

März 1974

KFK 1952

Institut für Material- und Festkörperforschung Projekt Schneller Brüter

Auslegung, Bestrahlung und Nachuntersuchung der UO₂ /PuO₂ -Brennstab-Bestrahlungsexperimente der FR 2-Kapsel-Versuchsgruppe 4b

P. Weimar, Th. Dippel, D. Freund

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 1952

J.

Institut für Material- und Festkörperforschung Projekt Schneller Brüter

Auslegung, Bestrahlung und Nachuntersuchung der

 UO_2/PuO_2 -Brennstab-Bestrahlungsexperimente der FR 2-Kapsel-Versuchsgruppe 4b

von

P.Weimar, Th.Dippel, D.Freund

Gesellschaft für Kernforschung mbH., Karlsruhe

VORBEMERKUNG

Der in dem vorliegenden Bericht dargestellte Bestrahlungsversuch basiert auf der Zusammenarbeit mehrerer Arbeitsgruppen im Kernforschungszentrum Karlsruhe. Die vielfältige Mühe und Sorgfalt aller Beteiligten sei ausdrücklich anerkannt. Die Autoren danken an dieser Stelle weiterhin allen, die unmittelbar zur Abfassung der Dokumentation beitrugen, insbesondere Herrn F. Bauer für die Ausarbeitung der Diagramme und Abbildungen und Frau B. Hauth für die Reinschrift des Manuskriptes sowie die redaktionelle Hilfe.

Februar 1974

P. Weimar, Th. Dippel, D. Freund

K U R Z F A S S U N G

Im Rahmen der im Karlsruher Forschungsreaktor FR 2 durchgeführten Brennstabbestrahlungsexperimente stellt die Bestrahlung von 35 Prüflingen mit UO_2 -PuO_2-Brennstoff – zusammengefaßt unter der Bezeichnung "Kapselversuchsgruppe 4b" – eine weitere Erprobung des SNR-Brennstabgrundkonzeptes im thermischen Fluß dar.

Die Bestrahlung wurde in Na/PbBi-Doppelkapseln durchgeführt, wobei jeweils 3 bis 4 Kurzprüflinge mit 80 mm Brennstoffsäule übereinander angeordnet waren. Bei einem PuO₂-Anteil von 20 Gew.-% betragen die Tablettendichten 84 und 90 % th.D., welches Schmierdichten von 80 bzw. 85 % th.D. entspricht. Die Brennstabhüllen aus austenitischem Edelstahl der Werkstoff-Nr. 1.4988 haben bei einem Außendurchmesser von 6,0 mm eine Wandstärke von 0,38 mm. Die Länge der Prüflinge beträgt 172 mm.

Die Bestrahlung der insgesamt 11 Kapselversuchseinsätzen wurde auf normalen FR 2-Brennelement- bzw. Isotopenkanalpositionen durchgeführt. Bei Stableistungen bis max. 620 W/cm und Hülloberflächentemperaturen von max. 770 ^OC wurden Abbrände von 10 bis etwa 120 MWd/kg M erreicht. Die Bestrahlungszeiten lagen zwischen 46,2 und 517,5 Tagen Vollastäquivalent. Alle Prüflinge blieben intakt.

In der vorliegenden Dokumentation wird nach der Darstellung von Aufgabe und Ziel des Experimentes, Auslegung, Spezifikation und Herstellung der Prüflinge eine detaillierte Schilderung des Bestrahlungsablaufes gegeben. Hieran anschließend werden sämtliche Ergebnisse der zerstörungsfreien und der zerstörenden Nachuntersuchung dargestellt und vergleichend analysiert.

ABSTRACT

Design, Irradiation and Post Irradiation Examination of the UO₂/PuO₂ Fuel Pin Irradiation Experiments of the FR 2 Capsule Group No. 4b

The irradiation of 35 fuel pin samples with UO_2 -Pu O_2 fuel of the experiment called "Capsule Group No. 4b", irradiated in the thermal flux of the Karlsruhe research reactor FR 2, represents a further testing of the SNR basic fuel pin concept.

The irradiation has been carried out in 11 Na/PbBi double-capsules, where 3 - 4 samples are stacked one above the other. The fuel column of 80 mm length consists of pellets with a Pu-content of 20 w/o. Two different fuel densities of 84 and 90 % T.D., corresponding to smeared densities of 80 resp. 85 % T.D., have been realized. The austenitic stainless steel claddings have an outer diameter of 6,0 mm with a wall thickness of 0,38 mm. The total length of the fuel pin is 172 mm.

The capsules have been irradiated at normal fuel element or isotope canal positions. At linear rod powers up to 620 W/cm and clad surface temperatures of max. 770 °C the burnup lies between 10 and 120 MWd/kg Metal. The samples have been irradiated between 46,2 and 517,5 days full power (44 MW) equivalent. All fuel pins are intact.

In the present documentation a compilation of design, specification and fabrication as well as a detailed description of irradiation and post irradiation examination results are given.

Inhalt

Seite 1. Einleitung 1 2. Aufgabe und Ziel des Experimentes 2 4 3. Auslegung und Spezifikation 3.1 4 Brennstabauslegung 3.2 Brennstoffspezifikation 6 3.3 Hüllrohrspezifikationen 8 3.4 Brennstabspezifikationen 10 4. Herstellung der Prüflinge 12 4.1 12 Ausgangspulver für die Brennstoffherstellung 4.2 Tablettenherstellung 14 4.3 14 Herstellung des Vibrierbrennstoffes 4.4 15 Brennstoffeigenschaften 4.5 15 Hüll- und Strukturmaterial 4.6 15 Hüllrohrprüfung 4.7 18 Stabherstellung 4.8 Stabprüfung 21 5. Bestrahlungseinrichtung 23 5.1 Versuchseinsatz 23 5.2 Bestrahlung im FR 2 29 6. Ablauf der Bestrahlung 29 6.1 Reaktorzyklen und Neutronenfluß 29 6.2 Temperatur und Stableistung 36 6.3 Thermische Abbrandberechnung 37 7. Zerstörungsfreie Nachuntersuchung 75 75 7.1 Äußere Vermessung 7.2 90 Durchleuchtung 7.3 γ -Profile und γ -Spektren 92 8. Zerstörende Nachuntersuchung 97 8.1 97 Spaltgasbestimmungen 8.2 104 Keramografie 8.3 Radiochemische Abbrandbestimmungen 110 8.4 Vergleich der radiochemischen und berechneten Abbrändwerte 110 9. Dokumentation der zerstörungsfreien und zerstörenden Nachunter-113 suchung 116 10. Schlußbetrachtung Literatur 118

		Seite_	,
I	Brennstabauslegungsvarianten der Versuchsgruppe 4b	4	
II	Kenndaten der Ausgangspulver	13	
III	Brennstoffanalysen	16	
IV	Hüllrohre und Prüfungsergebnisse	16	
V	Materialwerte für die Tabletten-Prüflinge, Nenndichte 90 % th.D.	19	
VI	Materialwerte für die Tabletten-Prüflinge, Nenndichte 84 % th.D.	20	
II	Materialwerte für die Prüflinge mit Vibrierbrennstoff, Nenndichte 80 % th.D.	22	
VIII	Länge der Tablettensäulen	27	
X	Länge der Vibrierpulversäulen	27	
X	Stabvermessung vor der Bestrahlung	28	
ХI	Bestrahlungsablauf der Kapselversuchseinsätze der Vg 4 b	32	
XII	Vertikaler Verlauf des thermischen Flusses in den Isotopen- kanal-Positionen in Hähe der Prüflingsmitte	- 34	
XIII	Instrumentierungsplan der Versuchsgruppe 4b	39	
XIV	Hülloberflächentemperaturen der Prüflinge	40	
XV	Mittlere Stableistungen der Prüflinge bei Zyklusbeginn und -ende	41.	
XVI	Thermische Abbrandwerte der Prüflinge	74	
XVII	Stabdurchbiegung nach der Bestrahlung	89	
XVIII	Längenvermessungen der Prüflinge (vor und nach der Bestrahlung)	91	
XIX	Veränderung der Brennstoffsäulenlänge	93	
xx	Freies Spaltgas - Spaltgasdruck	98	
IXX	Gebundenes Spaltgas	99	
XXII	Spezifische Poren- und Gitterspaltgasausbeute V' (mm^3/g)	101	
XXIII	Spaltgasbilanz	102	
VIX	Xe/Kr-Verhältnis, partiell und gesamt	103	
XXV	Vergleich der radiochemisch bestimmten und berechneten Abbrände	114	

Liste der Abbildungen

1	BE-Prüfling, Versuchsgruppe 4b	11
2	Alpha-Autoradiographien einer Tablette	17
3	Brennstofftabletten mit Stirnflächeneinsenkung	17
4	Röntgen-Aufnahme der Tablettensäulen in den Prüflingen	24
5	Röntgen-Aufnahme der Tablettensäulen in den Prüflingen	25
б	Röntgen-Aufnahme der einvibrierten Prüflinge	26
7	Ausschnitt aus der NaK/PbBi-Doppelkapsel	30
8	Temperaturverlauf innerhalb der Bestrahlungskapsel bei 550 W/cm Stableistung	31
9	Vertikaler Verlauf des thermischen Flusses	3 5
10	Temperatur-Stableistungscharakteristik Kapseltyp 4a	3 8
11	Kapselversuchsgruppe 4b, KVE 42	42
123456789012222222222233333355	Kapselversuchsgruppe 4b, KVE 43 ", KVE 44 ", KVE 45 ", KVE 47, Blatt 1 ", KVE 47, Blatt 2 ", KVE 47, Blatt 3 ", KVE 48, Blatt 1 ", KVE 48, Blatt 1 ", KVE 49, Blatt 2 ", KVE 49, Blatt 2 ", KVE 49, Blatt 3 ", KVE 49, Blatt 3 ", KVE 49, Blatt 3 ", KVE 49, Blatt 4 ", KVE 55, Blatt 1 ", KVE 56, Blatt 1 ", KVE 56, Blatt 1 ", KVE 57, Blatt 2 ", KVE 57, Blatt 2 ", KVE 57, Blatt 3 ", KVE 57, Blatt 3 ", KVE 58, Blatt 1 ", KVE 58, Blatt 2 ", KVE 58, Blatt 2 ", KVE 58, Blatt 2 ", KVE 58, Blatt 2 ", KVE 58, Blatt 3 Axiale Temperaturver teilung (Hülloberfläche)	434456789012555555555556666666
36 37	11 DF 12 11	67 68
38	n n	69
39		70
40 20	17 17 11 11	71
41 42	n n	72 73

		50100	
43	Prüfling 4B/32 nach der Bestrahl	ung 76	
44	Veränderungen der Stab-Außendurc	hmesser 78	
45	11 11	79	
46	11 11	80	
47	11 11	81	
48	11 11	82	
49	11 11	83	
50	11 H	84	
51	11 11	85	
52	11 II	86	
53	19 11	87	
54	17 13	88	
55	γ-Profil von Prüfling 4b/34	95	
56	γ-Profil von Prüfling 4b/30	96	
57	Brennstoffstruktur	106	
58	Brennstoffstruktur	107	
59	Brennstoffstruktur	108	
60	Brennstoffstruktur	109	
61	Abbrandverteilung über Brennstof	flänge, KVE 49 111	
62	Abbrandverteilung über Brennstof	flänge, KVE 57 112	
63	Abweichung der gerechneten gegen bestimmten Abbrand-Werten	über den radiochemisch 115	

, • ,

1

Soite

1. Einleitung

Die Versuchsgruppe 4b (Vg 4b) besteht aus 35 Kurzstäben. Als Brennstoff dient Mischoxid UO₂-PuO₂ verschiedener Dichte sowohl in Tabletten- als auch in einvibrierter Form. Diese Versuchsgruppe setzt die in Vg 4a begonnenen Abbrandversuche an Pu-haltigem Brennstoff fort.

Der Stabaufbau und die Bestrahlungsvorrichtung ist identisch mit dem in Versuchsgruppe 4a gewählten wie Brennstoffsäule mit Gasplenum am oberen Ende, bestrahlt in NaK/PbBi-Kapseln im stagnierenden Kühlmittel Natrium-Kalium.

Hinsichtlich der Versuchsgruppe 4a wurden folgende Parameter variiert:

612	Stabdurchmesser	hier	kleiner:	6	mm
-	Stableistung	hier	niedriger:	~ 500	W/cm
.	Max. Hülloberflächen-Temper	ratur		680	°C
-	Pu-Anreicherung	hier	höher:	~ 20	G ew %
	Tablettenform	hier	mit Dishing an de	en Stirnf	lächen
		bzw.	vibriertem Brenns	stoff	

Weiterhin wurden in dieser Bestrahlungsserie erstmals solche Hüllrohrabmessungen verwendet, wie sie für die Brennstäbe des Prototyps des Natriumgekühlten Schnellen Brüters (SNR) vorgesehen sind.

In diesem Bericht werden alle Details über die 35 Prüflinge dieser Versuchsgruppe angegeben, wie Aufgabenstellung, Auslegung, Spezifikation, Herstellung der Prüflinge, Bestrahlungsablauf, zerstörungsfreie und zerstörende Nachuntersuchung der Prüflinge. Diese Zusammenstellung basiert auf einer Vielzahl von internen Niederschriften und persönlichen Mitteilungen. In der folgenden Übersicht ist der Zeitablauf des Experimentes und die für die einzelnen Schritte verantwortlichen Stellen und Personen angegeben.

Zeitraum	Teilarbeit	Institution/Hauptbeteil.
1967/68	Vorüberlegungen und Versuchsauslegung	IAR; Karsten, Gerken
1967/68	Bestrahlungskapseln	IRE; Häfner, Bojarsky
1967	Spezifikationen	IAR; Karsten, Gerken
1969	Herstellung der Prüflinge	IMF; Dippel, Kummerer, Triemer
1967/71	Organisation der Bestrahlung und Betreuung	IAR; Gerken IRE; Häfner / IMF; Freund
1967/71	Bestrahlung im FR 2	Abt.Reaktorbetrieb FR 2
1971/72	Organisation der Nachuntersuchung und Betreuung	IMF; Geithoff, Weimar
1969/72	Zerstörungsfreie Nachuntersuchung	RB/Z;Scheeder,Enderlein
1972/73	Spaltgasuntersuchungen	RB/CuM; Gräbner
1970 + 72	Keramografie	RB/Z; Pejsa
1972/73	Abbrandbestimmung	IRCH; Wertenbach
1973	Zusammenfassung und Dokumentation der Ergebnisse	IMF; Weimar, Freund, Dippel

2. Aufgabe und Ziel des Experimentes

Die Bestrahlung von prototypischen Brennstabprüflingen (hinsichtlich der Durchmesser) mit Mischoxidbrennstoff ist die Hauptaufgabe dieser Kapselversuchsgruppe. Die Simulation der Schnellbrüter-Verhältnisse für die Brennstäbe weicht in folgenden Punkten von der Wirklichkeit ab:

- Die Stablängen entsprechen nur einem Bruchteil der Abmessungen echter Brüterbrennstäbe.
- Die Brutstoffpartien in axialer Richtung fehlen.
- Die Bestrahlung erfolgt (wie in Vg 4a) wieder im thermischen Fluß, mit den hieraus resultierenden Unterschieden in der radialen Wärmequelldichteverteilung, der Spaltprodukterzeugung sowie der Hüll- und Strukturmaterialbelastung.
- Die Kühlung erfolgt durch stagnierendes Natrium.

Unter Berücksichtigung dieser Abweichung von den zu erwartenden Beanspruchungen – im Hinblick auf die Übertragbarkeit auf realistische Bestrahlungen im schnellen Fluß – muß die Aufgabenstellung wie folgt festgelegt werden:

- Es sollen Prüflinge mit Mischoxid-Brennstoff unter schnellbrüterähnlichen Bedingungen bis zu hohen Abbränden bestrahlt werden.
- Die Brennstoffsäulen haben unterschiedliche Dichte, Topographie (vibrierter bzw. gesinterter Brennstoff) und Durchmesser.
- Die Zielabbrände sollen bis zu 80.000 MWd/t variiert werden.

Die Bestrahlung kann unter Berücksichtigung der erwähnten Einschränkungen folgende Aussagen liefern:

- Ist das Stabgrundkonzept mit dem neuen prototypischen Stabdurchmesser
 6,0 mm bei einer Wandstärke von 0,38 mm für Bestrahlungen bis zu
 hohen Abbränden geeignet ? Bleiben die Prüflinge intakt ?
- Ändert sich die äußere Geometrie der Prüflinge ?
- Welche radialen und evtl. axialen Strukturänderungen erfährt der Brennstoff ?
- Wie ändert sich die Spaltstoffverteilung und welche Folgerungen ergeben sich hieraus für das Stabverhalten ?
- Wie ist die Verteilung der Spaltprodukte ?
- Wie groß ist der Anteil des freien und des gebundenen Spaltgases ?

3. Auslegung und Spezifikation

3.1 Brennstabauslegung

Wie einleitend bereits erwähnt, werden mit der Bestrahlung der Prüflinge der Versuchsgruppe 4b die Abbrandversuche an Prüflingen mit UO₂-PuO₂-Brennstoff der Versuchsgruppe 4a $\int 1,2,3,4 \int$ fortgesetzt, wobei im Hinblick auf die Brennstabauslegung eine weitere Annäherung an den zum Auslegungszeitpunkt diskutierten SNR-Brennstab angestrebt wird: Die Hüllrohrabmessungen (6⁰ x 0,38) sowie die Pu-Anreicherung (20 Gew.-%) und die Tablettenform mit beidseitiger Stirnflächeneinsenkung entsprechen dem SNR-Konzept. Als weitere Varianten werden Tabletten mit einseitiger Einsenkung, Dichten von 84 und 96 % th.D. sowie Brennstäbe mit vibriertem Brennstoff mit 80 % th.D. verwendet. Die Aufteilung der Prüflinge auf die einzelnen Auslegungsvarianten ist in Tabelle I zusammengestellt.

Prüfling Nr.	Brennstoff Form	Dichte (% th.D.)	Stirnflächen- einsenkung
4 B/1- 6	Tabletten	90	beidseitig 2 x 1,5 v/o
4 B/7-1 2	Tabletten	90	einseitig 3 v/o
4 B/13- 24	Tabletten	84	einseitig 3 v/o
4B/25 -3 5	vibriert	80	-

Tabelle I:	Brennstabauslegungsvarianten der Versuchsgruppe	4b

Die Bestrahlungsbedingungen orientieren sich an den SNR-Bedingungen und sind durch folgende Festlegung von Hülltemperatur, Stableistung und Abbrand gegeben: $\sum 5$

-	Maximale Nominalstableistung	600 W/cm
	Mittlere Nominalstableistung	500 W/cm
-	Maximale Nominalhülltemperatur, außen	450 ^o c
-	Mittlerer Abbrand	80 MWd/kg Metall

Weiterführende Rechnungen während der Auslegung und Vorbereitung der Versuchsgruppe 4b ergaben, daß im SNR-Betrieb höhere maximale Hülloberflächentemperaturen zu erwarten sind. Dies führte zu einer Auslegungsänderung, welche zu Hülloberflächentemperaturen $T_{Ha,max}$ von ca. 680 °C $\angle 6 \angle 7$ sowie zu einer Modifikation der benutzten Bestrahlungskapsel führten (vergl. Kap. 5 und 6.2).

Die Bestrahlung der Prüflinge wird auf normalen Brennelement- bzw. Isotopenkanalpositionen des FR 2 (vergl. Kap. 5) durchgeführt. Der ungestörte thermische Fluß des FR 2 beträgt maximal ca. 1×10^{14} n/cm²sec.

Der Brennstab besteht aus einer Hülle mit verschweißten Endstopfen, der Brennstoffzone, bestehend aus Tabletten bzw. vibriertem Brennstoff, mit je einer UO₂-Isoliertablette am oberen und unteren Säulenende (nicht bei den vibrierten Säulen), einem Führungsstücke sowie einer Feder zur Transportsicherung. Zusätzlich ist im unteren Endstopfen sowie im Führungsstück ein Rh-Plättchen zur Absorption des axialen Flußanteils angebracht. Durch die Sinterstahlfilter im Führungsstück und oberen Endstopfen wird schließlich gewährleistet, daß beim Öffnen des Stabes nur gasförmige Spaltprodukte entweichen können. Damit erhält man folgende Stabeinteilung:

Oberer Endstopfen	22	mm	
Spaltgasraum (mit Führungsstück)	45	mm	55 mm bei vibr. Brenn- stoff (keine
Isoliertablette oben	. 5	mm	Isoliertabletten)
Brennstoffsäule	80	mm	
Isoliertablette unten	5	mm	
Unterer Endstopfen	15	mm	
		a statement	
Gesamtlänge	172	mm	

Die Bezeichnung der Stäbe ist an zwei Schlüsselflächen des oberen Endstopfens angebracht.

3.2 Brennstoffspezifikation

3.2.1 Chemische Zusammensetzung

- Brennstoff:
- Anreicherung: Pu/U+Pu = 2
- Isoliertabletten:
- Stöchiometrie O/Me:
- Chemische Reinheit:

Pu/U+Pu = 20 Gew.-%, Rest Unat. Unat $1,98 \pm 0,02$ Verunreinigungen insgesamt maximal 2500 ppm entsprechend 4 ppm Boräquivalent, mit folgenden Einschränkungen: Verunreinigung Grenzwert in ppm С 150 H₂0 100 Ν 100 Cl 50 \mathbf{F} 50 Der gesamte Gasgehalt des Brennstoffes soll nicht höher als 0,1 Norm-cm³ je

Gramm Brenrs toff bei einer Freisetzungstemperatur von 1600 $^{\circ}$ C sein.

3.2.2 Isotopenzusammensetzung

- Gew.-% von Pu:

Pu-239	90,9 <u>+</u> 0,2
Pu-240	8,15 <u>+</u> 0,15
Pu - 241	0,83 <u>+</u> 0,05
Pu-242	0,04 <u>+</u> 0,005
U-23 5	0,7 <u>+</u> 0,1
U-23 8	99,3 <u>+</u> 0,1

3.2.3 Homogenität im Mischbrennstoff

Gew.-% von U_{nat}:

- Die Komponenten des Mischbrennstoffes sollen zu größtmöglicher Homogenität gesintert werden.
- Die Pu0₂-Partikel sollen ≤ 0,15 mm sein

UO2/PuO2-Mischoxid

- 3.2.4 Brennstoff-Form
 - Es kommen zylindrische, maßgesinterte Tabletten zum Einsatz.
 - Die Tabletten weisen an den Stirnflächen Einsenkungen von 1,5 Vol.-% (beidseitig) bzw. 3 Vol.-% (einseitig) entsprechend der Aufteilung in Tabelle I auf.
 - Elf Prüflinge enthalten Brennstoffsäulen aus vibriertem Brennstoff (vergl. Tabelle I).
- 3.2.5 Brennstoffdichte (Zuordnung vergl. Tabelle I)

	Geometrische Dichte:	84 <u>+</u> 2,2 ; 90 <u>+</u> 2,2 % th.D.
	Materialdichte:	$87 \pm 2,2$; $93 \pm 2,2 \%$ th.D.
\$229	Vibrierdichte:	80 <u>+</u> 1,5 % th.D.
	Isoliertabletten:	95 + 2,2 % th.D.

