KERNFORSCHUNGSZENTRUIS

KARLSRUHE

Institut für Angewandte Systemtechnik und Reaktorphysik
Projekt Schneller Brüter

Identification of the LMFBR Dynamic State for Detection of Coolant Boiling
D.M. Wiberg

GESELLSCHAFT
FÜR
KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt
Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B. H.
KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 1911

Institut für Angewandte Systemtechnik und Reaktorphysik Projekt Schneller Brüter

Identification of the LMFBR Dynamic State for Detection of Coolant Boiling

by
D.M. Wiberg ${ }^{+}$)
+) visiting summer scientist from the University of California, Los Angeles

Gesellschaft für Kernforschung mbH., Karlsruhe

Identification of the LMFBR Dynamic State

for Detection of Coolant Boiling

Abstract

Modern identification theory is applied to equations describing an LMFBR to investigate the feasibility of estimating spatial sodium coolant and fuel pin temperatures. It is shown that measurement errors can be reduced and unmeasurable states estimated by a Kalman filter. These state estimates can then be used in conjunction with other indications of sodium boiling to form a scram criterion. Furthermore, the state estimates can be used by the reactor operators to assess reactor safety under many conditions. The need is shown for further study of off-line tuning of the Kalman filter to estimate spatial fuel burn up distribution and to estimate contaminant accumulation in a subassembly.

Zusammenfassung

Die modeme Identifizierungstheorie wird auf Gleichungen angewendet, die einen LMFBR beschreiben, um die Möglichkeit zu untersuchen, ortsabhängige Natriumkuhlmittel- und Brennstabtemperaturen abzuschätzen. Es wird gezeigt, daß Meßfehler reduziert und nicht-meßbare Zustände mit einem Kalman-Filter abgeschätzt werden können. Diese Zustandsschätzungen können dann in Verbindung mit anderen Hinweisen auf Na^{-} triumsieden verwendet werden, um ein "Scram-Kriterium" zu bilden. Die Zustandsschätzungen können ferner von Reaktorbetreibern dazu verwendet werden, die Reaktorsicherheit unter verschiedenen Bedingungen $a b-$ zuschätzen. Die Notwendigkeit für weitere Studien des "off-line" Abstimmens des Kalman-Filters wird gezeigt, um die ortsabhängige Brennstoffabbrandverteilung und die Häufung von Kontamination in einem Teilbereich des Cores (subassembly) abzuschätzen.

Introduction

Propagation of Coolant Boiling 2
LMFBR State Equations 5
LMFBR Noise Properties 9
Summary of Kalman Filtering 11
Numerical Procedures and Results 12
Future Work 17
Appendix I
Appendix II
References
Figures
FORTRAN IV Program

Introduction

Neutron flux, coolant temperature, and coolant flow are measurable components of the dynamic state of a nuclear reactor. These and other measurable quantities are interpreted by both the reactor operator and the scram system as an indication of the total dynamic state of the reactor and therefore as an indication of the future behavior of the reactor. In most applications the physical cause of the measurements is merely implicitly assumed in influencing the actions of the reactor operators and the scram system, otherwise each measurement can be viewed as a quantity independent of the other measurements. However, when the physical process can be accurately described by a set of mathematical equations, these equations can be used not only to combine all measurements so that each measurement becomes more accurate, but also can be used to give an estimate for all the unmeasurable components in the complete state vector.

This idea of using the state equations to supplement measured data has been used in a number of previous applications. For exemple the period meter uses the measured value of the neutron flux and a mathematical equation, the inhour equation, to estimate a quantity that is not directly measurable, the reactor period. However, the period meter in its present development has not yet taken advantage of the modern theory of identification [1]. Working applications of the modern theory already exist in the aerospace $[2-4]$. chemical [5], biomedical [6], etc., industries and have had great success. Studies of applications of the modern theory in the nuclear industry have been made on the Halden reactor $[7-9]$ and on rod drop experiments $[10,11]$.

The purpose of this report is to propose a particular type of modern identification (Kalman filtering) to estimate the state of a liquid metal fast breeder reactor (LMFBR). Not only will this give a better picture of the reactor state to the operators, but good estimates of coolant and fuel temperature distribution in space can be combined with acoustic and reactivity noise measurements to form a scram signal to prevent coolant boiling. The particular problem of sodium boiling in an LMFBR is perhaps the most compelling reason for the use of a Kalman filter. Thus this report is mainly
concerned with the application of a developed theoretical identification procedure, Kalman filtering, to help prevent a problem, coolant boiling, in an LMFBR.

The contents of the remainder of this report are arranged as follows. First1y the mechanism and dangers associated with the propagation of coolant boiling in an LMFBR are reviewed. Then the state equations of a typical LMFBR are developed. Next a physically-oriented summary of Kalman filter theory is given. Following this is an investigation of the process and measurement noise parameters. Using this data a Kalman filter is applied to the state equations and some numerical results are given. The main body of the report ends with conclusions and suggestions for further work. Finally, an appendix describes some computational problems encountered in the application of the Kalman filter and another appendix describes how the Kalman filter could be implemented on a digital data acquisition system.

Propagation of Coolant Boiling

In a developmental program it is difficult to determine where dangerous situations occur. It is nuclear safety standard practice either to prove that a particular situation cannot lead to danger or to detect and control the situation. It has not yet been proven that coolant boiling causing subsequent fuel rod failures will not propagate in the manner described below, even though the probability of such a situation might be low. Therefore, even though propagation of coolant boiling may be proven innocuous in future $L M F B R$ development, it is the most pressing reason at present to instrument the LMFBR with a Kalman filter.

To describe the propagation of coolant boiling, it is best to start by describing the LMFBR. To be specific assume a type of LMFBR exemplified by the $\operatorname{SNR}-300[12-14]$ (see Fig. 1). Assume the core contains 151 subassemblies and that a typical subassembly contains 165 fuel pins that are 6 mm in diameter and .95 meters in length. The fuel pins are parallel to one another in the subassembly and are spaced slightly apart from one another so that the liquid sodium coolant can flow lengthwise along the
pins and remove the heat generated by them (see Fig. 2). In normal operation assume the fuel pin center temperature is about $2300^{\circ} \mathrm{C}$ and the edge temperature is around $700^{\circ} \mathrm{C}$. However, the cladding temperature is about $100^{\circ} \mathrm{C}$ lower. Also take the normal sodium coolant inlet temperature to be $380^{\circ} \mathrm{C}$ for all subassemblies and the exit temperature to range from $576^{\circ} \mathrm{C}$ at the core center to $530^{\circ} \mathrm{C}$ at the core edge. The coolant is pressurized to 2.5 atmospheres so that it boils at about $1000^{\circ} \mathrm{C}$.

Assuming these LMFBR parameters, coolant boiling can propagate as follows. Initially the sodium coolant is chemically pure. In reactor operation the sodium picks up contaminants from a number of sources including substances escaping from improperly canned and failed fuel pins, substances leeched from stainless steel tubing and joints, reaction products from the surfaces of structural elements, pieces of structure and instruments that work loose over a period of time, etc. Some of these contaminants could possibly lodge or stick in the small clearance between fuel pins or at spacer grids in a subassembly in such a way as to block more than 60% of the coolant flow over one particular fuel pin. In that case $[15]$ the heat produced by the pin is sufficient to raise the sodium coolant temperature to boiling. However, note that cladding damage can occur even before the coolant boils, so that it is the cladding temperature that should be kept below $750^{\circ} \mathrm{C}$ to insure prevention of subassembly damage. Because the sodium vapor cannot carry much heat away from the fuel pin, in a short time the fuel pin melts. There results a fuel-sodium interaction with a number of possible consequences. The worst imaginable is that this interaction eventually expels a large quantity of sodium coolant from that central region of the core in which the reactivity coefficient of sodium is positive. This might immediately cause subassembly damage. A more probable consequence of the fuel-sodium interaction is that it would in effect merely add more contaminent to the sodium coolant. This would make other flow blockages more likely in the future. The action would then be similar to a slowly growing cancer, cutting off more and more flow over a time period that could be months in duration. The probability of a reactor transient would increase in such a situation and the most likely end result of a slowly growing flow blockage would be distortion of the subassemblies and their structural supports. This would necessitate a long and hence costly reactor shut-down.

Sodium boiling over one single fuel pin is extremely difficult to detect because there are 165 pins times 151 subassemblies equals 24,915 pins in the core. It is practically impossible to put at least one thermocouple on each pin. Instead, each subassembly is instrumented with four thermocouples, all reading the bulk sodium temperature at the exit. Logical comparison using a two-out-of-three rule, with the fourth thermocouple as a spare, then gives one subassembly bulk sodium exit temperature signal. Therefore 151 temperature signals emanate from the reactor. It is unlikely that fewer will suffice because each subassembly is somewhat thermally isolated from its neighbors by sodium coolant passing between the subassemblies.

The effect of sodium boiling over a few fuel pins in an otherwise unchanged subassembly is to increase the bulk sodium exit temperature only a few degrees. The exact number of degrees before clad damage should be experimentally verified. One conclusion of this report is that the Kalman filter can estimate this small temperature change, even with very poor thermocouples. However, the small temperature change could also caused by a blockage distributed over a number of coolant channels within the subassembly, and not just affecting a few pins. To prevent this situation from giving a false alarm, a small rise in temperature within a subassembly should be compared with other indications of sodium boiling, such as coolant, neutron, reactivity and/or acoustic noise spectra.

The coolant exit temperature spectrum changes with the imposition of a sudden blockage because the flow becomes more turbulent. This is detectable by a thermocouple with a fast time constant [16]. Also sodium boiling causes the flow to become more turbulent, so that the addition of high frequency components to the coolant noise spectrum is an indication of incipient sodium boiling. However, the fast thermocouples have not been completely tested.

The neutron flux and the reactivity noise spectrum also changes with sodium boiling $[17]$. The sodium void caused by the sodium vapor replacing liquid
sodium changes the Doppler and, to a lesser extent, the absorption coefficients of reactivity. The net change is positive in the center of the core and negative at the edges, so that in these regions there exists a reactivity source or sink that drives the neutron flux and reactivity noise in the case of sodium boiling. However, there exists a region of zero net reactivity coefficient between the center and edge of the core, so that this method must also rely on supplemented indications of sodium boiling to detect boiling in this region.

The acoustic noise spectrum also changes under the sonic noise generated by the collapse of sodium vapor bubbles during boiling $[18]$. When the spectrum so generated is not masked by the vibration of the operating reactor, sodium boiling can be detected by this means also.

In sumary, the reasoning is this. Sodium boiling has not yet been proven innocuous to structural integrity. Until this is done, methods of detection must be employed. No method of detection appears to be 100% sure, so that reactor shut down must be dictated by an evaluation of the complete reactor state. Use of the reactor equations together with the measurable quantities emanating from the reactor to form a Kalman filter will help evaluate the complete reactor state.

