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Identification of the LMFBR Dynamic State

for Detection of Coolant Boiling

Abstract

Modern identification theory is applied to equations de-
scribing an LMFBR to investigate the feasibility of esti-
mating spatial sodium coolant and fuel pin temperatures.
It is shown that measurement errors can be reduced and
unmeasurable states estimated by a Kalman filter. These
state estimates can then be used in conjunction with
other indications of sodium boiling to form a scram
criterion. Furthermore, the state estimates can be used
by the reactor operators to assess reactor safety under
many conditions. The need is shown for further study of
off-line tuning of the Kalman filter to estimate spatial
fuel burn up distribution and to estimate contaminant

accumulation in a subassembly.
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Identifikation des dynamischen Zustands eines LMFBR zum Nachweis von
Kihlmittelsieden

Zusammenfassung

Die moderne Identifizierungstheorie wird auf Gleichungen angewendet,
die einen LMFBR beschreiben, um die MSglichkeit zu untersuchen, orts=
abhidngige Natriumkihlmittel= und Brennstabtemperaturen abzuschdtzen.
Es wird gezelgt, daf MeRfehler reduziert und nicht-mefbare Zustidnde
mit einem Kalman-Filter abgeschitzt werden kdnnen. Diese Zustands=-
schitzungen konnen dann in Verbindung mit anderen Hinweisen auf Na-
triumsieden verwendet werden, um ein "Scram-Kriterium'" zu bilden. Die
Zustandsschidtzungen kénnen ferner von Reaktorbetreibern dazu verwen-=
det werden, die Reaktorsicherheit unter verschiedenen Bedingungen ab=-
zuschdtzen. Die Notwendigkeit fiir weitere Studien des "off-line'" Ab-
stimmens des Kalman-Filters wird gezeigt, um die ortsabhingige Brenn-
stoffabbrandverteilung und die Hiufung von Kontamination in einem

Teilbereich des Cores (subassembly) abzuschitzen.
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Introduction

Neutron flux, coolant temperature, and coolant flow are measurable components
of the dynamic state of a nuclear reactor, These and other measurable quan-
tities are interpreted by both the reactor operator and the scram system as

an indication of the total dynamic state of the reactor and therefore as an
indication of the future behavior of the reactor. In most applications the
physical cause of the measurements is merely implicitly assumed in influencing
the actions of the reactor operators and the scram system, otherwise each
measurement can be viewed as a quantity independent of the other measurements.
However, when the physical process can be accurately described by a set of
mathematical equations, these equations can be used not only to combine all
measurements so that each measurement becomes more accurate, but also can

be used to give an estimate for all the unmeasurable components in the complete

state vector.

This idea of using the state equations to supplement measured data has been
used in a number of previous applications. For exemple the period meter

uses the measured value of the neutron flux and a mathematical equation, the
inhour equation, to estimate a quantity that is not directly measurable, the
reactor period. However, the period meter in its present development has not
yet taken advantage of the modern theory of identification [I] . Working
applications of the modern theory already exist in the aerospace [2 - 4] ,
chemical [5] , biomedical [6] s etc., industries and have had great success.
Studies of applications of the modern theory in the nuclear industry have

been made on the Halden reactor [7 - 9] and on rod drop experiments [10, ll] .

The purpose of this report is to propose a particular type of modern identi-
fication (Kalman filtering) to estimate the state of a liquid metal fast
breeder reactor (LMFBR). Not only will this give a better picture of the
reactor state to the opérators, but good estimates of coolant and fuel
temperature distribution in space can be combined with acoustic and reacti-
vity noise measurements to form a scram signal to prevent coolant boiling.
The particular problem of sodium boiling in an LMFBR is perhaps the most

compelling reason for the use of a Kalman filter. Thus this report is mainly



concerned with the application of a developed theoretical identification
procedure, Kalman filtering, to help prevent a problem, coolant boiling,
in an LMFBR.

The contents of the remainder of this report are arranged as follows. First-—
ly the mechanism and dangers associated with the propagation of coolant
boiling in an LMFBR are reviewed. Then the state equations of a typical
LMFBR are developed. Next a physically~oriented summary of Kalman filter
theory is given. Following this is an investigation of the process and
measurement noise parameters. Using this data a Kalman filter is applied

to the state equations and some numerical results are given. The main body
of the report ends with conclusions and suggestions for further work.
Finally, an appendix describes some computational problems encountered in
the application of the Kalman filter and another appendix describes how

the Kalman filter could be implemented on a digital data acquisition system.

Propagation of Coolant Boiling

In a developmental program it is difficult to determine where dangerous
situations occur. It is nuclear safety standard practice either to prove
that a particular situation cannot lead to dangef or to detect and control
the situation. It has not yet been proven that coolant boiling causing sub-
sequent fuel rod failures will not propagate in the manner described below,
even though the probability of such a situation might be low. Therefore,
even though propagation of coolant boiling may be proven innocuous in
future LMFBR development, it is the most pressing reason at present to

instrument the LMFBR with a Kalman filter.

To describe the propagation of coolant boiling, it is best to start by
describing the LMFBR., To be specific assume a type of LMFBR exemplified
by the SNR-300 [12 - 14] (see Fig. 1), Assume the core contains 151
subassemblies and that a typical subassembly contains 165 fuel pins that
are 6 mm in diameter and .95 meters in length. The fuel pins are parallel
to one another in the subassembly and are spaced slightly apart from one

another so that the liquid sodium coolant can flow lengthwise along the



pins and remove the heat generated by them (see Fig, 2). In normal operation
assume the fuel pin center temperature is about 2300°C and the edge tempera-
ture is around 700°C. However, the cladding temperature is about 100°C lower.
Also take the normal sodium coolant inlet temperature to be 380°C for all
subassemblies and the exit temperature to range from 576°C at the core

center to 530°C at the core edge. The coolant is pressurized to 2.5 at-

mospheres so that it boils at about 1000°cC.

Assuming these LMFBR parameters, coolant boiling can propagate as follows,
Initially the sodium coolant is chemically pure. In reactor operation the
sodium picks up contaminants from a number of sources including substances
escaping from improperly canned and failed fuel pins, substances leeched
from stainless steel tubing and joints, reaction products from the surfaces
of structural elements, pieces of structure and instruments that work loose
over a period of time, etc. Some of these contaminants could possibly lodge
or stick in the small clearance between fuel pins or at spacer grids in a
subassembly in such a way as to block more than 60 7 of the coolant flow
over one particular fuel pin. In that case [15] the heat produced by the

pin is sufficient to raise the sodium coolant temperature to boiling. How-
ever, note that cladding damage can occur even before the coolant boils, so
that it is the cladding temperature that should be kept below 750°C to in-
sure prevention of subassembly damage. Because the sodium vapor cannot

carry much heat away from the fuel pin, in a short time the fuel pin melts.
There results a fuel-sodium interaction with a number of possible consequen-
ces, The worst imaginable is that this interaction eventually expels a large
quantity of sodium coolant from that central region of the core in which the
reactivity coefficient of sodium is positive. This might immediately cause
subassembly damage. A more probable consequence of the fuel-sodium inter-
action is that it would in effect merely add more contaminent to the sodium
coolant. This would make other flow blockages more likely in the future. The
action would then be similar to a slowly growing cancer, cutting off more
and more flow over a time period that could be months in duration. The pro=-
bability of a reactor transient would increase in such a situation and the
most likely end result of a slowly growing flow blockage would be distortion
of the subassemblies and their structural supports. This would necessitate

a long and hence costly reactor shut-—down.



Sodium boiling over one single fuel pin is extremely difficult to detect
because there are 165 pins times 151 subassemblies equals 24,915 pins in
the core. It is practically impossible to put at least one thermocouple
on each pin. Instead, each subassembly is instrumented with four thermo-
couples, all reading the bulk sodium temperature at the exit. Logical
comparison using a two-out-of=-three rule, with the fourth thermocouple as
a spare, then gives one subassembly bulk sodium exit temperature signal.
Therefore 151 temperature signals emanate from the reactor. It is un-
likely that fewer will suffice because each subassembly is somewhat ther-
mally isolated from its neighbors by sodium coolant passing between the

subassemblies.

The effect of sodium boiling over a few fuel pins in an otherwise unchanged
subassembly is to increase the bulk sodium exit temperature only a few
degrees., The exact number of degrees before clad damage should be experi-
mentally verified. One conclusion of this report is that the Kalman filter
can estimate this small temperature change, even with very poor thermocouples.
However, the small temperature change could also caused by a blockage dis-
tributed over a number of coolant channels within the subassembly, and not
just affecting a few pins. To prevent this situation from giving a false
alarm, a small rise in temperaturxe within a subassembly should be compared
with other indications of sodium boiling, such as coolant, neutron, reacti-

vity and/or acoustic noise spectra.

The coolant exit temperature spectrum changes with the imposition of a
sudden blockage because the flow becomes more turbulent. This is detectable
by a thermocouple with a fast time constant [16] . Also sodium boiling causes
the flow to become more turbulent, so that the addition of high frequency
components to the coolant noise spectrum is an indication of incipient

sodium boiling. However, the fast thermocouples have not been completely

tested.

The neutron flux and the reactivity noise spectrum also changes with sodium

boiling [17] . The sodium void caused by the sodium vapor replacing liquid



sodium changes the Doppler and, to a lesser extent, the absorption
coefficients of reactivity. The net change is positive in the center of
the core and negative at the edges, so that in these regions there exists
a reactivity source or sink that drives the neutron flux and reactivity
noise in the case of sodium boiling. However, there exists a region of
zero net reactivity coefficient between the center and edge of the core,
so that this method must also rely on supplemented indications of sodium

boiling to detect boiling in this region.