3.2.6 Tablettengeometrie

· 🕳	Tablettendurchmesser:	5,10	t	0,03
-	Tablettenhöhe:	6,0	土	1,0
-	Isoliertablettenhöhe:	5,0	±	0,2

3.2.7 Oberflächenbeschaffenheit der Tabletten

-	Kantenabplatzungen	≤ 0,3 mm
---	--------------------	----------

- Risse maximal 0,2 mm lang und 0,1 mm breit
- Flächenabplatzungen maximal 2 mm Durchmesser

3.2.8 Untersuchungen und Prüfungen am Brennstoff

- BET-Oberfläche (m^2/g)
- Stöchiometrie
- Primärpartikelgröße (max.)
- Sekundäragglomerate (max.)
- Chemische Analyse (aliquote Mischung aller Chargen) mit Angabe für die Elemente Ag, B, C, Ca, Cd, Cl, Co, Cr, Cu, F, Fe, Mg, Mn, Mo, N, Ni, Pb, V, H₂O und Seltene Erden (Gesamtgehalt in ppm Boräquivalent)
- Pu-Analyse mit Mischungsverhältnis Pu-239 + Pu-241 / U+Pu
- Bestimmung von Durchmesser, Dichte und Höhe jeder Tablette einer Brennstoffsäule

- Keramographische Untersuchungen an den Tabletten mit Radialschliffen (Vergrößerung 10-fach), α-Autoradiografie sowie Schliffbildern (x 200) von Tablettenrand und -mantelfläche (10 Tabletten je Charge).
- Dichteverteilung des vibrierten Brennstoffes mit Duschstrahlmethode.
- Keramografische Untersuchung an vibrierfähigen Kornfraktionen (Schliffaufnahmen (x 400) und α -Autoradiografie).

3.3 Hüllrohrspezifikationen

3.3.1 Werkstoff

Die Hüllrohre werden aus dem Werkstoff

X8CrNiMoVNb1613 (Werkstoff-Nr. 1.4988)

hergestellt.

Chemische Zusammensetzung:

Element	Gew%
C	≤ 0,1
Si	0,3 - 0,6
Mn	1,0 - 1,5
Cr	15,5 - 17,5
Ni	12,5 - 14,5
Мо	1,1 - 1,5
V	0,6 - 0,85
N2	0,1
Nb - Ta	≤ 1,2
P .	≤ 0,02
S	≤ 0,02
Fe	Rest

3.3.2 Abmessungen

-	Außendurchmesser:	6,0 <u>+</u> 0,04 mm
-	Innendurchmesser:	5,24 <u>+</u> 0,025 mm
85	Wanddicke:	0,38 ± 0,03 mm
-	Geradheit:	1:1500, bezogen auf jeweils 10 cm Länge
-	Ovalität:	Innerhalb der Außendurchmessertoleranz

3.3.3 Oberflächenbeschaffenheit

-	Rauhigkeit:	≤ 2 μm
	Oberflächenriefen und -fehler:	≤ 20 μm
	Oberflächenrisse:	Nicht zulässig
	Oberflächenbeschaffenheit:	Innere und äußere Oberfläche muß
		frei von Anlauffarben, Öl, Schmutz,
		Metallspänen und sonstigen Fremd-
		körpern sein.

3.3.4 Materialbedingungen

- Vorbehandlung:
- Korngröße:
- Mechanische Eigenschaften:

Innere Fehler:

Einschlüsse:

10 - 20 % kaltverformt und Wärmebehandlung (40 h - 750 °C) kleiner 2,5 Körner/cm² bei 100-facher Vergrößerung (ASTM Nr. 5) Zugfestigkeit, Streckgrenze, Bruchdehnung: maximal und minimal. Werte bei RT und 650 °C. kleiner 10 % der Wandstärke kleiner 0,05 mm oder 10^{-3} mm²

- Abdruckversuch nach DIN 50104 mit 200 at Druck
- Querfaltversuch nach DIN 50136
- Aufweitversuch nach DIN 50135

3.3.5 Hüllrohrprüfungen

Für jedes Hüllrohr wird ein Prüfzeugnis erstellt. Die Prüfzeugnisse des Herstellerwerkes müssen den Werksabnahmezeugnissen nach DIN 50049/3B entsprechen. Die Prüfungen betreffen folgende Punkte:

•	Werkstoff:	Chemische Analyse entsprechend
		Werksabnahmezeugnis.
	Abmessungen:	Vermessung von Außen- und Innen-
		durchmesser sowie Wandstärke mit
		geeigneten Verfahren, entsprechend
		für Geradheit und Ovalität.
	Oberflächenbeschaffenheit:	Durchführung einer Riß-, Rauhig-
		keits und Meßprüfung

- Materialbedingungen:

Nachweis von Vorbehandlung, Korngröße, mechanischen Eigenschaften, Untersuchung auf innere Fehler und Einschlüsse, Durchführung von Abdrück-, Querfalt- und Aufweitversuchen.

3.4 Brennstabspezifikationen

3.4.1 Innere Geometrie

- Länge der Brennstoffsäule (mm) 80 ± 2 mm
- Länge einer Isoliertablette 5 ± 0,2 mm
 (Die Brennstäbe mit vibriertem Brennstoff enthalten keine Isoliertabletten)
- Im unteren Endstopfen ist ein Rh-Plättchen zur Absorption des axialen Flußanteils befestigt.
- Innerer Aufbau gemäß Zeichnung Nr. TA2K-16-07-3-2861 (Abb. 1) und Tabelle I (s.Seite 4).

3.4.2 Äußere Geometrie

***	Die Gesamtlänge des Stabes beträgt	172 <u>+</u> 0,5 mm
	Außendurchmesser	6,0 <u>+</u> 0,04 mm
	Schweißnahtdurchmesser	≤ 6,15 mm

3.4.3 Füllgas

- Die Stabprüflinge erhalten vor dem Zuschweißen eine Helium-Füllung.

3.4.4 Schweißnähte

Die Endkappen werden in die Hüllrohre unter Helium aufgeschweißt.
 Die Schweißnähte dürfen diametral um maximal 0,15 mm überstehen.
 Eine maximale He-Leckrate von 10⁻⁸ Torrliter/sec ist zulässig.

- 11 -

3.4.5 Prüfung an den fertigen Brennstäben

- Länge
- Durchmesser, jeweils um 90° versetzt, bei b) um 60° versetzt
 - a) an den Endstopfen
 - b) an den Schweißnähten 🗲 6,15 mm
 - c) am Hüllrohr, je 10 mm
- Durchbiegung und Rundheit werden auf einer besonders dazu geeigneten Meßeinrichtung profilometrisch gemessen und aufgezeichnet.
- Gewicht
- He-Lecktest: Zum Nachweis der Dichtheit der Schweißnähte ist jeder Brennstab im Anschluß an die letzte Schweißung einem Helium-Dichtheitstest unter äußerem Vakuum zu unterziehen. Die Leckrate soll kleiner als 10⁻⁸ Torrliter/sec sein.
- Röntgen-Prüfung: Alle Schweißnähte werden einer Röntgenprüfung unterzogen. Von jedem Stabende werden 2 Aufnahmen (um 90[°] verdreht) senkrecht zur Stabachse angefertigt. An den Schweißnähten dürfen keinerlei Fehler erkennbar sein.
 Desweiteren ist über die gesamte Brennstablänge ein Röntgenbild anzufertigen, aus dem die Lage der Innenteile, insbesondere auch die vorgespannte Länge der Schraubenfeder, eindeutig hervorgeht. Die Ergebnisse sind zu protokollieren.
- Kontamination: Die Oberflächenkontamination darf nicht mehr betragen als

 22α -Zerfälle pro cm² und Minute Diese Kontamination ist als obere Grenze für haftende Verunreinigungen zu betrachten. Der Wischtest dagegen soll keine Kontamination zeigen.

4. Herstellung der Prüflinge

4.1 Ausgangspulver für die Brennstoffherstellung

Zur Verarbeitung zu Tablettenbrennstoff standen als oxidisches Ausgangspulver folgende Produkte zur Verfügung:

- UO2 mit Natururan, ADU-gefällt, von Fa. NUKEM
- PuO₂ mit nominell 8,3 % Pu-240, aus verschiedenen Chargen der Lieferung der U.S.A.E.C.

Zur Herstellung des Tablettenbrennstoffes wurde das UO₂ unter Argon-5 %-Wasserstoffgemisch bei 1250 °C und das PuO₂ unter Kohlendioxid bei 1100 °C je 2 Stunden lang geglüht, um die Sinteraktivität dieser Pulver zu reduzieren. Zur Herstellung des Vibrierbrennstoffes wurde das Pulver im Anlieferungszustand belassen. In Tabelle II sind die Isotopenzusammensetzungen und die maximale Teilchengröße angegeben.

		Meßergebnisse Hanford/U.S.A.	(Gew%) von Karlsruhe
Charge C0-25-10-3	Pu-239 Pu-240 Pu-241 Pu-242	90,940 8,154 0,868 0,038	90,974 8,167 0,819 0,040
Charge C0-25-10-23	Pu-239 Pu-240 Pu-241 Pu-242	90,844 8,238 0,877 0,041	90,899 8,209 0,852 0,040
Charge C0-26-6-2	Pu-239 Pu-240 Pu-241 Pu-242	90,961 8,199 0,802 0,038	90,997 8,161 0, 8 02 0,040
Charge C0-26 - 6-8	Pu-239 Pu-240 Pu-241 Pu-242	90,845 8,301 0,813 0,040	90,850 8,240 0,867 0,044
Maximale Teilchen- größe (mm)		UO2 PuO2	< 0,063 < 0,032

Tabelle II: Kenndaten der Ausgangspulver

4.2 Tablettenherstellung

In zwei Mischansätzen wurden abgewogene UO₂- bzw. PuO₂-Mengen mechanisch in einem Schaufelmischer trocken gemischt. Die Homogenität und das Verhältnis Pu/U+Pu wurde durch chemische Analyse kontrolliert. Diese Mischungen wurden mit Polyvenylalkohol und Stearinsäure zu preßbaren Granulaten verarbeitet. Da Tablettenhöhe, Tablettendurchmesser und das Volumen der einseitigen bzw. beidseitigen Stirnflächeneinsenkung durch Maßsintern eingestellt werden mußte, wurde mit Vorversuchen die günstigste Preßdichte und der Schrumpfungsgrad von Höhen und Durchmessern bestimmt. Mit den so gewonnenen Daten wurde das Granulat auf einer mechanischen Presse mit 2 to/cm² Druck verpreßt. Mit Hilfe eines entsprechend geformten Oberstempels bzw. einer Oberund Unterstempelkombination wurde die einseitige bzw. beidseitige Stirnflächeneinsenkung dabei in die Preßkörper eingepreßt.

- 14 -

Eine stichprobenweise Prüfung der Preßlinge hinsichtlich der Dimensionen und ihrer Gewichte schloß sich an. Danach wurde das Gleitund Bindemittel durch Erhitzen der Preßlinge unter Kohlendioxid entfernt. Die Tabletten mit 94 % th.D. aus dem 1. Mischansatz wurden unter Stickstoff-8 %-Wasserstoff bei 1450 °C, die Tabletten mit 84 % th. D. aus dem 2. Mischansatz bei 1580 °C unter Argon-5 %-Wasserstoff gesintert. Die Sinterzeit war jeweils 2 Stunden.

Die Isoliertabletten aus UO₂ mit Natururan waren nach einem Verfahren ähnlich dem beschriebenen hergestellt worden.

4.3 <u>Herstellung des Vibrierbrennstoffes</u>

Das gewählte Herstellungsverfahren geht von Pulvern mit hoher Sinteraktivität aus. Diese wurden granuliert, zu Preßlingen hoher Dichte gepreßt und in grobe Fraktionen gebrochen. Aus dem Brechgut wurden dann die Fraktionen ausgesiebt, die nach einem Rundungsprozeß bzw. dem anschließenden Entwachsen und Sintern bei 1700 ^OC in Argon-5 %-Wasserstoff hauptsächlich in die folgenden vier Teilchengrößenbereiche fielen;

Fraktion	Teilchengröße					
I	1,25 - 1,50 mm					
II	0,8 - 1,0 mm					
III	0,1 - 0,2 mm					
IV	< 0,06 mm					

Mit dem zweistündigen Sinterprozeß bei 1700 ^OC wurde eine möglichst hohe Sinterdichte der Brennstoffpartikel angestrebt.

4.4 Brennstoffeigenschaften

Aus den Tablettenmengen jeder Dichte und aus den Fraktionen des Vibrierbrennstoffes wurden Proben entnommen und mit diesen chemische Analysen durchgeführt. Die Ergebnisse dieser Analysen sind in Tabelle III zusammengefaßt. Die Abb. 2 zeigt Autoradiographien, die die hinreichende Homogenität der Brennstofftabletten und der Vibrierbrennstoffpartikel nachweisen. Die Abb. 3 ist eine Aufnahme von Brennstofftabletten, deren Kantenbeschaffenheit von typischer Qualität ist.

4.5 Hüll- und Strukturmaterial

Zur Herstellung der Stabumhüllung wurde Rohr- und Stabmaterial aus austenitischem Edelstahl X8CrNiMoVNbl6l3, Werkstoff-Nr. 1.4988 bereitgestellt. Die Nennabmessungen dieses Halbzeuges waren:

- bei den Rohren Durchmesser 6,0 mm, Wandstärke 0,38 mm
- beim Stabmaterial Knüppeldurchmesser ca. 10 mm .

4.6 <u>Hüllrohrprüfung</u>

Die Prüfung der Rohre führte die Fa. NUKEM aus. Zur weiteren Verwendung wurden die Rohre Nr. 1, 3 und 4 aufgrund der Angaben im NUKEM-Prüfzeugnis Nr. 944/275/68 vom 26.4.1968 ausgewählt.

Querfehler, Längsfehler und Wandstärke wurden mit Ultraschall ermittelt. Der Innendurchmesser wurde mit einem pneumatischen Verfahren, der Außendurchmesser kontinuierlich mit einem mechanischen Taster gemessen.

Materialtyp	Tabletten mit 90 % th.D.	Tabletten mit 84 % th.D.	Vibrier- brennstoff	
$\frac{Pu}{U + Pu}$ 1. Analyse 2. "	19,94 19,85	20 , 22 -	+) +)	
Chemische Verunreinigungen	(mqq)	(ppm)	(ppm)	
C Ca Mg Cl F Ag B Cd Co Cr Cu Fe Mn Mo Ni Pb V W Zn	22 130 20 66 8 5 1,2 5 20 90 20 14 20 20 4 4 5	109 55 10 > 5 10 - ++) > 1 > 1 > 1 > 1 > 1 > 5 10 > 5 155 155 > 155 > 10 > 155 > 155 > 155 > 105 > 100 - > 100 - > 100 - > 100	50 40 50 66 10 < 1 4 < 1 40 < 5 160 5 < 10 40 < 10 < 10 - 30	
0/Me-Verhältnis		1,98 - 1,99 ++	+)	

Tabelle III: Brennstoffanalysen

+) Kein geeignetes Analysenmaterial

++) Nicht analysiert

+++) Angabe auf Grund späterer Messungen

Tabelle IV: Hüllrohre und Prüfungsergebnisse

Hüllrohr-Nummer nach Prüfzeugnis 944	/275/68	l	3	4	
Querfehleranzeige	(µ)	0.B.	ca. 25	o.B	
Längsfehleranzeige (µ)		∘.B.	ca. 20	ca. 10	
Wandstärke (mm)		0,350 - 0,380	0,350 - 0, 390	0,350 - 0,370	
Innendurchmesser	(mm)	5,225 - 5,235	5,220 - 5,260	5,230 - 5,235	
Außendurchmesser	(mm)	5,975 - 6,000	5,975 - 6,025	5,975 - 5,990	

90 % Nenndichte (1. Mischungsansatz)

<u>Abb. 2</u> Alpha-Autoradiographien einer Tablette

Einseitige Einsenkung 3 Vol.-%

Beidseitige Einsenkung 2 x 1,5 Vol.-%

<u>Abb. 3</u>

Brennstofftabletten mit Stirnflächeneinsenkung

- 17 -

Als Eichfehler für die Quer- und Längsfehlerprüfung dienten Testriefen, auf Rohrstücke außen und innen angebracht. Die Riefentiefe für den Querfehler außen war 28 μ , für den Querfehler innen 19 μ . Für den Längsfehler außen betrug die Riefentiefe 32 μ , für den Längsfehler innen 37 μ .

Zur Eichung von Wandstärke und Außendurchmesser dienten genau vermessene Testrohrstücke. Das Normal für die Wandstärke hatte (in 2 Stufen) Abmessungen von 0,35 bzw. 0,41 mm. Das Außendurchmessernormal hatte die Maße 5,97 bzw. 6,03 mm.

Die wichtigsten Ergebnisse für diese drei Rohre sind in Tabelle IV zusammengefaßt.

4.7 Stabherstellung

4.7.1 Stabprüflinge mit Tablettenbrennstoff

Die Prüflinge mit Tablettenbrennstoff enthalten 13 Brennstofftabletten sowie an den Enden der Brennstoffsäule je eine UO_2 -Isoliertablette. Jede Tablette wurde einzeln vermessen hinsichtlich Gewicht und Dimension. Alle diese Ergebnisse sind in Datenlisten zusammengefaßt $\sqrt{7}$. Die Prüflinge 4b/1 bis 4b/12 enthalten Tabletten mit 90 % th.D., die Prüflinge 4b/13 bis 4b/28 Tabletten mit 84 % th.D. (bei der angegebenen Dichte handelt es sich um die geometrische Dichte, vergl. 3.2). In den ersten sechs Prüflingenjeder Serie sind die Tabletten mit einseitiger Stirnflächeneinsenkung, in die restlichen Prüflinge wurden die Tabletten mit beidseitiger Stirnflächeneinsenkung eingebaut. Die Zusammenfassung der Materialwerte aller Prüflinge bringen die Tabellen V und VI. Diese Angaben werden dort noch durch die Bezifferung der verwendeten Hüllrohrabschnitte ergänzt.

Die Tablettensäulen wurden durch eine Kappe, die das offene Rohrende vor Kontamination schützte, in das Hüllrohr eingeschoben, nachdem zuvor der untere Endstopfen unter Helium-Schutzgas eingeschweißt worden war. Danach wurde die Kappe abgenommen, der Metalleinsatz mit dem Sinterfilter und die Haltefeder eingeführt, der Prüfling mit Helium gefüllt und unverzüglich mit dem oberen Endstopfen verschlossen. Nach sorgfältiger optischer Kontrolle des Stopfensitzes wurde dieser unter Helium mit dem Hüllrohr verschweißt. Der obere Endstopfen trug jeweils die Bezifferung des Prüflings.

Desited to a			13 Bren	Brennstofftabletten		2 Isoliertabletten		
Nr.	Nr./Abschnitt	Gewicht (g)	Höhel) (mm)	Geom.Dichte ²) (% th.D.)	Pu-Menge ³) (g)	Gewicht (g)	Höhe ¹⁾ (mm)	Dichte ²) (% th.D.)
4B-1	1/5	15,870	79 , 11	90,04	2,799	2,089	9,77	96,30
4B-2	1/8	15,924	79,21	90,00	2,809	2,089	9,78	96 ,3 8
4B-3	1/10	15,893	79,23	89,59	2,804	2,097	9,80	95 , 95
4B-4	1/12	15,935	79,24	89,68	2,811	2,104	9,81	96,05
4B-5	1/13	15,942	79,26	89,57	2,812	2,086	9,79	95,75
4B- 6	1/14	15,925	79,30	89,27	2,809	2,102	9,79	96,03
4B-7	1/15	16,029	79,18	89,85	2,828	2,096	9,78	95,95
4B-8	1/20	16,095	79 ,3 5	89,68	2,839	2,099	9,79	96,00
4B-9	1/24	16,065	79,26	89,53	2,834	2,102	9,80	95,80
4B-10	3/1	16,042	79,26	89,26	2,830	2,092	9,76	95,10
4B-11	3/2	16,189	79,64	89,34	2,856	2,095	9,77	95,70
4B-12	3/3	16,245	79,52	89,53	2,866	2,089	9,76	95 , 95

Tabelle V Materialwerte für die Tabletten-Prüflinge, Nenndichte 90 % th.D.

Anmerkungen: ¹⁾ Die Höhenangaben sind durch Addition der Einzelhöhen der Tabletten ermittelt.

2) Die Dichtewerte sind arithmetische Mittel der Einzeldichten.

3) berechnet für den nominellen PuO₂-Anteil von 20,0 Gew.%

Prüflinge 4B-7 bis 4B-12 haben einseitige Stirnflächeneinsenkung, Prüflinge 4B-1 bis 4B-6 haben beidseitige Stirnflächeneinsenkung

Detteli			13 Bren	nstofftabletten		2 Isoliertabletten		
Nr.	Nr./Abschnitt	Gewicht (g)	Höhel) (mm)	Geom.Dichte ²⁾ (% th.D.)	Pu-Menge) (g)	Gewicht (g)	Höhe ^{⊥)} (mm)	Dichte ²⁾ (% th.D.)
4B-13	3/4	15,204	80,13	83,40	2,682	2,091	9,82	94,83
4B-14	3/6	15,171	79,85	84,12	2,676	2,088	9,80	94,95
4B-15	3/7	15,212	79,93	84,31	2,683	2,095	9,81	95,00
4B-16	3/16	15,154	79,81	84,37	2,673	2,097	9,82	95,55
4 B- 17	3/19	15,254	79,89	84,66	2,691	2,089	9,80	95,00
4B-18	3/21	15,288	80,04	84,59	2,697	2,090	9,82	94,80
4 B- 19	3/23	15,208	79,71	84,24	2,683	2,092	9,81	95,10
4 B-20	3/22	15,365	80,17	84,23	2,710	2,083	9,78	95,20
4B-21	4/1	15,359	80,25	84,04	2,709	2,085	9,84	94,45
4B-22	4/2	15,347	80,18	84,20	2,707	2,090	9,80	95,05
4B-23	4/3	15,256	79,80	84,57	2,691	2,094	9,88	94,33
4B-24	4/4	15,219	79,75	84,34	2,685	2,087	9,88	94,38

Tabette VI Materiaiwerte fur die fabietten-fruitinge, Nemdicite 04 p
--

Anmerkungen:

1) Die Höhenangaben sind durch Addition der Einzelhöhen der Tabletten ermittelt.