LMFBR State Equations

To obtain an estimation scheme that can be put into practice, a mathematical model for the LMFBR must be found that is a good compromise between simplicity and accuracy. In this preliminary investigation a rather gross approximation is made to obtain a very simple model, which should be improved upon in further studies. All the neutronics is lumped into one equation for the reactor power, and then linearized about the mean value of the operating power which is assumed constant.

$$
\begin{equation*}
\Lambda \frac{d P}{d t}=P_{o} \sum_{i, j=1}^{N_{g} M} \alpha_{i j} T_{f}^{i j}+S \tag{1}
\end{equation*}
$$

```
where P(t) = reactor power deviation from P
    P
    \Lambda = effective neutron lifetime, lumping fast and all
                delayed neutron lifetimes = 6,7 sec.
    \alpha ij = temperature coefficient of reactivity }\mp@subsup{}{0}{}\mp@subsup{C}{}{-1
    S(t) = zero mean neutron noise source, MW
    N = number of channels (groups of subassemblies)
    M number of axial zones
    T
        axial zone, }\mp@subsup{}{}{0}\textrm{C
```

The temperature coefficient of reactivity depends on the Doppler node fraction $W_{D}^{i j}$. Assuming the overall temperature coefficient of reactivity is -0.005 , then

$$
\alpha_{i j}=-.005 W_{D}^{i j}
$$

where

$$
\begin{equation*}
\sum_{i, j=1}^{N_{p}^{M}} W_{D}^{i j}=1 \tag{2}
\end{equation*}
$$

In the $i, j \frac{t h}{}$ node the average fuel temperature deviation $T_{f}^{i j}$ obeyes for $i=1, N$ and $j=1, M$

$$
\begin{equation*}
C_{p f} N_{P}^{i j} \pi r_{o}^{2} H \rho_{f} \frac{d T_{f}^{i j}}{d t}=W_{f}^{i j} P-2 \pi r_{o} H N_{P}^{i j} h_{T}\left(T_{f}^{i j}-T_{c}^{i j}\right) \tag{3}
\end{equation*}
$$

where $\quad N_{P}^{i j}=$ total number of fuel pins per channel $=m_{i j}\left(\pi r_{o}^{2} H \rho_{f}\right)^{-1}$
$\mathrm{m}^{\mathrm{ij}}=$ fuel mass in the $i, j \frac{\text { th }}{}$ node in grams
$r_{0}=$ radius of fuel $\mathrm{pin}=.6 \mathrm{~cm}$ (note a more realistic number is .3 cm)
$\mathrm{H}=$ height of axial zone, $=95 / \mathrm{M} \mathrm{cm}$
$\rho_{f}=$ density of fuel pin $=10 \mathrm{~g} / \mathrm{cm}^{3}$
$C_{p f}=$ specific heat of fuel $=.3$ watt-sec $/ \mathrm{g}{ }^{\circ} \mathrm{C}$
$W_{f}^{i j}=$ power fraction in node $\sum_{i, j=1}^{N_{2} M} W_{f}^{i j}=1$
$h_{T}=$ heat transfer coefficient $=1.0$ watt $/ \mathrm{cm}^{2}{ }^{\circ} \mathrm{C}$
$T_{c}^{i j}(t)=$ sodium coolant temperature deviation in the $i, j \frac{\text { th }}{}$ node, ${ }^{\circ} C$.

Also in the $i, j \frac{t h}{}$ node the coolant temperature deviation $T_{c}^{i j}$ obeys for $i=1, N$ and $j=1, M$, assuming complete thermal isolation of each subassembly, $E N_{p} \pi r_{o}^{2} H \rho_{f} C_{p_{c}} \frac{d T_{c}^{i j}}{d t}=2 \pi r_{o}^{2} H N_{p} h_{T}\left(T_{f}^{i j}-T_{c}^{i j}\right)-f N_{p} \pi r_{o}^{2} \rho_{f} C_{p} V\left(T_{c}^{i j}-T_{c}^{i j+1}\right)$
where $f=$ coolant $/$ fuel ratio $=.127$
$\mathrm{V}=$ coolant flow $=500 \mathrm{~cm} / \mathrm{sec}$.
$T_{C}^{i M+1}(t)=$ inlet sodium temperature, ${ }^{\circ} C$

Using the numerical values given for an LMFBR typified by the SNR-300 then gives the state equations

$$
\begin{align*}
& \frac{d P}{d t}=-.54 \sum_{i, j=1}^{N_{2}^{M}} W_{D}^{i j} T_{f}^{i j}+.15 S \tag{5}\\
& \frac{d T_{f}^{i j}}{d t}=3.3\left(W_{f} / m\right)^{i j} P-2\left(T_{f}^{i j}-T_{c}^{i j}\right) \\
& \frac{d T_{c}^{i j}}{d t}=4\left(T_{f}^{i j}-T_{c}^{i j}\right)-0.5 M\left(T_{c}^{i j}-T_{c}^{i j+1}\right)
\end{align*}
$$

For $N=3$ and $M=3$ the reactor nodes are as pictured in Fig. 3 and the values of $W_{D}^{i j}, W_{f}^{i j}$, and $m^{i j}$ are given in Table 1 .

Fig. 3 LMFBR with 9 nodes.

Table 1. Coefficients of a 9 node LMFBR model.

i	j-	Doppler coefficient	Power fraction	$\begin{aligned} & \text { fuel mass } \times 10^{6} \mathrm{~g} \\ & \qquad \mathrm{~m}_{\mathrm{ij}} \end{aligned}$
		$W_{D}^{i j}$	$w_{f}^{i j}$	
		-	\square	
1	1	0.065	. 032	. 417
1	2	.167	. 105	. 380
1	3	. 031	. 025	. 417
2	1	. 135	.063	. 925
2	2	. 301	.195	. 840
2	3	. 040	. 043	. 925
3	1	. 105	. 119	9.145
3	2	.145	. 346	8.292
3	3	. 011	. 072	9.145

The given numerical data is sufficient to calculate the dynamic behavior of a reactor model with N and $M=3$ or less. Data is available [19] for $N=10$ and $M=11$. Because the 151 subassemblies are arranged in concentric annuli, the cyclindrical symmetry necessitates the computation of at most $N=10$ channels. This simplification makes the problem computationally feasible.

However, rather than dealing with a large dimensional state vector, for simplicity of further exposition choose N and M unity. This lumps the reactor into one node and sacrifices accuracy for clarity. Then the equations (5) can be put into the vector matrix (state space) form

$$
\frac{d}{d t}\left(\begin{array}{l}
P \tag{6}\\
T_{f} \\
T_{c}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -.54 & 0 \\
.11 & -2 & 2 \\
0 & 4 & -4.5
\end{array}\right)\left(\begin{array}{c}
P \\
T_{E} \\
T_{C}
\end{array}\right)+\left(\begin{array}{cc}
.15 & 0 \\
0 & 0 \\
0 & .5
\end{array}\right)\binom{\mathrm{S}}{T_{0}}
$$

where $T_{o}=T_{c}^{12}=$ inlet sodium temperature. This is the assumed state space equation for the operating LMFBR dynamics.

LMFBR Noise Properties

The only external measurements considered here are the 161 temperature signals indicating the bulk exit temperature of each subassembly and also the signals from the neutron flux meters. Because spatial flux effects are negligible in the SNR-300, these flux meter signals can be logically combined to give one signal proportional to total power. In this section the noise properties of these temperature and power signals are investigated.

The bulk exit sodium temperature of a subassembly of the KNK reactor was measured at zero reactor power [16] . At zero power most of the measurement error is due to the turbulence in the sodium flow, because the thermocouple measures local rather than bulk exit temperature. From the graph of the temperature measurement at zero power (Fig. 4 a) there appears a sine wave of $0.01{ }^{\circ} \mathrm{C}$ amplitude at 0.1 Hz plus a hash of $0.005^{\circ} \mathrm{C}$ amplitude at frequencies greater than 5 Hz . For simplicity of modelling this was taken to be a white noise of autocorrelation . $003 \delta(t-\tau){ }^{\circ} C^{2}$ sec (Fig. 4 b). This represents about the best that the thermocouples can measure. As the reactor comes to full power, it is probable that more turbulence, cable pick-up, vibration, etc., will corrupt the measurements. Taking the industrial thermocouple standard of $\pm 1.5^{\circ} \mathrm{C}$ as the worst case, then the temperature measurement white noise autocorrelation is at most $1.0 \delta(t-\tau){ }^{\circ} C^{2}$ sec.

The neutronic noise properties can be found from standard derivations [20] to give

$$
\begin{equation*}
\left\langle P_{m}^{2}\right\rangle=\frac{E_{f} P_{o}}{W}+E_{f} P_{o} D|H(j \omega)|^{2} \tag{7}
\end{equation*}
$$

where $\left\langle P_{m}^{2}\right\rangle=$ auto power spectral density, $(M W){ }^{2} \mathrm{sec}$
${ }_{E_{f}}^{\mathrm{m}}=$ energy per fission $=3.2 \times 10^{-17} \mathrm{MW}$ sec
$W=$ detector efficiency $=10^{-9}$
$\mathrm{D}=$ Diven factor $\frac{\overline{v(v-1)}}{v^{2}}=.8$
$H(j \omega)=$ reactivity transfer function

Let $H_{s}(j \omega)$ be the transfer function from S to P in equation (6). Then

$$
\begin{equation*}
\frac{H(j \omega)}{H_{s(j \omega)}}=\frac{\Lambda}{\ell} \tag{8}
\end{equation*}
$$

where $\ell=$ prompt neutron 1 ifetime $=4.6 \times 10^{-7} \mathrm{sec}$.

As an interesting aside, note that because the noise amplitude depends on the prompt neutron lifetime, fast reactors are much noisier than thermal reactors. Using numerical values in (7) and (8) gives

$$
\begin{equation*}
\left\langle P_{m}^{2}\right\rangle=2.3 \times 10^{-5}+3.9\left|H_{s}(j \omega)\right|^{2} \tag{9}
\end{equation*}
$$

Therefore the white noise S has autocorrelation $3.9 \delta(t-\tau)$ (MW) ${ }^{2}$ sec. ${ }^{-1}$ and the neutron flux measurement noise has autocorrelation 2.3×10^{-5} $\delta(t-\tau)(M W)^{2} \sec$.

Substituting the measured value T_{om} of the inlet sodium temperature T_{0} into the state equations (6) gives the stochastic description of the LMFBR as

$$
\begin{align*}
\frac{d}{d t}\left(\begin{array}{l}
P \\
T_{f} \\
T_{c}
\end{array}\right) & =\left(\begin{array}{ccc}
0 & -.54 & 0 \\
.11 & -2 & 2 \\
0 & -4 & -4.5
\end{array}\right)\left(\begin{array}{l}
\mathrm{P} \\
T_{f} \\
T_{c}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
.5
\end{array}\right) \mathrm{T}_{\mathrm{om}}+\left(\begin{array}{cc}
.15 & 0 \\
0 & 0 \\
0 & .5
\end{array}\right)\binom{\mathrm{s}}{\mathrm{~m}_{\mathrm{T}_{\mathrm{o}}}} \\
\binom{\mathrm{P}_{\mathrm{m}}}{\mathrm{~T}_{\mathrm{cm}}} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\binom{\mathrm{P}}{\mathrm{~T}_{\mathrm{c}}}+\binom{\mathrm{m}_{\mathrm{P}}}{\mathrm{~m}_{\mathrm{T}}} \tag{10}
\end{align*}
$$

where $S, m_{T_{0}}, m_{p}$ and m_{c} are independent zero mean white noises with

$$
\begin{aligned}
& <\mathrm{S}^{2}>=3.9 \\
& \text { (MW) }{ }^{2} \sec ^{-1} \text {. } \\
& \left\langle\frac{\mathrm{m}_{\mathrm{T}}^{2}}{2}>\quad=.003 \text { to } 1.0\right. \\
& \left({ }^{\circ} \mathrm{C}\right)^{2} \mathrm{sec} \text {. } \\
& \left\langle\mathrm{m}_{\mathrm{p}}^{2}\right\rangle=2.3 \times 10^{-5} \\
& (M W)^{2} \mathrm{sec} . \\
& \left\langle\mathrm{m}_{\mathrm{c}}^{2}\right\rangle=.003 \text { to } 1.0\left({ }^{\circ} \mathrm{C}\right)^{2} \mathrm{sec} \text {. }
\end{aligned}
$$

Summary of Kalman Filtering

A Kalman filter estimates the state vector of a linear dynamic process in an optimal manner [21]. Assume that the physical system obeys the formal dynamical equations

$$
\begin{align*}
\frac{d \vec{x}}{d t} & =A \vec{x}+B \vec{u}+G \vec{w} \tag{12}\\
\vec{y} & =C \vec{x}+\vec{v}
\end{align*}
$$

where \vec{x} is the n-dimensional state vector, \vec{u} is a p-dimensional known input, $\stackrel{\rightharpoonup}{w}$ is an ℓ-dimensional zero mean white noise, $\stackrel{\rightharpoonup}{v}$ is an m-dimensional zero mean white noise, \vec{y} is an m-dimensional measurement vector and A, B, C and G are compatible matrices. The stochastic LMFBR equation (10) is in the form (12). Furthermore the white noises have spectral density

$$
\begin{equation*}
\left\langle\vec{W} \vec{W}^{\dagger}\right\rangle=Q \quad\left\langle\vec{v}^{\dagger} \vec{v}^{\dagger}\right\rangle=R \tag{13}
\end{equation*}
$$

where Q is an $\ell x \ell$ symmetric nonnegative definite matrix, R is an $m \times m$ symmetric positive definite matrix, and the superscript ${ }^{\dagger}$ denotes transpose. This corresponds to equation (11) for the LMFBR.