The acoustic noise spectrum also changes under the sonic noise generated
by the collapse of sodium vapor bubbles during boiling [18] . When the
spectrum so generated is not masked by the vibration of the operating

reactor, sodium boiling can be detected by this means also.

In summary, the reasoning is this. Sodium boiling has not yet been proven
innocuous to structural integrity. Until this is done, methods of detection
must be employed. No method of detection appears to be 100 7 sure, so that
reactor shut down must be dictated by an evaluation of the complete reactor
state. Use of the reactor equations together with the measurable quantities
emanating from the reactor to form a Kalman filter will help evaluate the

complete reactor state.

LMFBR State Equations

To obtain an estimation scheme that can be put into practice, a mathematical
model for the LMFBR must be found that is a good compromise between simplici-
ty and accuracy. In this preliminary investigation a rather gross approxi-
mation is made to obtain a very simple model, which should be improved upon
in further studies. All the neutronics is lumped into one equation for the
reactor power, and then linearized about the mean value of the operating

power which is assumed constant.

A 13 = P a., T

1]
dt o . & ij 'f *S (M



where P(t) = reactor power deviation from Po’ in mega watts.
Po = constant mean operating power, 723 MW
A = effective neutron lifetime, lumping fast and all
delayed neutron lifetimes = 6,7 sec.
aij = temperature coefficient of reactivity OC“l
S(t) = zero mean neutron noise source, MW
N = number of chanmnels (groups of subassemblies)
M = number of axial zones '

T;J(t) = fuel temperature deviation in the iEE channel and jgh

, o
axial zone, C

The temperature coefficient of reactivity depends on the Doppler node

fraction W;J. Assuming the overall temperature coefficient of

reactivity is -0.005, then

- -.005 W
aij .005 WD
NM .. (2)
where 2 wid o= 1,
. & D
i,j=1

In the i,jEE-node the average fuel temperature deviation T;J obeyes for

i=1, N and j=1, M

dTij
i, 2 . wiip - i (pd L gl
Cpf NP Trf pr It wf P-2n r, HNP hT ('1‘f TC Yy (3
where N;J = total number of fuel pins per channel = mij (m rg pr)_l
m'J = fuel mass in the i, th-node in grams
r, = radius of fuel pin = .6 cm (note a more realistic number is .3 cm)

= height of axial zome, = 95/M cm
Pe = density of fuel pin = 10 g/cm3

C_ . = specific heat of fuel = .3 watt-sec/g °C

Ii’? NMo
wa = power fraction in node i WfJ = |
i,j=1
hT = heat transfer coefficient = 1.0 watt/cm2 °¢

1j . . . . . . o
T;J(t) = sodium coolant temperature deviation in the L,JEh-node, C.



Also in the i.,j-t-l:l node the coolant temperature deviation sz obeys for

i=1,N and j=1,M, assuming complete thermal isolation of each subassembly,

artJ
Cc

2 _c 2 ij _ oidy _ 2 ij _ oij+l
prnro pr Cpc It 21n:0 HNphT('I‘f Tc ) prﬂroprpcV(Tc T )

[

where £ = coolant / fuel ratio = ,127
v = coolant flow = 500 cm/sec.
iM+1 . , o
TC (t) = inlet sodium temperature, C

Using the numerical values given for an LMFBR typified by the SNR-300

then gives the state equations

N M LEd

.54 3 wd Tl 15 s

ij 5 _ ij _ .ij
3.3(Wf/m) P 2(Tf Tc )

aryd - 1) - 0.5 Mt - TzJ+])

For N = 3 and M = 3 the reactor nodes are as pictured in Fig. 3 and the

values of WlJ, WlJ, and m'? are given in Table I,
- Np oo Vg _8iven
)
_i=3 j=1
& >
\““." ””
oy - T & j=2
Ak
=
®a /
g ~~Q-----"'/ .
J=

Fig., 3 LMFBR with 9 nodes.

(4)

(5)



Table 1. Coefficients of a 9 node LMFBR model.

Doppler coefficient Power fraction fuel mass x 106g
i e wed mg s
1 1 0.065 .032 417
1 2 . 167 . 105 .380
1 3 . .031 .025 A7
2 1 .135 .063 .925
2 2 .301 . 195 840
2 3 .040 .043 <925
3 1 . 105 119 ' 9.145
3 2 . 145 346 8,292
3 3 011 072 9.145

The given numerical data is sufficient to calculate the dynamic behavior

of a reactor model with N and M = 3 or less. Data is available [19] for

N = 10 and M = 11, Because the 151 subassemblies are arranged in concentric
annuli, the cyclindrical symmetry necessitates the computation of at most
N = 10 channels. This simplification makes the problem computationally

feasible.

However, rather than dealing with a large dimensional state vector, for
simplicity of further exposition choose N and M unity. This lumps the
reactor into one node and sacrifices accuracy for clarity. Then the equations

(5) can be put into the vector matrix (state space) form

P 0 -.54 O P .15 0

d S

It Tf = (.11 =2 2 T | + 0O o - (6)
T 0 4 =4.,5 T 0 .5 o
Cc C

where To = le = inlet sodium temperature. This is the assumed state space

equation for the operating LMFBR dynamics.



LMFBR Noise Properties

The only external measurements considered here are the 161 temperature
signals indicating the bulk exit temperature of each subassembly and
also the signals from the neutron flux meters. Because spatial flux
effects are negligible in the SNR-300, these flux meter signals can be
logically combined to give one signal proportional to total power. In
this section the noise properties of these temperature and power signals

are investigated,

The bulk exit sodium temperature of a subassembly of the KNK reactor was
measured at zero reactor power []6] + At zero power most of the measure-
ment error is due to the turbulence in the sodium flow, because the thermo-
couple measures local rather than bulk exit temperature. From the graph

of the temperature measurement at zero power (Fig. 4 a) there appears a
sine wave of 0.01°C amplitude at 0.1 Hz plus a hash of 0.005°¢C amplitude

at frequencies greater than 5 Hz., For simplicity of modelling this was
taken to be a white noise of autocorrelation .003 6(t-1) oCzsec (Fig. 4 b).
This represents about the best that the thermocouples can measure. As the
reactor comes to full power, it is probable that more turbulence, cable
pick=up, vibration, etc., will corrupt the measurements. Taking the in-
dustrial thermocouple standaxd of * 1.5 °C as the worst case, then the

temperature measurement white noise autocorrelation is at most 1.0 8(t-1) oC2sec°

The neutronic noise properties can be found from standard derivations [20]

to give

0y |2
2 - + EfPoD [H(Gw) | (7

where < P; > = auto power spectral density, (MW)2 sec

Ef = energy per fission = 3.2 x IO“l7 MW sec
W = detector efficiency = 10“9
D = Diven factor yo-l) .8

2
H(jw) = reactivity trandfer function
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Let Hs(jw) be the transfer function from S to P in equation (6).
Then

. .k
s(jw)

where £ = prompt neutron lifetime = 4.6 x 10-7 sec,

As an interesting aside, note that because the noise amplitude depends
on the prompt neutron lifetime, fast reactors are much noisier than
thermal reactors. Using numerical values in (7) and (8) gives

5

<P2> = 2.3x10° + 3.9 [H (ju)|2 (9)

Therefore the white noise S has autocorrelation 3.9 6(t-t) (MW)2 sec.-’l
and the neutron flux measurement noise has autocorrelation 2.3 x 10"5

§(t-1) (Mw)zsec.

Substituting the measured value Tom of the inlet sodium temperature T0
into the state equations (6) gives the stochastic description of the
LMFBR as

P 0 =540 P 0 15 0 s
d
It Tf = 11 2 2 Tf + Tom +{ 0 O my
T 0 =4 =4.5/\T 5 0 .5 o
Cc Cc
(10)
m ) [P0 B )
Tcm 0O 0 1 Tc mTc

where S, my s W and m, are independent zero mean white noises with
)

c

< 82 > = 3,9 (MW)2 sec-l.
2 0,..2

< by > = ,003 to 1.0 (C)” sec.
o

< ms > = 2,3 x IO—S (MW)2 sec.

< m% > = ,003 to 1.0 (OC)2 sec.



Summary of Kalman Filtering

A Kalman filter estimates the state vector of a linear dynamic process
in an optimal manner [2(] . Assume that the physical system obeys the

formal dynamical equations

dx

It = AX+Bu+Gw .
N > o (12)
y = Cx+v

where X is the n-dimensional state vector, u is a p-dimensional known
.

input, W is an f-dimensional zero mean white noise, v is an m~dimensional
zero mean white noise, 7 is an m~dimensional measurement vector and
A, B, C and G are compatible matrices. The stochastic LMFBR equation (10)
is in the form (12). Furthermore the white noises have spectral density

an’> = Q W' = R (13)
where Q is an #x{ symmetric nonnegative definite matrix, R is an m x m

symmetric positive definite matrix, and the superscript T denotes transpose.

This corresponds to equation (11) for the LMFBR.

The Kalman filter computes 4 (t), the conditional mean of (t) given the

X
measurement time history ¥ (t) for t, STt The vector % (t) is the
optimal estimate for X (t) in the sense that it minimizes any convex

. N Iy
function of the error x (t) = X (t) - X (t). To compute x (t), an analog

or digital computer finds the solution to

&l&s

= AX+BuU+KGF-C% (14)

where K is a precomputed gain matrix.

