Table 19 show a very good agreement bet­

ween the directly measured bucklings, by a fission chambers

technique, and those obtained by substitution experiments.

The standard error of the obtained radial bucklings is smaller

than 1%. As long as the spectra of the two media compared are

not too different, and if the substituted to reference volume

ratio has a value of about 1/4 to 1/3, the two-trial function

spectral-synthesis approximation can be very successfully

applied for the interpretation of substitution experiments

in fast media.
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Table I Composition of the MASURCA eore (atoms/em3 x 1024 )

Element IA' lB Refleetor

235
U 0.125020.10-4 0.215993.10-2 0.176406.10- 3

238 0.554809.10-2 o. 580 557 • 10- 2 0.418977.10- 1U

239pu 0.169669.10-2

240pu 0.156480.10-3

241 pu 0.148408.10-4

242pu o. 184742· 10- 5

Fe 0.489409.10-2 0.389184.10- 2 0.389184.10-2

Cr 0.1228\4'10- 2 0.104502' 10-2 0.104502'\0- 2

Ni 0.604271'10-3 0.877353'\0-3 0.17097\'\0-2

C 0.564682.10- 1 0.564682.10- 1



Iable 2 Measured radial bueklings in MASURCA eores

Core type ß
-I(ern )

IA' 0.05039 + 0.00033

IB 0.05237 + 0.00037

R2 0.03520 + 0.00009 ,

1 0.03287 0.00015R2 '2 Na +

Z2 0.03794 + 0.00009



Table 3 Experimental eritieal radii for MASURCA 1~/lA' substitution

Number of substituted

fuel elements

Test zone radius

R
1

(cm)

Critieal referenee

zone radius

R
2

(em)

Refleetor saving

<SR (em)

Critieal extra­

polated radius

Re (em)

0 O. 33.09 12.83 45.92

16 5.98 33.11 12.84 45.95

52 10.78 33.28· 12.83 46.11

64 11. 96 33.32 12.83 26.16

112 15.82 33.52 12.83 26.35

144 17.94 33.65 12.81 26.47

192 20.72 33.89 12.78 46.68

256 23.92 34.13 12.74 46.90

320 26.75 34.36 12.67 47.08



Table 4 Experimental eritieal radii for MASURCA R2/Z2 substitution

i

Number of substituted Test zone radius Critieal referenee Refleetor saving Critieal extra-

fuel elements R1 (ern) zone radius öR (cm)
polated radius

R2 (ern) R (ern)e

0 o. 47.86 20.46 68.32

16 5.98 47.58 20.46 68.04

52 10.78 47.14 20.46 67.60

144 17.94 45.98 I 20.46 66.44
I

192 20.72 45.60 20.46 66.06

256 23.92 45.05 I 20.43 65.48
I I

I

320 26.75 I 44.61
I

20.38 64.99
I

548 35.00 I 43.78 I 20.00 63.78
i I] I



Table 5 Experimental eritieal radii for MASURCA R2/R2 I Na substitution

Number of substituted

fuel elements

Test zone radius

R
1

(em)

Critieal referenee

zone radius

R2 (em)

Refleetor saving

oR (em)

Critieal extra­

polated radius

R (em)
e

0 O. 47.77 20.55 68.32

64 11.96 47.96 20.53 68.49

112 15.82 48.10 I 20.52 I 68.62

192 20.72 48.34 20.51 68.85

256 23.92 48.50 20.51 69.01

320 26.75 48.65 I 20.50 I 69.15

548 35.00 49.22 I 20.50 I 69.72



Table 6 Composition of the SNEAK eores 3A2/3B2/3B2-In (atoms/em
3

x 1024 )