The Kalman filter computes $\hat{x}(t)$, the conditional mean of \vec{x} (t) given the measurement time history $\vec{y}(\tau)$ for $t_{0} \leq \tau \leq t$. The vector $\hat{x}(t)$ is the optimal estimate for $\vec{x}(t)$ in the sense that it minimizes any convex function of the error $\hat{x}(t)=\vec{x}(t)-\hat{x}(t)$. To compute $\hat{x}(t)$, an analog or digital computer finds the solution to

$$
\begin{equation*}
\frac{d \hat{x}}{d t}=A \hat{x}+B \vec{u}+K(\vec{y}-C \hat{x}) \tag{14}
\end{equation*}
$$

where \mathbb{K} is a precomputed gain matrix.

$$
\begin{equation*}
K=P C^{\dagger} R^{-1} \tag{15}
\end{equation*}
$$

where P is the variance of \tilde{x} that obeys the matrix Riccati equation

$$
\begin{equation*}
\frac{\mathrm{dP}}{\mathrm{dt}}=\mathrm{AP}+\mathrm{PA}^{\dagger}+\mathrm{GQG}^{\dagger}-\mathrm{PC}^{\dagger} \mathrm{R}^{-1} \mathrm{CP} \tag{16}
\end{equation*}
$$

In the case of the LMFBR only the steady state solution $P_{\text {ss }}$ to this equation is sought, i.e.

$$
\begin{equation*}
0=A P_{s s}+P_{s s} A^{\dagger}+\mathrm{GQG}^{\dagger}-\mathrm{P}_{\mathbf{s s}} \mathrm{C}^{\dagger} \mathrm{R}^{-1} \mathrm{CP} \mathbf{s s} \tag{17}
\end{equation*}
$$

Only the steady state solution is needed because the state equation (10) is time-invariant over the time intervals considered, because the initial conditions are of no consequence, and mainly because only steady state solutions have the desired numerical accuracy when dealing with so many state variables as necessitated by the general model of equation (5).

Because $P_{s s}$ is the error variance, it is a measure of how good an estimate of the state is obtained by the Kalman filter. Furthermore the type, number, and position of sensors can be optimized by computing a corresponding $\mathrm{P}_{8 \mathrm{~s}}$ for each type, number, and position and then examining the effects. Thus $P_{s s}$ becomes an indication of the feasibility of using a Kalman filter for LMFBR coolant boiling detection.

Numerical Procedures and Results

The solution of the steady state Riccati equation (17) was found for the three-dimensional model (10) and (11). The results are given in Table 2 . The numerical values contained therein were found using the subroutine RIC SS6 obtaines from Macdonnell-Douglas Corporation Western Division, Huntington Beach, Calif. A listing of the routine is given in Appendix I.

The RIC SS6 program was tested with both a 2 and an 8 dimensional test subroutine and was found to be accurate to 0.5%. Unfortunately this accuracy is problem dependent, and the routine did not work for LMFBR models of more than 3 state variables. Because an accurate model must have more than 30 state variables, the numerical procedures need more refinement. A more detailed description of the problems and attempted solutions is given in Appendix I.

Table 2. Results
3 State Variable Model (P in $\mathrm{MW}, \mathrm{T}_{\mathrm{f}}$ in ${ }^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{c}}$ in ${ }^{\circ} \mathrm{C}$)

Good Thermocouples and Flux Meter

TC read $\pm .05 \mathrm{C}^{\star} \quad$ Flux Meter Efficiency $\mathrm{W}=10^{-9}$

Standard deviations:
$\mathrm{P}=0.037 \mathrm{MW}$
$T_{f}=0.013^{\circ} \mathrm{C}$
$T_{c}=0.019^{\circ} \mathrm{C}$

$$
\mathrm{P}_{\mathrm{ss}}=10^{-4} \times\left(\begin{array}{rrr}
14.1 & .05 & -.04 \\
.05 & 1.7 & 1.7 \\
-.04 & 1.7 & 3.6
\end{array}\right)
$$

Bad Thermocouples and Flux Meter
$T C$ read $\pm 1{ }^{\circ} \mathrm{C}^{*}$

$$
W=10^{-9}
$$

Standard deviations:
$\mathrm{P}=0.037 \mathrm{MW}$
$\mathrm{T}_{\mathrm{f}}=0.16{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{C}}=0.32{ }^{\circ} \mathrm{C}$

$$
\mathbf{P}_{\mathbf{s s}}=10^{-4} \times\left(\begin{array}{ccc}
14.4 & -7.3 & -9.0 \\
-7.3 & 261 & 335 \\
-9.0 & 335 & 1017
\end{array}\right)
$$

Bad Thermocouples and No Flux Meter
TC read $\pm 1^{\circ}{ }^{\circ}$ * $W=0$

Standard deviations:

P	$=0.76 \mathrm{MW}$
T_{f}	$=0.27{ }^{\mathrm{O}} \mathrm{C}$
T_{C}	$=0.35{ }^{\circ} \mathrm{C}$

363 \& 732 \& 656

-72 \& 656 \& 1253\end{array}\right)\)

Good Thermocouples and No Flux Meter
TC read $\pm .05^{\circ} \mathrm{C}^{*}$ $W=0$

Standard deviations
$\begin{aligned} & P=0.26{ }^{\mathrm{MW}} \\ & \mathrm{T}_{\mathrm{f}}=0.063{ }^{\circ} \mathrm{C} \\ & \mathrm{T}_{\mathrm{C}}=0.044{ }^{\circ} \mathrm{C}\end{aligned} \quad \quad \mathrm{P}_{\mathrm{SS}}=10^{-4} \times\left(\begin{array}{rrr}676 & 134 & 68 \\ 134 & 40 & 25 \\ 68 & 25 & 19\end{array}\right)$
${ }^{*}$ Really $\left\langle\mathrm{m}_{\mathrm{T}}^{2}\right\rangle=.003$ and 1.0 respectively.

The Kalman filter corresponding to the three dimensional model (10) with good thermocouples and a flux meter is pictured in Fig. 5.

COMPUTER

Fig. 5 Mechanization of the Kalman filter.

The equations pictured within the dotted lines are the Kalman filter, whose solutions $\hat{\mathrm{P}}^{\prime}, \hat{T}_{f}$, and $\hat{\mathrm{T}}_{\mathrm{C}}$ are available to the reactor operators and the scram system in general.

Table 2 shows that the Kalman filter can estimate the unmeasurable components of the state vector with approximately the same variance as the measured components, and significantly decreases the variance of the measured components beyond the accuracy of the measuring instruments. This can be done for all ranges of instrument accuracy, even for commercial as opposed to laboratory instruments. Therefore it is reasonable to proceed with further experiments to ascertain whether incipient sodium boiling can be indicated.

Because no results are available yet for higher dimensional LMFBR models, physical reasoning must be used to predict what will happen as model dimension increases. Adding more channels, i.e. $\mathrm{N}=151$, makes the per channel contribution of the flux meter negligible. Therefore results for the temperature accuracies should tend to those of the bottom half of Table 2. Adding more axial zones, $M=11$, increases the sensitivity to changes in parameters of the state equation, and decreases the variance from the physical model. This relationship must be explored via experiment with reasonable physical models. Of course, more results are expected soon, when the numerical difficulties of higher dimension have been cleared up. With increased dimension, the spatial resolution will be much finer. Then the reactor operators can tell where boiling occurred in the event of a scram. Thus the difficulty can quickly be located and the system brought back on to line faster.

The mechanization in Fig. 5 shows how the reactor state can be displayed to the reactor operators. Given some unforseen occurrence, this picture can help the operator assess the danger and the measures that must be taken to combat it. Thus a Kalman filter is useful for other occurrences than sodium coolant boiling. From an overall point of view, this might be the most compelling reason for the installation of a Kalman filter on an operating LMFBR.

The numerical values shown within the dotted lines of Fig. 5 are the parametric values of the reactor equations. Due to fuel burn up, changes in the
heat transfer coefficient with scale build-up, etc., these parameters are not constant as assumed. They vary slowly, over a period of days. Perhaps once a day the Kalman filter needs to be "tuned" to obtain new parameter values. The accuracies indicated by Table 2 are so good that it seems probable methods such as those used by 01sson, et al., on the Halden reactor [7] will give new parameter values to a high degree of accuracy. This can be done off-line on a large digital computer to obtain the most accuracy possible. Having estimates for these parameters on a daily basis will then enable reactor operators to evaluate fuel burn-up, crud buildup, etc. Thus further efficiencies can be made by adjusting the loading schedules, etc. according to fuel burn up. Slow acting dangers such as crud build-up can also be assessed without inspecting reactor core components.

Thus Table 2 and Fig. 5 indicate the following reasons a Kalman filter should be installed on an LMFBR.

1. a Kalman filter indicates incipient sodium boiling
2. a Kalman filter tells where sodium boiling has occured in the event of a scram
3. "tuning" of a Kalman filter indicates crud build-up and fuel burn-up distribution
4. a Kalman filter gives the operators a picture of overall reactor dynamic operation.

It must be remembered that the results of Table 2 were obtained for a very simple mathematical model. Thus $p_{s s}$ represents the error variance only between the mathematical model and the Kalman filter. There is an additional exror between the physical system and the mathematical model. Therefore the results of Table 2 must be smaller than for a Kalman filter applied to the physical LMFBR system. It is mainly this fact that necessitates further experiments using hardware as close as possible to that encountered in practice. It is by no means claimed that one should use a Kalman filter on an LMFBR. The claim is that further investigation appears justified.

Future Work

Given the encouraging nature of these preliminary results, a four pronged attack seems justified on the development of a Kalman filter for application to LMFBRs. The first prong is the use of preliminary and subsequently developed Kalman filters directly on existing LMFBRs, such as EBR-2 and KNK. The second prong is the development of a Kalman filter for a single subassembly to be tested on a sodium loop such as at UCLA, Santa Suzanna, and Karlsruhe. The third prong is computer simulation, and the fourth is further theoretical development. To speed development, all four prongs should be pressed forward simultaneously.