K = pc'r”! (15)



- 12 =

. . v . . , .
where P is the variance of x that obeys the matrix Riccati equation

%% = ap + PAT + et - e

t -l

R 'CP (16)

In the case of the LMFBR only the steady state solution Pss to this equation

is sought, i.e.

t t ol

1.— -
0] APSS + PSSA + GQG Pssc R CPS (17)

S

Only the steady state solution is needed because the state equation (10)
is time-invariant over the time intervals considered, because the initial
conditions are of no consequence, and mainly because only steady state

solutions have the desired numerical accuracy when dealing with so many

state variables as necessitated by the general model of equation (5).

Because Pss is the error variance, it is a measure of how good an estimate
of the state is obtained by the Kalman filter. Furthermore the type, number,
and position of sensors can be optimized by computing a corresponding Pss
for each type, number, and position and then examining the effects. Thus

P_, becomes an indication of the feasibility of using a Kalman filter for

LMFBR coolant boiling detection.

Numerical Procedures and Results

The solution of the steady state Riccati equation (17) was found for the
three~-dimensional model (10) and (11). The results are given in Table 2.
The numerical values contained therein were found using the subroutine
RIC SS6 obtaines from Macdonnell-Douglas Corporation Western Division,

Huntington Beach, Calif. A listing of the routine is given in Appendix I.

The RIC SS6 program was tested with both a 2 and an 8 dimensional test sub-
routine and was found to be accurate to 0.5%. Unfortunately this accuracy
is problem dependent, and the routine did not work for LMFBR models of
more than 3 state variables. Because an accurate model must have more than
30 state variables, the numerical procedures need more refinement. A more
detailed description of the problems and attempted solutions is given in

Appendix I,
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Table 2. Results

in °C, Tc in oC)

3 State Variable Model (P in MW, Tf

Good Thermocouples and Flux Meter

%
TC read + .05 C Flux Meter Efficiency W = 10

Standard deviations:

P = 0.037 MW 14.1

T, = 0.013 ¢ P =104 x .05
o 8s

T, = 0.019 °C -.04

Bad Thermocouples and Flux Meter

: -9
* =
TC read + 1 °C W=10
Standard deviations:
P = 0,037 MW 14.4
T. = 0.16 °C P =104 x| -7.3
f ss
T = 0.32 °% -9.0
c \
Bad Thermocouples and No Flux Meter
* =
TC read ¢ IOC W 0
Standard deviations:
P = 0,76 MW 5287
T, = 0.27 ° P = 10" x| 363
8s

T = 0.35 °% -72
C

.05
1.7
1.7

-7.3
261
335

363
732
656

-9

-.04
1.7
3.6

=9.0
335
1017

=72
656
1253
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Good Thermocouples and No Flux Meter

o *
TC read £ .05°C W=20

Standard deviations

P = 0.26 MW 676 134 68
T, = 0.063 °c P = 1074 % | 134 40 25
T, = 0.044 °c 68 25 19

* 2
Really < O, > = .003 and 1.0 respectively.

The Kalman filter corresponding to the three dimensional model (10) with

good thermocouples and a flux meter is pictured in Fig. 5.

“p
power measurement noise
S = neutron noise\‘i Reactor P = power output Pm = flux meter measurement
T, = Na input temp.| eqn.(10) Tc = Na exit temp. Tcm= thermocouple measure-

e

Tom= Na input thermocouple temp. measurement noise

"o

temp. measurement noise V

__ _ _ temp. measurement moise = N iYL
] N .

| P 0 -5 o B o 61.3  .0013 o
PR . P -B
| == T, = 11 -2 2 T, + 0 T + .22 .056 m |

dt f f om 2
| A A T -T |
| T 0 4 =4.5 T 1 -.17 119 cmoe
[ [ [} i
[} e e e e e e e — e — e = =
COMPUTER

Fig. 5 Mechanization of the Kalman filter.
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The equations pictured within the dotted lines are the Kalman filter, whose
. A A A .
solutions P, Tf, and Tc are available to the reactor operators and the scram

system in general.

Table 2 shows that the Kalman filter can estimate the unmeasurable compo-
nents of the state vector with approximately the same variance as the
measured components, and significantly decreases the variance of the
measured components beyond the accuracy of the measuring instruments., This
can be done for all ranges of instrument accuracy, even for commercial as
opposed to laboratory instruments. Therefore it is reasonable to proceed
with further experiments to ascertain whether incipient sodium boiling can

be indicated.

Because no results are available yet for higher dimensional LMFBR models,
physical reasoning must be used to predict what will happen as model dimen-
sion increases. Adding more channels, i.e. N=151, makes the per channel con-
tribution of the flux meter negligible. Therefore results for the tempera-
ture accuracies should tend to those of the bottom half of Table 2. Adding
more axial zones, M=11, increases the sensitivity to changes in parameters
of the state equation, and decreases the variance from the physical model.
This relationship must be explored via experiment with reasonable physical
models. Of course, more results are expected soon, when the numerical
difficulties of higher dimension have been cleared up. With increased
dimension, the spatial resolution will be much finer, Then the reactor
operators can tell where boiling occurred in the event of a scram. Thus

the difficulty can quickly be located and the system brought back on to

line faster,

The mechanization in Fig. 5 shows how the reactor state can be displayed

to the reactor operators. Given some unforseen occurrence, this picture can
help the operator assess the danger and the measures that must be taken to
combat it. Thus a Kalman filter is useful for other occurrences than sodium
coolant boiling. From an overall point of view, this might be the most
compelling reason for the installation of a Kalman filter on an operating

LMFBR.

The numerical values shown within the dotted lines of Fig., 5 are the para-

metric values of the reactor equations. Due to fuel burn up, changes in the
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heat transfer coefficient with scale build-up, etc., these parameters are
not constant as assumed. They vary slowly, over a period of days. Perhaps
once a day the Kalman filter needs to be '"tuned" to obtain new parameter
values. The accuracies indicated by Table 2 are so good that it seems
probable methods such as those used by Olsson, et al., on the Halden
reactor [7] will give new parameter values to a high degree of accuracy.
This can be done off-line on a large digital computer to obtain the most
accuracy possible. Having estimates for these parameters on a daily basis
will then enable reactor operators to evaluate fuel burn-up, crud build-
up, etc. Thus further efficiencies can be made by adjusting the loading
schedules, etc. according to fuel burn up. Slow acting dangers such as
crud build-up can also be assessed without inspecting reactor core compo-

nents.

Thus Table 2 and Fig, 5 indicate the following reasons a Kalman filter

should'be installed on an LMFBR,

1. a Kalman filter indicates incipient sodium boiling

2. a Kalman filter tells where sodium boiling has occured in the

event of a scram

3. "tuning" of a Kalman filter indicates crud build-up and fuel

burn-up distribution

4, a Kalman filter gives the operators a picture of overall reactor

dynamic operation.

It must be remembered that the results of Table 2 were obtained for a very
simple mathematical model. Thus P o Tepresents the error variance only bet-
ween the mathematical model and the Kalman filter. There is an additional
error between the physical system and the mathematical model. Therefore

the results of Table 2 must be smaller than for a Kalman filter applied

to the physical LMFBR system. It is mainly this fact that necessitates
further experiments using hardware as close as possible to that encountered
in practice. It is by no means claimed that one should use a Kalman filter

on an LMFBR, The claim is that further investigation appears justified.
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Future Work

Given the encouraging nature of these preliminary results, a four pronged
attack seems justified on the development of a Kalman filter for appli-
cation to LMFBRs. The first prong is the use of preliminary and subsequently
developed Kalman filters directly on existing LMFBRs, such as EBR-2 and

KNK, The second prong is the development of a Kalman filter for a single
subassembly to be tested on a sodium loop such as at UCLA, Santa Suzanna,
and Karlsruhe. The third prong is computer simulation, and the fourth is
further theoretical development. To speed development, all four prongs

should be pressed forward simultaneously.,

Operating experience on an LMFBR is of prime importance, and éhould be ob-
tained as early as possible, It is in actual application where the main
difficulties can be found and worked upon. Because hardware takes a long
time to set up, this prong of the attack has the longest lead time and

should be worked on first to speed development.

Sodium loop testing is also of importance. The stochastic modellling of thermo-
couple accuracy and of the coolant turbulence should be based on further ex-
periments done in a sodium loop. An investigation of the thermal coupling
between subassemblies can best be done experimentally on a sodium loop. But
perhaps most important is the construction of a Kalman filter to estimate

the temperature in one subassembly immersed in a sodium loop. A number of
thermocouples distributed throughout the test subassembly can check the
accuracy of the states estimated by the Kalman filter that uses only the

exit temperature measurement.,

Computer simulation of the Kalman filter can give insight into the effect

of changes in parameters. A Kalman filter derived using the linear deviation
equation (5) should be used to estimate the state of a nonlinear model. Per-
haps some nonlinearities need to be incorporated into the Kalman filter itself,
and computer simulation should determine the answer. In fact, a boiling
occurrence (where the state equations are different) can be simulated and

the response of the Kalman filter observed. Other effects than boiling can

be simulated, such as reactivity insertion, to see if the Kalman filter will



indicate danger. Also the quantization can be determined that is necessary
to adapt a Kalman filter to a data acquisition and safety control system
such as MISS (see Appendix II). Finally, the sensitivity of the Kalman
filter must be determinded by computer simulation, i.e. the effect of

mismodelling the physical reactor by the assumed mathematical equations.