2) Die Dichtewerte sind arithmetische Mittel der Einzeldichten.

3) berechnet für den nominellen Pu0₂-Anteil von 20,0 Gew.%

Prüflinge 4B-13 bis 4B-18 haben einseitige Stirnflächeneinsenkung, Prüflinge 4B-19 bis 4B-24 haben beidseitige Stirnflächeneinsenkung

4.7.2 Prüflinge mit Pulverbrennstoff

Um eine 80 mm lange Brennstoffsäule mit 80 % th.D. (geometrische Dichte) zu erhalten, mußte in jedes Hüllrohr ca. 15,3 g Pulverbrennstoff einvibriert werden. Das Einvibrieren selbst geschah mit einem elektrodynamischen Vibrator unter Vakuum (Frequenz 400 bis 2000 Hz; Beschleunigung max. 50 g ; Vibrationszeit 3 min). Nach dem Vibrieren wurden die Prüflinge mit Helium geflutet und die Federn und obere Endstopfen eingesetzt. Das Einschweißen erfolgte mit Hilfe des Elektronenschweißverfahrens im Hochvakuum. Daher war ein abschließender Druckausgleich mit Helium erforderlich. Dazu diente eine kleine seitliche Bohrung im oberen Endstopfen, die dann nach dem Argonarc-Verfahren verschlossen wurde.

Die Einzelangaben zu den Prüflingen mit Vibierbrennstoff finden sich in Tabelle VII.

4.8 <u>Stabprüfungen</u>

4.8.1 Dichtheitsprüfung und Schweißnahtkontrolle

Alle Prüflinge wurden mit Hilfe des Helium-Lecktests auf Dichtheit geprüft und die Schweißnähte der Röntgendurchstrahlung unterzogen. Die Prüfberichte Nr. 196/68, 231/68 und 70/69 weisen die Dichtheit der verschlossenen Brennstäbe nach. Die Schweißnahtqualität an den unteren und oberen Endstopfen war einwandfrei. Die Prüfprotokolle Rö 63/68, Rö 66/68 und Rö 75/68 enthalten die Angaben zur Prüfung der unteren Endstopfen, die Prüfprotokolle Rö 78/68, Rö 96/68 und Rö 47/69 die Angaben zur Prüfung der oberen Endstopfen $\sqrt{7}$.

4.8.2 Kontaminations prüfung

Bei der Prüfung auf Kontaminationsfreiheit war zwischen abwischbarer und an der Staboberfläche fixierter Aktivität zu unterscheiden. Abwischbare Aktivität konnte bei keinem Prüfling festgestellt werden. Mit Ausnahme der Prüflinge 4b/8, 4b/9 und 4b/10 lag die fixierte Aktivität unter dem Grenzwert von 22 Zerfällen/min · cm². Die Menge des an den genannten Prüflingen punktförmig fixierten radioaktiven Materials war jedoch ohne Bedeutung.

Tabelle VII:	Materialwerte	für	die	Prüflinge	mit	Vibrierbrennstoff,	Nenndichte	80 (% t	h.D.
--------------	---------------	-----	-----	-----------	-----	--------------------	------------	------	-----	------

Prüfling Nr.	Hüllrohr Nr./Abschnitt	Brennstoffgewicht (g)	Brennstoffhöhe (mm)	Schmierdichte (% th.D.)	*) (g)	Zusammensetzu brennstoffes	ung des Pulver- nach Teilchengrößen
4B-25	3/10	15,258	78,5	81,46	2,692	Fraktion	Anteil
4 B-2 6	3/11	15,286	78,0	82,14	2,696		
4B-27	3/8	15,275	79,0	81,03	2,695	I	40 %
4 B-2 8	3/9	15,249	79,0	80,90	2,690		
4 B-2 9	1/17	15,250	79,5	80,39	2,690		
4 B-3 0	4/6	15,259	79,5	80,44	2,692	II	20 %
4B-31	4/7	15,262	78,5	81,48	2,692		
4B-32	4/8	15,263	79,0	80,97	2,692	III	25 %
4B-33	4/9	15,273	80,0	80,01	2,694		
4B-34	4/10	15,265	80,0	79,97	2,693	757	15 Ø
4B-35	4/11	15,271	79,0	81,01	2,694	Τv	ק כב

*) berechnet für den nominellen $Pu0_2$ -Anteil von 20,0 Gew-%

4.8.3 Innere Abmessungen

Im Rahmen der abschließenden Prüfungen wurden die Prüflinge auch in ihrer ganzen Länge geröntgt. Die Abb. 4, 5 und 6 zeigen diese Röntgenaufnahmen. In Tabelle VIII sind die daraus entnommenen Werte für die Länge der Tablettensäule (mit Isoliertabletten) den berechneten Werten gegenübergestellt. Beim Einfüllen der Tabletten ergab sich ein zusätzlicher Längenbedarf von 0,6 bis 1,2 mm. In Tabelle IX sind die Längenwerte für die einvibrierten Brennstoffsäulen zusammengefaßt. Zwischen den gemessenen Längenwerten und den Werten aus den Röntgenaufnahmen ergaben sich nur Differenzen von einigen zehntel Millimetern, die hauptsächlich auf die Meßungenauigkeiten zurückzuführen sind.

4.8.4 Äußere Abmessungen

Die Prüflinge wurden abschließend vollständig vermessen. Es wurde u.a. die Gesamtlänge, der Durchmesser an mehreren Stellen und der Rundlauf bestimmt. Die Ergebnisse sind in den Prüfberichten Nr. 188/68, 220/68 und Nr. 75/69 zusammengestellt $\sqrt{7}$. Es ergaben sich nur wenige Überschreitungen der zulässigen Toleranzen. Zum Vergleich mit entsprechenden Messungen bei der Nachbestrahlungsuntersuchung sind die Meßwerte der Durchmesser- und Rundlaufprüfungen in Tabelle X zusammengefaßt. Die schematische Darstellung des Prüflings gibt die Meßposition an.

5. Bestrahlungseinrichtung

5.1 Versuchseinsatz

Die Bestrahlung der Prüflinge wird in den bereits erprobten Doppelkapseln des Typs 4a [3, 9] durchgeführt, wobei infolge der geforderten höheren Hülloberflächentemperaturen das Kühlmittel Natrium durch die eutektische Mischung NaK ersetzt wird (λ_{Na} , 400°C = 0,722 W/cm°C, λ_{NaK} , 400°C = 0,262 W/cm°C). Im Inneren der Kapsel befindet sich der Prüfling in einer dicht verschlossenen Edelstahlkapsel, welche mit dem Kühlmittel gefüllt ist. Der Radialspalt

Abb. 4 Röntgen-Aufnahme der Tablettensäulen in den Prüflingen Nr. 4B-13 bis 4B-24

Prüfling Nr. 4B 12 10 8 6 4 2 11 9 7 5 3 1

<u>Abb. 5</u> Röntgen-Aufnahme der Tablettensäulen in den Prüflingen Nr. 4B-1 bis 4B-12

Abb. 6 Röntgen-Aufnahme der einvibrierten Prüflinge

Prüfling Nr.	Summe der Tablettenhöhen Brennstoff + Isolierung (mm)	Röntgenaufnahmen Brennstoff + Isolierung (mm)
4B-1 4B-2 4B-3 4B-3 4B-5 4B-5 4B-6 4B-7 4B-8 4B-9 4B-10 4B-10 4B-11 4B-12	88,87 88,99 89,02 89,05 89,05 89,09 88,96 89,14 89,06 89,02 89,41 89,28	89,9 90,0 90,1 90,1 90,2 89,9 89,8 90,1 90,0 89,8 90,4 90,2
4B-13 4B-14 4B-15 4B-16 4B-17 4B-18 4B-19 4B-20 4B-21 4B-22 4B-23 4B-24	89,95 89,64 89,74 89,63 89,69 89,86 89,52 89,95 90,09 89,98 89,68 89,63	90,7 90,4 90,5 90,3 90,6 90,3 90,6 90,7 90,6 90,4 90,5

Tabelle VIII: Länge der Tablettensäulen

Tabelle IX: Länge der Vibrierpulversäulen

Prüfling-	Gemessene Längen	Röntgenaufnahmen
Nr.	(mm)	(mm)
4B-25 4B-26 4B-27 4B-28 4B-29 4B-30 4B-31 4B-32 4B-33 4B-33 4B-35	78,5 78,0 79,0 79,5 79,5 78,5 79,0 80,0 80,0 79,0	78,4 78,0 79,7 79,7 79,8 79,6 78,4 79,8 80,3 79,9 78,9

Prüflings-	Meß-	1	Durchmess	er (mm)	Rundlauf (mm)								
bezeichnung	position	1	2	3	4	A	В	С					
4 B 27	a, b	6,014 6,010	6,018 6,019	6,012 6,010	5,995 5,996	0,05	0,12	0,06					
4 в 26	a b	6,011 6,010	6,016 6,015	6,005 6,006	5,997 5,997	0,12	0,07	0,05					
4 в 25	a b	6,015 6,018	6,015 6,015	6,010 6,012	6,002 6,004	0,08	0,22	0,29					
4 в 34	a b	6,013 6,008	6,018 6,021	6,009 6,009	5,972 5,974	0,13	0,10	0,08					
4в 32	a b	6,013 6,015	6,016 6,014	6,010 6,013	5,991 5,992	0,07	0,04	0,03					
4в30	a. b	6,012 6,016	6,014 6,016	6,008 6,008	6,000 5,994	0,07	0,01	0,06					
4в35	a b	6,010 6,010	6,017 6,016	6,012 6,010	6,007 6,004	0,14	0,09	0,03					
4в33	a. b	6,012 6,012	6,017 6,016	6,006 6,016	5,995 6,002	0,10	0,09	0,04					
4 B 31	a b	6,017 6,016	6,014 6,012	6,012 6,000	5,997 5,999	0,14	0,09	0,09					
4в29	a, b	6,008 6,017	6,016 6,014	6,013 6,010	6,000 6,000	0,18	0,23	0,00					
4 в 28	a, b	6,010 6,010	6,016 6,014	6,010 6,010	6,000 5,994	0,16	0,11	0,08					
4в4	a b	5,936 5,992	5,978 5,981	5,992 5,995	6,014 6,014	0,07	0,27	0,01					
4B3	a b	5, 995 5 , 998	5,987 5,985	5,990 5,993	6,036 6,039	0,07	0,02	0,07					
4в2	a. b	5,994 5,995	5,983 5,983	5,990 5,993	6,019 6,017	0,09	0,02	0,07					
4B1	a. b	5,990 5,989	5,983 5,980	5,991 5,984	6,030 6,030	0,10	0,02	0,02					
4в9	a, b	5,994 5,998	5,975 5,979	5,992 5,992	6,022 6,024	0,07	0,14	0,04					
4в8	a b	5,986 5,985	5,978 5,979	5,982 5,986	6,012 6,014	0,02	0,09	0,11					
4в7	a, b	5,984 5,984	5,980 5,979	5,990 5,988	6,008 6,011	0,14	0,26	0,02					
4в5	a b	5,995 5,995	5,98 2 5,982	5,994 6,002	6,012 6,016	0,10	0,03	0,01					
4в11	a. b	5,999 5,996	5,978 5,978	5,994 5,996	6,005 6,009	0,08	0,09	0,03					
4 B 12	a. b	5,989 5,984	5,973 5,974	5,987 5,981	6,029 6,029	0,13	0,13	0,01					
4 в 10	a. b	5,988 5,996	5,980 5,979	5,993 5,993	6,013 6,015	0,11	0,04	0,05					
4вб	a, b	5,994 5,995	5,984 5,984	5,997 5,990	6,004 6,010	0,06	0,03	0,02					
4 B 15		5,98		5,99	6,01	0,08	0,06	0,06					
4 B 14		5,98		5,99	6,01	0,06	0,02	0,06					
4 B 13		5,98		5,99	6,02	0,03	0,02	0,00					
4 в 18		5,98		5,99	6,01	0,12	0,13	0,06					
4 B 17		5,98		5,99	6,015	0,06	0,09	0,10					
4 в 16		5,98		5,99	6,01	0,04	0,04	0,08					
4 B 21		5,99		6,01	6,01	0,09	0,07	0,04					
4 в 20		5,98		5,99	6,015	0,08	0,12	0,03					
4 B 19	[5,98		5,99	6,01	0,05	0,03	0,05					
4 B 24		5,995		6,005	6,015	0,10	0,06	0,05					
4 B 23		5,99		6,01	6,02	0,12	0,14	0,06					
4 B 22		6,00		6,01	6,03	0,03	0,05	0,09					

Tabelle X :

Stabvermessung

vor der Bestrahlung

zwischen Hülloberfläche und dem Edelstahlrohr beträgt 6 mm. In diesen Spalt werden sogenannte Antikonvektionsrohre eingeführt, welche eine Erhöhung des Temperatursprungs in diesem Spalt und damit der Hülloberflächentemperatur bewirken. In der ersten Kapselserie der Versuchsgruppe wurde ein Rohr, in der zweiten Serie zwei dieser Antikonvektionsrohre eingesetzt, welches einer Temperaturerhöhung um ca. 50 ° entspricht (vgl. Kap. 6.2).

Der weitere Aufbau der Kapsel sowie der Temperaturverlauf ist aus den Abb. 7 und 8 ersichtlich.

5.2 <u>Bestrahlung im FR 2</u>

Die Kapselversuchseinsätze (KVE), welche bis zu vier Prüflingen aufnehmen können, wurden im FR 2 auf normalen Brennelement- sowie Isotopenkanal-Positionen bestrahlt. (Tabelle XI).

Die Bestrahlungszeiten lagen je nach Zielabbrand zwischen 46 und 637 Tagen (Vollastäquivalent).

Aus der in Tabelle XI enthaltenen Positionskarte des FR 2-Cores sind die Bestrahlungspositionen der einzelnen Kapselversuchseinsätze je Reaktorzyklus ersichtlich.

6. Ablauf der Bestrahlung

6.1 Reaktorzyklen und Neutronenfluß

Die Bestrahlung der insgesamt 35 Brennstabprüflinge in 11 Kapselversuchseinsätzen (KVE) begann mit KVE 42 am 16.9.1968 in Zyklus I/68 und endete mit dem Ausbau der KVE's 49 und 58 am 14.6.1971 nach Zyklus D/71. Die Bestrahlung mußte bei den KVE's 42 bis 45 frühzeitig abgebrochen werden, da infolge überhöhter Temperaturen Stabdefekte vermutet wurden. Bei der Kapseldemontage stellte es sich heraus, daß lediglich zwei Prüflinge in KVE 43 defekt waren (vergl. Kap. 7): Infolge eines starken Hochwachsens der vibrierten Brennstoffsäule unter die Wärmedämmung (Abb. 7, Kapselausschnitt) kam es zu starker Überhitzung und einem Durchschmelzen der Prüflinge. Bei den

Ausschnitt aus der NaK/PbBi-Doppelkapsel

- 31 -

D Е I к г т к T. A в С G н А в С D Е F G Zyklus н Ι к A в С D Vollast-36,3 24,5 28,0 29,8 37,9 29,5 29,7 30,9 29,2 24.2 22,6 28,8 19,9 29,9 32,9 29,2 29,4 29,7 29.7 30,0 29,5 27,7 15,0 29,8 25,1 29,7 27,5 tage KVE-SS 2-0 2-2 1-2 1-1 6-2 0-4 2-1 1-6 1-1 4-1 2-0 3-0 2-3 2-0 2-1 0-1 1-1 0-3 -1 1-3 1-0 3-0 0-2 4-0 1-1 0-2 0-0 Nr. А 32 ----34 ----O Brennelementposition 🔷 Trimm-Abschaltstab -Feinregelstab Isotopenkanal-Position 48zu Flußmessungen benutzte Isotopenkanal – Positionen -50 -_ ₹UU <u> </u> -_ <u>yqqq</u> 10 12 14 16 18 20 22 24 26 Positionskarte FR 2 - Core _ -----_ . --_ _ --_ _ -_ -_ -_ -_ -_ _ _ ---_ -_ -_ -----_ --------_ ... -_ -_ _ _ --. --. _ -----_ ------

Tabelle XI: Bestrahlungsablauf der Kapselversuchseinsätze der Versuchsgruppe 4b (Bestrahlungspositionen im FR 2-Core)

+) SS = Schnellschluß

A = Abschaltung normal

anderen Kapseln (42, 44 und 45) sind die Temperaturerhöhungen auf Verformungen der NaK-Kapsel und der Antikonvektionsrohre, auf Beschädigungen der Thermoelement-Tauchrohre, der Thermoelemente selbst sowie auf Lunkerbildung im PbBi und im NaK zurückzuführen. Bei den Kapselstrukturteilen (Kapselrohr, Antikonvektionsrohre) wurden z.T. starke Korrosionsangriffe festgestellt / 10, 11_7.

In Tabelle XI ist der zeitliche Bestrahlungsablauf der einzelnen Kapselversuchseinsätzen, charakterisiert durch Bestrahlungsposition, Bestrahlungsdauer je Zyklus (in Tagen Vollastäquivalent, bezogen aus 44 MW (s.u.)) sowie durch Abschaltungen und Schnellschlüsse, die ein qualitatives Maß für die thermisch-zyklische Belastungen darstellen, zusammengestellt. Bei den Abschaltungen sind neben den echten Abschaltungen auch Leistungsreduktionen auf Leistungen mit $N < 10^{-7} N_{nom}$, wobei $N_{nom} = 44$ MW Nominalleistung darstellt, berücksichtigt worden.

Im Bestrahlungszeitraum der Versuchsgruppe ⁴b sind verschiedene Messungen des thermischen Flusses in den Isotopenkanal-Positionen des FR 2 (vergl. Positionskarte in Tabelle XI) durchgeführt worden <u>/12</u>. Es handelt sich um Messungen des vertikalen Flußverlaufes, bei denen Co-Sonden als Flußdetektoren eingesetzt wurden. In Tabelle XII und Abb. 9 sind die Flußwerte der verschiedenen Messungen in den Isotopenkanälen in Höhe der Prüflingsmitten zusammengestellt. Unter den Flußwerten ist der Zeitpunkt der Messung sowie die Stellung der Trimmabschaltstäbe (TA) in mm angegeben.

Die Auswertung der Messungen zeigt über einen längeren Zeitraum im Mittel keinen ausgeprägten Trend nach niedrigeren Flüssen. Den Messungen mit gleichmäßiger TA-Eintauchtiefe entnimmt man, wie der Fluß sich mit wachsender Eintauchtiefe in den unteren Core-Bereich verschiebt. Der Fluß kann sich hierbei um bis zu 50 % verändern (s. Spalte 49/23 der Tabelle XII).

Wie Rechnungen mit den Zellprogramm WIMS /13 / zeigten, beträgt die Flußabschwächung entgegen den Annahmen bei der Auslegung in der Na/PbBi-Doppelkapsel tatsächlich etwa 30 %. Die Flußmessungen zeigen weiterhin, daß der Fluß über die Prüflingslänge als nahezu konstant angenommen werden kann.

- 33 -

Iso Ø _{th}	37/ 15	41/05	41/07	41/09	41/15	41/23	41/33	45/15	45/23	49/15	49/23	49/31	53/07	53/09	51/15	53/23	57/13	57/15	61/17
	7,9 (7/68) 525 mm	4,2 (3/67) 1020mm	6,2 (4/67) 720 mm	7,1 (4/67) 720 mm	8,9 (4/67) 720 mm	7,3 (4/67) 720 mm	4,4 (7/68) 525 mm	9,0 (4,67) 720 mm	7,8 (4/67) 720 mm	8,8 (4/67) 720 mm	8,3 (4/67) 635 mm	5,3 (4/67) 720 mm	6,9 (7/68) 525 mm	6,8 (4/67) 720 mm	8,2 (4/67) 720 mm	6,8 (4/67) 720 mm	6,3 (4/67) 720 mm	6,8 (4/67) 720 mm	5,0 (7/68) 525 mm
	7,5 (1/69) 430 mm	4,7 (4/67) 640 mm		7,4 (7/68) 5 2 5 mm	8,8 (7/68) 525 mm		4,9 (1/69) 430 mm	8,9 (7/68) 525 mm		8,9 (7/68) 525 mm	6,2 (3/67) 1020mm	6,5 (7/68) 525 mm		7,6 (7/68) 525 mm	8,6 (7/68) 525 mm	7 ,3 (7/68) 525 mm		7 ,3 (7/68) 525 mm	
			-	7,1 (1/69 430 mm	7,9 (1/69 430 mm			8,4 (1/69 430 mm		8,3 (1/69 430 mm					~			7,5 (1/69 430 mm	
	8,2	5,0	6,7	8,1	9,6	8,6	4,6	9,6	8,7	9,4	8,6	6,4	7,1	7,4	8,7	7,4	6 , 8	7,3	5,1
	7,5	5,0		7,5	9,0		5,1	8,9		8,9	7,7	6,6		7,6	8,6	7,3		7,4	الا 4
				7,1	8 ,0			8,3		8,3								7, 7	0
	8,1	5,4	6,8	8,2	9,8	9,3	4,6	9,7	9,1	9,4	8,6	7,0	7,0	7,4	8,8	7,6	6,9	7,4	5,1
	7,3	4,8		7 , 4	8,9		5,0	8,7		8,6	8 , 8	6,6		7,3	8,3	7 , 2		7,2	
				6,9	7,8			8,0		8,1							7	7,5	
	7,6	5,6	6,6	7,9	9,5	9,3	4,4	9,4	9,1	9,1	8,3	7,1	6,6	7,1	8,4	7,4	6,6	7,0	5,0
	6,8	4,7		7,0	8,3		4,7	8,2		8,3	9,4	6,3		6 , 8	7,8	7,0		6,7	
				6,5	7,3			7,5		7,6								7,1	
\bigcirc	Erl	äuterung	;:				3 2										· · · ·		

Tabelle XIIVertikaler Verlauf des thermischen Flusses in den Isotopenkanal-Positionen in Höhe der Prüflingsmitte $(\emptyset_{th} \times 10^{-13} / cm^{-2} sec^{-1}/)$

Spalte 1: $\phi_{\text{th}} = 7,9 \times 10^{13} \text{ n/cm}^2$ sec bei TA-Stellung 525 mm, gemessen Juli 1968 in Iso.-Kanal 37/15 in Höhe der $\phi_{\text{th}} = 7,5 \times 10^{13}$ " " " 430 mm, " Jan. 1969 " " " " " (entsprechend für die folgenden Prüflinge und Iso.-Kanäle)

- 35 -

6.2 <u>Temperatur und Stableistung</u>

Die bei den Bestrahlungen der Versuchsgruppe 4b verwendeten NaK-PbBi-Doppelkapseln sind mit Thermoelementen ausgestattet, welche die Messung der Na-Temperatur in Höhe der Bestrahlungsprüflinge gestatten. Aus diesem Meßwert kann die Hülloberflächentemperatur sowie die Stableistung des Prüflings ermittelt werden. Wie Eichversuche zeigen, besteht gute Übereinstimmung zwischen experimentell und rechnerisch ermittelten Werten. Abweichungen von Maximal 20 °C rühren von der Einbringung der Thermoelemente in Tauchrohren mit 0,2 mm Spiel her. Der Gesamtfehler der Temperaturbestimmung wird auf ± 5 % abgeschätzt.