Operating experience on an LMFBR is of prime importance, and should be obtained as early as possible. It is in actual application where the main difficulties can be found and worked upon. Because hardware takes a long time to set up, this prong of the attack has the longest lead time and should be worked on first to speed development.

Sodium loop testing is also of importance. The stochastic modelling of thermocouple accuracy and of the coolant turbulence should be based on further experiments done in a sodium loop. An investigation of the thermal coupling between subassemblies can best be done experimentally on a sodium loop. But perhaps most important is the construction of a Kalman filter to estimate the temperature in one subassembly immersed in a sodium loop. A number of thermocouples distributed throughout the test subassembly can check the accuracy of the states estimated by the Kalman filter that uses only the exit temperature measurement.

Computer simulation of the Kalman filter can give insight into the effect of changes in parameters. A Kalman filter derived using the linear deviation equation (5) should be used to estimate the state of a nonlinear model. Perhaps some nonlinearities need to be incorporated into the Kalman filter itself, and computer simulation should determine the answer. In fact, a boiling occurrence (where the state equations are different) can be simulated and the response of the Kalman filter observed. Other effects than boiling can be simulated, such as reactivity insertion, to see if the Kalman filter will
indicate danger. Also the quantization can be determined that is necessary to adapt a Kalman filter to a data acquisition and safety control system such as MISS (see Appendix II). Finally, the sensitivity of the Kalman filtex must be determinded by computer simulation, i.e. the effect of mismodelling the physical reactor by the assumed mathematical equations.

A very large area for study, mainly on a computer, is to determine a good method for "tuning" the paramters of the Kalman filter. Tuning, perhaps daily, will minimize sensitivity effects and provide burn up and crud accumulation data. There exists much literature [22-25] in the tuning area of identification, and a number of methods should be compared for application to an LMFBR.

One other reason for the development of a Kalman filter for an LMFBR is the stimulus it will give to theoretical matters. In Appendix I the need is demonstrated for a better numerical method to determine the eigenvalues of a nonsymmetric matrix. The application of modern identification techniques (such as [26]) in the tuning problem will lead to their refinement. But most welcome will be further progress in the stochastic modelling of a nuclear reactor. The assumption of a Wiener process to drive the formal stochastic equation (1) is dissatisfying. The application of a Kalman filter to a branching process $[27]$ must be put on firm theoretical ground. Indeed, there appears to be no analytical stochastic model of a nuclear reactor that reduces to a Markov process with space dependence, which is needed for theoretical development of the identification theory. This has implications for the better theoretical understanding of stochastic processes in distributed systems, i.e. the basic processes of nature.

Appendix I

Computational Prob1ems

The solution $P_{\text {ss }}$ to the matrix Riccati equation (16) was sought using the subroutine RICSS6. It can be shown $[28]$ that $\mathrm{P}_{\mathrm{Ss}}=\mathrm{GF}^{-1}$, where

$$
\left(\begin{array}{ll}
A & -C^{\dagger} R^{-1} C \\
-\mathrm{GQG}^{\dagger} & -\mathrm{A}^{\dagger}
\end{array}\right)\binom{F}{G}=\Lambda\binom{F}{G}
$$

where Λ is the $n \times n$ matrix of stable eigenvalues. The solution thus depends on the accuracy to which the eigenvalues can be found. For the 2×2 and 8×8 test cases, the eigenvalues were found to five significant digits. Unfortunately, for the 7×7 LMFBR model with $\mathrm{N}=1$ and $\mathrm{M}=3$, the eigenvalues could be found to only one significant digit. Changing from CHARD subroutine to an eigenvalue routine from the IBM scientific subroutine package called ATEIG, in conjunction with HSBG, yielded an increase in accuracy of only a factor of two. The subsequent calculations were therefore inaccurate and not kept.

It is possible the trouble stems from the almost singularity of the 2×2 diagonal blocks of A. An attempt to gain computational accuracy will be made by reducing the matrix to tridiagonal form. Then in double precision the following algorithm to compute the principle minors can be used:

```
\(\mathrm{P}(0)=1\)
P (1) \(=a_{11}-\lambda\)
P (2) \(=\lambda^{2}-\left(a_{11}+a_{12}\right) \lambda+a_{22}\left(a_{11}{ }^{-a_{12}}\right)-a_{12}\left(a_{21}-a_{22}\right)\)
\(P \quad(i)=\left[\lambda^{2}-\left(a_{i i}{ }^{+a_{i-1, i-1}}\right) \lambda+a_{i i}\left(a_{i-1, i-1}{ }^{-a_{i-1, i}}\right)-a_{i-1, i}\left(a_{i, i-1}{ }^{-a}{ }_{i i}\right)\right] P(i-2)-\)
    \(a_{i-2, i-1} a_{i-1, i-2}\left(a_{i i}-\lambda\right) P(i-3) i=3,4, \ldots\)
```

From P (n) is obtained the characteristic polynomial, which is factored to obtain the eigenvalues.

Appendix II

Computer Implementation
The Kalman filter can be implemented on either an analog or a digital computer. To achieve the most accuracy an analog computer could be used. Then the partial differential equations inherent in reactor models can be most accurately simulated. However, the cost for this separate system would be in excess of 100,000 . This is not much when compared with possible savings of shut down time and ruined equipment. It is much when compared with the possibility of implementing the Kalman filter on existing digital computers at practically no cost.

The SNR-300 has two computers, called the safety computer and the process computer. The safety computer is a simple, redundant computer dealing directly with signals from the reactor to form scram criteria. It should not be touched. The process computer is a time sharing computer taking accurate signals from the reactor to perform such tasks as burn-up calculations, etc. It appears that the process computer is quite suitable for implementation of the Kalman filter. It could send signals to the safety computer if desired to form scram criteria with other detection methods. There appears to be only a small loss in accuracy from the analog computer because a fine spatial mesh can be used.

Thus it is proposed to do the experimental investigations leading to the development of the Kalman filter using analog computers. This retains the accuracy. However, final development will be on the digital process computer that would be part of the reactor system even if the Kalman filter were not present.

References

1. D.M. Wiberg, "Period meter design via identification techniques", to appear
2. Hughes Aircraft report, Kalman filtering of missiles.
3. G. Lind, UCLA M.S. comprehensive exam, June 1973.
4. D.R. Vaughan and T. Blackburn, Saturn autopilot design, AIAA Journal.
5. J. Seinfeld, Work on smog control, California Institute of Technology
6. G. Swanson, Ph.D.-Thesis, Stanford, 1972.
7. G. Olsson, "Maximum Likelihood Identification of Some Loops of the Halden Boiling Water Reactor", Halden Project Report, 1973.
8. G. O1sson, "Modelling and Identification of Nuclear Power Reactor Dynamics from Multivariable Experiments", 2nd Proc. IFAC Congress on Identification, The Hague, June, 1973.
9. I. Gustavsson, "Maximum Likelihood Identification of the Agesta Reactor and Comparison with Results of Spectral Analysis", Div. of Auto. Control, Lund Report 6903, 1969.
10. Venerus, Bu1lock "Estimation of the Dynamic Reactivity Using Digital Kalman Filtering', NSE 40, 199-205 (1970).
11. L.J. Habegger, and R.E. Bailey, "Minimum Variance Estimation of Parameters and States in Nuclear Power Systems", Proc. 4 th IFAC Congress, Warsaw (1969), paper 12.2, also ANS Transactions Vol.II, 1, Toronto, June 10-13, 1968, p. 237.
12. W. Häfele, G. Kessler, "SNR: The German-Benelux Fast Breeder", Nuclear News, March 1972.
13. F.R. Farmer, An appreciation of fast reactor safety, 1970.
14. K. Gast: Die Ausbreitung örtlicher Störungen im Kern schneller natriumgekühter Reaktoren und ihre Bedeutung für die Reaktorsicherheit, KFK-1380, Mai 1971.
15. D. Kirsch: Untersuchung zur Strömungs- und Temperaturverteilung im Bereich lokaler Kühlkanal in Stabbünde1-Brennelementen, KFK-1794, Feb. 1973.
16. L.Krebs, G. Weinkötz, "Measurements of Temperature Fluctuations" English Review Meeting, Karlsruhe, 14 June, 1973.
17. M. Edelmann, J. Ehrhardt, H. Massier, K. Voge1, "Experiments for Development of Methods and Systems to Detect Sodium Boiling in an LMFBR". IAEA Symposium on Nuclear Power Plant Control and Instrumentation, Prague, 22-26 January, 1973.
18. R.D. Smith, "Protective Instrumentation for Fast Reactors", Conf. on the Engineering of Fast Reactors for Safe and Reliable Operation, Oct. 1972, Karlsruhe.
19. G. Heusener, G. Kessler, F. Dunn, J. Jachson, G. Fischer, et.al. "Analysis of Hypothetical Accidents for SNR-300", KFK-report to be published.
20. H. Borgwaldt, "Neutron Noise in a Reactor with an External Control Loop", Nukleonik, 11. Bd., Heft 2, 1968 pp. 76-84.
21. K.J. Aström, "Introduction to Stochastic Control Theory", Academic Press, New York, 1970.
22. K.J. Åström and P. Eykhoff, "System Identification, a Survey", Automatica, Vol. 7, pp. 123-162, Pergamon Press 1971.
23. A.V. Balakrishnan and V. Peterka, "Identification in automatic control systems", Proc. 4th IFAC Congress, Warsaw, survey paper, also Automatica, 5, 817-829, 1969.
24. P. Eykhoff, "Process Parameter and State Estimation", Automatica, Vol. 4, pp. 205-233, 1968.
25. M. Cuenod and A.P. Sage, "Comparison of Some Methods Used for Process Identification", Automatica, Vo1. 4, pp. 235-269, 1968.
26. A.V. Balakrishnan Springer Verlag red series, approx 86 (his second book in this series).
27. T.E. Harris, The Theory of Branching Processes, Springer, Berlin, 1963.
28. D.M. Wiberg, State Space and Linear Systems, Schaum's Outline Div. McGraw-Hill, 1971.