A very large area for study, mainl& on a computer, is to determine a good
method for '"tuning' the paramters of the Kalman filter., Tuning, perhaps
daily, will minimize sensitivity effects and provide burn up and crud
accumulation data. There exists much literature[?Z-Zg] in the tuning area
of identification, and a number of methods should be compared for appli-

cation to an LMFBR,

One other reason for the development of a Kalman filter for an LMFBR is the
stimulus it will give to theoretical matters. In Appendix I the need is
demonstrated for a better numerical method to determine the eigenvalues of
a nonsymmetric matrix. The application of modern identification techniques
(such as [26]) in the tuning problem will lead to their refinement. But
most welcome will be further progress in the stochastic modelling of a
nuclear reactor. The assumption of a Wiener process to drive the formal
stochastic equation (1) is dissatisfying. The application of a Kalman filter
to a branching process [27] must be put on firm theoretical ground. Indeed,
there appears to be no analytical stochastic model of a nuclear reactor
that reduces to a Markov process with space dependence, which is needed for
theoretical development of the identification theory. This has implications
for the better theoretical understanding of stochastic processes in dis-—

tributed systems, i.e, the basic processes of nature,



AEEendix 1

Computational Problems

The solution PSS to the matrix Riccati equation (16) was sought using the

subroutine RICSS6. It can be shown [28] that P__ = GF_I, where

A cfr7lc F F

~cqe”  -af G G

where A is the n X n matrix of stable eigenvalues. The solution thus depends

on the accuracy to which the eigenvalues can be found. For the 2x2 and 8x8

test cases, the eigenvalues were found to five significant digits. Unfortunately,
for the 7x7 LMFBR model with N=1 and M=3, the eigenvalues could be found to

only one significant digit. Changing from CHARD subroutine to an eigenvalue
routine from the IBM scientific subroutine package.called ATEIG, in con-
junction with HSBG, yielded an increase in accuracy of only a factor of two.

The subsequent calculations were therefore inaccurate and not kept.

It is possible the trouble stems from the almost singularity of the 2x2
diagonal blocks of A, An attempt to gain computational accuracy will be
made by reducing the matrix to tridiagonal form. Then in double precision

the following algorithm to compute the principle minors can be used:

P (0) = I
P (1) = aj, - A
= 2 . - - -
P(2) AT - (agg*ay)) May, (a)map,) - a), (ay may,)
: - 2 . - - - L,
PG = [ - Gaggre DA ey (@)1, 1-178-1,10 751,103, i1 aii{lp(l 2

ai-z,i-l ai—l,i—2 (aii-x) P(i-3) 1=3,4,..

From P (n) is obtained the characteristic polynomial, which is factored to obtain

the eigenvalues.



ABEendix II

Computer Implementation

The Kalman filter can be implemented on either an analog or a digital
computer. To achieve the most accuracy an analog computer could be used.
Then the partial differential equations inherent in reactor models can

be most accurately simulated. However, the cost for this separate system
would be in excess of,f'IO0,000. This is not much when compared with
possible savings of shut down time and ruined equipment. It is much when
compared with the possibility of implementing the Kalman filter on existing

digital computers at practically no cost.

The SNR-300 has two computers, called the safety computer and the process
computer. The safety computer is a simple, redundant computer dealing
directly with signals from the reactor to form scram criteria. It should
not be touched. The process computer is a time sharing computer taking
accurate signals from the reactor to perform such tasks as burn—-up
calculations, etc. It appears that the process combuter is quite suitable
for implementation of the Kalman filter. It could send signals to the
safety computer if desired to form scram criteria with other detection
methods. There appears to be only a small loss in accuracy from the analog

computer because a fine spatial mesh can be used.

Thus it is proposed to do the experimental investigations leading to the
development of the Kalman filter using analog computers. This retains the
accuracy. However, final development will be on the digital process computer
that would be part of the reactor system even if the Kalman filter were not

present,
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FORTRAN IV G1

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014

0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025

0026
0027
0028
0029

C030
0031
0032

0033
0034
0035
0036
0037
0038

RELEASE 1.1 MATN DATE = 73219

OO

[gNe Xal Ao

(s Ne Nl

348

345
344

DIMENSION A(3,3)46(3,3),Q(3,3),P(3,3)
COMMON/WORK/DUMMY (154501

ND = 3

DO 348 [=1,ND

DO 348 J=1,ND

G{IsJd)=
Q{I,Jd)=
AlI,J)
All,2)
Af{2,1)
A(2,2)
A{2:3)
A{3,2)
A{3,3)

U
NN e
wn

»

8 mnnnoo
Ne [eXw]
°

|
o
Y

GOOD THERMOC AND FLUX METER

Ql1l,1) = 0.1
Q{3,3) = 0,003
Gll,1) = 50000
G{3,3) = 300

CALL RICSS6{A+G,Q,P ,ND,ND)
CALL PRMAT(P,ND,NDyND,ND}
TRP=0,0

DO 345 L=1,ND
TRP=TRP+P (L, L)

FORMAT{(EL1 6,8}

WRITE(69344) TRP

BAD THERMDC AND FLUX METER

Q(3,3) = 1
G(3,3) = 1
CALL RICSS6(A;G5QsPsND.ND}J
CALL PRMAT(Py;ND,ND,NDoND}

BAD THERMOC AND NO FLUX METER

G{ls1}) = 0
CALL RICSS6(A+G+QsPsND,NDJ
CALL PRMAT(P,ND,ND,ND,ND})

GOOD THERMOC AND NO FLUX METER

Q{35;3) = 0.003

G{3,3) = 300

CALL RICSS6{A:G,Q:P,ND,ND}
CALL PRMAT(P,ND;NDyNDsND}
STOP

END

08/52/18

PAGE 0001

el



FORTRAN IV G1 RELEASE 1.1 RICSS6 DATE = 73219 08rs52/18 PLGE 0001

0001 SUBROUTINE RICSS6 {AsGyQ,P,NS,NAR)
0002 DIMEMSION RTM{25,3}, ITM{25,3), SCL{(25)
0003 DIMENSION SSS{5000)5 SR{50,50), SI(50+501),
1 SRS{2500) ,51S(2500) yAR{25,25),A1(25,25),
2 ALPHA{25,25),BETA(25525}sGAM(25,25),DELTA(25,25)
3 SRR{25+25) 4SI11{25,25),AA(50550},VR{50),VI(50}
0004 DIMENSION A{NAR,NAR} ,G{NAR,NAR) ,Q{NARyNAR),P{NAR,NAR)
0005 DIMENSION RR{50),RI{50) ,H{50,50)
0006 DIMENSION IANA{50)
0007 COMMON /WORK/SSS,.H
0008 EQUIVALENCE (AA,SRS,S5S),{SIS,S5512501))}
0009 EQUIVALENCE (SRSy;SR);{SIS,SI}y(SRS(1251)5ALPHA}, (SRS(1876),BETA),
1 {SIS€1251) ,GAM}, (SIS{1876},DELTA},
2 (SRS{626) SRR}, (SIS{6261:SI1)»
3 {SPSyAR)} (SIS,AL)
0010 EQUIVALENCE (H,RTM), (H{1,3},1TM}, (H{1,5},SCL}
c
C HAMILTONI AN COMPUTATION (H)
c
0011 NSTP = 50
0012 DO 10I=1,NS
0013 I2=NS+1
0014 DO 10 J=1,NS
0015 J2=NS+J
0016 H{I,J) =—A{1l4J}
0017 H{I2,d) = Q(I,J}
0018 H{I,J42) = G{I,J}
0019 10 H{I2:42) = ALJ,I}
0020 WRITE (65,1010} Iy
0021 1010 FORMAT(1HO,25X,18HHAMILTONTAN MATRIX//}
C
C DETERMINATION OF EIGENVALUES AND EIGENVECTORS OF H
C
0022 N2=2%NS
0023 CALL PRMAT{H,N2,NM2:,50,50)
C
C SELECTION OF UNSTABLE ETGENVALUES AND THEIR VECTORS
c
0024 DO 20 I =1,N2
0025 DO 204 = 1,N2
0026 20 AA(ILJ) = H(I,J)
o027 CALL CHARD (AA:N2,RR3RIs0.0,1,NSTP}
0028 KREG = 0
0029 NOIMAG = 0
0030 NPASS = ¢
0031 DO 50 L = 1,N2
0032 IF (RRIL)) 50:25,30
0033 25 WRITE (6,180} )
0034 180 FOPMAT (1HO,7T1HTHE HAMILTONI AN HAS AN IMAGINAPY RODT, NJ STEADY-ST
*ATE SOLUTION EXISTS )
0035 RETURN
0036 30 CONTINUE
0037 ' IF {RI{L).GT.0.0) NOIMAG = 1
0038 IF (RI(L).LT.0.0) GO TO SO
0039 KREG = KREG + 1
0040 ROOTR = RRIL)
0041 ROOTI = RTI{L)}

0042 CALL IGVECS5{ H,ROOTR,ROOTI, N2,NSTP,VR,VI,NPASS]}



FORTRAN TV G1

0043
0044
0045
0046
0047
0048
0049
0050
0051
0052

0053
0054

0055
0056
0057
0058
0059
0060
0061
0062
0063

0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078

RELEASE

OO0

aoo

32

38

50

190

60

70

95

100

110

120

1.1 RICSS6 DATE = 73219 08752718 PAGE 0002

DO 32 I=1sN2

SR{I,KREG) = VR{I}

IF{ABSI{RI{L)/RR{L)}.LT.0.000001) GO TO 50

KREG = KREG + 1

DO 38 I=1,N2

SRE{I,KREG) = VI (1)

CONT INUE

IF(KREG.EQ.NS) GO TO 60

WRITE (65190)KREG,NS

FORMAT (1HO,27HTHE RICSZ SUBROUTINE FOUND ,I3,38H STABLE ROOTS INS

*TEAD OF THE REQUIRED I3 )