Die Umrechnung der Meßwerte erfolgt über die in Abb. 10 dargestellten Zusammenhänge zwischen Meßstellentemperatur T_m , Hülloberflächentemperatur T_{Ha} und Stableistung X.

Die Auswertung der Meßwerte umfaßt tabellarische und grafische Darstellungen des zeitlichen und axialen Verlaufes der Hüllrohroberflächentemperaturen und der Stableistungen der einzelnen Prüflinge. Die geometrische Zuordnung der Meßwerte zu den Prüflingen ist aus dem Instrumentierungsplan (Tabelle XIII) ersichtlich. Die Zahlen neben den TE-Nummern bedeuten die Lage des Thermoelementes in mm vom unteren Prüflingsende entsprechend der Skizze.

In den Tabellen XIV und XV sind die Hülloberflächentemperaturen der Prüflinge bei Zyklusbeginn und Maximalwerte sowie die mittleren Stableistungen bei Zyklusbeginn und -ende zusammengestellt. Die Abb. 11 bis 33 zeigen schließlich den zeitlichen Temperaturverlauf.

Wie die Abbildungen zeigen, treten während der Bestrahlung trotz konstanter Reaktorleistung einzelne Temperaturspitzen auf, deren Ursachen in Lageänderungen des Thermoelement-Meßpunktes durch radiale und axiale Verschiebungen, in Fehlmessungen der Thermoelemente sowie in lokalen Zustandsänderungen des Reaktors (Änderung der TA-Stabstellung) zu suchen sind. In den Abb. 34 - 42 ist schließlich der axiale Verlauf der Hülloberflächentemperatur einiger Prüflinge mit 2 bis 3 Thermoelementen dargestellt, wobei der Anfangs-, End- und Maximalzustand ausgewählt wurde. Aus diesen Abbildungen sowie aus den Überprüfungen der Thermoelemente geht hervor, daß bei KVE-47 die Thermoelemente 1 und 2, bei KVE-49 die Thermoelemente 1, 2 und 6 sowie bei KVE-55 das Thermoelement 2 nach einer bestimmten Zeit deutlich abgefallen und als defekt zu bezeichnen sind. In diesen Abbildungen ist daher ein (gestrichelt gezeichneter) Verlauf angegeben, welcher den wahrscheinlichen Temperaturverlauf darstellt, wobei als Orientierung der Verlauf der Temperaturen der anderen Prüflinge des KVE zugrundegelegt wurde. Diese korrigierten Werte werden zur Korrektur der Abbrände herangezogen (s. Abschn. 6.3).

6.3 Thermische Abbrandberechnung

Zur Berechnung des Abbrandes der Prüflinge werden die aus den Meßwerten nach obiger Umrechnungsvorschrift berechneten Stableistungen herangezogen. Der Abbrand ist bestimmt durch

$$A = \frac{1}{m} \cdot \Sigma X_{i} \cdot t_{i} \quad MWd/kg M$$

mit ℓ = Brennstofflänge (cm)

m = Brennstoffgewicht (g)

 X_{i} = Stableistung (W/cm) (arithmetisches Mittel/Zyklus)

t_i = Bestrahlungszeit (Vollastäquivalent) (d) je Zyklus

In Tabelle XVI sind die aus den Meßwerten aller Thermoelemente berechneten Abbrände sowie die hieraus – bei Prüflingen mit mehreren Thermoelementen – resultierenden Mittelwerte zusammengestellt. Bei Prüflingen mit defekten Thermoelementen sind die korrigierten Abbrandwerte aus den über die geschätzten Hülltemperaturen nach der Umrechnungsvorschrift ermittelten (mittleren) Stableistungen in Klammern hinzugefügt.

Wie der Vergleich mit den radiochemisch bestimmten Werten zeigt, besteht relativ gute Übereinstimmung, lediglich bei Prüflingen mit Strukturänderungen, hervorgerufen durch Schmelzen und axialen Brennstofftransport sind erwartungsgemäß höhere Abweichungen festzustellen (vergl. Kap. 8.4).

Tabelle XIII

Instrumentierungsplan der Versuchsgruppe 4b

75

		IC A TO											
		42	43	44	45	47	48	49	55	56	57	58	
80	~	Prüfling TE	-	-	-	<u>48/4</u> 7/40	<u>海野/9</u> 7/40	<u>48/11</u> 7/40	<u>4B/15</u> 7/60 6/22	<u>4B/18</u> 7/60 6/22	<u>48/21</u> 7/60 6/22	<u>4B/24</u> 7/60 6/22	<u>rläuterung:</u> ie Verteilung de apselversuchsein æispiel: KVE 42, 22 mm A element angabe
80		<u>48/27</u>	<u>28/34</u>	<u>48/35</u>	<u>48/29</u>	<u>48/3</u> 6/55	<u>4⊞/8</u> 6/55	<u>48/12</u> 6/55	<u>48/14</u> 5/60	<u>438/17</u> 5/60	<u>祖</u> 田/20 5/60	<u>祖B/23</u> 5/60	r Thermoe sätze ist unterste bstand vc 2 in 60 beträgt <u>+</u>
0		0/ 42	<u>0</u> /42	0/ 42	0/ ++2	5/25	5/25	5/25	4/22	4/22	4/22	4/22	lemente folgend r Prüfli m untere mm Absta l mm.
80		<u>4B/26</u> 5/67	<u>48/32</u> 5/67	<u>4B/33</u> 5/67	<u>48/28</u> 5/67	<u>4B/2</u>	迎/7	<u>4B/10</u>	<u>4B/13</u> 3/65	<u>4B/16</u> 3/65	<u>4B/19</u> 3/65	<u>48/22</u> 3/65	auf d: ermaße ng 4B, n Brei nd. D:
		4/42	4/42	4/42	4/42	4/55	4/55	4/55	2/40	2/40	2/40	2/40	le ein: en zu v /25, TV nnstof: le Gen
0		3/17	3/17	3/17	3/17	3/25	3/25	3/25	1/15	1/15	1/15	1/15	zelner verste hermoe fsäule auigke
80		4 B /25	<u>4B/30</u>	<u>48/31</u>	$\frac{44/24}{(Vg.4a)}$	<u>4B/1</u>	<u>48/5</u>	4 <u>B/6</u>					n Prüf shen: slemer snende sit de
		2/60	2/60	2/60	2/60	2/55	2/55	2/55	-	-	-	-	linge nt l i , The r Höh
٥		1/22	1/22	1/66	ָד/ בב	1/25	1/25	1/25					der n mo-

1 30 B

	1968 1969						1970]								1971													
		I	к	L	A	в	C	D	E	G	н	I	к	L	A	в	C	D	E	F	G	H	I	к	A	в	C	D
KVE TE °C		1			<u> </u>		<u> </u>				†	<u> </u>												[
Priifling]		
42/6	Beg.	426	502	514	480		 	 	"			1												[
4B/27	max.	434	507	534	473												\vdash											+
42/3,4,5	Beg.	481	573	579	460						1		\vdash				<u> </u>										-	
4B/26	max.	490	588	614	481																							
42/1,2	Beg.	481	577	563	414																							
堝/25	max.	493	602	599	441																							
43/6	Beg.	<u> </u>	384	578																								
4B/34	max.	-	396	582			ļ										·							<u> </u>				ļ
43/3,4,5	Beg.	<u> </u>	460	584									<u> </u>				-									ļ	ļ	-
48/22	max,		462 301	671			-										<u> </u>		-					-	-	<u> </u>	<u> </u>	<u> </u>
49/1,2 /m/30	Deg.	<u> </u>	404 1/80	704																								
44/6	Beg.	+	419	429	412	414											<u> </u>											+
48/35	max.	-	425	445	423	428				-				-											\vdash			+
44/3,4,5	Beg.	- 1	463	474	429	460																						
48/33	max.	-	479	500	432	520		1																				
44/1,2	Beg.	- 1	454	461	436	432																						
48/31	max.	-	470	486	445	500																						
45/6	Beg.	-	-	491	544																							
48/29	max.	-	-	538	624																							
45/3,4,5	Beg.	-	-	570	641																							
4B/28	max.	-	-	616	653	ļ	ļ										L	ļ		<u> </u>								<u> </u>
47/7	Beg.	<u> </u>	-	-	438	459	333	337	357	378	351	432	381	394	401	368	390	335	338	343	379					ļ		ļ
4B/4	max.	-	-	-	473	493	357	398	392	391	370	470	520	415	425	377	414	372	354	362	395							<u> </u>
47/5,6	Beg.	-	-	-	490	513	372	367	390	387	364	445	398	391	403	359	383	334	339	345	367				<u> </u>			
48/3	max.	-	-	-	507	520	280	272	411	398	305	466	432	398	418	363	391	363	252	353	428			<u> </u>	-	-		
4(/2,4)m/2	Beg.			-	527	575	402	294	414	405	202	472	1429	290	411	301	291 111	240	370	37/1	200					-	-	
40/2	Ber.	+-	-	-	538	609	191	101	102	100	184	230	217	100	203	187	105	181	185	103	182							<u> </u>
48/1	max.	<u> </u>	-	-	557	609	252	199	203	207	220	234	241	207	214	200	207	101	196	200	186			-		-		+
48/7	Beg.		-	-	374	457	477	469	382	369	399	373	376	402	384	373	369	355	402	200								<u>├</u> ─-
4B/9	max.	-	-	1	410	482	497	500	479	391	466	407	408	407	398	388	377	441	421					-				\vdash
48/5,6	Beg.	-	-	1	408	340	352	350	405	395	423	394	378	410	388	382	376	380	419									
4B/8	max.	-	-	-	442	355	363	370	500	404	500	407	408	422	398	387	384	438	438									
48/3,4	Beg.	-	-	-	465	412	425	433	428	421	446	417	403	417	412	408	397	451	452									
4B/7	max.	-	-	-	486	438	470	459	527	433	520	432	432	432	425	428	411	477	473									
48/1,2	Beg.		-	-	450	357	371	373	436	412	430	421	399	413	404	385	373	436	425									ļ
4B/5	max.	-	-	-	468	388	391	<u>38</u> 4	520	432	543	432	445	445	425	418	398	466	445									<u> </u>
49/7	Beg.		-	-	-	361	428	429	433	436	397	408	368	378	387	338	382	308	310	289	313	292	318	315	296	291	284	222
48/11	max.		-	-		388	466	500	616	448	423	421	425	391	411	393	513	350	324	336	325	312	340	315	302	298	293	234
49/5.0	Beg.	<u> </u>	-	-	-	420	529	409	55/1	495 507	484	492 500	450	442	452	200	429	242	220	224	224	215	224	316	302	296	295	225
49/3.4	Beg	-	-	-	-	456	550	555	560	518	516	525	102	ע הכ 1451	400	430	516	105	415	300	410	300	308	370	150	343	290	221
4B/10	max.	-	-	-	-	473	568	625	603	534	520	541	507	466	473	486	523	477	429	421	432	415	411	391	370	361	350	264
49/1,2	Beg.	-	-	-	-	468	580	243	241	233	223	227	216	200	211	194	197	146	157	162	159	143	137	140	138	133	133	126
4B/6	max.	-	-	-		486	606	254	260	248	230	234	220	207	214	197	200	156	162	169	170	145	145	140	152	139	136	132
55/6,7	Beg.	-	-	-	-	-	-	-	-	394	604	588	532	567	507	549	502	409										
4B/15	max.	-	1	1		-	-	-	-	425	638	653	612	603	550	569	534	493										
55/4,5	Beg.	-	-	-	-	-	-	-	· -	420	663	669	616	631	575	612	549	481										
4B/14	max.	-	-	-	-	-	-	-	-	429	672	678	658	638	585	612	56 2	509										
55/1,2,3	Beg.	-	-	-	-	-	-	-	-	485	714	771	365	370	345	360	252	219										<u> </u>
48/13	max.	-	-	-	-	-	-	-	-	498	774	729	399	390	486	362	262	230										<u> </u>
ינס/ס <u>כ</u> אר/ פון	Beg.		-	-	-		-	-	-	543	462	498	429	443	414	447	413	370	356	376								
56/11.5	Bert			-	-	-	-	-		500	472	524	478	462	440	457	492	296	279	388								
4B/17	max.	<u> </u>	-	-	-	-		-	_	585	500	550	527	412	440	407	420	401	200	290 Juno								
56/1.2.3	Beg.	-	-		-	-	-	_	-	574	495	561	516	483	454	476	436	417	200	415								
4B/16	max.	-	-	-	-	-	-	-	-	589	539	577	569	510	470	502	470	448	419	442								<u> </u>
57/6,7	Beg.	-	-		-	-	-	-	-	456	408	421	389	402	430	370	406	336	332	338	376	341	448	400	415	413		
4B/21	max.	-	-	-	÷	-	-	-	-	470	435	448	448	425	509	410	429	382	349	356	402	371	463	425	440	425		<u> </u>
57/4,5	Beg.		-	-	-	-	-	-	-	483	448	469	440	437	467	395	438	366	374	374	412	399	487	484	472	462		
4B/20	max.	-	-	-	-	-	-	-	-	493	463	478	472	451	542	406	443	411	382	<u>3</u> 82	424	420	509	490	478	470		
57/1,2,3	Beg.	-	-	-	-	-	1	-	-	527	487	521	488	465	497	422	465	387	402	403	437	422	503	478	490	471		
4B/19	max.	-	-	-	-	-	-	-	-	544	499	539	509	493	509	448	483	451	410	422	463	457	531	520	524	493		
58/6,7	Beg.	-	-	-	-	-	-	-	-	447	601	606	522	546	521	531	519	442	432	435	404	364	367	361	364	358	320	360
4B/24	max.	-	-	-	-	-	-	-	-	463	630	684	623	592	573	547	554	490	464	463	432	396	387	385	391	368	358	371
58/4,5	Beg.	-	-	-	-	-	-	-	-	477	620	634	575	571	544	551	534	482	465	450	409	382	364	377	380	366	336	359
4B/23	max.		-	-	-	-	-	-	-	486	633	661	620	574	562	554	542	509	493	463	425	391	379	379	387	368	347	370
50/1,2,3	Beg.		-	-	-	-	-	-	-	559	685	737	520	429	370	392	343	331	321	323	297	294	285	308	301	298	290	303
48/22	max.	-	-	-	-	-	-	-		569	710	737	554	425	483	387	387	341	333	330	303	303	295	298	311	303	295	318

.

-41-

Tabelle XV: Mittlere Stableistungen der Prüflinge bei Zyklusbeginn und -ende

1968					1969									1970										1971				
Zyklus		I	к	L	A	в	C	D	Е	G	н	I	к	L	A	в	C	D	Е	F	G	н	I	к	A	в	C	D
KVE TE	CXBeg.	†		<u> </u>	1								<u> </u>	 	<u> </u>			 						[_		
Prüfling	X Ende																											
42/6	X Beg.	352	426	437	404													[—				
4B/27	X Ende	350	395	414	341			ĺ																				
42/3,4,5	XBeg.	406	495	501	386		<u> </u>			ļ						ļ	 	<u> </u>										
48/20	X Ende	207	459	449 485	402 341				-	-							┣—										<u> </u>	
4B/25	X Ende	376	424	419	364													-										
43/6	χBeg.	-	312	499																								
4B/34	χ Ende	-	318	463																								
43/3,4,5	χ Beg. X Endo	-	385 35h	505			<u> </u>	<u> </u>							ļ			Ļ.										
43/1,2	X Beg.	<u>-</u>	408	551						┝─					-	-	 	-									\vdash	
4B/30	X Ende	-	354	524				╞───																	-			
44/6	χ Beg.	-	346	355	339	341																						
4B/35	χ Ende	-	326	343	321	311		<u> </u>		_	<u> </u>						┣	<u> </u>									· · · · · ·	.
44/2,4,5 4B/33	X Beg. Y Ende	-	200 356	299	342	439				\vdash	<u> </u>					<u> </u>	┣—	-					<u> </u>					
44/1,2	X Beg.	+-	379	387	363	358											<u> </u>	-							-			
4B/31	X Ende	-	325	331	313	424																						
45/6	χBeg.	-	-	415	466			ļ				<u> </u>																
48/29	X Ende	+-	-	396	457				<u> </u>	-								<u> </u>									<u> </u>	
4B/28	χ Ende	<u> </u>	<u> -</u>	432	512		-	-		-	\vdash				-	-								-			-	
47/7	χBeg.	L-	-	-	365	384	263	267	286	306	280	358	309	321	329	296	317	265	268	272	308							
4B/4	χ Ende	-	-	-	387	400	288	280	307	310	280	385	378	335	338	297	339	288	269	284	313							
47/5,6	X Beg.	-	-	-	414	437	300	295	318	315	293	371	325	318 707	330	288	311	264	268	274	295			<u> </u>			ļ	<u> </u>
45/2	X Beg.	-	-	-	400	445	330	322	341	333	311	397	201 356	326	338	301	319	200	240	289	201	<u> </u>					┢──	
48/2	χ Ende	-	-	-	403	426	302	294	310	295	257	366	344	304	302	272	284	255	246	256	263							
47/1,2	χ Beg.	-	-	-	461	570	126	125	126	134	119	163	151	133	138	122	129	116	120	128	117							
4B/1	χ Ende		-	-	436	263	108	110	116	110	96	147	136	117	118	106	115	102	104	108	110							<u> </u>
48/7 Jup/0	χ Beg. V Ende	-		-	302	383	402	394	310	298	327	301	304	330	312	301	298	284	330								├	-
48/5.6	Y Beg.	-	+-	-	335	269	281	279	332	323	349	321	307	337	316	310	304	308	346					-			<u> </u>	
4 <u>B</u> /8	χ Ende	-	-	-	293	239	240	234	405	312	414	- 319	303	307	292	305	283	- 360	349									
48/3,4	χBeg.	-	-	-	390	339	351	359	354	348	372	344	330	344	339	336	325	377	378									
4B/7	X Ende	-	-	-	359	349	385	378	398	314	436	315	303	315	319	314	288	382	332					-	-			<u> </u>
46/1,2	X Ende	-	-	-	341	312	313	304	202 381	294	257	305	292	295	280	282	253	347	293									\vdash
49/7	X Beg.	-	-		-	290	354	355	360	362	325	335	296	306	315	267	310	238	241	221	244	223	248	245	227	222	216	155
4B/11	χ Ende	-	-	-	-	311	388	369	392	345	326	343	355	313	327	325	316	270	234	246	243	234	265	245	224	204	219	164
49/5,6	X Beg.	<u> </u>		-	-	354	452	413	447	420	408	418	379	369	378	316	355	271	268	254	264	245	264	245	233	227	226	157
48/12	X Ende X Beg.	<u>-</u>	-	-	-	381	437	409	440	389	368	448	398 416	377	396	<i>22</i> 0 357	324 440	352	342	249 326	337	317	326	300	279	272	210	152
48/10	X Ende	-	-	-	-	338	425	425	438	383	366	393	391	333	341	388	388	331	295	297	289	275	307	180	239	222	243	168
49/1,2	χBeg.	-	-	-	-	393	502	176	174	166	156	161	150	135	145	129	132	82	93	97	95	79	73	75	75	70	69	63
4B/6	χ Ende	-	-	-	-	332	426	151	153	133	122	139	135	115	124	110	104	89	82	84	81	73	74	75	63	<u>5</u> 4	69	52
55/6,7	X Beg. X Endo	-	-	-	-	-	<u> -</u> -	-	-	298	480	467 515	418 1104	448 1170	397 1130	433	1392 1119	312 30F	-				-	┝			⊢	┢
55/4,5	X Beg.	-	† <u>-</u>	-	-	-	-	-	-	321	531	536	490	504	457	487	433	374								-		<u>†</u>
4B/14	χ Ende	-	-	-	-	-	-	-	-	313	517	529	500	488	443	438	398	389										
55/1,2,2	χBeg.	-	-	-	-	-	-	-	-	377	575	624	273	278	256	269	176	148				ļ	ļ			<u> </u>	<u> </u>	
48/13	X Ende	+-	-	-		-	-	-	-	349	534	420	263	258 7211	233	171 344	147	149 279	26F	287		-	-				├	┼
4B/18	X Eeg. X Ende	<u> </u>	<u> </u>	- -	-	-	<u> </u>	- -	<u> </u> _	428	<u>757</u> 349	410	ر یر 374	353	333	327	322 322	298	205	282		\vdash	-				\vdash	<u> </u>
56/4,5	X Beg.	-	-	-	-	-	-	-	-	450	378	434	380	367	339	361	329	304	283	301								
4B/17	X Ende	-	-	-		-	-	-	-	429	356	425	387	355	327	326	314	291	271	272							\vdash	\vdash
56/1,2,2	X Beg.	<u> -</u>				-		-	-	454	386	443	404	375	351	369	335	328	304	317		-	<u> </u>	-			─	+
57/6.7	X Beg.	-	+-	-	+-	1-	<u> </u>	-	-	353	310	322	294	306	ەدر 329	<u>1 مر</u> 278	309	248	200	250	283	252	345	357	317	315	 	+
4B/21	X Ende	-	<u> </u>	-	-	-	-	-	-	354	309	339	355	320	328	301	329	280	239	262	298	279	338	247	338	316		
57/4,5	χBeg.	-	-	-	-	-	-	-	-	376	345	363	338	335	362	300	336	275	282	282	314	303	379	375	366	358	<u> </u>	\vdash
4B/20	X Ende		-	-	-	-	<u> -</u>	-		363	314	350	367	327	332	303	327	288	248	270	312	298	369	374	353	331		–
157/1,2,2 48/10	X Beg. X Ende	-	-	-	-	-	+-	-	-	414	316	409 365	1 <u>380</u> 769	360 321	268 107	1522 301	360	293	305	307	336	207	<u>393</u>	571 Ino	262	265 319	+	+
58/6,7	X Beg.	<u>†-</u>	<u> </u> _	-	- 1	-	 -	<u> </u>	-	345	477	481	409	430	408	417	406	340	<u>331</u>	334	307	273	275	271	272	267	235	270
4B/24	X Ende	-	-	-	-	-	-	-	-	355	484	543	508	467	442	412	433	381	352	353	324	304	290	265	298	274	266	269
58/4,5	X Beg.	<u> -</u>	 -	-	-	-	<u> -</u>	-	-	370	494	506	455	452	428	434	419	374	360	347	311	288	273	305	287	275	248	268
4B/23	χ Ende X Bor	+-	-	-	-	-	+	- <u>-</u>		353	463	529	1488	438	424	1396	395	364	343	332	302	287	276	295	281	259	255	250
4B/22	X Ende	H-	+-	-	<u> </u>	1-	1-	1-	1-	396	494	458	377	274	280	237	233	223	216	<u>227</u> 210	202	199	199	204	509	196	209	202

.