 Schnellem Natriumgekühltem Reaktor

300MWe PROTOTYPKERNKRAFTWERK SNR

0001
0002 0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014

0015
0016
0017
0018
0019
0020
0021
0022
DIMENSION A(3,3),G(3,3),Q(3,3),P(3,3)
COMMON/WORK/DUMMY(15450)
ND $=3$
DO 348 I $=1$, ND
DO $348 \mathrm{~J}=1$, ND
G(I, J)=0
$Q(1 ; j)=0$
$348 \mathrm{~A}(1 ; \mathrm{J})=0$
$\Delta(1,2)=0.5$
$A(2,1)=-2$
A $(2 ; 2)=-2$
$A(2,3)=4$
$A(3,2)=2$.
$A\{3,3)=-6$
$\stackrel{c}{c}$
GOOD THERMOC AND FLUX METER
c
Q $11.11=0.1$
$Q(3,3)=0.003$
$G(1,1)=50000$
$G(3,3)=300$
CAL RICSSG(A,G,O,P,ND,ND)
CALL PRMAT(P,ND,ND,ND,ND)
TR $P=0.0$
345 TR $P=T R P+P(L, L$
344 FORMATIE16.81
WRITE 6,344) TRP
BAD THERMOC AND FLUX METER
$Q(3,3)=1$
CALL RICSSGIA,G,Q,P,ND,NDI
CALL PRMAT(P,ND,ND,ND,ND
BAD THERMOC AND NO FLUX METER
$G(1,1)=0$
CALL RICSSGIA,G,Q,P,ND,ND
CALL PRMATPP,ND,ND,ND,ND)
C
C
gOOD THERMOC AND NO FLUX METER
Q $13.31=0.003$
G(3,3) $=300$
CALL RICSS6(A,G,Q,P,ND,ND)
CALL RICSS6IA, $G, Q, P, N D, N D$
CALL PRMATPP,ND,ND,ND,NDI
CALL
STOP
END


```
FDRTRAN IV G1 RELEASE 1.1
DO \(32 \mathrm{I}=\mathrm{I}, \mathrm{N} 2\)
\(32 \operatorname{SR}(I, K P E G)=\operatorname{VR}(I)\)
IFIABS(RI(L)/RR(L)).LT.0.000001) GO TO 50
\(\mathrm{KREG}=\mathrm{KP} E G+1\)
DO \(38 \mathrm{I}=1\), N 2
38 SR(I;KREG) = VI(T)
50 CONTINUE
IF(KPEG.EQ.NS) GO TO 60
190 FORMAT (1HO, 27 H THE RICS2 SUBROUTINE FOUND ,I3, 38 H STABLE ROOTS IYS *TEAD OF THE REQUIRED I 13 RETURN
\(\stackrel{C}{C}\)
0 CONTINUE
\(c\)
\(c\)
\(c\)
COMPUTATION DF P FROM TII AND T21
\(0070 \mathrm{I}=1\), NS
DO \(70 \mathrm{~J}=1\), NS
\(12=\mathrm{NS}+\mathrm{J}\)
\(A R(I, J)=S R(J, I)\)
\(70 \mathrm{AI}(I, J)=\operatorname{SR}(\mathrm{J} 2.1)\)
CALL SID (AR,NS; \(25,25, A I, N S, 25, S I G, I E R, R T M, I T M, S C L)\) D095 \(\mathrm{I}=1\), NS
D095. \(=1\), NS
\(95 \mathrm{P}(\mathbb{I}, \mathrm{J})=\mathrm{AI}(\mathbb{I} \mathrm{J})\)
\(\begin{array}{ll}C & \text { CHECK SOLUTION } \\ C & \\ C\end{array}\)
DO100I \(=1\), NS
\(00100 J=1, N S\)
\(H(I, J)=0.0\)
DO100K \(=1\), NS
\(100 \mathrm{H}(I ; J)=H(I ; J)+P(I, K) * G(K, J)\)
D0110I \(=1\), NS
\(0110 \mathrm{~J}=1\), NS
SR \([I, J)=Q(T, J)\)
DO110K=1,NS
\(110 \operatorname{SR}(I, J)=S R(I, J)+P(I, K) * A(K, J)+A(K, I) * P(K, J)-H(I, K) * P(K, J]\) IRITE(6,120)
120 FORMAT \(1 H 0,2 B H R I C S S 2\) CHECK SOLTUICN, P-DOT ।
CALL PRMAT (SR, NS, NS, NSTP, NSTP)
RETURN
END
```

```
0043
```

0043
0045
0045
0046
0046
0047
0047
0048
0048
0049
0049
050
050
0052
0052
053
053
0053
0053
0054
0054
0055
0055
0056
0056
0057
0057
0059
0059
0060
0060
0061
0061
0062
0062
0063
0063
0084

```
0084
```

SUBROUTINE IGVEC5 H,RR,RI,N,NDIM,VR,VI,NPASS:

```
C THIS IS A GENERAL EIGENVECTOR SOLVER WHERE H IS A REAL MATRIX AND
    THE EIGENVALUE IS REAL OR COMPIEX. IT SOLVES FOR V IN
    HV = LV WHERE L IS THE INPUT EIGENVALUE
                                    INPUTS
        H R - N ORDER SINGE PREC. MATRIX DIMENSIONED NDIM X NDIM
        RR,RI - REAL AND IMAG. PARTS OF EIGENVALIJES. DOUBLE PREC.
        N - DRDER OF MATRIX AND VECTORS
        NDIM - FIXED DIMENSION LIMMTS OF H,VR,AND VI.
        VR.VI - real and IMAG. eigenvector arrays - dOuble prec.
        NPASS - PASS FLAG IF IN - OUT
        NPASS - PASS FLAG IF SET O ON INPUT WILL ALWAYS CALCULATE
                H*#2 FOR COMPLEX RODT. SET BY IGVEC5 TO I IF
                A**2 CALCULATED.
    OIMENSION HINDIM,NDIM)
    DIMENSION A(50,50), VR(NDIM), VI(NDIM), NCOL(50)
    COMMON/WORK/DUMMY(129001, NCOL,A
    T = RI
    IF (T.EQ.O.0) GO TO }3
    IF (NPASS.GT.O) GO TO 10
C
                                    A=H**2
    CALL MATMSP IH, H, A; N, NDIM, NDIM, 501
    REWIND 4
        REWIND 4
        REWIND 4
        NPASS = 
        GO TO 15
    10 CONTINUE
        READ (4) A
        READ (4)
        5 CONTINUE
```

C
A = H**2-2.0*RR*H(I;J) +RR**2 +RI**2 FOR RI NOT 0.

```
                    A = H**2-2.0*RR*H(I;J) +RR**2 +RI**2 FOR RI NOT 0.
```

```
00 20 I = 1,N
```

00 20 I = 1,N
00 20 J = 1,N
00 20 J = 1,N
20 A(I,J)=A(I,J) - 2.0*RR*H(I,J)
20 A(I,J)=A(I,J) - 2.0*RR*H(I,J)
DO 30 I = 1,N
DO 30 I = 1,N
30 A(I,I)=A\I,I) + RR*RR + RI*RI
30 A(I,I)=A\I,I) + RR*RR + RI*RI
GO TO 55
GO TO 55
35 cONTINUE
35 cONTINUE
C
C
A =H-RR FOR RI = 0.0
A =H-RR FOR RI = 0.0
DO 40 I = 1,N
DO 40 I = 1,N
40 AlIm,j)=H(IpJ)
40 AlIm,j)=H(IpJ)
OO 50 I = 1,N
OO 50 I = 1,N
50 A|I,II = AlI||I - RR
50 A|I,II = AlI||I - RR
5 5 CONT INUE

```
    5 5 \text { CONT INUE}
```

0002
00003
0004
0005
0005
0006

```
FORTRAN IV GI RELEASE l.I

0031
```

C

```
C
                                    NORMALIZE MATRIX BY MAKING MAK. ELEMENT l.0
                                    NORMALIZE MATRIX BY MAKING MAK. ELEMENT l.0
0032
0032
0034
0034
0035
0035
0036
0036
0037
0037
0038
0038
0039
0039
0040
0040
0041
0041
0042
0042
0043
0043
0044
0044
0044
0044
0046
0046
0047
0047
0048
0048
0049
0049
0050
0050
051
051
0052
0052
0053
0053
0054
0054
0055
0055
0056
0056
0057
0057
0058
0058
0059
0059
0060
0060
0061
0061
0062
0062
0063
0063
0064
0064
0065
0065
0066
0066
0067
0067
0068
0068
0079
0079
0071
0071
0072
0072
0073
0073
0074
0074
0075
0075
                BIG = 10.0E-25
                BIG = 10.0E-25
            IBIG = 0
            IBIG = 0
            JBIG=0
            JBIG=0
            DBIG 70 I = 1,N
            DBIG 70 I = 1,N
            DO 70 J = 1,N
            DO 70 J = 1,N
            x = ABS(A(I, J))
            x = ABS(A(I, J))
            IF (X.LT.BIG) GO TO }7
            IF (X.LT.BIG) GO TO }7
            BIG = X
            BIG = X
            IBIG = I
            IBIG = I
            JBIG = J
            JBIG = J
        70 CONTINUE
        70 CONTINUE
            TEMP = AlIBIG,JBIGI
            TEMP = AlIBIG,JBIGI
            OTEMP = 1.0 / TEMP
            OTEMP = 1.0 / TEMP
            DO 80 I = 1,N
            DO 80 I = 1,N
            lol
            lol
        80 A(I,J)=AII,J) * DTEMP
        80 A(I,J)=AII,J) * DTEMP
            DO 90 I = 1,N
            DO 90 I = 1,N
C
C
                                    SOLVE FOR X USING CROUT METHOD mAXIMIZING ALDNG DIAGONAL
                                    SOLVE FOR X USING CROUT METHOD mAXIMIZING ALDNG DIAGONAL
                                    SOLVE FOR X USING CROUT METHOD MAXIMIZING ALDNG DIAGGNAL
                                    SOLVE FOR X USING CROUT METHOD MAXIMIZING ALDNG DIAGGNAL
            N1=N-1
            N1=N-1
            ICOLX=0
            ICOLX=0
            00 200 K = 1
            00 200 K = 1
            K1 = K-1
            K1 = K-1
            BIG = 10. OE-26
            BIG = 10. OE-26
            IB1G = 0
            IB1G = 0
            DO 115 I = K,N
            DO 115 I = K,N
            VI(I)=A|III
            VI(I)=A|III
            IF {K.EQ.1) GO TO 115
            IF {K.EQ.1) GO TO 115
            DO 110L = GO
            DO 110L = GO
        10 VI(I)= VI(I)
        10 VI(I)= VI(I)
    115 CONTINUE
    115 CONTINUE
        IF(K.EQ.N) GO TO 220
        IF(K.EQ.N) GO TO 220
        IF(T.EQ.O.O) GO TO 118
        IF(T.EQ.O.O) GO TO 118
        IF {K.LT.N1) GO
        IF {K.LT.N1) GO
        X=VI(N)
        X=VI(N)
        IF (X.LT.10.E-30) GO TO 185
        IF (X.LT.10.E-30) GO TO 185
    118 CONTINUE
    118 CONTINUE
        DO 120 I = K,N
        DO 120 I = K,N
        X = ABS(VI(II)
        X = ABS(VI(II)
        IF (X.LT.BIG| GO TO }12
        IF (X.LT.BIG| GO TO }12
        IBIG = I
        IBIG = I
    20 CONTINUE
    20 CONTINUE
        IF (IBIG.EQ.O\ GO TO 185
        IF (IBIG.EQ.O\ GO TO 185
        IF (IBIG.EQ.K) GO TO 140
        IF (IBIG.EQ.K) GO TO 140
            COLS K AND IBIG AND ROWS K AND IBIG
            COLS K AND IBIG AND ROWS K AND IBIG
        I = NCOL(IBIG)
        I = NCOL(IBIG)
        NCOL(IBIG)=NCOL(K)
        NCOL(IBIG)=NCOL(K)
        NCOL(K)=T
        NCOL(K)=T
        DO 125I = 1.N
```