RETURN
CONTINUE

COMPUTATION OF P FROM T1l AND T21

DO 70 I=1,NS

DO 70 J=1,NS

J2 = NS + J

AR{I,J) = SR(J,I)

AI{I,J} = SR(J2,1)

CALL SID (ARyNS255259AT3NS,25,SIGyIER,RTM,TTM,SCL}
DOS5I=1sNS

DOSS5J=1,NS

PlIsJd) = AI(I,J)

CHECK SOLUTION

DO100I=1,NS

D0100J=1,NS

H(T1:J1=0.0

DO100K=1, NS

H{I, JI=H(T o) +P (I s KI ¥G{Ks 4}

DOL10I=1,NS

DO110J=1,NS

SRIT J1=0(T . J}

DO110K=1sNS

SREIpJI=SRUI 2 JI+PUI JKI¥A[K,JI+RAIK, I) ¥P(KoJ)I-H{I, K}¥P (K, S}
WRITE(6,120}

FORMAT{1HO0,28HRICSS2 CHECK SOLTUICN, P-DOT )
CALL PRMAT (SR, NS, NS, NSTP, NSTP]}

RETURN

END

BE



FORTRAN IV G1

0001

0002
0003
0004
0005
0006
0007

0008
0009
0010
0011
0012
0013
0014
0015
0016
0017

0018
0019
0020
0021
0022
0023
0024

0025
0026
0027
0028
0029

0030

RELEASE 1.1 IGVECS DATE = 73219 08/52/18 PAGE

[(aEeNeNeNsNaleNeNeEaNseNaoEaNaNalel

OO

Ao

oMo

10

15

20
30

35

40

50

55

SUBROUTINE IGVECS {HsRRsRI N ,NDIMyVR,VI,NPASS])

THIS IS A GENERAL EIGENVECTOR SOLVER WHERE H IS A REAL MATRIX AND
THE EIGEMVALUE IS REAL OR COMPLEX. IT SOLVES FOR V IN
HY = LV WHERE L IS THE INPUT EIGENVALUE

INPUTS
H - N ORDER SINGE PREC. MATRIX DIMENSIONED NDIM X NODIM
RR,RI - REAL AND IMAG. PARTS Of EIGENVALUES. DOUBLE PREC.
N — ORDER OF MATRIX AND VECTORS
NDTIM - FIXED DIMENSION LIMITS OF H,VR,AND VI.
OUTPUTS
VRyVI -~ REAL AND IMAG. EIGENVECTOR ARRAYS — DOUBLE PREC.
IN - OUT
NPASS -~ PASS FLAG IF SET O ON INPUT WILL ALWAYS CALCULATE

H*%2 FOR COMPLEX ROOT. SET BY IGVEC5 TO 1 IF
A*%2 CALCULATED.

DIMENSION H{NDIM,NDIM}

DIMENSION A{50,50), VR(NDIM}, VI(NDIM), NCOL{(50)
COMMON/WORK/DUMMY {12900} ,NCQOL, A

T =RI

IF (T.EQ.0.0) GO TO 35

IF {NPASS.GT.0) GO TO 10

A = H¥%2
CALL MATMSP (H, H., A, N, NDIM, NDIM, 50)
REWIND 4
WRITE (4) A
REWIND 4
NPASS = 1
GO TO 15
CONTINUE
READ (4) A
REWIND 4
CONTINUE
A = H%%¥2 —~ 2,0%RR#H{I,J} + RR¥*2 + RI*%*2 FOR RI NOT 0.
D0 20 I = 1,N
D0 20 J = 1,N°
AlId) = A{I+J) — 2.0%RR*H(I,J}
D0 30 T = 1,N
AlIo,I) = A{I.,I} + RR#RR + RI*R]
GO TO 55
CONTYINUE
A =H - RR FOR RI = 0.0
DO 40 I = 14N
DO 40 J = 1,N
A{T¢Jd) = H{IsJd}
00 50 I = 1,N
A(II) = AlLI.I} - RR
CONTINUE

0001

BY



FORTRAN IV Gl

0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048

0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
0070
0071
0072
0073
0074
0075

0076
0077
0078
0079

RELEASE 1.1 IGVECS

C
C

[aXeXs]

OO0

70

80

30

110
115

118

120

DATE = 73219 08/52/18
NORMALIZE MATRIX BY MAKING MAX. ELEMENT 1.0

BIG = 10.0E-25
IBIG = 0

JBIG = 0

oo 70 1 1:N

DO 70 J 1,N

X = ABS{A(I,J)]}

IF {X.LY.8IG)} GO TO 70
BIG = X

IBIG 1

JBIG J

CONTINUE

TEMP = A{IBIG,JBIG)
DTEMP = 1.0 / TEMP

DD B0 I = 1sN

D0 80 J = 1.N

AlI.J) = AlI,J} * DTEMP
DO 90 I 1sN

NCOL(I) I

SOLVE FOR X USING CROUT METHOD MAXIMIZING ALDNG DIAGONAL
STOPPING WHEN DIAGONAL ELEMENTS REMAINING BECOME SMALL

Nl =N-1

ICOLX = 0

DO 200 K = 1N

Kl = K-1

BIG = 10.0E-26

IBIG = ©

DO 115 I = KgN

VI(I)} = A{I.1)

IF {K.EQ.1l} GO TO 115

DO 110 L = 1,K1

VI(I} = VI(I) — A(TI,L)*A(L,T])

CONTINUE

IF {(K.EQ.N) GO TO 220

IF(T.EQ.0.0) GO TO 118

IF {K.lT.N1} GO TO 118

X = VI{N)- VI{NL1}

X = ABS(X)

IF {XeLT.10.E-30) GO TO 185

CONTINUE

DO 120 I = K,N

X = ABS(VI(I)]}

IF {(X.LT.BIG) GO 7O 120

IBI6 = I

BIG = X

CONTINUE

IF ¢IBIG.EQ.0) GO TO 185

IF (IB1G.EQ.K) GO TO 140

MAKE SIMILABITY TRANSFORMATION BY INTERCHANGING
COLS K AND IBIG AND ROWS K AND IBIG

I = NCOLCIBIG)
NCOL{IBIG} = NCOL{K}
NCOL(K) = 1

DO 125 I = 14N

PAGE 0002

BC



FORTRAN TV G1

0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
00g8
0099
oLOC
0101
0102
0103
0104
0105
0106
0107
0l08
0109
0110
0111
0112
0113
0ll4
0115
0116
0117
0118
0l19
0120
0121
0l22
0123
0124
0125
0126
0127
o128
o129
0130
0131
0132

0133
0134

RELEASE

125

130
140

145
150
165

170
175
180

185

130
200
210

215
220

1225
230

240
250

260

1.1 IGVECS DATE = 73219

TEMP = A(I:K)

A(I,X} = A(I,IBIG)
A(I,IBIG) = TEMP

DO 130 J = 1.N

TEMP = A{K,yJd)

AlKyd) = ALIBIG,J)
A(IBIG,J) = TEMP
CONTINUE

IF {(K.EQ.1l} GO TO 165
DO 150 T = K.N

DO 145 L = 1,K1
A{I,K} = A{I.K) — A{LI,L)%A{L,K)
CONTINUE

CONTINUE

KPL =K + 1

DO 180 J = KP1,N

IF {K.EQ.1}) GO TO 175
DD 170 L = 1,K1

A{KsJ) = AlKsJd)} — ALK LIZA(L,.J)
A(K,J) = A(Ky-.” /A(KtK)
CONT INUE
GC TO 190
CONTINUE
ICOLX = K
G0 70 210
CONTINUE
CONTINUE
CONTINUE
IF {ICOLX.LT.N1) GO TO 900
IF (ICOLX.GT.N1} GO TO 220
A(N1,N1) = VI{N1}
NZ = N-2
D0 215 I = 1sN2
A{N,yN1) = A(N,NL) — A(N,I)*A{I,NL1}
A{N1,N) = A(NL,N} — A{N1,T}*A(T,N]}
CONTINUE
A(N,N} = VI{N)
X = ABS(VI{N})
IF {X.LT.10.0E-12} GO TO 230
WRITE{ 65,1225} X,RR,4RI
FORMAT{1HO, //20X:18HIGVECS — Xy;RR,RI ,3E18.8)
CONTINUE
VI{N} = 1.0
DO 250 K = 1,N1
I =N-K
VI{I} = 0.0
It=1+1
DO 240 L = T1,N
VI(I) = VI{I) - AQI.L)*VI{L}
CONTINUE
DO 260 T = 1,N
J = NCOL(I}
VR{J) = VI{LI)
CALCULATE VI = — 1/RI*(H — RRxI}*VR

IF {T.EQ.0) GC TO 335
DO 300 I = 1N

VI{I) = - RR*VRI{I}

DO 290 J = 1,.N

08752718
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0137
0138
0139
0140
0141
0142
0143
0144
0145
0146
0147
0148

iv G1

RELEASE

290
300

335

350

900

1900

1.1 IGVECS DATE = 73219
VI(I) = VI{T) + H{I.J)*VR{J)

VI(I} = - VI(I)/RI

RETURN

CONTINUE

DD 350 T = 1,N

VI{I} = 0.0

RETURN

CONTINUE

WRITE (65,1900} ICOULX,{(VI{I},I=1,N)

08/52/18

FORMATI1HO,//20X,22HIGVEC5 ERROP — TCOLX =,7110/{6X, 10E12.41))

RETURN
END
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0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012