-42

2 -

- 44 -

ອ ເ

-47-

- 48 -

·

- 49 -

- 52 -

- 53 -

- 54-

- 56 -

-57-

i

-61-

- 63 -

Bestrahlungszeit [Vollasttage]_____

5

4

+ ×

7

6

X

-64-

KVE	Prüfling Nr.	Abbrand gemäß TE-Nr. (MWd/kg M)						Abbrand	
Nr.		1	2	3	4	5	6	7	mittl. Abbrand berechnet
42	48/27 48/26 48/25	17,91	25,24	18,62	21,66	25,71	23,23		2 3, 23 22,00 21,57
43	4B/34 4B/32 4B/30	7,48	11,90	8,08	10,10	11,43	10,26		10,26 9,87 9,69
44	4B/35 4B/33 4B/31	20,81	26,69	22,33	25,55	28,21	25,08		25,08 25,36 23,75
45	4B/24 4B/29 4B/28	11,08	12,85	14,74	17,10	19 , 56	17,12		11,97 17,12 17,13
47	48/4 48/3 48/2 48/1	43,92 (79)	43,53 (84)	65,07	87,44	63,69	85,54	85,35	85,35 74,62 76,25 43,73 (81,5)
48	4B/9 4B/8 4B/7 4B/5	59,92	78 ,3 2	69,04	83,79	68,61	74,30	79 , 09	79,09 71,46 76,41 69,12
49	4в/11 4в/12 4в/10 4в/6	56,23 (95)	48,55 (120)	96 , 79	123,78	15,13 (98)	110,38	99,9 8	99,98 62,75 (104,0) 110,29 52,39 (107,5)
55	4B/15 4B/14 4B/13	58,39	45,64 (68)	63,59	66,76	64,84	60,11	62,23	61,17 65,80 55,87 (63,3)
56	4B/18 4B/17 4B/16	56 , 24	63,68	64,91	59,76	62,75	57,97	60,42	59,20 61,25 61,61
57	4B/21 4B/20 4B/19	72,18	91,24	90 , 85	78,36	87,81	77,0	81,78	79,39 83,08 84,76
58	4B/24 4B/23 4B/22	86,58	86,68	85 , 48	99,24	109,09	77,27 (150)	109,47	93,37 (105) 104,17 86,25

7. Zerstörungsfreie Nachuntersuchung

7.1 Äußere Vermessung

An allen Prüflingen wurde vor und nach der Bestrahlung eine Vermessung der äußeren Dimensionen vorgenommen. Sie umfaßte die Bestimmung der Durchmesser entlang der Zylinderachse, die Durchbiegung und die Ermittlung der Länge.

Die Durchmesserbestimmungen wurden auf einer Meßbank mit Hilfe eines induktiven Wegaufnehmers als Meßtaster durchgeführt, wobei die Meßwerte kontinuierlich mit einem Makrograph-Formgestalt-Schreiber aufgezeichnet wurden. Der Meßkopf hatte die Form eines Keiles mit abgerundeten Schneiden. Es wurden jeweils vier Mantellinien im Winkelabstand von 90° an jedem Prüfling abgetastet und die einander gegenüberliegenden Meßlinien zur Ermittlung des Durchmessers herangezogen. Danben wurde an drei Punkten entlang der Stabachse (Anfang- Mitte – Ende) mit der gleichen Meßeinrichtung ein Polardiagramm des Durchmessers geschrieben. Die relativen Messungen wurden durch Eichung mit einem Meisterbolzen in absolute Meßwerte umgewandelt.

Bei der hier beschriebenen Vermessungsmethode ist es für eine genaue Messung unerläßlich, daß der Prüfling genau zentral zwischen zwei Dorne eingespannt wird. Schon geringe Abweichungen von der Ideal-Linie führen zu merklichen Ungenauigkeiten. Außerdem ergibt sich aus der geringen Breite des Schreiberpapiers, das mit 45 mm Gesamtbreite nur geringe Zeigerausschläge aufzuzeichnen gestattet, eine Einschränkung derart, daß die Meßwerte nur um den Faktor 50 vergrößert dargestellt werden können. Die Meßmethode wurde daher schon frühzeitig als ungeeignet angesehen und mit der Entwicklung einer neuen Anlage begonnen.

Die vibrierten Prüflinge (KVE 42, 43, 44, 45) wurden nur zerstörungsfrei untersucht. Die Betatronauswertung hinsichtlich Längenveränderung der Brennstoffsäule ergab (s. 7.2) zum Teil beachtliche Zuwachswerte (+ 12,6 %), was im Nachhinein das Stabversagen erklärt (Hineinwachsen in Wärmedämmung – mangelnde Wärmeabfuhr). Abb. 43 zeigt einen solchen Prüfling mit den Schadensstellen.

Die neue Apparatur wurde ab KVE 47 benutzt und zwar bei den KVE's 47 und 48 für die Nachvermessung der bestrahlten Stäbe und beim KVE 57 für die Vor- und Nachvermessung der Prüflinge.

Eine besondere Schwierigkeit ergab sich beim Vergleich einiger Meßwerte, die nach der Bestrahlung aufgenommen wurden, mit den Vorbestrahlungsdaten. In der Vorvermessung war hier noch ein Meßtaster benutzt worden, der anstelle einer Meßschneide einen Kugelkopf (Durchmesser der Kugel 2,5 mm) enthielt. Bei dieser Art der Vermessung müssen noch größere Anforderungen an ein genau zentrisches Einspannen des Prüflings in der Meßbank gestellt werden, wenn nicht unzulässig hohe Ungenauigkeiten auftreten sollen. Um die Fehler bei den allein interessierenden Durchmesserveränderungen klein zu halten, wurde daher hier von einer anderen Art der Vorvermessung ausgegangen. Vor der Bestrahlung war der Durchmesser der Stäbe an mehreren (3 bis 4) Orten entlang der Stabachse mit Hilfe eines Mikrometers zusätzlich bestimmt worden. Nur an diesen Orten wurden die Durchmesser, so wie sie sich aus der Auswertung der Makrograph- bzw. Wendelschriebe bei der Nachuntersuchung ergaben, verglichen. Damit wurden zumindest die Unsicherheiten der Vorvermessung eliminiert. Die KVE 42, 44 und 45 wurden so ausgewertet. KVE 43 wurde nicht vermessen, da die beiden untersten Prüflinge defekt waren. Ab KVE 47 wurden auch bei der Vorvermessung Meßschneiden benutzt. Ab KVE 57 hingegen wurden die Vorund Nachvermessungen mittels Wendelschrieben ausgeführt. In den Abb. 44 bis 54 werden die Durchmesserveränderungen in % über der Prüflingslänge dargestellt. Bei den vibrierten Prüflingen (4B/25 bis 4B/34) zeigt sich eindeutig eine Durchmesserabnahme über die gesamte Prüflingslänge, während die mit Tabletten gefüllten Stäbe (4B/1 bis 4B/24) im Bereich der Brennstoffsäule durchweg Durchmesserzunahmen aufweisen. Die Zunahmen sind für die Prüflinge der KVE 47, 48 und 49 zum Teil recht beachtlich (bis zu 1,75 %), während sie für die KVE 55, 56, 57 und 58 wesentlich geringer (~0,5 %) sind. Eine Abbrandabhängigkeit der Durchmesserveränderung kann nicht festgestellt werden.

Die zusammen mit dem Durchmesser bestimmten Durchbiegungen der Prüflinge nach der Bestrahlung sind in Tabelle XVII wiedergegeben. Die Meßwerte beziehen sich auf 2 um 90[°] gegeneinander verdrehten Ebenen. Entsprechend der geringen Stablänge wurden für die Durchbiegung nur kleine Abweichungen von der Geradheit beobachtet. - 78 -

- 1,0

- 1,5

- 81 -

AYAN Т 2 T I T Ţ T

- 83 -

Abb. 49

-84 -

Veränderungen der Stab-Außendurchmesser

Abb. 50

- 85 -

AXA Т T Τ T I 3 2 5 6 7 8 9 10 11 12 4 Prüfling 4B/18

Veränderungen der Stab-Außendurchmesser

₩

. 0

KVE 56

1,5

1,0

0,5

- 1,5

[%]P**∀**

1

Abb. 52

13

14

-87-

Veränderungen der Stab-Außendurchmesser

Abb. 53

Veränderungen der Stab-Außendurchmesser Abb. 54

Τ

Ţ

T

I

KVE	Prüfling	Durchbiegung in beiden Meßebenen (µm)	M = Makrograph W = Wendelschrieb		
42	4в/27	60 / 30	M		
	4в/26	60 / 60	M		
	4в/25	40 / 30	M		
43	4B/34	140 / 100	M		
	4B/32	+)	+)		
	4B/30	+)	+)		
44	4B/35	140 / 170	M		
	4B/33	100 / 160	M		
	4B/31	20 / 40	M		
45	4в/29	270 / 80	M		
	4в/28	70 / 0	M		
47	4B/4	100 / 10	M, W		
	4B/3	330 / 0	M, W		
	4B/2	15 0 / 40	M, W		
	4B/1	30 / 20	M, W		
48	48/9	8 / 55	M, W		
	48/8	32 / 0	M, W		
	48/7	85 / 90	M, W		
	48/5	70 / 10	M, W		
49	48/11 48/12 48/10 48/6	bestrahlt f e h l t !			
55	4B/15 4B/14 4B/13	unbestrahlt f e h l t !			
56	4B/18 4B/17 4B/16	unbestrahlt f e h l t !			
57	4B/21	18 / 8	W		
	4B/20	54 / 1	W		
	4 B/19	114 / 51	W		
58	4B/24 4B/23 4B/22	bestrahlt f e h l t !			

Tabelle XVII: Stabdurchbiegung nach der Bestrahlung

+) defekter Stab

Ein Vergleich der Stablänge vor und nach der Bestrahlung ergab als Mittelwert der gesamten Versuchsgruppe eine unwesentliche Verlängerung von 0,077 mm, entsprechend 0,046 %. Wie in Tabelle XVIII ersichtlich, ist bei zwei Stäben sogar eine geringfügige Verkürzung gemessen worden. Insgesamt liegen die Veränderungen jedoch so nahe an der erzielbaren Meßgenauigkeit, daß differenzierte Aussagen nicht möglich sind.

7.2 Durchleuchtung

Die innere Geometrie des Brennstoffes wird bei den hier untersuchten Prüflingen aufgrund der hohen Zentraltemperatur während der Bestrahlung stark verändert. So bildet sich zum Beispiel im thermischen Zentrum der Brennstoffsäule ein als Zentralkanal bezeichneter langgestreckter Hohlraum, dessen Ausdehnung und Form Aufschluß ber Vorgänge während der Bestrahlung liefert. Daneben wird die Brennstoffsäule beim Abkühlen durch Rißbildung bzw. Auseinanderbrechen bestimmter Brennstoff-Formationen verändert.

Für einen gerichteten Einsatz der zerstörenden Nachuntersuchungen, insbesondere der Keramografie, ist es unumgänglich, die innere Geometrie der Brennstoffsäule zu kennen. Eine Durchleuchtung des Prüflings ist zu diesem Zwecke wünschenswert.

Wegen der starken Eigenstrahlung der Brennstoffprüflinge durch die bei der Bestrahlung gebildeten Spaltprodukte ist jedoch eine Röntgendurchleuchtung üblicher Art nicht durchführbar.

In unserem Falle wurde die Durchleuchtung mit einem Betatron vorgenommen, das eine harte γ -Strahlung von maximal 18 MeV aussendet. Für diese hohe γ -Energie ist das Element Eisen weitgehend transparent, so daß die Eigenstrahlung der Prüflinge mit Eisen gegen den Aufnahmefilm abgeschirmt werden kann, ohne die Intensität der Betatron-Strahlenquelle wesentlich zu schwächen. Die Technik dieser Durchleuchtungsmethode sieht noch vor, daß die Außenränder der zylinderförmigen Stäbe durch einen sogeannten Dickenausgleich aus Blei vor einer Überstrahlung geschützt werden. Damit wird eine gleichmäßige Massenbelegung der Bildfläche und eine ausreichende Bildschärfe im Bereich der Randzone erreicht. Daneben wirkt der Dickenausgleich noch als zusätzliche Abschirmung für die Aufnahmefilme.

Tabelle XVIII: Längenmessungen der Prüflinge (vor und nach der Bestrahlung)

KVE	Prüfling	Länge (mm)	Länge (mm)	Differenz	
Nr.	Nr.	vor der Bestrahlung	nach der Bestrahlung	(mm)	
42	4B/27	166,96	166,96	0	
	4B/26	166,79	166,83	+ 0,04	
	4B/25	166,83	1 6 6,83	0	
43	4B/3 y	166,96	166,97	+ 0,01	
	4B/32	166,95	166,83	- 0,12	
	4B/30	166,97	166,78	- 0,19	
44	4B/35	166,80	166,82	+ 0,02	
	4B/33	166,90	166,90	0	
	4B/31	166,98	166,98	0	
45	4B/29	166,97	167,04	+ 0,07	
	4B/28	166,98	166,99	+ 0,01	
47	4B/4	166,92	167,01	+ 0,09	
	4B/3	166,93	167,08	+ 0,15	
	4B/2	167,00	167,10	+ 0,10	
	4B/1	166,92	167,18	+ 0,26	
48	4B/9	166,94	167,02	+ 0,08	
	4B/8	166,93	167,01	+ 0,08	
	4B/7	166,89	167,07	+ 0,18	
	4B/5	167,01	167,22	+ 0,21	
49	4B/12	166,95	166,98	+ 0,03	
	4B/11	166,95	167,01	+ 0,06	
	4B/10	166,98	167,06	+ 0,08	
	4B/6	166,98	167,17	+ 0,19	
55	48/15 48/14 48/13	166,99 167,01 167,02	167,09 +) 167,21	+ 0,10 + 0,19	
56	4B/18	167,01	167,12	+ 0,11	
	4B/17	166,97	167,05	+ 0,08	
	4B/16	167,03	167,14	+ 0,11	
57	4 _B /21	167,05	167,11	+ 0,06	
	4 _B /20	167,05	167,15	+ 0,10	
	4 _B /19	167,03	167,17	+ 0,14	
58	4B/24	167,13	167,16	+ 0,03	
	4B/23	166,97	167,02	+ 0,05	
	4B/22	167,01	167,07	+ 0,06	
+) wurde nicht durchgeführt			arithm. Mittel (mm)	+ 0,077	
			∆ L (%)	+ 0,046	

Auf diese Art wurden bei Durchleuchtungszeiten zwischen 10 und 30 Minuten die in der angefügten Prüflingsdokumentation (Anhang A) wiedergegebenen Durchstrahlungsbilder hergestellt. Die durch die Betatron-Durchleuchtung erzeugten Aufnahmen weisen in den Originalfilmen einen hohen Schwärzungsgrad auf. Sie sind damit nur unter Verlust einiger Details in der Zeichnung auf Fotopapier zu kopieren. Die in der Dokumentation dargestellten Aufnahmen sind daher in ihrer Bildqualität deutlich schlechter als die Original-Filme, die auch zur Beurteilung und Auswertung allein herangezogen wurden. Es wurde mittels dieser Filme die Länge der Brennstoffsäule ermittelt und mit der Original-Brennstoffsäulen-Länge verglichen (Tabelle XIX). Man kann mit einigen Ausnahmen – eine Säulenverkürzung von ca. 10 % feststellen, wobei die größere axiale Schwindung der niederdichten Pellets zuzuordnen ist. Die starke Verlängerung bei Prüfling 4B/30 ist auf Stabversagen zurückzuführen.

Der Versuch, hierzu ebenfalls die γ-Profile heranzuziehen, wurde aufgegeben, da beim Auftreten von Cs-Anreicherungen zu den Enden eine scheinbare Brennstoff-Säulen-Verlängerung vorgetäuscht wird.

7.3 γ -Profile und γ -Spektren

Zur Charakterisierung der Brennstoffsäulen hinsichtlich der Rißstruktur, des axialen Leistungsverlaufes der Brennstoffverlagerung und der Spaltproduktwanderung wurden die Prüflinge γ -spektrometrisch untersucht. In dieser Untersuchung wurden zum einen die γ -Aktivität entlang der Stabachse als γ -Profil erstellt, zum anderen γ -Spektren von bestimmten Bereichen des Prüflings aufgenommen.

Als Detektor diente hierzu ein Halbleiterkristall (GeLi) mit nachgeschaltetem Multikanal-Analysator. Profile und Spektren wurden mit einem schlitzförmigen Kollimator mit den Maßen 0,5 mm x 20 mm x 700 mm durch die Abschirmwand der Heißen Zellen aufgenommen. Während der Messung rotierten die Prüflinge um ihre Längsachse. Hierdurch wurde erreicht, daß Aktivitätsansammlungen im Bereich der Brennstoffaußenzonen nicht durch eine zufällige ungünstige Orientierung des Prüflings zum Detektor unbeachtet blieben.

Tabelle XIX: Veränderung der Brennstoffsäulenlänge

KVE	Prijfling	Brennstoffsäu	Δl		Ausgangs-	
		vor der Bestr.	nach der Bestr. ⁺⁾	(mm)	(%)	dichte (% th.D.)
42	4B/27 4B/26 4B/25	79,0 78,0 78,5	77,9 77,8 77,2	+ 0,9 - 0,2 -1,3	+ 1,14 - 0,26 - 1,66	
43	4B/34 4B/32 4B/30	80,0 79,0 79,5	83,0 89,5	+ 3,0 - +10,0	+ 3,75 +12,58	
44	4B/35 4B /33 4B/31	79,0 80,0 78,5	77,8 81,0 7 9, 2	- 1,2 + 1,0 + 0,7	- 1,52 + 1,25 + 0,89	80
45	4B/29 4B/28	79,5 79,0	81,0 81,6	+ 1,5 + 2,6	+ 1,89 + 3,29	
47	4B/4 4B/3 4B/2 4B/1	79,2 79,2 79,2 79,1	72,8 72,8 72,8 73,4	- 6,4 - 6,4 - 6,4 - 5,7	- 8,0 8 - 8,08 - 8,08 - 7,21	
48	4B/9 4B/8 4B/7 4B/5	79,3 79,4 79,2 79,3	73,4 72,1 72,7 74,8	- 5,9 - 7,3 - 6,5 - 4,5	- 7,44 - 9,19 - 8,21 - 5,67	90
49	4B/11 4B/12 4B/10 4B/6	79,6 79,5 79,3 79,3	79,9 79,9 81,0 80,4	+ 0,3 + 0,4 + 1,7 + 1,1	+ 0,38 + 0,50 + 2,14 + 1,39	
55	4B/15 4B/14 4B/13	79,9 79,8 80,1	71,6 71,0 73,0	- 8,3 - 8,8 - 7,1	-10,39 -11,03 - 8,86	
56	4B/18 4B/17 4B/16	80,0 79,9 79,8	71,4 71,4 72,0	- 8,6 - 8,5 - 7,8	-10,75 -10,64 - 9,77	84
57	4B/21 4B/20 4B/19	80,3 80,2 79,7	71,4 72,0 71,4	- 8,9 - 8,2 - 8,3	-11,08 -10,22 -10,41	
58	4B/24 4B/23 4B/22	79,7 79,8 80,2	79,5 79,5 81,5	- 0,2 - 0,3 + 1,3	- 0,25 - 0,38 + 1,62	

+) aus Betatron-Aufnahmen ermittelt.

Die Standard-Untersuchung wurde mit den Aufnahmen eines typischen γ -Spektrums begonnen. Dazu wurde ein Brennstoffsäulenbereich ausgewählt, der eine möglichst geringe Konzentrationsänderung an Spaltprodukten erwarten ließ. Gewöhnlich war dies etwa die Mitte der Brennstoffsäule. An Hand des γ -Spektrums wurden dann die besonderen Energiebereiche für bestimmte γ -Profile ausgewählt. Unabhängig von γ -Spektren wurde von jedem Prüfling ein integrales Profil aufgenommen, das die γ -Linien im weiten Bereich zwischen 400 keV und 1700 keV umfaßte. Aus meßtechnischen Gründen mußte bei einer Anzahl von Prüflingen die obere Energiegrenze beim integralen Profil auf die Hälfte herabgesetzt werden. Dennoch kann man auch hier noch von einem integralen Profil sprechen, da die intensivsten γ -Strahler unter den Spaltnukliden in diesem Energiegebiet Quanten emittieren.

Zu den Profilen, die an allen Prüflingen gemessen wurden, zählte auch das Zr/Nb-95-Profil. Vom Spalt-Zirkon ist bekannt, daß es sich in Oxidbrennstoff unter den hier betrachteten Bestrahlungsbedingungen nicht an- oder abreichert. Somit kann das Zr/Nb-95-Profil in besonderem Maße als Brennstoff-Indikator zur Ermittlung von Brennstoffverlagerungen herangezogen werden. Bei kurzen Bestrahlungszeiten ist dem Profil auch der axiale Stableistungsverlauf zu entnehmen.

Je nach Abklingdauer wurden weitere Nuklid-Profile zur Bestimmung der Spaltproduktwanderung vermessen. Es waren dies insbesondere Profile für Cs/Ba-137 und Ru-106.

Zur Vervollständigung der Nuklidprofile in Bezug auf die Spaltproduktwanderung wurden, verteilt über die gesamte Prüflingslänge, zusätzliche Spektren aufgenommen, wo immer die Profile einen Hinweis auf anomale Spaltproduktverteilungen brachten. Im Mittel waren etwa 6 Spektren für die Charakterisierung der Spaltproduktwanderung ausreichend. In Einzelfällen wurde die Zahl noch erhöht. In Anhang A sind für jeden Prüfling zwei der wichtigsten γ -Profile wiedergegeben.

Abb. 55 und 56 zeigen das integrale bzw. Zr/Nb-Profil der nur störungsfrei untersuchten Prüflinge 4B/30 und 4B/34.