 DO 125I = 1.N
    ```
```

| 0080 | | TEMP $=A(I, K)$ | | |
|---|---|---|---|---|
| 0081 | | $A(I, K)=A(I, I B I G)$ | |
| 0082 | 125 | A(I, IBIG) $=$ TEMP | |
| 0083 | | DO $130 \mathrm{~J}=1, \mathrm{~N}$ | |
| 0084 | | TEMP $=A(K, J)$ | |
| 0085 | | $A \\| K$ Jl $=A(I B I G, J)$ | |
| 0086 | 130 | A(IBIG,J) $=$ TEMP | |
| 0087 | 140 | CONTINUE | |
| 0088 | | IF (K.EQ. 1) GO TD 165 | |
| 0089 | | DO $150 \mathrm{I}=\mathrm{K}, \mathrm{N}$ | |
| 0090 | | DO $145 \mathrm{~L}=1, \mathrm{Kl}$ | |
| 0091 | 145 | $A(I, K)=A(I, K)-A(I, L) * A(L, K)$ | |
| 0092 | 150 | CONTINUE | |
| 0093 | 165 | CONT INUE | |
| 0094 | | $K P 1=K+1$ | |
| 0095 | | DO $180 \mathrm{~J}=\mathrm{KPl}, \mathrm{N}$ | |
| 0096 | | IF (K.EQ. 1) GO TO 175 | |
| 0097 | | On $170 \mathrm{~L}=1, \mathrm{~K} 1$ | |
| 0098 | 170 | $A(K, J)=A(K, J)-A(K, L \\| * A(L, J)$ | |
| 0099 | 175 | $A(K, J)=A(K, J) / A(K, K)$ | |
| 0100 | 180 | CONTINUE | |
| 0101 | | GO TO 190 | |
| 0102 | 185 | CONTINUE | |
| 0103 | | ICOL $\mathrm{X}=\mathrm{K}$ | |
| 0104 | | GO TO 210 | |
| 0105 | 190 | CONTINUE | |
| 0106 | 200 | CONTINUE | |
| 0107 | 210 | CONT INUE | |
| 0108 | | IF (ICOLX.LT.NI) GO TO 900 | |
| 0109 | | IF (ICOLX.GT.NI) GO TO 220 | |
| 0110 | | $\mathrm{A}(\mathrm{NL}, \mathrm{N} 1)=\mathrm{VI}(\mathrm{Nl})$ | |
| 0111 | | $\mathrm{N} 2=\mathrm{N}-2$ | |
| 0112 | | DO $215 \mathrm{I}=1$, N 2 | |
| 0113 | | $A(N, N 1)=A(N, N 1)-A(N, I) * A(I, N 1)$ | |
| 0114 | 215 | $\mathrm{A}(\mathrm{N} 1, \mathrm{~N})=\mathrm{A}(\mathrm{NL}, \mathrm{N})-\mathrm{A}(\mathrm{N} 1, \mathrm{I}) * A(\mathrm{I}, \mathrm{N})$ | |
| 0115 | 220 | CONTINUE | |
| 0116 | | A(N,N1 = VI(N) | |
| 0117 | | $x=A B S(V I(N)!$ | |
| 0118 | | IF (X.LT. 10.0E-12) GO TO 230 | |
| 0119 | | WRITE(6,1225) X,RR,RI | |
| 0120 | 1225 | FORMAT(1H0,//20X,18HIGVEC5 - X,RR,RI | -3E18.8) |
| 0121 | 230 | CONTINUE | |
| 0122 | | $V I(N)=1.0$ | |
| 0123 | | DO $250 \mathrm{~K}=1, \mathrm{Nl}$ | |
| 0124 | | $\mathrm{I}=\mathrm{N}-\mathrm{K}$ | |
| 0125 | | VI(I) $=0.0$ | |
| 0126 | | $11=1+1$ | |
| 0127 | | DO $240 \mathrm{~L}=\mathrm{Il}$, N | |
| 0128 | 240 | VI(I) = VI(I) - AlI, L) *VI(L) | |
| 0129 | 250 | CONTINUE | |
| 0130 | | DO $260 \mathrm{~T}=1, \mathrm{~N}$ | |
| 0131 | | $\mathrm{J}=\mathrm{NCOL}(\mathrm{I})$ | |
| 0132 | c^{260} | ```VR(J) = VI(I) CalCulate VI = - 1/RI*(H -``` | RR*I $)$ \#V P |
| 0133 | | IF (T.EQ. O) GO TO 335 | |
| 0134 | | DO $300 \mathrm{I}=1$, N | |
| 0135 | | VI(I) = - RR*VR(I) | |
| 0136 | | DO 290 」 $=1 . \mathrm{N}$ | |

```
```

0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
$300 \mathrm{VII}(\mathrm{I})=-\mathrm{VI}(I) / R I$
RETURN
335 CONTINUE
DO $350 \mathrm{I}=1, \mathrm{~N}$
350 VIII) $=0.0$
FETURN
90 RETURN
900 CONTINUE
WRITE $(6,1900)$ IC OLX, (VIII), $I=1$, N)
1900 FORMATIIHO, //20X,22HIGVEC5 ERROP - ICOLX $=, 110 /(6 \mathrm{X}, 10 \mathrm{E} 12.4) \mathrm{I}$
RETURN
END

```

0001
SURROUTINE MATMSP ( \(A, B, C, N_{8}\) NA, NB, NC)
DIMENSIEN A(NA,NA), B(NB,NB), C(NC,NC
DO \(20 \mathrm{I}=1, \mathrm{~N}\)
DO \(20 \mathrm{~J}=1, \mathrm{~N}\)
SUM \(=0.0\)
DO \(10 \mathrm{~K}=1 . \mathrm{N}\)
SUM \(=\) SUM \(+A(I, K) * B(K, J)\)
10 CONT INUE
CII,Jl = SUM
20 CONTINU
RETURN
END
\begin{tabular}{|c|c|c|c|c|c|}
\hline FORTRAN IV Gl & RELEASE & 1.1 PRMAT & DATE \(=73219\) & 08/52/18 & PAGE 0001 \\
\hline 0001 & & SURROUTINE PRMAT (ARAY,MS,NS,MAR & (AQ) & & \\
\hline 0002 & & DIMENSION ARAY(MAR, NAR ) & & & \\
\hline 0003 & 500 & FORMAT (1H , E12.5,614X,E12.5)] & & & \\
\hline 0004 & 501 & FORMAT (1HO,E12.5,6(4X,E12.5) & & & \\
\hline 0005 & & D010J2 \(=1\), NS, 7 & & & \\
\hline 0006 & & WRITE (6,501) & & & \\
\hline 0007 & & \(\mathrm{NJ}=\mathrm{NS}-\mathrm{J} 2\) & & & \\
\hline 0008 & & IF(NJ.LT.7) GO TO 3 & & & \\
\hline 0009 & & \(J 3=\sqrt{2+6}\) & & & \\
\hline 0010 & & GOTO 5 & & & \\
\hline 0011 & 3 & J3=NS & & & \\
\hline 0012 & 5 & DO10I=1;MS & & & \\
\hline 0013 & 10 &  & & & \\
\hline 0014 & & RETURN & & & \\
\hline 0015 & & END & & & \\
\hline
\end{tabular}
```

SUBROUTINE SID IA, N, NDRDW, NDCOLA, B, M, NOCOLB, SIGOIG, IERROR, * PIVOT, INDEX, SCALEB
SID - A SINGLE PRECISION SIMULTANEOUS EQUATICN SOLVER, INVERSE FINDER: AND DETERMINANT SUGROUTINE
DIMENSION A(NDR OW, NDCOLA): B(NDROW,NDCOLB), PIVDT(N,3), * SCALEB (M), I NDEX $(N, 3)$
DOUBLE PRECISION DBIGP2
DBI GP2
c
$E P S=1 . E-3$
712 EPS $=E P S / 2$ EPSP $15=$ EPS + 1.5
IF (EPSP15 .NE. 1.5) GO TO 712
SIGMCH $=$ ALOG10(1.522/EPS)
BIGPW2 = DBIGP2
PIVDT(1,1) $=0$.
C
C
C
SCALE ROWS
DO $38 \quad \mathrm{I}=1, \mathrm{~N}$
ROWM $X=0$.
DO $28 \mathrm{~J}=1, \mathrm{~N}$
IF (\|ABS(A\|I,J)) .GT. ROWMX) ROWMX = ABS(ACI,J))
28 CONTINUE
IF ROWMXI 29, 750, 29
29 CONTINUE
ROWMXI $=1 . /$ ROMMK
DO $32 \mathrm{~J}=\mathrm{I}, \mathrm{N}$
$A(I, J)=(A C I$
$A(I, J)=(A(I ; J) *$ ROWMXI $)$ BIGPW2
.EQ. 0.1 A|I.J) = (AIJ * BIGPW2) * ROWMXI
32 CONTINUE
IF (M) $34,38,34$
34 DO $36 \mathrm{~J}=1 \mathrm{M}$
$B I J=B(I, J)$
$B(I ; J)=(B(I ; J) *$ ROWMXI $*$ BIGPW2
EQ. O. BII:J) $=(B I J * B I G P W 2) ~ * ~ R O W M X I$
36 CONTINUE
38 PIVOT(I,2) $=$ ROWMXI
C
C
c
sCale columns
DO $10 \mathrm{~J}=1, \mathrm{~N}$
COLMX $=0$.
DO $4 I=1, N$
IF (ABSSA(I,J)I.GT. COLMX) COLMX = ABS(A(I,J))
4 CONTINUE
IF (COLMX) 5, 750,5
5 CONTINUE
COLMXI $=1 . /$ COLMX
DO $8 \quad \mathrm{I}=1$, N
AIJ = AlI, JI
$A(I, J)=(A(I, J) * \operatorname{COLMXI)} * B I G P W 2$
IF (ACI,J) .EQ. 0.1 AII;J) = $\mid A I J * B I G P W 2) * C O L M X I$
8 CONTINUE

```

10 PIVOT(J.3) = EIGPW2 * COLMXI IF (M) \(14,24,14\)
\(14 \mathrm{DO} 22 \mathrm{~J}=1, \mathrm{M}\)
DO \(16 \mathrm{I}=1\).
F (ABSAB(I, J) .GT. COLMX) COLMX \(=A B S(B \in I, 11)\)
16 CONTINUE
IF (COLMX) 17,22,17
17 CONTINUE
\(\operatorname{SCALEB}(\mathrm{J})=\) COLMX / BIGPW2
COLMXI \(=1 . /\) COLMX
\(0020 I=1, N\)
\(B(I, J)=(B(I, J) * C O L M X I) * B[G P W 2\)
IF (BII, J).EQ. 0.1 B(I;J) \(=(B I J * B I G P W 2) *\) COLMXI
20 CONTINUE
22 CONTINUE
INITIALIZATION
PMONE=1.
DO \(42 \mathrm{~J}=1\), N
PIVOT(J,1) \(=0\).
42 INDEX(J,3) \(=0\)
\(00550 \quad \mathrm{I}=1, \mathrm{~N}\)
\(c\)
\(c\)
\(c\)
SEARCH FOR PIVOT ELEMENT
\(A B P I V I=0\).
45 DO \(105 \mathrm{~J}=1, \mathrm{~N}\)
50 IF (TNDEX(J,3)-1) 60,105,60
60 DO \(100 \mathrm{~K}=1, \mathrm{~N}\)
70 IF (INDEX(K,3)-1) \(80,100,80\)
80 IF (ABSAA(J,K)) - ABPIVI) \(100,100,85\)
85 IROW=J
\(A B P I V I=A B S(A(J, K))\)
100 CONTINUE
100 CONTINUE
IF (I-1) \(115,120,115\)
115 IF ABPIVI GE. PIVMIN) GO TO 123
120 PIVMIN=ABPIVI
IF (ABPIVI) \(123,750,123\)
123 CONTINUE
INDEX(ICOLUM,3)=1
PIVOTI=A(IROW, ICOLUM)
PIVOT(I,I) = PIVOTI
\(C\)
\(c\)
INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL
130 IF (IROW-ICOLUM) \(140,260,140\)
140 PMONE=-PMONE
150 DO \(200 \mathrm{~L}=1, \mathrm{~N}\)
160 SWAP =A!IROW, LI
\(170 \mathrm{~A}(I R O W, L)=A(I C O L U M, L)\)
200 A(ICOLUM, L) =SWAP
205 IF (M) \(260,260,210\)
```

0094
0095
0096
0097
0098
00
0101
102
103
0104
0105
0106
0107
0108
0109
0110
0111
0112
0 1 1 3
0114
0115
0116