Element 3B2 3B2-In 3A2 Reflector

Al 0.1274'10- 1 0.1274'10- 1 0.1291'10- 1 -

C 0.956 '10-3 0.956 .10-3 0.932 • 10-3 0.14 • 10-4

Cr 0.3595'10- 2 -2 -2 -20.1888·10 0.3647'10 0.1267'10

Fe 0.1197.10- 1 0.6199' 10-2 0.1218'10- 1 0.3955'10-2

H 0.1849'10- 2 -2 0.1792'10-2o. 1849' 10 -
Mg o. 131 • 10-3 0.133 .10-3

0.64 • 10-4 -

Mo 0.29 • 10-4 0.885 • 10-3 0.39 '10-4 0.19 • 10-4

Nb - 0.5 '10-5 - -
Ni 0.1755'10- 2 o. 9500' 10-2 0.1854'10- 2

0.984 '10-3

0 0.1222' 10-4 0.1222'10- 1 0.1453'10- 1 -

Si 0.254 • 10-3 0.179 '10-3 0.188 '10-3 0.46 '10-4

Ti 0.38 • 10-4 - 0.40 '10-4 -
239pu 0.1476'10- 2 0.1476.10- 2 - -
240pu 0.133 .10-3 0.133 • 10-3 - -

241 pu 0.11 • 10-4 o. 11 '10-4 - -

242pu 0.6 '10-5 0.6 • 10-5 - -

235U 0.56 '10-4 0.56 '10-4 0.2031'10- 2 0.1625'10-3

238
U

-2 0.8186' 10-2 -2 0.399414'10- 1
0.8186'10 0.8104,10



Table 7 Experimental eritieal radii for SNEAK 3A2/3B2 substitution

Number of substituted

fuel elements

Test zone radius

R
1

(cm)

Critieal referenee

zone radius

R
2

(em)

Refleetor saving

eR (em)

Critieal extra­

polated radius

R (em)e

0 I o. 44.66 13.53 I 58.19

1 3.07 44.64 13.54 I 58.18

5 6.86 44.59 13.54 I 58.13

9 9.21 44.52 13.55 I 58.07

21 14.06 44.47 13.55 I 58.02

37 18.67 44.40 13.55 I 57.95

57 23.17 44.34 13.54 I 57.88

69 25.49 44.29 13.54 I 57.83
~

71 25.86 44.29 13.54 I 57.83

93 29.60 44.33 I 13.53 I 57.86

95 29.91 44.33 I 13.53 I 57.86

I



Table 8 Experimental eritieal radii for SNEAK 3B2/3B2-In substitution

I
,

Number of substituted Test zone radius Critieal referenee Refleetor saving Critieal extra-

fuel elements R1 (em) zone radius eR (em) polated radius

R2 (cm) R (em)e

0 o. 44.33 14.54 58.87

1 3.07 44.36 14.55 58.91

5 6.86 44.48 14.55 59.03

9 9.21 44.59 14.55 59.14

25 15.35 45.01 14.54 59.55

45 20.59 45.43 14.54 59.97



Iable 9 Composition of the SNEAK-7B eore (atoms/em3 x 1024 )

Element 7BI 7BO Reflector

Al 0.603026'10-5 O. 120403' 10-4 -

C 0.169621.10-3 0.659598'10-4 0.13559'10-4

Cr 0.293490'10-2 0,286026'10-2 0,11955,10-2

Fe 0.999023'10-2 0,995765'10- 2 0.39549'10-2

H - 0,759470'10-5 -

Mg 0,267494.10-5 0,534040' 10-5 -
Mo 0,230847'10-4 0.197950,10-4

0.9970 ' 10-5

Nb 0.930045'10-5 0.902870'10-5
0,8544 '10-5

Ni 0.149339'10- 2 0.146020'10- 2 0,9845 '10-3

0 0.332400'10- 1 0.338377'10- 1 -

239pu 0.218166'10-2 0,197406'10- 2 -

240pu 0.212618'10-3 0.177338'10-3 -
241 pu 0.182663'10-4 0.161162'10-4 -

242pu 0.152830'10-5 0.809970' 10-6 -
Si 0,820402.10-4 0,119667'10-3 0,4532 '10-4

235
U 0,103978,10-3 0,106317'10-3 0.162451'10-3

238
U 0.141194'10- 1 0.145684'10- 1 0,399401'10- 1



Table 10 Experimental critical radii for SNEAK 7BO/7Bl substitution

Number of substituted Test zone radius Critical reference Reflector saving Critical extra-

fuel elements R1 (em) zone radius öR (cm)
polated radius

R2 (em) R (em)e

0 o. 37.84 12.00 49.84

2 4.34 37.62 12.04 49.66

4 6.14 37.39 12.05 49.44

6 7.52 37.14 12.06 49.20

8 8.68 36.91 12.05 48.96

16 12.28 36.04 12.05 48.09



Table 11 Caleulated values of synthesis parameters for the MASURCA eores

Substitution experiment

Parameter

IB/IA I R2/Z2 1
R2/R2 "2 Na

SI 1.024

S2 0.979

S -0.0024 -0.0056 0.00094

m11 0.9805

m12 0.9815

m21 0.9800

m22 0.9812

m 0.98085 0.9786 0.916

-1 0.26663 0.1218111 (em ) 0.0517

-1 0.33055 O. 1579 0.0771112 (em )