RELEASE

10

20

1.1 MATMSP DATE = 73219

SUBROUTINE MATMSP (A, B, C, Ny NA, NB, NC)
DIMENSION A{NA,NA), BINB,NB}, C(NC,NC}

DD 20 I = 1N

DO 20 J = 1sN

SUM = 0.0

D0 10 K = 1,N

SUM = SUM + A(],K)*B(K,;J)
CONTINUE

C{I»J} = SUM

CONT INUE

RETURN

END

08s/52/18
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0001 SUBROUTINE PRMAT (ARAY,MS,NS,MAR,NAR]}
0002 DIMENSION ARAY({MAR,NAR}

0003 500 FORMAT (1H ;E12.5,6(4XsE12.5))
0004 501 FORMAT (1HOsE12.5,6(4X,EL12.51)
0005 D01042=1,NS,7

0006 WRITE(65,501)

0007 NJ=NS-J2

0008 IFINJ.LT.7) GO TO 3

0009 J3=42+6

0010 GOTO 5

0011 3 J3=NS

0012 5 DO10I=1,MS

0013 10 WRITE(65500) (ARAY(IJd) ¢J=J2,J3}
0014 RETURN

0015 END

e6
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0001

0002

0003
0004

0005
0006
0007
0008
0009
0010
0011

0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031

0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044

RELEASE 1.1 . SID DATE = 73219 08/52/18

nEeNalal

[aNaNel

[z NaNel

712

28

29

32

34

36
38

SUBROUTIME SID {Ay, N, NDROW, NDCOLA, By M, NDCOLB, SIGDIG, IERROR,
* PIVOT, INDEX, SCALEB }

SID — A SINGLE PRECISION SIMULTANEOUS EQUATICN SOLVER, INVERSE
FINDER, AND DETERMINANT SUBROUTINE

DIMENSION A{NDROW,NDCOLA}, B{NDROW,NDCOLB}, PIVOT(N,3),
* SCALEB{M), INDEX(N,3)
DOUBLE PRECISION DBIGP2

DATA DBIGP2

* / T378697629483829.D4 /
EPS = 1.E-3

EPS = EPS/2.

EPSP15= EPS + 1.5

IF (EPSP15 .NE. 1.5) GO 70 712
SIGMCH = ALOGLO({1.522/EPS)
BIGPW2 = DBIGP2

PIVOT(1,1}) = 0.

SCALE ROWS

DO 38 I=1,N

ROWMX = Q.

DO 28 J=1,N

IF ({ABS{A(I,J)}) -GT. ROWMX) ROWMX = ABS(A({I,J})
CONTINUE

IF { ROWMX) 29, 750, 29

CONTINUE
ROWMXI = 1. / ROWMX
DO 32 y=1,N

AlS = A(I,J)

AlI,3) = (A(T,J} * ROWMXT ) * BIGPW2

IF (A(I,J) .EQe 0.) Al{IsJd) = [AIJ * BIGPWZ2) * ROWMXI
CONTINUE

IF (M) 34, 38: 34

DO 36 J=1,M

BIJ = BLI.J)

B{IsJd) = (BU{I,J) * ROWMXI } * BIGPHW2

IF (B(I,J) .EQ. 0.) B{I,Jd) = (BIJ * BIGPWZ2) * ROWMXI
CONTINUE

PIVOT(I,2} = ROWMXI

SCALE COLUMNS

DO 10 J=1,N

COLMX = 0.

DO 4 I=1,N

IF (ABS{A{I;J}).6T. COLMX) COLMX = ABS(A(IsJ})
CONTINUE

IF { COMX )} 5, 750, 5

CONT INUE

COLMXI = 1./C0LMX

DO 8 I=1,N

AlJd = A{I,J}

A{I,J) = (A{I,J) * COLMXI}* BIGPW2

IF (A€I,J) EQ. 0.} AlI.J} = (AIJ * BIGPW2) * COLMXI
CONTINUE

PAGE 0001
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0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
0060
0061
0062

0063
0064
0065
0066
0067

0068
0069
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
oo8l
0082
0083
0084
0085
0086

0087
0088
0089
0090
0091
0092
0093

RELEASE

[N aNe]

OO

OO

10

14

16

17

20
22
24

42

45

60
70
80
85

100
105

115
120

123

130
140
150
160
170
200
205

1.1 SID DATE = 73219 08/52/18

PIVOT{J,3) = BIGPW2 * COLMX

IF (M} 14,24.14 .

DO 22 J=1,M

COLMX = 0.

DO 16 I=1,N

IF (ABS{B{I,4)).6T. COLMX ] COLMX = ABS(B{I.J)}
CONTINUE

IF (COLMX ) 17y 229 17

CONTINUE

SCALEB(J} = COLMX /7 BIGPW2

COLMXI = 1./CDLMX

DO 20 I=1,N

BIJ = B(I,J}

B{IsJ) = (B(I,J) * COLMXI) * BIGPW2

IF (B(I,d) EQ. 0.} B{IsJ4) = (BIJ * BIGPW2) * COLMXI
CONTINUE

CONTINUE

CONT INUE

INITIALIZATION

PMONE=1.

DO 42 J=1,N
PIVOT{(Js1) = 0.
INDEX(J4,3) =0
DO 550 I=1sN

SEARCH FOR PIVOT ELEMENT

ABPIVI=0.

DO 105 J=1.N

IF {TNDEX{(J,3}-1) 60,105,560

DO 100 K=1,sN

IF (INDEX(K,3)-1} 80,100,80

IF (ABSC(A(J,K}) — ABPIVI) 100,100,85
IROW=J

ICOLUM=K

ABPIVI=ABS{A{J,K]})

CONTINUE

CONTINUE

IF {I-1) 115,120,115

IF { ABPIVI .GE. PIVMIN ) GO TOD 123
PIVMIN=ABPIVI

IF {(ABPIVI} 123,750,123

CONTINUE

INDEX{ ICOLUM,3) =1
PIVOTI=A{IROW,ICOLUM}

PIVOT{I,1) = PIVOTI

INTERCHANGE ROWS TO PUT PIVOT ELEMENT ON DIAGONAL

IF (IROW-ICOLUM) 140, 260, 140
PMONE=-PMONE

D0 200 L=1,N

SWAP=A{IROW,L)
A(IROW,L)=A{TICOLUM,L}
AUICOLUM, L)} =SWAP

IF {M) 260, 260, 210

PAGE 0002
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0094
0095
0096
0097
0098
0099

0100
0101
0102
Q103
0104
0105
0106

0107
0108
0109
0110
0111
0112
0113
0ll4
0115
0116
0117

0118
0119
0120
0121
0122
0123
0124
0125
0126
0127
0128

0129

0130
0131

0132
0133
0134
0135
0136
0137

RELEASE

s XaXe!

aNeNal

[aNaXgl

(a2 eKe]

330
340
350
355
360
370

380
390
400

420
430
450
455
460
500
550

600
610
620
630
640
650
660
670
700
705
710

1.1 SID DATE = 73219

DO 250 L=1, M

SWAP = B{IROW,L)
R{IROWsL) = B{ICOLUM,L}
B{ICOLUM,L} = SWAP
INDEX{I,1)=IROW
INDEX{I,2)=ICOLUM

DIVIDE PIVOT ROW BY PIVOT ELEMENT

PIVINV=1,0/PIVOTI

A{ICOLUM, ICOLUM) = BIGPHW2

DO 350 L=1,sN

A{ICNLUM,L)= ACICOLUM,LI*PIVINV
IF (M) 380, 380, 360

DO 370 L=1,M

BLICOLUM, L} = B{ICOLUM,L)*PIVINV

REDUCE NDON-PIVOT ROWS

DO 550 L1=1,N

IF{L1I-ICOLUM} 400, 550, 400
T=A(L1,ICOLUM]}

IF (T} 420,550,420
A{L1,ICOLUM}=0.0

DO 450 L=1,N
A(LL,L)=AILL,L)—-ALTICOLUM,L) %T
IF(M} 550, 550, 460

DO 500 L=1.,M

B{L1sL) = B{L1+L) — BUICOLUM,L}=*T
CONTINUE

INTERCHANGE COLUMNS

DO 710 I=1,N

L=N+1~-1

IF (INDEX(L,1)-INDEX{L,2}) 630, 710, 630
JROW=INDE X{L,1)
JCOLUM=INDEX{L 2]

00 705 K=1,N
SWAP=A({K¢ JROW)

A{K, JROW) =A(K,JCOLUM)
A{K,JCOLUM)=SWAP
CONTINUE

CONTINUE

PIVOT{1l,1) = PIVOT{1,1} * PMONE

SIGDIG = SIGMCH - ALOGLO(BIGPW2/PIVMIN}
IF (SIGDIG .LT. .85} SIGDIG = 0.