```
210 DO 250 L=1,M
```

210 DO 250 L=1,M
220 SWAP = BIIROW:L)
220 SWAP = BIIROW:L)
230 R(IROW,L) = B(ICOLUM,L
230 R(IROW,L) = B(ICOLUM,L
250 B(ICOLUM,L) = SWAP
250 B(ICOLUM,L) = SWAP
260 INDEX(I,1)=IROW
260 INDEX(I,1)=IROW
270 INDEX(I,2)=ICOLUM
270 INDEX(I,2)=ICOLUM
l
OIVIDE PIVOT ROW BY PIVDT ELEMENT
OIVIDE PIVOT ROW BY PIVDT ELEMENT
PIVINV=1.0/PIVOTI
PIVINV=1.0/PIVOTI
330 AlICOLUM,ICOLUMI = BIGPW2
330 AlICOLUM,ICOLUMI = BIGPW2
340 DO 350 L=1,N
340 DO 350 L=1,N
350 A(ICNLUM,L)= A(ICOLUM,L)*PIVINV
350 A(ICNLUM,L)= A(ICOLUM,L)*PIVINV
355 IF (MI 380, 380, 360
355 IF (MI 380, 380, 360
360 DO 370 L=1,M
360 DO 370 L=1,M
370 B(ICOLUM;L) = B(ICOLUM,LI*PIVINV
370 B(ICOLUM;L) = B(ICOLUM,LI*PIVINV
C
REDUCE NON-PIVOT ROWS
REDUCE NON-PIVOT ROWS
C
C
80 DO 550 Ll=1,N
80 DO 550 Ll=1,N
390 IF(LI-ICOLUM) 400, 550,400
390 IF(LI-ICOLUM) 400, 550,400
400 T=A(LI,ICOLUM)
400 T=A(LI,ICOLUM)
IF (T) 420,550,420
IF (T) 420,550,420
420 A(LI,ICOLUM)=0.0
420 A(LI,ICOLUM)=0.0
430 DO 450 L=1,N
430 DO 450 L=1,N
450 A(LI,L)=A(LI,LI-A(ICOLUM,LI*T
450 A(LI,L)=A(LI,LI-A(ICOLUM,LI*T
455 IF(M) 550, 550, 460
455 IF(M) 550, 550, 460
460 DO 500 L=1,M
460 DO 500 L=1,M
500 B(LI,L)= B[LL,L) - BIICOLUM%LIt
500 B(LI,L)= B[LL,L) - BIICOLUM%LIt
500 bILI,LJ
500 bILI,LJ
C
C
INTERCHANGE COLUMNS
INTERCHANGE COLUMNS
C
C
600 D0 710 I=1,N
600 D0 710 I=1,N
610 L=N+1-I
610 L=N+1-I
620 IF (INDEX(L,1)-INDEX(L,2)) 630, 710, 630
620 IF (INDEX(L,1)-INDEX(L,2)) 630, 710, 630
630 JROW=INDEX(L,11
630 JROW=INDEX(L,11
640 J.OW UM=INDEX(L)
640 J.OW UM=INDEX(L)
650 DO 705 K=1,N
650 DO 705 K=1,N
650 DO 705 K=1,N
650 DO 705 K=1,N
670 A(K,JROW)=A(K,JCOLUM)
670 A(K,JROW)=A(K,JCOLUM)
700 A (K:JCOLUM) = SWAP
700 A (K:JCOLUM) = SWAP
705 CONTINUE
705 CONTINUE
710 CONTINUE
710 CONTINUE
c
c
c
c
PIVOT(1,1) = PIVOT(1,1) * PMONE
PIVOT(1,1) = PIVOT(1,1) * PMONE
SIGDIG = SIGMCH - ALOGIO(BIGPHZ/PIVMIN)
SIGDIG = SIGMCH - ALOGIO(BIGPHZ/PIVMIN)
IF |SIGDIG .LT. .85| SIGDIG = 0.
IF |SIGDIG .LT. .85| SIGDIG = 0.
C
C
UNSCALE INVERSE AND SOLUTION(S)
UNSCALE INVERSE AND SOLUTION(S)
ROWMXI = PIVOT(J,2)
ROWMXI = PIVOT(J,2)
DO 720 I=1,N
DO 720 I=1,N
IF (ROWMXI .LT. 1.1 GO TO }71
IF (ROWMXI .LT. 1.1 GO TO }71
AII;J) = (AII;J) * PIVOT(I,3)) * ROWMXI
AII;J) = (AII;J) * PIVOT(I,3)) * ROWMXI
GO TO }72

```
            GO TO }72
```

138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148
0149
0150
0151
0152
0153
0154
0155
a(I 3 = A(I, J) * (pIVOT(Iっ3) * FOWMXI) 720 COMTINU

725, 735, 725
725 DO $730 \mathrm{~J}=1, \mathrm{M}$
RWMXI = SCALEB(J)
D $730 \quad \mathrm{I}=1, \mathrm{~N}$
$(I, j)=(B(I, j) * P I V O T(I, 3 i) \neq R O W M X I$ GO TO 730
728 B(I,J) $=B(I, J) \neq(P I V C T(I, 3) \neq$ ROWMXI $)$ 730 CONT INUE 735 CONTINUE

IERROR =
PETURN
750 IERR OR $=-1$
SIGDIG $=0$
RETUR
END

| 0001 | SURROUTINE POLYEV |
| :--- | :--- |
| 0002 | COAMON C COEFER/PR(51) |
| 0003 | $U=P R(1)$ |
| 0004 | $V=0.0$ |
| 0005 | $D O 20 T=2, M$ |
| 0006 | $U S=U$ |
| 0007 | $U=X * U-Y * V+P R(I)$ |
| 0008 | $20=X * V+Y * U S$ |
| 0009 | AP $=A B S(U)+A B S(V)$ |
| 0010 | RETURN |
| 0011 | END |

```
0001
0002
0003
0004
0005
0006
0007
0008
0009
0011
0012
0013
0014
0015
0016
0 0 1 7
0 0 1 8
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0036
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0050
0050
0052
0053
0054
0055
0056
SUBR CUTINE LEMBRT
C THIS ROUTINE SYSTEMATICALLY FINDS A RODT OF A POLYNOMIAL
USING A SIMPLE CAGING SCHEME BASED ON D-ALEMBERTS LEMMA
COMMON /COEFER/PR(51),M, X,Y,AP,RR,RI, IERRR
DIMENSION NFLAG(5),U(5),V(5),D(5)
EQUIVALENCE \((P, P 1),(P(2), P 2),(P(3), P 3),(D(4), P 4),(P(5), P 5)\)
\(L=1\)
\(R R=0.0\)
\(R I=0.0\)
SIGN \(=1.0\)
IFLAG \(=0\)
IFLAG \(=0\)
JFLAG \(=0\)
KFLAG \(=0\)
DEL \(=0.5\)
DDEL \(=8.0\)
\(\mathrm{DO} 5 \mathrm{I}=1\)
NFLAG(I)=0
10 IF (IFLAG.LT.5) GO TD 25 IF (JFLAG.GT.O) GO TO 25
20 IFLAG \(=0\)
IF (KFLAG.LT.3) GO TD 22
\(R R=R R+S I G N / 19.0\)
\(R I=R I+S I G N / 13.0\)
SIGN \(=-2.0 * S I G N\)
21 CONTINUE
IF (ABS(RI).LE.1.0) GO TO 22
\(S I G N=\) SIGN/97.0
\(R R=\) SIGN/3.0
RR \(=\) SIGN \(/ 3.0\)
RI \(=-\) SIGN
RI \(=-\) SIG
GO TO 21
22 KFLAG \(=\) KFLAG +1
\(D E L=D O E L * D E L\)
DDEL \(=\) DDEL +1.3
NFLAG(LI \(=0\)
24 NFLAG(L) \(=0\)
GO TO 30
25 IFLAG = IFLAG +1
DO 40 I
\(0040 \mathrm{I}=1.5\)
IF (NFLAG(I).NE.0) GO TO 38
\(x=R R\)
\(y=R T\)
\(Y=R I\)
IF (I.EQ.1) GO TO 35
IF (I.EQ.2) \(x=x+D E L\)
IF (I.EQ.3) \(x=x-D E L\)
IF (I.EQ.4) \(Y=Y+D E L\)
IF (I.EQ. 5) \(Y=Y-D E L\)
\(35 U|I|=x\)
VII \(=X\)
\(V\)
CALL POLYEV
PIII = AP
38 NFLAG(I) \(=0\)
40 CONTINUE
IF (JFLAG.GT. 27) GO TO 60
DO \(45 \mathrm{I}=1,5\)
IF (PSII.GT. 1.OE-OT) GO TO 48
45 CONTINUE
GO TO 60
48 DIF1 \(=\) AMAX1 \((P 1, P 2, P 3, P 4, P 5)\)
```