Abb. 56 γ -Profil von Prüfling 4b/30

8. Zerstörende Nachuntersuchung

8.1 Spaltgasbestimmungen

Bei den experimentellen Spaltgasuntersuchungen an den bestrahlten Prüflingen werden Messungen durchgeführt 147 zur Bestimmung

- der freien Spaltgasmenge V_m

- des freien Volumens innerhalb der Hülle

- der Spaltgasmenge in geschlossenen Poren V_D
- der im Brennstoff gelösten Spaltgasmenge V_c

Zu diesem Zweck wird der Prüfling zuerst an der Stirnseite des oberen Stopfens abgebohrt und das freie Spaltgas abgezogen mit anschließender Helium-Spülung. Die Zusammensetzung des Spaltgases wird radio-gaschromatografisch ermittelt, wobei die Menge an Xe, Kr quantitativ bestimmt wird. Hierauf folgt eine manometrische Messung des freien Volumens (Hohlräume, offene Poren) innerhalb der Brennstabhülle.

Für die weiteren Spaltgasbestimmungen (Anteile in geschlossener Porosität bzw. im Brennstoffgitter gelöst) werden bei der Aufteilung des Prüflings zwei Brennstoffproben von insgesamt etwa 3 g Gewicht bereitgestellt. Jede Probe wird zuerst in einer gasdichten Kugelmühle aus Edelstahl ca. 2 Stunden gemahlen, wobei eine Partikelgröße von weniger als 1 µm erreicht wird. Das hierbei freigesetzte "Porenspaltgas" umfaßt alles Gas, das sich in geschlossener Porosität mit Porengrößen \leq 1 µm befand. Nach der gaschromatischen Bestimmung dieses Anteils wird die gemahlene Brennstoffprobe schließlich in HNO₂ aufgelöst. Dabei wird sowohl der im Brennstoff gelöste Anteil, das "Gitterspaltgas", und der in den kleinen Poren (< 1 µm) enthaltene Anteil bestimmt.

Die für eine weitere Auswertung wichtigen Ergebnisse sind zusammenfassend in einigen Tabellen dargestellt. Tabelle XX bringt für alle Prüflinge die gemessenen Mengen an freiem Spaltgas sowie den Spaltgasdruck bei einer (angenommenen) mittleren Betriebstemperatur von 500 °C. Die Gasmengenangaben in mm³ beziehen sich auf 20°C und 760 Torr.

In Tabelle XXI sind alle gemessenen Werte für das im Brennstoff gebundene Spaltgas (wieder aufgetrennt nach Krypton und Xenon) enthalten. Die Messungen wurden hierbei an kleinen Brennstoffproben
KVE	Prüfl.	Abbrand ⁺⁾ A (MWd/kg M)	Freies (mn Krypton	Spaltga 3) Xenon	s V _F Gesamt	Xe/Kr- Verhält nis	Freies - Volumen (mm ³)	Spaltgas- druck bei 500 ⁰ C (atm)
42	4B/27	23,2	403	4570	4973	11,3	982,3	13,36
	4B/26	25,7	263	2930	3193	11,3	1290	6,53
	4B/25	25,2	1030	17800	18830	17,3	1416	35, 0 8
43	4B/34 4B/32 4B/30	10,3 11,4 11,9	-		-	57 58 89		
44	4B/ 35	25,1	770	16700	17470	21,7	1003	45,95
	4B/33	28,2	908	16050	16958	17,7	1118	40,02
	4B/31	26,7	1367	19700	21067	14,4	1137	48,88
45	4B/29 4B/28 4A/24	17,1 19,6 -	- 340 siehe Ver	- 6430 rsuchsgr	- 6770 uppe 4a	18,9	812,3 1164	- 15,34
47	4B/4	85,4	1490	27500	28990	18,4	654	116,95
	4B/3	85,5	1590	29500	31090	18,0	637	128,76
	4B/2	87,4	1440	24100	25540	16,7	592	113,82
	4B/1	81,5	1570	25500	26070	16,2	709	97,01
48	4B/9	79,1	1390	24900	26290	17,9	784	88,45
	4B/8	74,3	1600	27700	29300	17,3	586	131,91
	4B/7	83,3	1710	30500	32210	17,8	683	124,42
	4B/5	78,3	1720	30100	31820	17,5	569	147,53
49	4B/11	100,00	2050	34000	36050	16,6	856	111,0
	4B/12	110,4	2480	36600	39080	14,8	706	146,0
	4B/10	123,8	2370	36000	38370	15,2	831	122,0
	4B/6	120,0	2340	37300	39640	15,9	942	111,0
55	4B/15	62,2	950	17300	18250	18,2	936	51,44
	4B/14	66,8	1190	22000	23190	18,5	746	82,01
	4B/13	63,3 ⁺⁺)	1160	21100	22260	18,2	902	65,11
56	4B/18	60,4	585	10100	15685	17,3	837	49,44
	4B/17	62,8	656	11850	12506	18,0	826	39,94
	4B/16	64,9	670	11950	12620	17,8	879	37,88
57	4B/21	81,8	1725	28800	46050	17,0	775	1 56,76
	4B/20	87,8	2020	34900	55100	17,3	826	175,99
	4B/19	91,2	1810	32600	50700	18,0	6 76	197,87
58	4B/24	109,5	1860	34900	36760	18,75	781	124,18
	4B/23	109,1	1910	35600	37510	18,65	804	123,08
	4B/22	86,7	1835	34100	36935	18,60	723	131,13

Tabelle XX: Freies Spaltgas- Spaltgasdruck

+) maximale Abbrände aus Tab.XVI; ++) korrigierte Werte

KVE	Prüfl.	Abbrand ⁺⁾ (MWd/kg M)	Porenspa Krypton	altgas (Xenon	mm ³) Gesamt	Gittersp Krypton	altgas Xenon	(mm ³) Gesamt	Xe/Kr- Verhäl Poren	tnis Gitter
42	4B/27 4B/26 4B/25	23,2 25,7 25,2	1 1							5-0 6-0 7-0
43	4B/34 4B/32 4B/30	10,3 11,4 11,9		-	600 600		-			143 153 174
44	4B/35 4B/33 4B/31	25,1 28,2 26,7	` <u> </u>	-	52 64	-	-			
45	4B/29 4B/28 4A/24	17,1 19,6 -		siehe		gruppe 4a		-	1	1 1
47	4B/4	85,4	591	6732	7323	50	1239	1289	11,39	24,78
	4B/3	85,5	511	8441	8952	57	1453	1510	16,51	25,49
	4B/2	87,4	528	7324	7852	103	2522	2625	13,87	24,49
	4B/1	81,5°)	675	11204	11879	137	3314	3451	16,60	24,19
48	4B/9	79,1	478	7672	8140	79	1769	1848	16,05	22,39
	4B/8	74,3	339	5375	5714	80	1809	1889	15,86	22.61
	4B/7	83,8	381	5642	6023	66	1668	1734	14,81	25,27
	4B/5	78,3	404	6125	6529	96	1948	2044	15,16	20,29
49	4B/11	100,0	755	13365	14120	1 6 5	3162	3327	17,70	19,16
	4B/12	110,4	730	16102	16832	181	3346	3527	22,06	18,49
	4B/10	123,8	897	14670	15567	169	3663	3832	16,35	21,67
	4B/6	120,0°)	577	9814	10391	248	4890	5138	17,00	19,72
55	4B/15	62,2	250	2505	2755	95	2881	2976	10,02	30,32
	4B/14	66,8	340	5473	5813	86	2228	2314	16,10	25,91
	4B/13	63,3°)	320	4729	5049	77	2454	2531	14,78	31,87
56	4B/18	60,4	771	11942	12713	119	3153	3272	15,49	26,50
	4B/17	62,8	735	11833	12568	130	2840	2970	16,10	21,85
	4B/16	64,9	633	10059	10692	136	2924	3060	15,89	21,50
57	4B/21	81,8	398	6041	6439	69	1850	1919	15,18	26,81
	4B/20	87,8	335	5434	5769	76	1742	1818	16,22	22,92
	4B/19	91,2	363	5659	6022	92	2200	2292	15,59	23,91
58	4B/24	109,5	691	11471	12162	153	36 3 9	3792	16,90	23,78
	4B/23	109,1	690	11359	12049	86	2615	2701	16,46	30,41
	4B/22	86,7	834	13832	14660	81	2071	2152	16,59	25,57

Tabelle XXI: Gebundenes Spaltgas

+) maximale Abbrände aus Tab.XVI; - wurde nicht gemessen. 0) korrigierte Werte

 $(\sim 1/8 \text{ vom Brennstoff})$ durchgeführt und die Meßergebnisse auf die in einem Prüfling enthaltene Gesamtmenge an Brennstoff umgerechnet. In Tabelle XXII werden die spezifischen Spaltgasausbeuten angegeben.

In Tabelle XXIII schließlich wird für jeden Prüfling die Spaltgasbilanz aufgestellt. Interessant ist hier die Spalte"Gesamtspaltgas", wo das gemessene Spaltgas mit einem berechneten Wert verglichen wird. Wie man sieht, überschreitet die gemessene Spaltgasmenge in einigen Fällen (4 von 24) die theoretische Menge um mehr als 30 %. Nachfolgend soll versucht werden, diese Diskrepanz zu diskutieren: Die theoretische Spaltgasmenge wurde hier berechnet nach der Formel

 $Vg = A \cdot B \cdot C$,

wobei A = Abbrand

B = Brennstoffgewicht bzw. -Volumen

C = theoretisch erzeugte (Xe + Kr)-Menge (spezifisch je Gewicht bzw. Volumen)

In Tabelle XXIII wurde mit dem kalorimetrisch ermittelten Abbrand gerechnet. Derselbe liegt erfahrungsgemäß (s. Abbrandvergleich S.114) ca. 14 % unter dem radiochemisch bestimmten Wert. Da dieser Wert ebenfalls mit einer Unsicherheit von \pm 3 % behaftet ist, kann man die Unsicherheit in A mit 0,17 ansetzen. Der Wert B ist exakt bestimmbar. Der Wert C besitzt ebenfalls eine Unsicherheit von ca. 13 % (konservative Annahme 0,26 langlebige Gasatome/Spaltung, neuerer Wert 0,30 Gasatome /Spaltung), so daß die Gesamtunsicherheit in der theoretischen Spaltgasmenge ca. 0,30 bzw. 30 % beträgt. Hierdurch sind die Abweichungen von den Meßwerten in den meisten Fällen abgedeckt.

In Tabelle XXIV werden sowohl die partiellen als auch Gesamt-Xe/Kr-Verhältnisse wiedergegeben. Der Mittelwert für das Gesamtspaltgas beträgt 17,3. In der Literatur findet man für die theoretische Spaltung von Pu-239 einen Xe/Kr-Wert von 13,3 $\sqrt{15}$. Hierbei muß allerdings auch die mit wachsendem Abbrand zunehmende Pu-241-Spaltung berücksichtigt werden. Hierdurch verschiebt sich das Xe/Kr-Verhältnis zu höheren Werten. Bei den partiellen Werten liegen die Werte noch stärker verschoben, was z.T. sich über Diffusion bzw. Blasenwanderung $\sqrt{4}$ erklären läßt.

	- 22 -		45				80 ——		5 -15-
-\//	TT BOD	M.					·		
		, , , ,	ſ		Z4	_ _	Z3 Z2	Z	
KVE	Prüf- ling	z ₃ -z ₄	Poren- Spaltgas	Gitter- Spaltgas	Gesamt	z ₁ -z ₂	Poren- Spaltgas	Gitter- Spaltgas	Gesamt
42	4B/27 4B/26 4B/25	-		-	440 440 441				-
43	4B/34 4B/32 4B/30	-		-			-		-
44	4B/35 4B/33 4B/31		-			-	-		-
45	4B/29 4B/28 4A/24	-	-	- siehe Vers	- uchsgrup	- ppe 4a		-	-
47	4B/4 4B/3 4B/2 4B/1	68/78 61/71 62/71 62/71	364 485 439 7 <i>33</i>	103 89 189 190	468 574 628 923	4/13 13/23 13/23 13/23 13/23	555 642 548 765	59 101 141 245	614 743 689 1010
48	4B/9 4B/8 4B/7 4B/5	62/71 61/71 62/71 62/71	330 245 276 363	81 99 116 131	411 344 392 494	12/22 12/22 13/23 13/23	683 465 476 457	149 136 101 125	832 601 577 582
49	4B/11 4B/12 4B/10 4B/6	40/48 46/55 40/49 56/64	1004 1355 109 649	251 246 160 322	1255 1601 269 971	30/38 10/20 30/38 30/38	757 712 1022 -	153 188 318 -	910 900 1340 -
55	4B/13 4B/14 4B/13	47/57 50/59 25/33	69 427 341	- 155 133	69 582 474	24/31 20/30 15/23	294 339 324	195 149 131	489 488 4955
56	4B/18 4B/17 4B/16	49/58 49/58 49/58	900 885 714	188 167 217	1088 1052 931	19/29 19/29 19/29	763 763 697	241 222 187	1004 985 884
57	4B/21 4B/20 4B/19	30/39 49/58 50/59	54 54	-	-	19/29 19/29 19/29	419 376 396	124 118 151	543 494 547
58	4B/24 4B/23 4B/22	48/58 40/48 48/55	725 717 799	322 167 162	1047 884 961	19/28 30/39 10/19	873 862 1112	176 187 118	1049 1049 1230

Bemerkung: Die Z₁ bedeuten den Abstand (bz. die Länge) der zur Bestimmung des Spaltgases aus der Brennstoffsäule herausgeschnittenen Probe in mm vom unteren Brennstoffsäulenende

Tabelle XXII: Spezifische Poren- und Gitterspaltgasausbeute V' (mm³/g)

KVE	Prüfl.	Abbrand ⁺⁾ ^A max	Freies Spalt- gas V _F		Porenspalt- gas V _P		Gitterspalt- gas V _G		Gesamtspaltgas (mm ³)	
		(MWd/kg M)	(mm ³)	(%)	(mm ³)	(%)	(mm ³)	(%)	gem.	theor.
42	4B/27 4B/26 4B/25	2 3, 2 25,7 25,2	4973 3193 18830		1 1 1				1 8 2	9761 10813 10603
43	4B/34 4B/32 4B/30	10,3 11,4 11,9		-	1 1	-	8 8	1 1		4334 4796 5007
44	4B/35 4B/33 4B/31	25,1 28,2 26,7	17470 1 6 958 21067	-	-	-			4.0 	10560 11822 11234
45	4B/29 4B/28 4A/24	17,1 19,6	- 6770 -	- s.Ver	- suchsgri	- 1 uppe 4a		-	-	7195 8246
47	4B/4	85,4	28990	77,1	7323	19,5	1289	3,4	37602	37339
	4B/3	85,5	31090	74,8	8952	21,5	151 0	3,7	41552	37384
	4B/2	87,4	25540	70,9	7852	21,8	2625	7,3	36017	38214
	4B/1	81,5°)	26070	63,0	11879	28,7	3 451	8,3	41400	35600
48	4B/9	79,1	26290	72,5	8140	22,4	1848	5,1	36278	35000
	4B/8	74,3	29300	79,4	5714	15,5	1889	5,1	36903	32895
	4B/7	83,8	32210	80,6	6023	15,1	1734	4,3	39967	36871
	4B/5	78,3	31820	78,8	6529	16,2	2044	5,0	40393	34450
49	4B/11	100,0	36050	66,6	14120	26,1	3327	6,3	54097	44548
	4B/12	110,4	39080	65,8	16832	28,3	3527	5,9	59439	49485
	4B/10	123,8	38370	66,4	15567	26,9	3832	6,7	57769	54470
	4B/6	120,0°)	39640	72,0	10391	18,9	5138	9,1	55169	52400
55	4B/15	62,2	18250	76,1	2755	11,5	2976	12,4	23981	25657
	4B/14	66,8	23190	74,0	5813	18,6	2314	7,4	31317	27921
	4B/13	63,3°)	22260	74,6	5049	16,9	2531	8,5	29840	26458
56	4B/18	60,4	15685	49,5	12713	40,1	3272	10,4	31670	25412
	4B/17	62,8	12506	44,6	12568	44,8	2970	10,6	28044	26422
	4B/16	64,9	12620	47,8	10692	40,5	3060	11,7	26372	27127
57	4B/21	81,8	46050	84,6	6439	11,8	1919	3,6	54408	34641
	4B/20	87,8	55100	87,9	5769	9,2	1818	2,9	62687	37181
	4B/19	91,2	50700	85,9	6022	10,2	2292	3,9	59014	38120
58	4B/24	109,5	36760	69,7	12162	23,1	3792	7,2	52714	45769
	4B/23	109,1	37510	71,8	12049	23,1	2701	5,1	52260	45902
	4B/22	86,7	35935	68,1	14660	27,8	2152	4,1	52747	36477

+) max. Abbrände s.Tab.XVI; korrigierter Wert; () unsicherer Wert

Tabelle XXIV: Xe/Kr-Verhältnis, partiell und gesamt

KVE	Prüfl.	Abbrand ⁺⁾ (MWd/kg M)	Freies Spaltgas	Poren- Spaltgas	Gitter- Spaltgas	Gesamt- Spaltgas
42	4B/27 4B/26 4B/25	2 3,2 25,7 25,2	11,3 - 11,3 - 17,3 -			-
43	4B/34 4B/32 4B/30	10,3 11,4 11,9		- - -		
44	4B/35 4B/33 4B/31	25,1 28,2 26,7	21,7 17,7 14,4			
45	4B/29 4B/28 4A/24	17,1 19,6 -	18,9 s. Versuchs	- - gruppe 4a -		-
47	4B/4	85,4	18,4	11,4	24,8	16,6
	4B/3	85,5	18,0	16,5	25,5	18,3
	4B/2	87,4	16,7	13,9	24,5	16,4
	4B/1	81,5°)	16,2	16,6	24,2	16,8
48	4B/9	79,1	17,9	16,1	22,4	17,6
	4B/8	74,3	17,3	15,9	21,6	17,3
	4B/7	83,8	17,8	14,8	25,3	17,5
	4B/5	78,3	17,5	15,2	20,3	17,2
49	4B/11	100,0	16,6	17,7	19,2	17,0
	4B/12	110,4	14,8	22,1	18,5	16,5
	4B/10	123,8 ₀)	15,2	16,4	22,7	15,8
	4B/6	120,0	15,9	17,0	19,7	16,4
55	4B/15	62,2	18,2	10,0	30,3	17,5
	4B/14	66,8	18,5	16,1	25,9	18,4
	4B/13	63,3°)	18,2	14,8	31,9	18,2
56	4B/18	60,4	17,3	15,5	26,5	17,1
	4B/17	62,8	18,0	16,1	21,9	17,4
	4B/16	64,9	17,8	15,9	21,5	17,3
57	4B/21	81,8	17,0	15,2	26,8	16,7
	4B/2 0	87,8	17,3	16,2	22,9	17,3
	4B/19	91,2	18,0	15,6	23,9	17,7
58	4 B/24	109,5	18,8	16,6	23,8	18,5
	4B/23	109,1	18,7	16,5	30,4	18,5
	4B/22	86,7	18,6	16,6	25,6	18,2
Mitt	elwerte		17,28	15,66	23,82	17,26

+) max. Abbrand ausTab. XVI; ^{o)} korrigierte Werte

Zusammenfassend kann gesagt werden: Die Unstimmigkeiten in der Spaltgasbilanz beruhen auf

- Schwierigkeiten bei der meßtechnischen Erfassung der Spaltgasanteile,
- Unsicherheiten in der Bestimmung des wahren Abbrandes (sowohl radiochemisch als auch kalorimetrisch),
- Unsicherheit in der Erzeugungsrate der langlebigen Gasatome.

8.2 <u>Keramografie</u>

Die Keramografie nimmt unter den Untersuchungsmethoden für die hier besprochenen Brennstab-Prüflinge eine wichtige Stellung ein. Sie beginnt mit dem Festlegen der zu untersuchenden Bereiche, wobei im wesentlichen Schnitte durch die Brennstoffsäule untersucht werden. Folgende Gesichtspunkte sind bei der Auswahl berücksichtigt worden:

1.) Brennstabdaten

(Stabaufbau, Brennstoffspezifikationen)

2.) Bestrahlungsdaten

(Stableistungsverlauf entlang der Stabachse)

3.) Ergebnisse der zerstörungsfreien Nachuntersuchung

Durchleuchtung	(Zentralkanal und Rißkonfiguration)
γ-Spektrometrie	(Brennstoff und Spaltprodukt-
	Verlagerungen)

Das Ziel der Keramografie war, einerseits eine typische Verhaltensweise für bestimmte Parameterkombinationen aufzuzeigen, andererseits Besonderheiten im Stabverhalten darzulegen. Für das erstere Ziel wurden in jedem Stab Schnittebenen ausgesucht, die in möglichst ungestörten, regelmäßigen Bereichen, meist in Stabmitte lagen. Untypische Brennstoffstrukturen wurden besonders häufig an den Säulenenden beobachtet und untersucht. Eine vergleichende Auswertung, bei der die Zentralkanalgröße, der Brennstoff/Hüll-Spalt und die konzentrischen Strukturzonen im Brennstoff vermessen wurden, ist praktisch nur an Querschliffen möglich, weshalb die als typisch angesehenen Brennstoffabschnitte als Querschliffe ausgeführt wurden. Für die Beobachtung spezieller Verhaltensweisen erwiesen sich Längsschliffe als besonders brauchbar. Sie erlauben den Verlauf eines Phänomens entlang der Stabachse bis zu einer Länge von 20 mm zu verfolgen.

Für die Dokumentation einer Schliffebene wurde bei den meisten Prüflingen folgendes Schema angewandt:

	Aufnahmetyp	Ver - größerung	Verarbeitung der Untersuchungsfläche
1.	Totalaufnahme	15 x	a) poliert b) geätzt
2.	α - und By-Autoradiografie	15 x	poliert
3.	Mittelvergrößerung	25 x	a) poliert b) geätzt
4.	Panorama-Aufnahme über den Säulenradius	100 x	a) poliert b) geätzt
5.	Detailaufnahmen	100 x 200 x 500 x	a) poliert b) geätzt

Darüber hinaus wurden an den Quer- und Längsschliffen folgende Daten am Mikroskop ermittelt:

- 1. Radius des Zentralkanals

- 2. Radius der Säulenkristallzone (kleine Kristalle) = Kornwachstum
- 3. Radius der Säulenkristallzone (große Kristalle)
- 4. Spalt zwischen Brennstoff und Hülle

Soweit vorhanden wurden auch andere abgrenzbare Strukturzonen in ihrer Ausdehnung bestimmt.

In den Abb. 57 bis 60 sind die wichtigsten Daten dieser Auswertung numerisch und graphisch wiedergegeben. Die aufgeführten Radien beziehen sich auf die äußere Abgrenzung der Strukturzonen. Beim radialen Spalt ist der Mittelwert aus vier Einzelmessungen angegeben, die bei Querschliffen um 90[°] versetzt, bei Längsschliffen jeweils in Zweiergruppen einander gegenüber bestimmt wurden.

Probe Zentralka- Säulenkrist- Säulenkrist- rad. ZK Prüfl. Quer-,o, nalradius zone klein zone groß Spalt Säulenkrist 🚟 Brennstoff unverän. 🗔

Komwachst.