UNSCALE INVERSE AND SOLUTION{S)

DO 720 J=1,N

ROWMXE = PIVOT(J4,2)

DO 720 I=1.N

IF (ROWMXI .LT. 1.} GO TO 715

AlT,Jd) = (A(T,4) * PIVOT(I,3)) * ROWMXI
60 TO 720

08/52/18
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FORTRAN IV G1 RELEASE 1.1 SID DATE = 73219 08s52/18 PAGE 0004

0138 715 A(I,Jd) = A{I,J) * (PIVOT({I,3) * POWMXI}
0139 720 COMNTINUE
0140 IFf (M) 725, 735, 725
0141 725 DO 730 J=1,M
0142 ROWMXI = SCALEB({J}
0143 DO 730 I=1,N
0144 [F {ROWMXI .LT. 1.) GO TO 728
0145 B{I,J) = (B(I,J} * PIVOT(I,3)) * ROWMXI
0146 GO TO 730
0147 728 8{IsJ) = B{I,J) * {(PIVOT{I,3) * ROWMXI)
0148 730 CONTINUE
0149 735 CONTINUE
C
0150 IERPROR = 1
0151 FETURN
0152 750 IERROR = -1
0153 SIGDIG = Q.
0154 RETURN
0155 END

BEl
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R ELEASE

20

1.1 POLYEV DATE = 73219

SURRQUTINE POLYEV
COMMON /COEFER/PR(51]) sM9XsY, AP,RP,RT, IERRR

U = PR{1)

v = 0.0

DO 20 1 =2,M

us = u

U = X*U —-YkVv +PR{I)

V = X¥V + Y*US

AP = ABS{U} + ABS{V}
RETURN

END

08/52/18
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0001

0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056

RELEASE

10

20

21

22

24

25

35

38

45

48

1.1 LEMBRT DATE = 73219 08752718

SUBRCUTINE LEMBRT

THIS ROUTINE SYSTEMATICALLY FINDS A RCOT OF A POLYNOMIAL
USING A SIMPLE CAGING SCHEME BASED ON D-ALEMBERTS LEMMA
COMMON /COEFER/PR(51)sMyX,YsAPy,RR,RI, [ERRR

DIMENSION NFLAG{5},U(5),V{5},P(5]}

EQUIVALENCE (P,PL},{P(2)+P2),{P{3),P3),(P2{4),P4),(P(5),P5}
L =1

RR = 0.0

RI = 2.0

SIGN =1
IFLAG
JFLAG
KFLAG
DEL = 0.
DDEL = 8.0

D0 S I = 1,5

NFLAG{I}=0

IF (IFLAG.LT.5) GO TO 25

IF (JFLAG.GT.0) GO TO 25
IFLAG = O

IF {KFLAG.LT.3} GO TO 22

PR = RR + SIGN/19.0

RI = RI + SIGN/13.0

SIGN = —-2.0%SIGN

CONTINUE

IF {ABS(RIJ}.LE.1.0) GO TO 22
SIGN = SIGN/97.0

RR = SIGN/3.0

RI = -SIGN

GO TO 21

KFLAG = KFLAG + 1

DEL = DDEL*DEL

DDEL = DDEL + 1.3

0

0
0
0
5

o il I

NFLAGI(L} = 0

GO TO 30

IFLAG = IFLAG + 1
CONTINUE

DO 40 I = 1,5

IF {(NFLAG(I).NE.Q) GO TO 38
X = RR

Y = R1

IF {I.EQ.1l) GO TO
IF {(I.EQ.2)
IF (I.EQ.3}
IF (I.EQ.4)
IF {I.EQ.5)
Uit = X
Vi) = Y
CALL POLYEV
P{I) = AP
NFLAG(I) = 0
CONTINUE

IF (JFLAG.GT.27) GO TO 60

DO 45 I = 1,5

IF {P{I}).GT. 1.0E-07) GO TO 48
CONTINUE

GO 70 60

DIF1 = AMAX1(Pl,P2,P3,P4,P5)

PEEE
0ononn
< € X X
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0057
0058
0059
0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
oe70
0071
0072
0073
0074
0075
0076
0077
0078
0079
0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104
0105
0106
0107
0108
0109

RELEASE

55
60

70

80

85

100

220

1.1 LEMBRT DATE = 73219

DIF2 = AMIN1(P1,P2,P3,P4,P5)

DIF = DIF1 - DIF2

IF ({ DIF.GE.1l.0).AND.(PL.LT.1.0}) GO TOQ 55
IF (P1.EQ.0.0) GO TO 60

DIF = DIF/PL

IF (DIF.LT.0.001}60 TO 20

CONTINUE

CONTINUE

DO 70 J = 1.5

I =4

IF (P{J).EQ.0.0) GO TO 100

CONTINUE

DIF2 = AMINLI(P2,P3,P4,P5])

IF {(P1.GT.DIF2}) GO TO 80

IF (DEL.LT.10.0E-30} RETURN

DEL = 0.5%DEL

XX RR + DEL

YY RI + DEL

IF {{(XX.EQ.RR}).AND.(YY.EQ.RT}} RETURN

IF ((XX.EQ.RR}.AND.{(RI.EQ.0.0)} RETURN

IF ((RR.EQ.0+.0) -AND.{RI.EQ.YY}} RETURN

IF (JFLAG.GT.100) GO 70 220

JFLAG = JFLAG + 1

NFLAG(L) =1

GO 70 30

AMINY = P2

N =2

D0 85 I=3,5

IF {PIT).GT.AMINY) GO 7O 85

N =1

AMINY = P(I)
CONTINUE

L=3

IF (N.EQ.3) L
IF {N.EQ.4) L
IF {N.EQ.5) L
NFLAG(1) = 1
NFLAGI(L} = 1

0ot

W
HON

uiL) = ut1l
u{l) = U(N)
viL) = vil)
V{1l = VIN)
PIL) = P1
Pl = PIN)
RR = U1}
RI = Vv{1)
GO 70 10
RR = U]
RI = VI(I)
RETURPN
IERRR= 2
RETURN

END

08/52/18
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0001 SUBROUTINE VERIFY{ROOTR,ROO0TI,L,ASUB,APRIME,COLVEC )
C
C
C THIS SUBROUTINE VERIFIES THE ROOTS OF AN NTH DEGREE POLYNOMIAL.
C THE METHOD USES THE WARRING FORMULAE TO REPRODUCE THE COEFFICIENTS
C OF THE POLYNOMIAL, THIS SURROUTINE ASSUMES ONLY REAL COEFFICIENTS.
C
c THE POLYNOMIAL wILL BE NORMALIZED
C
0002 REAL NEG
0003 COMPLEX SUM,COLVEC,APRIME
0004 DIMENSIONROOTI (1) ,COLVEC(L) ,APRIME{1),ASUB(1),RD0OTR(1}
C
c
C
C
c
C
0005 DO 3333 I APAR=1,1
0006 IF (IAPAR .EQ. 2} GO 70O 3333
0007 tL=1
0008 SUM = (0.0,0.0])
C
0009 CNE = 1.0
0010 NEG = -1.0
0011 ASUB{LL)=0ONE
0012 IF{L.EQ.0)G0 TO 99
0013 Li=L1+1
0014 DO 20 I = 1.L 3
0015 APRIME{I) = CMPLXI{ROOTR{I}, ROOTI(I)}} »
0016 SuM = APRIME(I]} + SUM
0017 20 CONTINUE
C
C
C STORE COFFICIENT WITH SIGN
P
C
0018 21 ONE=NEG*ONE
0019 ASUB(LL) = ONE * REAL{SUM)
0020 IF(LL.GT.LIGO 7O 99
0021 SUM = (0.0,0.0)
0022 LL=LL+1
0023 IF(LL .EQ. 0)GD TO 99
c
C
c FORM COLUMN VECTOR
C
C
0024 DO 30 1 = 1,L
0025 COLVEC{I} = APRIME{(I}
0026 APRIME(I) = (0.0,0.0)
0027 30 CONTINUE
C
C
C CALCULATE NEW COLUMN VECTOR
C
c

0028 00 41 I = 1,L



FORTRAN IV G1 RELEASE 1.1 VERIFY DATE = 73219 08752718 PAGE 0002

0029 DO 40 K = 1,L

0030 IF(K.GEL.I)GO TO 40
0031 APRIME(T} = CMPLX(RODTRII), ROOTI(I}} * COLVECH(K) + APRIME{I}
0032 40 CONTINUE

0033 SUM = APRIME(I) + SUM
0034 41 CONTINUE

0035 GO 70 21

0036 99 RETURN

0037 3333 CONTINUE

0038 PETURN

0039 END

Bgl
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0001

0002
0003
0004
0005

0006

0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017

0018
0019
0020
0021
0022
0023

0024

RELEASE

sEsNaEnNeNsleXeEalulskeia ks NaRe NaReNa e Ne s ReNeNaRal

[aXeXel

3050
3100

N =

10

l.1 CHARD DATE = 73219 08/52/18

SUBROUTINE CHARD(A,;N;RP,RI,CRIT,IPPNT,NVAR])
WHERE —
A TS A DOUBLE PREC. NVAR BY NVAR DIMENSIONED MATRIX
N IS OPDER OF MATRIX USED
RR,RI STORAGE ARRAYS FNR NRODTS
CRIT IS DIVISOR CRITERTA (NORMALLY O}
IPRNT ~ IF NOT ZERO ROUTINE PRINTS ROOTS
PLUS POLY COEFF. INPUT TO RF AND AS
COMPUTED BY VERPIFY — THERE MAY BE ONE OR MORE
POLYS
NVAR IS DIM OF MATRIX{MAX}
CHARD VERSION OF MARCH 8,1967 — J.C. BIDWELL
THIS SUBROUTINE COMPUTES THE EIGENVALUES OF A REAL MATRIX
SYMMETRIC OR NONSYMMETRIC
THE INPUT MATRIX IS TRANSFORMED BY SIMILARITY TRANSFORMATIONS
INTD OME OF THE FROBENIOUS FORMS WHERE ROW 1 CONTAINS ALL BUT
THE LEADING COEFFICIENT OF THE CHARACTERISTIC EQUATION -THE
LEADING COEFF., IS OF COURSE 1.0
ACCURACY IS TNCREASED BY MAXIMIZING OIVISOR BY INTERCHANGING
ROWS AND COLS.
THE ROOTS 0OF THE CHARACTERISTIC EQ. ARE SOLVED USING
A D-ALEMBERT LEMMA TECHNIQUE
WHERE ALL VALUES IN A ROW TO THE LEFT OF THE DIAGONAL ARE LESS
THAN INPUT CRITERINR (CRIT) PROGRAM SUBDIVIDES PROBLEM USING
RF TO OPERATE ON TWO OR MORE LCWER ORDER POLYNOMIALS.
CHARD USES POLYRF,LEMBRT,POLYEV POUTINES AND CCEFER COMMON DATA
CHARD USES VERIFY ROUTINE
COMPLEX C, O
DIMENSION A{NVAR,NVAR},RR(1},RI(1]}
DIMENSION XX{50),YY{50}
DIMENSION RODTR(50}, ROOTI(50}, B(51), Ci52), D(52),
COEP({51), ROW{50}), COL{50}
CALL OVERFL(JACK)
THE CODING USING THE 3000 NUMBERS HAVE TO DO WITH A CUSTOM
MATRIX NORMALIZATION FCR A SPECIAL CLASS OF PROBLEMS
IF N GE 20 DIVIDE ALL MATRIX ELEMENTS BY 10.0
DO 3050 I = 1,N
DO 3050 4 = 1.N
A{I,J) = AlI,J)/10.0
CONT INUE
JACK=0
M=N
NR=0
L=M
K=1-1
BIG=CRIT
JJ=0
FIND LARGEST ROW ELEMENT TO LEFT OF DIAGONAL
DO 10 J=1,K
AA = ABS(A(L,J))
IF {AA.LE.BIG} GO TO 10