Iable 12 Calculated values of synthesis parameters for the SNEAK cores

Substitution experiment

Parameters

3A2/3B2 3B2/3B2-In 7BO/7Bl

SI 0.9730 1.0643 0.8164

S2 1.0282 0.9395 1.2255

S -0.00047 0.000084 -0.00052

mll 0.9529 1.0752 0.9909

m12 0.9530 1.0753 0.9910

m21 0.9528 1.0757 0.9910

m22 0.9529 1.0757 0.9910

m 0.9529 1.0755 0.9910

-1 0.5574 0.2262111 (cm ) 0.1740

-1 0.5970 0.0809112 (cm ) 0.1644



Iable 13 Results of the synthesis ealeulations.

Experiment MASURCA IB/IA'

I

Number of substitution Volume ratio
-I

steps taken into aeeount VI !V2, ref
f,.ß (ern )

3 0.131 -0.00286

4 0.229 -0.00208

5 0.294 -0.00200

6 0.392 -0.00209

7 0.523 -0.00214

8 0.654 -0.00215



Table 14 Results of the synthesis calculations.

Experiment MASURCA R2!Z2

Number of substitution Volume ratio
bß (ern-I)

steps taken into account VI!V2 , ref

3 0.141 0.00285

4 0.187 0.00270

5 0.250 0.00274

6 0.312 0.00279

7 0.535 0.00287



Iable 15 Results of the synthesis ealeulations.

Experiment ~iASURCA R2/R2 ~ Na

Number of substitution Volume ratio -1
steps taken into aeeount V1!V2, ref

~ß (em )

3 0.188 -0.00244

4 0.251 -0.00237

5 0.314 -0.00229

6 0.537 -0.00228



Table 16 Results of the synthesis ealeulations.

Experiment SNEAK 3A2/3B2

Number of substitution Volume ratio
-1

steps taken into aeeount V1IV2, ref
66 (em )

3 0.043 0.000229

4 0.099 -0.000352

5 0.175 -0.000470

6 0.269 -0.000480

7 0.326 -0.000457

8 0.335 -0.000449

9 0.439 -0.000461

10 0.449 -0.000466



Table 17 Results of the synthesis calculations.

Experiment SNEAK 3B2/3B2-In

Number of substitution Volume ratio
f1ß (ern-I)

steps taken into account V1IV2, ref

3 0.043 -0.000325

4 0.118 -0.000612

5 0.213 -0.000683



Table 18 Results of the synthesis ealeulations.

Experiment SNEAK 7BO/7B1

Number of substitution Volume ratio -1
steps taken into aeeount V1/V2 , ref

bß (ern )

3 0.040 0.00944

4 0.053 0.00926

5 0.105 0.00819



Table 19 Comparison of the direet measured radial bueklings with those obtained by

substitution experiments

-I -I -I -I
Reaetor system ~Sd· (em ) ~ß b (em ) SI (cm) SI (em)1r su .

d1r sub i

I
MASURCA IB/IA' -0.00198~0.00014 -0.00200~0.00014 0.05039~0.00033 0.05037+0.00040 I
MASURCA R2/Z2 0.00274~0.00016 0.00274~0.00034 0.03794~0.00009 0.03794~0.00035

MASURCA R2/R2~a -0.00233~0.00015 -0.00229~0.00009 0.03287~0.00015 0.03292~0.00013

SNEAK 3A2/3B2 - -0.00048~0.00017 - 0.04085~0.00026

SNEAK 3B2/3B2-In - -0.00068~0.00011 - 0.04017~O.00028

SNEAK-7BO/7BI - O.00819~0.00056 - 0.05644~O.00057
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