KVE	Prüfl.	Quer-,o. Längs	nalradius r[mm]	zone klein r [mm]	zone groß r [mm]	Spalt [/um]	Säulenkrist Brennstoff unverän.
	B 25	1 L	1,00	2,00	2,15	12	
		2 Q	0,70	1,80	2,00	12	
		1 L	1,10	1,95	2,15	o	
42	в 26	2 ରୃ	0,70	1,80	1,95	0	
	. D. 07	1 L	1,30	2,05	2,20	0	
	B 2 (2 ଢ	0,65	1,70	1,90	0	
43	в 32	2 ଢ	0,50	1,80	2,05	0	
	D 36	lL	0,88	1,85	2,00	6	
		2 Q	0,68	1,70	1,90	0	
		1 L	1,25	1,95	2,20	0	
44	B 22	ଥର୍	0,92	2,00	2,20	20	
	וד ק	lL	1,25	2,30	-	0	
		2 Q	0,82	1,95	2,20	0	
	D 00	lL	1,10	2,00	2,20	0	
45	5 29	2 ଢ	0,85	2,10	2,30	10	
	в 28	lL	1,15	2,10	2,25	0	
		2 ଢ	1,00	2,20	2,35	0	

Abb. 57

Brennstoffstruktur

		Probe	Zentralka-	Säulenkrist	Säulenkrist-	rad.	ZK Kornwachst.
KVE	Prüfl.	Quer-,o.	nalradius	zone klein	zone groß	Spalt	Säulenkrist.🧮 Brennstoff unverän. 🖂
		Längs	r [mm]	r [mm]	r [mm]	[/um]	🦇 Brennstoffradius ————————————————————————————————————
	в4	lQ	0,52	1,60	2,10	0	
		2 L	0,50	1,70	2,10	0	
	DZ	1 Q	0,75	1,90	2,40	o	
)17		2 L	0,75	1,80	2,50	0	
47		1 Q	0,80	2,20	2,40	0	
	В2	2 L	0,80	2,10	2,30	0	
	вı	lQ	0,85	1,90	2,40	0	
		2 L	0,70	1,80	2,10	0	
	в9	1Q	0,68	1 , 70	2,00	0	
		2 L	0,64	-	-	o	
	ъЯ	1Q	0,70	-	2,10	0	
າເຮ	00	2 L	0,65	-	-	0	
Ş	D 7	1 Q	0,70	1,60	1,80	ο	
) Q	2 L	0,76	1,60	1,90	0	
	в5	1Q	0,76	1,75	2,10	0	
ľ		2 L	0,75		1,70	ο	
	Ļ		L	1. Abb 59	Decorre		

- 108 -

		Probe	Zentralka-	Säulenkrist. –	Säulenkrist-	rad.	ZK Kornwachst
KVE	Prüfl.	Quer-,o.	nalradius	zone klein	zone groß	Spalt	Säulenkrist.🧮 Brennstoff unverän.
		Längs	r [mm]	r [mm]	r[mm]	[Jum]	🛥 Brennstoffradius ——
	в 11	1Q.	0,51	1,80	2,20	0	
		2 L	0,35		•	0	
	в 12	1Q	0,56	1,70	2,20	0	
Jio		2 L	0,47	1,60	2,10	0	
לד	D 10	1Q	0,71	1,90	2,30	0	
	B 10	2 L	0,65	1,80	2,20	0	
	в¢	1Q	0,79	1 ,9 0	2,40	0	
		3 L	0,67	1,80	2,20	0	
	- 15	1Q	0,75	1,90	2,30	0	
	В 15	2 L	0,94	1,80	2,30	0	
55	в 14	1Q	1,05	2,00	2,40	0	
		2 L	0,75	1,90	2,30	0	
	в 13	lQ	1,35	2,50	-	ο	
		5 L	1,05	-	-	ο	

<u>Abb. 59</u>

Brennstoffstruktur

		Probe	Zentralka-	Säulenkrist	Säulenkrist-	rad.	ZK Kornwachst.
KVE	Prüfl.	Quer-,o.	natradius	zone klein	zone groß	Spatz	Säulenkrist.🧮 Brennstoff unverän. 🗀
		Längs	r [mm]	r[mm]	r [mm]	[/um]	🛥 Brennstoffradius
	в 18	1Q	0,76	1,70	1,90	0	
56		lQ	0,78	1,60	2,00	o	
50		2 L	0,80	-	-	0	
	в 16	lQ	0,85	1,80	2,10	o	
	2 20	2 L	0,75	-	-	0	
	в 21	1Q	0,53	1,50	1,80	0	
		2 L	0,75	1,50	1,80	0	
57	в 20	1Q	0,70	1,35	1,60	0	
		2 L	0,55	1,25	1,60	0	
	в 19	1 Q	0,86	1,60	1,85	0	
		lQ	0,75	1,80	2,10	0	
F0	B 24	2 L	0,72	1,75	2,05	0	
58	в 23	1 Q	0,66	1,80	2,10	0	
		1Q	0,80	1,80	2,10	0	
	в 22	2 L	0,77	1,75	2,05	o	

<u>Abb. 60</u>

Brennstoffstruktur

8.3 Radiochemische Abbrandbestimmungen

Aus den Temperaturanzeigen der Thermoelemente in den Kapselversuchseinsätzen wurde für jeden Prüfling die Stableistung und, integriert über die Bestrahlungszeit, der Abbrand errechnet.

Zur Stützung dieser Ergebnisse wurden zusätzlich die Abbrände durch radiochemische Isolierung und quantitative Analyse bestimmter Spaltprodukte ermittelt.

Hierzu wurden aus dem Bereich der Brennstoffsäule 8 bis 10 mm lang Abschnitte herausgetrennt. Sie enthielten gewöhnlich etwa 2 g Brennstoff. Die Proben entstammten aus der Brennstoffsäulenmitte und bei den KVE 55, 56, 57 und 58 15 mm oberhalb der Prüflingsmitte (Einbauzustand). Bei den KVE 49 (Prüfling 4B/10 und 4B/11) und KVE 57 (Prüfling 4B/19 und 4B/21) wurden drei Abbrandproben entnommen (s. Profile in Abb. 61 und 62). Als Abbrandindikator wurden sowohl die Pu-Abreicherung als auch die Spaltprodukte Ce-144 und Nd-148 benutzt. Aus den Einzelwerten wurde über eine Wichtung (Pu:Ce:Nd = 1:2:3) ein mittlerer Abbrandwert errechnet. Bei einem typischen Brennstoffprüfling lagen die Anteile der einzelnen Spaltquellen und Spaltausbeuten (\overline{Y}), gemittelt über die Bestrahlungszeit, etwa wie folgt $\sqrt{16}/7$:

	Spaltqueller	ı		¥ Ce-144 (%)	¥ Na-148 (%)
U-238	schnelle Spa	altung	0,5%	4,30	1,90
0 - 2 <i>3</i> 5 Bu-239	u u	11	2,5 % 93,0 %	5,42 3,78	1,09 1,70
Pu-241	11	11	4,0 %	4,13	1,89

8.4 Vergleich der radiochemischen und berechneten Abbrandwerte

Als Ergebnis der radiochemischen Abbrandbestimmung ergab sich der Abbrand in Prozent der ursprünglich vorhandenen schweren Atome (FIMA). Zum Vergleich mit den berechneten Abbränden wurden dieselben in MWd/t umgerechnet. Hierzu wurden 10 000 MWd/t = 1,02 % FIMA gleichgesetzt.

- 111 -

- 112 -

In Tabelle XXV sind die Wertepaare für sämtliche Prüflinge enthalten. Abb. 63 gibt die Abweichung der gerechneten von den radiochemisch bestimmten Werten wieder. Es ergibt sich eine Abweichung der gerechneten von - 14,1 % gegenüber den radiochemisch bestimmten Werten, d.h. die berechneten Werte liegen um ca. 14 % unter den analytisch bestimmten. Vergleicht man diesen Sachverhalt mit dem Ergebnis der Versuchsgruppe 4a (15 % Pu), so stellt man fest, daß bei Versuchsgruppe 4a ein Streuband von + 9,5 % auftrat, welches beidseitig durch Werte von Prüflingen mit Pu-Entmischung durchbrochen wurde. Das vorliegende Ergebnis ist voll befriedigend, wenn man beachtet, mit welch großen Unsicherheiten die rein kalorimetrische Abbrandbestimmung behaftet ist. Auch stimmt hier die generelle Tendenz der negativen Abweichung, da die Hüll-Thermoelemente im besten Falle exakt die Hüllaußentemperaturen, meist aber etwas niedrigere Werte anzeigen. Letzteres rechtfertigt auch die Vorgehensweise, bei der Berechnung der theoretischen Spaltgasmenge von maximalen Abbränden auszugehen, um die Unsicherheit bei den Anteilen der Spaltgase je Spaltung zu kompensieren.

9. Dokumentation der zerstörungsfreien und zerstörenden Nachuntersuchung

Im folgenden Abschnitt wird eine umfassende Dokumentation der zerstörungsfreien und zerstörenden Nachuntersuchung gegeben, welche eine Auswahl der wichtigsten Ereignisse für jeden der 35 Prüflinge enthält. Die Ergebnisse sind auf einem dreiseitigen Faltblatt zusammengestellt, welches folgende Aufteilung aufweist (von links nach rechts):

- Gamma-Profile des bestrahlten Prüflings:
 - a) integrales γ -Profil (Energiebereich 400 1700 keV),
 - b) differentielles y-Profil für Teilenergiebereiche (isotop-spezifisch, z.B. für Zr/Nb-95 700 bis 790 keV, Cs/Ba-137 640 bis 680 keV).

					الموالي والموالي والمركب والمركب والموالي والموالي والموالي والمركب والمركب المركب المركب والمركب وا	فيها المراد البياة فيها المراكب المحر التاريخ
KVE	Prüfl.	(1) A radioch. (MWd/kg)	(2) A berechnet (Mwd/kg)	(2) - (1) A (MWd/kg)	△A (%) (A radioch. = 100)	Symbole in Abb. 63
47	4B/4 4B/3 4B/2 4B/1	95,3 100,0 100,0 103,0	85,3 74,6 76,3 81,50)	- 10,0 - 25,4 - 23,7 - 21,5	- 10,4 - 25,4 - 23,7 - 20,9 +)	X
48	4B/9 4B/8 4B/7 4B/5	88,0 95,1 93,8 95,1	79,1 71,5 76,4 69,1	- 8,9 - 19,5 - 17,4 - 26,0	- 10,1 - 20,5 - 18,6 - 27,3	•
49	4B/11 4B/12 4B/10 4B/6	117,9 124,3 130,4	99,9 110,0 110,3 120,0)	- 18,0 - 14,3 - 20,1 -	- 15,3 - 11,5 - 15,4 -	0
55	4B/15 4B/14 4B/13+)	64,1 74,3 73,7	61,2 65,8 63,3 0)	- 2,9 - 8,5 - 10,4	- 4,5 - 11,5 - 14,1	Δ
56	4B/18 4B/17 4B/16	62,3 63,3 66,8	59,2 61,3 61,6	- 3,1 - 2,0 - 5,2	- 5,0 - 3,1 - 7,7	
57	4B/21 4B/20 4B/19	89,43 93,8 88,2	79,4 83,1 84,8	- 10,0 - 10,7 - 3,4	- 11,2 - 11,4 - 3,8	
58	4B/24 4B/23 4B/23+)	117,1 119,5 122,6	105,0 104,2 86,2	- 12,1 - 15,3 - 36,4	- 10,3 - 12,8 - 29,7	

Vergleich der radiochemisch bestimmten und berechneten Abbrände Tabelle XXV: (1 % A = 979,6 MWd/t)

+) Probe mit zentralem Brennstoffschmelzen, ^{o)} korrigierte Werte

- 115 -

Keramografische Übersicht:

- a) technische Zeichnung des Prüflings (Maßstab 1:1) mit Markierung der Schnittebenen,
- b) keramografische Übersichtsaufnahmen entsprechend der Schnittzahl,
- c) α-Autoradiografie zur Darstellung der Pu-Verteilung nach Ablauf der Bestrahlung,
- γ-Autoradiografien zur Charakterisierung der Spaltproduktverteilung,
- e) Betatron-Durchleuchtung des Prüflings,
- f) schematische Darstellung des Prüflings mit Hervorhebung des Zentralkanalverlaufes.

Titelblatt:

Kurze Zusammenfassung der Material- und Bestrahlungsdaten des Brennstabprüflings.

Auf weiteren Einzelblättern werden weiterhin signifikante Details wie beispielsweise axiale und radiale Materialversetzungen oder -entmischung des Brennstoffes, Nachweise für Hüllinnenkorrosion etc. in höheren Vergrößerungen gezeigt.

Abschließend sei an dieser Stelle vermerkt, daß es sich bei den angeführten Beispielen um eine nicht detailspezifische Auswahl aus einer großen Anzahl von keramografischen Aufnahmen handelt.

10. Schlußbetrachtung

Nach Abschluß der Nachuntersuchung der Kapselversuchsgruppe 4b, die der Erprobung von 35 Brennstabprüflingen mit Mischoxid als Brennstoff unter simulierten Schnellbrüterbedingungen im thermischen Fluß diente, kann folgende Bilanz gezogen werden:

- 1. Die spezifikationsgemäß angestrebte Stableistung von 500 W/cm und eine maximale Hüllwandtemperatur (außen) von max. 680 °C wurden erreicht.
- 2. Der angestrebte mittlere Abbrand von 80.000 MWd/t M wurde für die mit Tabletten gefüllten Prüflinge erreicht bzw. überschritten.

Bei den mit vibriertem Brennstoff gefüllten Prüflingen traten wegen kapselspezifischer Schwierigkeiten Hüllschäden auf, worauf die Bestrahlung abgebrochen wurde.

- 3. Alle Prüflinge blieben intakt.
- Die tablettengefüllten Stäbe zeigten eine Durchmesserzunahme von maximal 2 %, die vibrierten zeigten teilweise eine Durchmesserabnahme im Brennstoffbereich.
- 5. In den Prüflingen treten die durch Temperatur, Stableistung und Abbrand bewirkten Strukturänderungen wie Zentralkanal und Ausbildung von Strukturzonen (Stengelkorn, gerichtetes Kornwachstum) auf. Bei 2 tablettengefüllten Prüflingen wurde zentrales Brennstoffschmelzen beobachtet.
- 6. Bedingt durch die hohen Brennstofftemperaturen hat in den meisten Prüflingen eine axiale Umverteilung bestimmter Spaltprodukte stattgefunden. Typisch für die Änderungen sind Anreicherungen von Cs-137 am oberen, dem Spaltgasraum zugewandten Ende der Brennstoffsäule.
- 7. Stärkere Hüllangriffe durch Reaktionen mit dem Brennstoff treten erst ab Hülltemperaturen von 600 ^oC auf.
- 8. Für die Spaltgasfreisetzung und -verteilung im Brennstoff ergibt sich der schon in Versuchsgruppe ⁴a beobachtete Sachverhalt: Mit zunehmendem Abbrand erhöht sich der Anteil des freigesetzten Spaltgases auf bis zu 80 %. Das im Brennstoff verbliebene Rest-Spaltgas findet sich bei niedrigem Abbrand noch zu einem erheblichen Teil im Gitter, bei hohem Abbrand ist es dagegen vornehmlich in den Poren zu finden.

Literatur:

- [1] D. Freund: Auslegung, Bestrahlung und Nachuntersuchung der Oxidbrennstabproben im FR 2, KFK 1376, Mai 1972
- [2] D. Freund, Th. Dippel, D. Geithoff, P. Weimar: Auslegung, Bestrahlung und Nachuntersuchung der U0₂/Pu0₂-Brennstab-Bestrahlungsexperimente der FR 2-Kapsel-Versuchsgruppe 4a, KFK 1523, April 1973
- [3] H. Huber, H. Kleykamp: Nachbestrahlungsuntersuchungen mit der Mikrosonde an UO₂- und (U,Pu)O₂-Brennstäben der Versuchsgruppen 3 und 4a der FR 2-Kapselbestrahlungen, KFK 1324, Februar 1972
- W. Dienst, O. Götzmann, H. Kleykamp, G. Ondracek, B. Schulz, H. Zimmermann: Auswertung der Untersuchungsergebnisse an den bestrahlten U0₂-Pu0₂-Brennstäben der Versuchsgruppe FR 2-4a, KFK 1727, Januar 1973
- [5] G. Karsten, A. Gerken: Spezifikation des Brennstabes für die FR 2-Kapselversuchsgruppe 4b, unveröffentlicht
- $\sqrt{6}$ A. Gerken: persönliche Mitteilung
- [7] Th. Dippel, K. Kummerer, K.H. Triemer: Herstellung Pu-haltiger Prüflinge für Versuchsgruppe 4b der FR 2-Kapselbestrahlungen, unveröffentlicht
- [8_7] H.E. Häfner: Bestrahlung von Brennstäben in instrumentierten Natrium-Blei-Wismut-Doppelkapseln, Kerntechnik 12, Heft 5/6, 1970
- [9_7 H.E. Häfner: persönliche Mitteilung

- [10]7 H.E. Häfner: Übersicht über die im FR 2 bestrahlten Brennstoff-Bestrahlungskapseln, unveröffentlicht
- [11] Untersuchungsberichte Heiße Zellen GfK, unveröffentlicht.
- [12] S. Hagen, H. Malauschek: Messungen des thermischen Flusses in den Isotopenkanälen des FR 2, unveröffentlicht
- [13_7] M.J. Roth et al.: The Preparation of Input Data for WIMS, Winfrith, Report AEEW-R 538, August 1967
- [14] H. Gräbner: Spaltgasmessungen, Jahresbericht der Heißen Zellen, unveröffentlicht
- [15_7] K. Varteressian, L. Burris: Fission Product Spectra from Fast and Thermal Fission of U-235 and Pu-239, ANL 7678, 1970

<u>[16]</u> H. Wertenbach: persönliche Mitteilung

Anhang I

Dokumentation der zerstörungsfreien und zerstörenden Nachuntersuchung

-1/4zu Prüfling 4B/27 A2

В

С

Prüfling	4 B- 27
Brennstoff :	
Form	Pulver
Zusammensetzung	00 ₂ -Pu0 ₂
Tablettendichte :	
Hülle:	
Material :	1.4988
Aussendurchmesser :	6,0 mm
Wandstärke :	0,38 mm
Geometrie :	
Länge des Prüflings :	172 mm
Länge der Brennstoffsäule :	80 mm
Radiale Spaltweite	-
Schmierdichte :	80% th.D.
Bestrahlung:	
Einrichtung :	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer :	99,6 Vollasttage
Ende :	13. 1. 69
Rechn. Abbrand mittl. :	23,2 MWd/kg Metall
Stableistung max./mittl. :	457 / 398 W/cm

- 1/7 zu Prüfling 4B/26 A1

A2

⊦

C2

1 mm

Prüfling	4в-26
Brennstoff :	
Form :	Pulver
Zusammensetzung	U02-Pu02
Tablettendichte :	
Hülle :	
Material :	1.4988
Aussendurchmesser :	6,0 mm
Wandstärke :	0,38 mm
Geometrie:	
Länge des Prüflings :	172 mm
Länge der Brennstoffsäule :	80 mm
Radiale Spaltweite :	
Schmierdichte :	80% th.D.
Bestrahlung:	
Einrichtung :	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer :	99,6 Vollasttage
Ende :	13. 1. 69
Rechn. Abbrand mittl. :	22,0 MWd/kg Metall
Stableistung max/mittl.:	534/382 W/cm

- I/11 zu Prüfling 4B/25 A1

⊢----I 0,1 mm

Prüfling	4B- 25
Brennstoff :	
Form	: Pulver
Zusammensetzung	U0 ₂ -Pu0 ₂
Tablettendichte	:
Hülle:	
Material	1.4988
Aussendurchmesser	: 6,0 mm
Wandstärke	0,38 mm
Geometrie :	
Länge des Prüflings	: 172 mm
Länge der Brennstoffsäule	e: 80 mm
Radiale Spaltweite	:
Schmierdichte	: 80% th.D.
Bestrahlung:	
Einrichtung	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:99,6 Vollasttage
Ende	: 13. 1. 69
Rechn. Abbrand mittl.	: 21,6 MWd/kg Metall
Stableistung max./mittl	.: 523/371 W/cm

- I / 13 -

⊢––– 1mm

Prüfling		4 B- 32
Brennstoff :		
Form	:	Pulver
Zusammensetzung	•	UO2-PuO2
Tablettendichte	•	
Hülle:		
Material	:	1.4988
Aussendurchmesser	:	6,0 mm
Wandstärke	:	0,38 mm
Geometrie :		
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	
Schmierdichte	:	80% th.D.
Bestrahlung:		
Einrichtung	•	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:	46,2 Vollasttage
Ende	•	16. 12. 68
Rechn. Abbrand	:	9,8 MWd/kg Metall
Stableistung max./mittl.	:	773 / 364 W/cm

I−−1 1mm

-I/17-			
	Prüfling		4 B- 35
	Brennstoff :		
	Form	:	Pulver
	Zusammensetzung	;	U02-Pu02
	Tablettendichte	•	
	Hülle :		y na tin na gana ka Byrgan Mir gan ki ti gan sa tin na
	Material	:	1.4988
	Aussendurchmesser	¥.	6,0 mm
	Wandstärke	;	0,38 mm
, in the second	Geometrie :		
	Länge des Prüflings	:	172 mm
	Länge der Brennstoffsäule	:	80 mm
	Radiale Spaltweite	•	
	Schmierdichte	:	80% th.D.
	Bestrahlung:		
	Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
	Dauer	;	127,2 Vollasttage
	Ende	:	17. 3. 69
	Rechn. Abbrand mittl.	•	25,1 MWd/kg Metall
	Stableistung max./mittl,	:	371 / 336 W/cm

А

ANN REAL PROPERTY AND

WHEN WAR

В

С

⊢—⊣ 1mm

Priifling		4 P ZZ
i fulting		-U-))
Brennstoff :		
Form	:	Pulver
Zusammensetzung	•	vo ₂ -Pu02
Tablettendichte	:	
Hülle:		
Material	:	1.4988
Auss en dur chmes ser	:	6,0 mm
Wandstärke	:	0,38 mm
Geometrie :		
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	х.
Schmierdichte	:	80% th.D.
Bestrahlung:		
Einrichtung	•	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	•.	127,2 Vollasttage
Ende	:	17. 3. 69
Rechn. Abbrand mittl.	:	25,4 MWd/kg Metall
Stableistung max./mittl,	:	466 / 336 W/cm