BIG = AA
JJ=J
CONTINUE

IF ALL ELEMENTS LEFT OF DIAGONAL ARE LE CRITERIA GO TO COMPUTE
EIGENVALUES OF REDUCED MATRIX

IF {(JJ.EQ.0) GO TO 70

SHIFT ROWS AND COLS IF NECESSARY

PAGE 0001
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0025
0026
0027
0028
0029
0030
0031
0032
0033
0034

0035

0036
0037
0038
0039

0040
0041
0042
0043
0044

0045
0046
0047
0048
0049

0050
0051

0052
0053
0054
0055
0056
0057

0058
0059
0060
0061
0062
0063
0064
006%

0066
0067
0068
0069
0070
0071
0072

RELEASE

oy

20

30
40

42

45
50

60

65

68

70

80

1082

1085

1.1 CHARD v DATE = 73219 08/52/18

IF {JJ.EQ.K) GO TO 49
DO 20 J=1,M
X = AlJdJd,J)
AlJd,J) = A(K, )
AlKsJ)=X
DO 30 I=1,L
X= A{I,4J)
A(TI,JJ1=A(1,K)}
A{IK)=X
CONTINUE
MAKE SIMILARITY TRANSFORMATION CON MATRIX
DI = 1.0 / A{LsK)
ROW YN EFFECT 1S THE LEFT OR TNVERSE STMILARITY MATRIX
COL IN EFFECT IS THE RIGHT SIMILARITY MATRIX
DO 42 J=1.,M
ROW{ J)=A{L,d)
COL{J) = — ROW{J} = DI
COL(K) = DI
{(ROW + 1) * A WHERE ROW TS KTH ROW,I THE IDENTITY MA
DO 50 J=1 .M
SUM = 0.0
DO 45 [=1,M
SUM=SUM+A (I 5 J) *ROW{T}
Al Ky J)=SUM
A * (COL + I} WHERE COL IS KTH ROW,I THE IDENTITY MA
FIRST K ROWS LESS KTH (COL.
DO 60 I=1,K
DO 60 J=1,M
IF {(J.EQ.K) GO 7O 60
A(IoJI=A(I,JI+ALT K)*COLLJ)
CONTINUE
LTH ROW
DO 65 J=1.M
AlL,Jd} = 0.0
KTH COL
A{L,K} = 1.0
DO 68 I=1,K
A(I,K)=ACT K)*COL(K)
L=L-1
IF {(L.EQ.1} GO TO 70
GO TO 2 :
SET UP TO COMPUTE ROOTS OF REDUCED OR FULL MATRIX
CONTINUE
IF {(L.EQ.M) GO TC 200
COEP{1l) = 1.0
J=1
DO 80 I=L oM
J=J+1
COEP{J)=—AlL,T)
CONTINUE
J BECOMES DEGREE OF PDLYNCMIAL
J=J4-1
CALL OVERFL{JACK])
IF (JACK.EQ.1} WRITE (6,10821}
FORMAT{1H O, 15X; 1 THOVERFLOW IN CHARD)
CALL POLYRF{COEP»JsXX,YY,IEPR]
IF (IERR.NE.O} WRITE (6,1085) IERR
FORMAT(1HO0,10X,13HPOLRF TIERR =,78)
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FORTRAN IV G1

0073
0074
0075
0076
0077
0078
0079

0080
0081
0082

0083
0084
0085
0086
0087
oo0ss8
0089
0090
0091

0092
0093
0094
0095
0096
0097
0098
0099
0100
0101
0102
0103
0104

0105
0106
0107

0108
0109
0110
0111
0112
0113
0114
0115
0116
0117
o118
0119

RELEASE

¢

90

1092

95
1095
100

[m}

200

210

1210

220

500

1510

3150

3200

1520

540
1540

1.1 CHARD DATE = 73219 08/52/18

STORE J ROOTS

DO 90 I=1,J

NR=NR+1

ROQTRLI} = XX{I}

ROCTI(IY = YY(I)

FRINR}=XX{I}

RIINRI=YY(I)

IF (IPRNT.EQ.O0) GO TO 100

PRINT COEFF FOR J ROCTS

CALL VERIFY{ROOTR,ROOTI 4J»8,CsD)}
WRITE (6,1092) J
FORMAT(1HO;15X¢s 23HPOLYNOMIAL COEFFICIENTS//21X,14,3X,5HR0O0TS//

118Xy SHINPUT, 13X s 6HOUTPUT}

JI=J+1

00 95 I=1,JJ

WRITE (651095) CODEP(I} »B{(I)
FORMAT{1H s12X;E15.754XsEL5. T}
CONTINUE

IF (NR.GE.N} GO TO 500

M=N-NR

IF {M.EQ.1) GO 70 220

GO TO0 1

ONE EIGENVALUE IS A DIAGONAL ELEMENT
NR=NR+1

RRINRI=A{L,L}

RI(NR}=0.0

IF (IPRNT.EQ.2) WRITE (6,1210) NR,RR{NR)
FORMAT (1HO,10X,9HREAL ROOT,16,4X,EL5.8}
IFINR.EQ.N} GO TO 500

IF{L.EQ.2} GO TO 220

M=N-NR

GO 70 1

NP=NR+1

RRINR)=A{1,1)

PI(NR}=0.0

G0 TO 210

PRINT OUT N ROOTS IF CALLED FOR

CALL OVERFL{JACK]

IF { JACK.EQ.1)} WRITE (6,1510)
FORMAT(1HO, 15X, 15HOVERFLOW IN RF }
IF N GE 20 MULT., ALL ROOTS BY 4.0

DO 3150 I = 1,N

RR{I} =10.0%RR(L}

RI{I) =10.0%RI{I]}

CONTINUE

IF (IPRNT.EQ.0) RETURN

WRITE (6,1520)
FORMAT{L1HO0,25X, SHROOTS/ /10X, 4HREAL 12X, 4HIMAG)
DO 540 I=1,N

WRITE (651540) I.RR{I}LRI{I}
FORMAT(IH 52X514:4XsE15.8,4X,E15.8)
RETURN

END
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FORTRAN IV Gl
0001

0002
0003
0004
0005
0006
0007
0008
0C09
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
0050
0051
0052
0053
0054
0055
0056
0057

RELEASE

10

15

16

20

40

50

100

200
1200

220

1.1 POLYRF DATE = 73219 08/52/18

SUBROUTINE POLYRF{P,N,X,Y5;IERR]

VERSION OF JUNE 28,1967 BY JC BIDWELL - Al,A2 - PARTS UNKNOWN
DIMENSION Xx{1}, Y{1), P(1}

COMMON /C OEFER/PR{51) sMysA,E; AP,RR,RI 4 IERRR

IF ({NoLTel}eOR.{N.GT.50}}) GO TO 200

IERR = 0O
IERRR= 0
Jd=1

M = N+1

DO 10 I = 1.M

PR{I} = P(I}

CONTINUE

IF (N.EQ.1) GO TO 100

CONTINUE

CALL LEMBRT

IF (RI.EQ.0.0) GO TO 40

IF (RR.EQ.D.0}) GO TO 16

TEST = RI/RR

IF (ABS(TEST).LT.0.000001} GO TO 40

CONTINUE
X{J) = RR
Y(J) = RI

IF (IERRR.NE.O) GO TO 220
IF(J.EQ.N)} RETURN

J=Jd+1

X{J) = RR

Y{J} = -RI

IF(J.EQ.N) RETURN
J=J+1

M=M-2

X2 = 2.0%RR

XY = ~{RR*RR + RI*RI}

DO 20 I = 2,M
PRE{T) = PR{I} + X2*PR(T-1}
PR{I+1) = PR{I+1) + XY*PR{I-1)
CONTINUE
IF (M.EQ.2) GO TO 100
GO TO 15
CONT INUE
X{J} = RR
Y{J} = 0.0
IF (IERRR.NE.O) GO TO 220
IF (J.EQ.N} RETURN
J=J+1
=M-1
DO 50 I = 2,M
PRII) = PRUI) + RR*PR{I-1}
IF {M.EQ.2} GO TO 100
G0 TO 15
D = PR(1}
X{J} = -PR{2)/D
Y{J) = 0.0
RETURN
WRITE (6,1200) N
FORMAT(1HO;10Xs 3HN =,14,21HOUTSIDE LIMITS POLYRF)
IERR=1
RETURN
IERR = TERRR
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