```
0057
0058
0059
060
0061
0062
0063
0064
0065
0066
    DIF2 = AMIN1(P1,P2,P3,P4,P5)
    DIF = DIF1 - DIF2
    IF (1 DIF.GE.1.0).AND.(P1.LT.1.01) GO TO 55
    IF (P1.EQ.0.0) GO TO }6
    IF = DIF/PI
    IF (DIF.LT.O.001)GO TO 20
    5 CONTINUE
    SO CONTINUE
    DO 70 J = 1.5
    I}=\textrm{J
    I = J
MF(P(J).EQ.0.0) GO TO 100
O CONTINUE
    DIF2 = AMIN1(P2,P3,P4,P5)
    IF (DEL.LT.IO.OE-30) RETURN
    DEL = 0.5*DEL
    XX = RR + *DEL
    XX=RR +DEL
    IF ((XX.EQ.RR).AND.(YY.EQ.RI|) RETURN
    IF (IXX.EQ.RR).AND.(RI.EQ.O.0)) RETURN
    IF ((RR.EQ.O.0).AND.(RI.EQ.YY)) RETURN
    IF (JFLAG.GT.100) GO TO 220
    FLAG = JFLAG + I
    NFLAGG1)=1
    GO TO 30
    80 AMINY = P2
    N = 2
    00 }85\textrm{I}=3,
    IF (P(I).GT.AMINY) GO TO }8
    N=I
    AMINY = PIII
    85 CONTINUE
    L=3
    IF (N.EQ.3) L = 2
    F (N.EQ.4) L=5
    F(N.EQ.5) L = 4
    NFLAG(1) = 1
    NFLAG(L)=1
    U(LI = U(1)
    U(1)=U(N)
    V(L) = V(1)
    V(1)=V(N)
    P1 = P(N)
    PR = U(1)
    RI = V(1)
    RI = V(1)
100 RR = U(I)
    RR = U(I)
    RI = VII
    RETUPN
220 IERRR= 2
    RETURN
    END
```


SUBROUTINE CHARDIA,N,RR,RI,CRIT,IPPNT,NVARI
WHERE -
A IS A DOUBLE PREC. NVAR BY NVAR DIMENS IONED MATRIX A IS A DOUBLE PREC. NVAR
N IS ORDER DF MATRIX USED
RR,RI STORAGE ARRAYS FOR NRODTS
CRIT IS DIVISOR CRITERTA (NORMALLY O)
IPRNT - IF NOT ZERO POUTINE PRINTS ROOTS
PLUS POLY COEFF. INPUT TO RF AND AS
COMPUTED BY VEPIFY - THERE MAY BE ONE OR MORE POLYS
NVAR IS DIM OF MATRIX(MAX
CHARD VERSION OF MARCH 8,1967-J.C. BIDWELL
THIS SUBROUTINE COMPUTES THE EIGENVALUES DF A REAL MATRIX SYMMETRIC OR NONSYMMETRIC
HE INPUT MATRIX IS TRANSFORMED BY SIMILARITY TRANSFORMATIONS INTO ONE OF THE FRDBENIOUS FORMS WHERE ROW 1 CONTAINS ALL BUT THE LEADING COEFFICIENT DF THE CHARACTERISTIC EQUATION -THE
EADING COEFF. IS OF COURSE 1.0
ACCURACY IS INCREASED BY MAXIMIZING OIVISOR BY INTERCHANGING ROWS AND COLS.
he roots of the characteristic eq. are solved using
A D-ALEMBERT LEMMA TECHNTQUE
Where all values in a row to the left of the diagonal are less THAN INPUT CRITERIOR (CRIT) PPOGRAM SUBOIVIDES PROBLEM USING
RF TO OPERATE ON TWO OR MORE LOWER IFDER POLYNOMIALS.
CHARD USES POLYRF, LEMBPT, POLYEV DOUTINES AND COEFER COMMON DATA CHARD USES VERIFY ROUTINE
OI MENSION AINVAR,NVAR), RR(1), RI(1)
DIMENSION XX(50).YY(50)
DIMENSION ROOTR(50), ROOTI(50), B(51), C(52). D(52).
1

$$
\begin{align*}
& \text { ROOTR(50), ROOTI(50), B(51) } \\
& \text { COEP(51), ROW(50), COL }(50)
\end{align*}
$$

ALL OVERFL(JACK)
HHE CODING USING THE 3000 NUMBERS HAVE TO DO WITH A CUSTOM
MATRIX NORMALIZATION FOR A SPECIAL CLASS OF PROBLEMS
IF N GE 20 DIVIDE ALL MATRIX ELEMENTS BY 10.0
3050 I $=1, \mathrm{~N}$
DO $3050 \mathrm{~J}=1$, N
$3050 \mathrm{~A}(\mathrm{I}, \mathrm{J})=\mathrm{A} I \mathrm{I}, \mathrm{J} / 10.0$
3100 CONTINUE
ACK=0
$M=N$
$1 \begin{aligned} & 1 \\ & 2 \\ & K\end{aligned}=M$
$K=L-1$
$\mathrm{JJ}=0$
DO $10 \mathrm{~J}=1$.
$A A=A B S(A(L, J))$
IF (AA.LE.BIG§ GO TO 10
$B I G=A A$
$\mathrm{J} J=\mathrm{J}$
10 CONTINUE
if all elements left of diagonal are le criteria go to compute EIGENVALUES OF REDUCED MATRIX
IF (JJ.EQ.O) GO TO 70
C SHIFT ROWS AND COLS IF NECESSARY

0025
0026
0026
0027
0028
0029
0029
0030
0030
0031
0031
0032
0034
0035

0036
0037
0038
0039
0040

IF (JJ.EQ.K) GO TO 40
DO $20 \mathrm{~J}=1$: M
$x=A(J J ; J)$
$x=A(J J, J)$
$A(J J, J)=A(K, J)$
$20 A(K, J)=X$
DO $30 I=1, L$
X
$x=A(I, J J)$
$A(I, J J)=A(I, K)$
$30 \mathrm{~A}(\mathrm{I}, \mathrm{K})=\mathrm{X}$
MAKE SIMILARITY TRANSFORMATION ON MATRIX
$D I=1.0 / A(L, K)$
r ROW IN EFFECT IS THE LEFT OR INVERSE SIMILARITY MATRIX CCL IN EFFECT IS THE RIGHT SIMILARITY MATRIX DO $42 \mathrm{~J}=1, \mathrm{M}$
ROW J$)=A(L, \mathrm{~J})$
$42 \operatorname{coL}(\mathrm{~J})=-\mathrm{ROWIJ} * \mathrm{OI}$
$\operatorname{coL}(J)$
$\operatorname{coL}(K)$
$=\overline{D I}$
c
$0050 \mathrm{~J}=1, \mathrm{M}$
$\operatorname{SUM}=0.0$
DO $45 I=1, M$
45 SUM=SUM $+A(I, J) * R O W(I$
50 A $K, J)=$ SUM $A *(C O L+I 1$ WHERE COL IS KTH ROW, I THE IDENTITY MA
C
C
FIRST K ROWS LESS KTH COL.
DO $60 I=1, K$
DO $60 \mathrm{~J}=1, \mathrm{M}$
IF (J.EQ.K) GO TO 60
IF (J.EQ.K) GO TO 60
$A(I, J)=A(I, J)+A(I, K) * C O L(J)$
60 CONT INUE
DO $65 \mathrm{~J}=1$. M
$65 \mathrm{~A}(\mathrm{LBJ}=0.0$ KTH COL
$A(L, K)=1.0$
$0068 \mathrm{I}=1, \mathrm{~K}$
$68 \mathrm{~A}(\mathrm{I}, \mathrm{K})=\mathrm{A}(\mathrm{I}, \mathrm{K})+\mathrm{A}(\mathrm{OL}(\mathrm{K})$
$L=L-1$
IF (L.EQ. 1) GO TO 70
GO TO 2
70 SET UP TO
IF (L.EQ.M) GO TO 200
$\operatorname{COEP}(1)=1.0$
$\mathrm{J}=1$
DO 80 I=L.M
$j=j+1$
$\operatorname{COEP}(J)=-A(L, I)$
80 CONTINUE
C J BECOMES DEGREE OF POLYNOMIAL
$J=5-1$
CALL OVERFL (JACK)
IF (JACK.EQ.1) WRITE (6,1082)
1082 FORMAT ($1 \mathrm{H} 0,15 \mathrm{X}_{\mathrm{F}} 17 \mathrm{HOVERFLOW}$ IN CHARDI CALL POLYRF(COEP,J,XX,YY,IEPR)
IF (IERR.NE, O1 WRITE $(6,1085)$ IERR
1085 FORMAT(1H0,10X,13HPOLRF IERR $=$, T81

0073 0074
0075
0076
0077
0078
008
08
C STORE J ROOTS
DO $90 \quad I=1, J$
$\mathrm{NR}=\mathrm{NR}+\mathrm{I}$
RDOTR(I) $=X \times(I)$
ROOTI(I) = YY(I)
RRINR $)=X X(I)$
$R I(N R)=Y Y(I)$
90 RI(NR)=YY(I)
IF (IPRNT.EQ.O1 GO TO 100

- PPINT CDEFF FOR J FOOT
CALL VERIFY(ROOTR,ROJTI $, J, B, C, D)$
URITE (6,1092) J
23HPOLYNOMIAL COEFFICIENTS//21X,I4,3X,5HROOTS// $118 \mathrm{X}, 5 \mathrm{HINPUT}, 13 \mathrm{X}, 6 \mathrm{HOUTPUT}$
$\mathrm{JJ}=\mathrm{J}+1$
0095 I=1, JJ
95 WRITE (6,1095) COEP(I), B1I)
1095 FORMATILH, $12 \times$, E15.7,4X,E15.71 100 CONTINUE
IF (NR.GE.N) GO TO 500
$\mathrm{M}=\mathrm{N}-\mathrm{NR}$
F (M.EQ.1) GO TO 220
FO TO.EQ. 1) GO TO 220
cne eigenvalue is a diagonal element
$200 \mathrm{NR}=\mathrm{NR}+1$
$R R(N R)=A(L: L$
$R I(N R)=0.0$
NR,RR (NR
210 FORMAT ($1 \mathrm{HO}, 10 \mathrm{X}, 9 \mathrm{HREAL}$ ROOT, $16,4 \mathrm{X}, \mathrm{El5.8}$ F(NR.EQ.N) GO TO 500
FIL.EQ.2) GO TO 220
GO TO 1
$220 \mathrm{NP}=\mathrm{NR}+1$
$P R(N R)=A(1,1$
$P 1(N R)=0.0$
GO TO 210
C. PRINT OUT N RDOTS IF CALLED FOR
500 CALL OVERFL(JACK)
IF (JACK.EQ.1) WRITE (6,1510)
1510 FORMAT $1 H 0,15 \mathrm{X}, 15 \mathrm{HDVERFLOH}$ IN RF
IF N GE 20 MULT. ALL ROOTS BY 4.0
DO $3150 \mathrm{I}=1 \mathrm{~N}$
RRII $=10.0 * R R(I)$
150 RI(I) $=10.0 * R I(I)$
3200 C
F (IPRNT.EQ.O) RETURN
WRITE $(6,1520)$
520 FORMAT $11 H 0,25 \mathrm{X}, 5 \mathrm{HROOTS} / / 10 \mathrm{X}, 4 \mathrm{HREAL}, 12 \mathrm{X}, 4 \mathrm{HIMAGI}$
DO $540 \quad \mathrm{I}=1, \mathrm{~N}$
540 WRITE $(6,1540)$ IT RE(I) RIII
540 FRRMAT(1H,2X, $14,4 \mathrm{X}, \mathrm{E} 15.8,4 \mathrm{X}, \mathrm{E} 15.8)$
ETURN
END

```
0001 SURRDUTINE POLYRF(P,N,X,Y,IERR)
002
003
0004
0005
006
007
0008
0009
010
011
0012
0013
014
0015
0016
0017
0018
0019
0020
0021
0022
023
025
0026
0.27
0028
022
029
031
0031
0032
0033
0034
0036
0036
0038
0039
040
041
042
043
044
045
0046
0047
0048
0049
0050
051
052
0053
0054
0055
0056
0057
C VERSION OF JUNE 28.1967 BY JC BIDWELL - Al,A2 - PARTS UNKNOWN
DIMENSION X(1), Y(1), P(1)
COMMON /C OEFER/PF(51),M,A,E,AP,RR,RI,IERRR
IF (IN.LT.L).OR.IN.GT.50)\ GO TO 200
    ERR = 0
    ERRR=0
    J=1
    DO 10 I = 1,M
    PR(I)=P(I)
    O CONTINUE
    IF (N.EQ.1) GO TO 100
    15 CONTINUE
    CALL LEMBRT
    IF (RI.EQ.0.0) GO TO }4
    IF (RP.EQ.O.O) GO TO 16
    IF (ABSITESTI.LT.0.000001\ GO TO 40
    16 CONTINUE
    X(J)= RR
    X(J) = RR
    F(IERAR NE O1 GO TO 220
    F
    F(J.EQ.NI RETURN
    j = j + 1
    (J) = RR
    M(J) = -RI RETURN
    J=J +1
    M =M- 2
    X2=2.0*RRR
    N
    XY = - - RRORR
    PR(I)=PR(I)+X2*PR(I-1)
    PR(I)=PRII)+X2*PR(IT-1)
    20 CONTINUE
IF (M.EQ. 21 GO TO 100
IF MO IO 15
    40 CONTINUE
    X(J) = RR
    Y(J) = 000
    F (IERRR.NE.OI GO TO 220
    IF (J.EQ.N) RETURN
    J = J + 1
    M = M - 1
    DO 50 I = 2,M
    50 PR(I) = PR(I) + RR*PR(I-1)
        IF \M.EQ. 21 GO TO 100
    GO TO 15
    100 D = PRI11
    X(J) = -PR(2)/D
    (J) = 0.0
    RETURN
    200 WRITE (6,1200) N
1200 FORMATC1HO,1OX, 3HN =,I4,21HDUTSIDE LIMITS POLYRFI
    IERR=1
    RETURN
    220 IERR = IERRR
```