- I/21zu Prüfling 4B/31 A1

S

Prüfling		4B-31
Brennstoff :		
Form	;	Pulver
Zusammensetzung	;	UO2-PuO2
Tablettendichte	:	
Hülle :		
Material	:	1.4988
Aussendurchmesser	•.	6,0 mm
Wandstärke	:	0,38 mm
Geometrie :		
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	
 Schmierdichte	•	80% th.D.
Bestrahlung:		
Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	•	127,2 Vollasttage
Ende	:	17. 3. 69
Rechn. Abbrand mittl.	:	23,8 MWd/kg Metall
Stableistung max./mittl,	:	433 / 320 W/cm

WHITE STATE

Prüfling		4 B- 29
Brennstoff :		
Form	:	Pulver
Zusammensetzung	;	U02-Pu02
Tablettendichte	:	
Hülle :		
Material	:	1.4988
Aussendurchmesser	:	6,0 mm
Wandstärke	;	0,38 mm
Geometrie :		
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	
Schmierdichte	:	80% th.D.
Bestrahlung:		
Einrichtung	;	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:	67,4 Vollasttage
Ende	:	12. 2. 69
Rechn. Abbrand mittl.	:	17,1 MWd/kg Metall
Stableistung max./mittl,	:	544 / 430 W/cm

-I/27zu Prüfling 4B/28 A1

- I/28 zu Prüfling 4B/28 A1

3.01-45-4B/28-1/19 200 x

A

医修在 80

В

С

Prüfling		4B-28
Brennstoff :		
Form	;	Pulver
Zusammensetzung		U02-Pu02
Tablettendichte	:	
Hülle :		
Material	:	1.4988
Aussendurchmesser	:	6,0 mm
Wandstärke	;	0,38 mm
Geometrie :		
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule		80 mm
Radiale Spaltweite	:	
Schmierdichte	:	80% th.D.
Bestrahlung:		
Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ ⁴ a
Dauer	:	67,4 Vollasttage
Ende	:	12. 2. 69
Rechn. Abbrand mittl.	:	17,1 MWd/kg Metall
Stableistung max./mittl,	:	1102 / 433 W/cm

-1/29-

-1/32zu Prüfling 4B/4

В3

1 mm

⊦--1n

	Prüfling		4B-4
	Brennstoff :		
	Form	:	Tabletten beidsei- tige Einsenkung
	Zusammensetzung	;	^{UO} 2-PuO2
	Tablettendichte	:	90% th.D.
	Hülle:		
	Material	:	1.4988
	Auss en dur chmes ser	•	6,00 mm
	Wandstärke	:	0,38 mm
<u></u>	Geometrie :		,
	Länge des Prüflings	:	172 mm
	Länge der Brennstoffsäule	:	80 mm
	Radiale Spaltweite	:	0,070 mm
	Schmierdichte	:	85,3% th.D.
	Bestrahlung:		
	Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
	Dauer	:	484,3 Vollasttage
	Ende	:	21. 9. 70
	Rechn. Abbrand mittl.	•	85,3 MWd/kg Metall
	Stableistung max./mittl, :	•	444 / 313 W/cm

-1/33-

-1/36zu Prüfling 4B/3 A1

⊢—⊣ 1mm

	ففرابصبقم	
Prüfling		4B-3
Brennstoff :		
Form	:	Tabletten beidsei- tige Einsenkung
Zusammensetzung	;	U02-Pu02
Tablettendichte	:	90% th.D.
Hülle:		
Material	:	1.4988
Auss en dur chmes ser	:	6,00 mm
Wandstärke	;	0,38 mm
Geometrie :		
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	0,070 mm
Schmierdichte	:	85,3% th.D.
Bestrahlung:		
Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:	484,3 Vollasttage
Ende	:	21. 9. 70
Rechn Abbrand mittl.	•	74,6 MWd/kg Metall
Stableistung max./mittl,	:	444 / 273 W/cm

-1/39zu Prüfling 4B/2

B 2

-1/40zu Prüfling 4B/2 A2

0,04 mm

A

В

С

⊢—I 1mm

Prüfling	4 B- 2
Brennstoff :	
Form :	Tabletten beidsei- tige Einsenkung
Zusammensetzung ;	002-Pu02
Tablettendichte :	90% th.D.
Hülle:	<i>,</i>
Material :	1.4988
Aussendurchmesser :	6,00 mm
Wandstärke :	0,38 mm
Geometrie :	
Länge des Prüflings :	172 mm
Länge der Brennstoffsäule :	80 mm
Radiale Spaltweite :	0,070 mm
Schmierdichte :	85,3% th.D.
Bestrahlung:	
Einrichtung :	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer :	484,3 Vollasttage
Ende :	21. 9. 70
Rechn Abbrand mittl. :	76,3 MWd/kg Metall
Stableistung max./mittl, :	496 / 279 W/cm

4....6

⊢____i 0,1 mm

0,04 mm

А

В

С

1mm

Prüfling	20070000	4 B -1
Brennstoff :		
Form	:	Tabletten beidsei- tige Einsenkung
Zusammensetzung	•	U02-Pu02
Tablettendichte	:	90% th.D.
Hülle :		
Material	•	1.4988
Aussendurchmesser	:	6,0 mm
Wandstärke	•	0,38 mm
Geometrie :		
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule		80 mm
Radiale Spaltweite	:	0,070 mm
Schmierdichte	•	85,3% th.D.
Bestrahlung:		
Einrichtung	•	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:	484,3 Vollasttage
Ende	:	21. 9. 70
Rechn Abbrand mittl.	•	43,7 MWd/kg Metall
Stableistung max./mittl, :	;	529 / 160 W/cm

-I/47 zu Prüfling 4B/9 A1

-1/48zu Prüfling 4B/9 A2

А

В

⊢—⊣ 1mm

Prüfling		4 B- 9
Brennstoff :		
Form	•	Tabletten beidsei- tige Einsenkung
Zusammensetzung	;	UO2-PuO2
Tablettendichte	:	90% th.D.
Hülle:		
Material	:	1.4988
Aussendurchmesser	:	6,00 mm
Wandstärke	;	0,38 mm
 Geometrie :		
Länge des Prüflings	•	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	•	0,070 mm
 Schmierdichte	:	85,3% th.D.
Bestrahlung:		
Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:	425,3 Vollasttage
Ende	:	13. 7. 70
Rechn. Abbrand mittl.	:	79,1 MWd/kg Metall
Stableistung max./mittl,	:	424 / 333 W/cm

Α

В

С

⊢—–I 1mm

Prüfling		4 B -8
Brennstoff :		
Form	:	Tabletten einsei- tige Einsenkung
Zusammensetzung	;	UO2-PuO2
 Tablettendichte	;	90% th.D.
 Hülle:		
Material	:	1.4988
Aussendurchmesser	:	6,00 mm
Wandstärke	;	0,38 mm
 Geometrie :		
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	0,070 mm
Schmierdichte	:	85,3% th.D.
Bestrahlung:		
Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	;	425,3 Vollasttage
Ende	:	13. 7. 70
Rechn. Abbrand mittl.	:	71,5 MWd/kg Metall
Stableistung max./mittl,	:	424 / 301 W/cm

0,04 mm

- 1/54 zu Prüfling 4B/7 A2

0,04 mm

⊢—–I 1mm

Prüfling		4B-7
Brennstoff :		
Form	;	Tabletten beidsei- tige Einsenkung
Zusammensetzung	:	U02-Pu02
Tablettendichte	:	90% th.D.
Hülle :		
Material	•	1.4988
Aussendurchmesser	;	6,00 mm
Wandstärke	:	0,38 mm
Geometrie :	<u> </u>	
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	0,070 mm
Schmierdichte	:	85,3% th.D.
Bestrahlung:		
Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	;	425,3 Vollasttage
Ende	:	13. 7. 70
Rechn. Abbrand mittl.	:	76,4 MWd/kg Metall
Stableistung max./mittl,		450 / 321 W/cm

⊢—ı 1 mm

ŀ

Prüfling		4 B- 5
Brennstoff :		
Form	;	Tabletten beidsei- tige Einsenkung
Zusammensetzung	;	UO2-PuO2
Tablettendichte	:	90% th.D.
Hülle :		
Material	:	1.4988
Auss en dur chmes ser	:	6,00 mm
Wandstärke	;	0,38 mm
Geometrie :		
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	0,070 mm
Schmierdichte	:	85,3% th.D.
Bestrahlung:		
Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:	425,3 Vollasttage
Ende	:	13. 7. 70
Rechn. Abbrand mittl.	:	69,1 MWd/kg Metall
Stableistung max./mittl,	:	466 / 288 W/cm

-1/57-

1 mm

-I/59-Prüfling /R/1

0,04 mm

HZ-3a-49-4B/11-2/18 500x

B

С

1

1 mm

F

А

19/10

-			
-	Prüfling	L	+B-11
	Brennstoff :		
	Form	:	Tabletten einsei- tige Einsenkung
	Zusammensetzung	•	UO2-PuO2
	Tablettendichte	:	90% th.D.
	Hülle :		
	Material	:	1.4988
	Auss en dur chmes ser	:	6,00 mm
	Wandstärke	;	0,38 mm
	Geometrie :		
	Länge des Prüflings	:	172 mm
	Länge der Brennstoffsäule	:	80 mm
	Radiale Spaltweite	:	0,070 mm
	Schmierdichte	;	85,3% th.D.
	Bestrahlung:		
	Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
	Dauer	:	637,1 Vollasttage
	Ende	:	14. 6. 71
	Rechn. Abbrand mittl.	:	99,9 MWd/kg Metall
	Stableistung max./mittl,	:	536 / 281 W/cm

⊢---I 1mm

Prüfling		4 B- 12
Brennstoff :		
Form	;	Tabletten einsei- tige Einsenkung
Zusammensetzung	* *	UO2-PuO2
Tablettendichte	•	90% th.D.
Hülle :	'n	
Material	:	1.4988
Aussendurchmesser	:	6,00 mm
Wandstärke	;	0,38 mm
Geometrie :		
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	0,070 mm
Schmierdichte	:	85,3% th.D.
Bestrahlung:		
Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:	637,1 Vollasttage
Ende	:	14. 6. 71
Rechn. Abbrand mittl.	:	62,8 MWd/kg Metall
Stableistung max./mittl,	:	477 / 188 W/cm

-1/68zu Prüfling 4B/10 A1

⊢––I 1mm

Prüfling	J 4B-10
Brennstoff :	
Form	.Tabletten einsei- 'tige Einsenkung
Zusammensetzung	: UO ₂ -PuO ₂
Tablettendichte	:90% th.D.
Hülle:	
Material	:1.4988
Aussendurchmesser	:6,00 mm
Wandstärke	:0,38 mm
Geometrie	
Länge des Prüflings	: 172 mm
Länge der Brennstoffsäule	e: 80 mm
Radiale Spaltweite	:0,070 mm
Schmierdichte	: 85,3% th.D.
Bestrahlung:	
Einrichtung	. NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:637,1 Vollasttage
Ende	: 14. 6. 71
Rechn Abbrand mittl.	: 110,3 MWd/kg Metall
Stableistung max./mittl.	.: 545 / 309 W/cm

0,04 mm

⊢____I 0,1mm

 Prüfling		4 B-6
Brennstoff :		
Form	:	Tabletten beidsei- tige Einsenkung
Zusammensetzung	• •	U02-Pu02
Tablettendichte	;	90% th. D.
Hülle:		
Material	:	1.4988
Aussendurchmes ser	:	6,00 mm
Wandstärke	:	0,38 mm
Geometrie :		-
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	0,070 mm
Schmierdichte	:	85,3% th.D.
Bestrahlung:		
Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:	637,1 Vollasttage
Ende	:	14. 6. 71
Rechn. Abbrand mittl.	:	52,4 MWd/kg Metall
Stableistung max./mittl,	:	527 / 146 W/cm

- I/75 -

-1/78zu Prüfling 4B/15 A2

⊢—⊣ 1mm

Prüfling	4B-15
Brennstoff :	
Form	.Tabletten einsei- 'tige Einsenkung
Zusammensetzung	:002-Pu02
Tablettendichte	:84% th.D.
Hülle:	
Material	:1.4988
Auss en dur chmes ser	:6,00 mm
Wandstärke	:0,38 mm
Geometrie :	·
Länge des Prüflings	:172 mm
Länge der Brennstoffsäule	e: 80 mm
Radiale Spaltweite	:0,070 mm
Schmierdichte	: 79,6% th.D.
Bestrahlung:	
Einrichtung	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:247 Vollasttage
Ende	: 1. 6. 70
Rechn Abbrand mittl.	61,2 MWd/kg Metall
Stableistung max./mittl,	:579 / 416 W/cm

- I/81-zu Prüfling 4B/14 A1

⊢___I 0,1mm

'0,04 mm

В

А

⊢––I 1mm

С

	مُنْظَمَة المُسْمَنِين كران جاري كي كي علي ياري بي علي علي والأخر مانند عان أن المساوية علي بي ال		
	Prüfling		4B-14
	Brennstoff :		
	Form	: 1 1	Cabletten einsei- tige Einsenkung
	Zusammensetzung	;1	^{JO} 2-PuO2
	Tablettendichte	: 8	34% th.D.
,	Hülle :		
	Material	:1	.4988
	Aussendurchmesser	: 6	5,00 mm
	Wandstärke	; 0),38 mm
	Geometrie :		
	Länge des Prüflings	: 1	172 mm
	Länge der Brennstoffsäule	:	80 mm
	Radiale Spaltweite	: 0),070 mm
	Schmierdichte	: 7	79,6% th.D.
	Bestrahlung:		e.
	Einrichtung	: N K	MaK/PbBi-Doppel- Kapsel Typ 4a
	Dauer	: 2	247 Vollasttage
	Ende	: 1	. 6. 70
	Rechn Abbrand mittl.	: 6	5,8 MWd/kg Metall
	Stableistung max./mittl,	: 5	563 / 446 W/cm

- I/85zu Prüfling 4B/13 A1 /11 ⊢–––**I** 0,1 mm

-1/86zu Prüfling 4B/13 A2

⊢____I 0,1 mm

14

А

В

⊢–⊣ 1mm

	- 10 March 10	النظارة ويريبي ويشتكر ويشتك والمتكاف المتنافلة فالمتنا فتزوا فينها والأساب والشار
Prüfling	L	+B-13
Brennstoff :		
Form	;	Tabletten einsei- tige Einsenkung
Zusammensetzung	;	002-Pu02
Tablettendichte	:	84% th.D.
Hülle :		
Material	:	1.4988
Aussendurchmes ser	:	6,00 mm
Wandstärke	:	0,38 mm
Geometrie :		_
Länge des Prüflings	;	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	0,070 mm
Schmierdichte	:	79,6% th.D.
Bestrahlung:		
Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:	247 Vollasttage
Ende	:	1. 6. 70
Rechn, Abbrand mittl.	:	55,9 MWd/kg Metall
Stableistung max./mittl,	:	627 / 378 W/cm

-I/89-zu Prüfling 4B/18 A1 14

10,1 mm

HZ-3a-56-4B/18-1/11

1

⊢––I 1mm

Prüfling	4B-18
Brennstoff :	
Form	Tabletten einsei- tige Einsenkung
Zusammensetzung	: U0 ₂ -Pu0 ₂
Tablettendichte	:84% th.D.
Hülle :	
Material	: 1.4988
Auss en dur chmes ser	:6,00 mm
Wandstärke	:0,38 mm
Geometrie :	
Länge des Prüflings	: 172 mm
Länge der Brennstoffsäule	e: 80 mm
Radiale Spaltweite	:0,070 mm
Schmierdichte	: 79,6% th.D.
Bestrahlung:	
Einrichtung	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	: 305,5 Vollasttage
Ende	: 17. 8. 70
Rechn. Abbrand mittl.	: 59,2 MWd/kg Metall
Stableistung max./mittl	.: 442 / 326 W/cm
<u>,</u>	

⊢––I 1mm

Prüfling	ļ	4 B- 17
Brennstoff :		
Form	:	Tabletten einsei- tige Einsenkung
Zusammensetzung	;	U02-Pu02
Tablettendichte	•	84% th.D.
Hülle :		
Material	:	1.4988
Auss endurchmes ser	:	6,00 mm
Wandstärke	:	0,38 mm
Geometrie:		
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	0,070 mm
Schmierdichte	:	79,6% th.D.
Bestrahlung:		
Einrichtung	:]	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	: -	305,5 Vollasttage
Ende	: •	17.8.70
Rechn. Abbrand mittl.	: (51,3 MWd/kg Metall
Stableistung max./mittl,	: 1	+63 / 338 W/cm

<mark>⊢−−</mark> 1mm

А

В

	Prüfling		4B-16
	Brennstoff :		
	Form	;	Tabletten einsei- tige Einsenkung
	Zusammensetzung	;	VO2-PuO2
	Tablettendichte	:	84% th.D.
	Hülle :		
	Material	:	1.4988
	Aussendurchmes ser	:	6,00 mm
	Wandstärke	;	0,38 mm
	Geometrie :	-	
	Länge des Prüflings	:	172 mm
	Länge der Brennstoffsäule	:	80 mm
	Radiale Spaltweite	:	0,070 mm
	Schmierdichte	:	79,6% th.D.
	Bestrahlung:		
	Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
	Dauer	:	305,5 Vollasttage
	Ende	:	17.8.70
	Rechn Abbrand mittl .	:	61,6 MWd/kg Metall
مريدي. مريدي	Stableistung max./mittl,	:	471 / 338 W/cm

⊢----I 1 mm

А

·B

Prüfling 4B-21 Brennstoff : Tabletten beidsei-Form tige Einsenkung : U02-Pu02 Zusammensetzung : 84% th.D. Tablettendichte Hülle: Material : 1.4988 Aussendurchmes ser : 6,00 mm Wandstärke : 0,38 mm Geometrie : Länge des Prüflings : 172 mm Länge der Brennstoffsäule : 80 mm Radiale Spaltweite : 0,070 mm Schmierdichte : 79,6% th.D. Bestrahlung: NaK/PbBi-Doppel-Kapsel Typ 4a Einrichtung : 460,4 Vollasttage Dauer Ende : 29. 3. 71 Rechn. Abbrand mittl. : 79,4 MWd/kg Metall Stableistung max/mittl,: 450 / 291 W/cm .

- I/101-

⊢—I 1mm

Prüfling		4 B- 20
Brennstoff :		
Form	;	Tabletten beidsei- tige Einsenkung
Zusammensetzung	•	U02-Pu02
Tablettendichte	:	84% th.D.
Hülle :		
Material	•	1.4988
Aussendurchmesser	•	6,00 mm
Wandstärke	:	0,38 mm
Geometrie :		
Länge des Prüflings	;	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	0,070 mm
Schmierdichte	:	79,6% th.D.
Bestrahlung:		
Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:	460,4 Vollasttage
Ende	:	29. 3. 71
Rechn. Abbrand mittl.	•	83,1 MWd/kg Metall
Stableistung max./mittl,	:	445 / 305 W/cm

⊢—I 1 mm

المالة فالشاد الأكفاط فاعتبر المرجز وفرعه بجمعتني بعديرة بالمسجع الترابك فيحد مستورية وإفكارها المشاكلات	والمراجع المتحاط والمراجع في منتخط المراجع الترامين المتجري وجمين مسهوي والمحد والمحد المحاد
Prüfling	4B-19
Brennstoff :	
Form :	Tabletten beidsei- tige Einsenkung
Zusammensetzung ;	^{UO} 2-PuO2
Tablettendichte :	84% th.D.
Hülle:	
Material :	1.4988
Aussendurchmesser :	6,00 mm
Wandstärke ;	0,38 mm
Geometrie :	
Länge des Prüflings :	172 mm
Länge der Brennstoffsäule :	80 mm
Radiale Spaltweite :	0,070 mm
Schmierdichte :	79,6% th.D.
Bestrahlung:	
Einrichtung :	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer :	460,4 Vollasttage
Ende :	29. 3. 7 1
Rechn. Abbrand mittl. ;	84,8 MWd/kg Metall
Stableistung max./mittl, :	461 / 310 W/cm

-I/108zu Prüfling 4B/24 A2

0,04 mm

2

⊢_-+ 1mm

Prüfling		4 B- 24
Brennstoff :		
Form	:	Tabletten beidsei- tige Einsenkung
Zusammensetzung	;	U02-Pu02
Tablettendichte	:	84% th.D.
Hülle:		
Material	:	1.4988
Aussendurchmesser	:	6,00 mm
Wandstärke	;	0,38 mm
Geometrie		
Länge des Prüflings	:	172 mm
Länge der Brennstoffsäule	:	80 mm
Radiale Spaltweite	:	0,070 mm
Schmierdichte	:	79,6% th.D.
Bestrahlung:		
Einrichtung	:	NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	•	517,5 Vollasttage
Ende	:	14. 6. 71
Rechn. Abbrand _mittl.	:	93,3 MWd/kg Metall
Stableistung max./mittl,	:	549 / 304 W/cm

- I/109 -

I------I 0,1 mm -I/112zu Prüfling 4B/23 A1

HZ-3a-58-4B/23-2/12 100x

i<u>----</u>i 0,1 mm

I−−I 1 mm

Prüfling	4 B- 23
Brennstoff :	
Form	Tabletten beidsei- tige Einsenkung
Zusammensetzung	; 00 ₂ -Pu0 ₂
Tablettendichte	;84% th.D.
Hülle :	
Material	: 1.4988
Auss en dur chmes ser	:6,00 mm
Wandstärke	:0,38 mm
Geometrie :	
Länge des Prüflings	:172 mm
Länge der Brennstoffsäule	: 80 mm
Radiale Spaltweite	:0,070 mm
Schmierdichte	: 79,6% th.D.
Bestrahlung:	
Einrichtung	. NaK/PbBi-Doppel- Kapsel Typ 4a
Dauer	:517,5 Vollasttage
Ende	: 14. 6. 71
Rechn Abbrand mittl.	: 104,2 MWd/kg Metall
Stableistung max./mittl,	: 549 / 339 W/cm

⊢-----1 0,1mm

В

С

⊢—⊣ 1 mm

Prüfling	4 B- 22
Brennstoff :	
Form	Tabletten beidsei- tige Einsenkung
Zusammensetzung	; 00 ₂ -Pu0 ₂
Tablettendichte	:84% th.D.
Hülle :	
Material	: 1.4988
Aussendurchmesser	:6,00 mm
Wandstärke	:0,38 mm
Geometrie	
Länge des Prüflings	:172 mm
Länge der Brennstoffsäule	: 80 mm
Radiale Spaltweite	:0,070 mm
Schmierdichte	: 79,6% th.D.
Bestrahlung:	
Einrichtung	. NaK/PbBi-Doppel- . Kapsel Typ 4a
Dauer	: 517,5 Vollasttage
Ende	: 14. 6. 71
Rechn. Abbrand mittl.	: 86,2 MWd/kg Metall
Stableistung max./mittl,	: 595 / 281 W/cm