

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Juni 1974

KFK 1935

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Transport von Kernmaterialien während Unfällen in Schnellen Natriumgekühlten Brutreaktoren (Slumping)

G. Angerer

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

ų A

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 1935

Institut für Neutronenphysik und Reaktortechnik Projekt Schneller Brüter

Transport von Kernmaterialien während Unfällen in Schnellen Natriumgekühlten Brutreaktoren (Slumping).

G. Angerer

Gesellschaft für Kernforschung m.b.H., Karlsruhe

and the second second

(a) A set of the s

and the second second

Berichtigungen:

Gleichung (12) auf Seite 41 soll lauten:

(12)
$$f(r) = \frac{G}{4v} (R^2 - r^2)$$

Die letzte Zeile auf Seite 43 soll lauten:

G wurde definiert als:
$$G = g - \frac{1}{\rho} \frac{dp}{dx_3} = g - \frac{1}{\rho} \frac{dp}{dz}$$

uddelle songer en de service de la servic

Während eines Kühlmittelverlustunfalls in einem Schnellen Natriumgekühlten Brutreaktor bei gleichzeitigem Ausfall des gesamten Reaktorschutzsystems kann es zum Schmelzen von Brennstäben kommen. Die Umverteilung der auf diese Weise beweglich gewordenen Materialien durch die Schwerkraft, sowie durch die Gasund Dampfkräfte führt zu Rückwirkungen auf die Neutronenflußverteilung und damit die Reaktorleistung, die den Unfallverlauf erheblich beeinflussen.

Das Rechenprogramm SLB ist ein erster Versuch zur theoretischen Beschreibung des Materialtransports während des Unfallverlaufs. Der Reaktorkern wird dabei radial in Kühlkanäle und axial in Zonen unterteilt. Der Materialtransport zwischen den Zonen eines Kühlkanals wird berechnet und die veränderte Materialverteilung anschließend an ein neutronenkinetisches Programm zur Berechnung der Rückwirkungen übergeben.

Als Anwendungsbeispiel wird der Verlauf von Kühlmittelverlustunfällen bei verschiedenen Werten eines Parameters der Materialbewegung berechnet.

Transport of Core Materials during Accidents in LMFBRs (Slumping).

Abstract

During a pump-coast-down accident in a LMFBR with simultaneous failure of the whole reactor protection system fuel pins may melt. The relocation of the materials as a result of gravity, gas and vapor forces leads to feedbacks on the reactivity and therefore the reactor power, which influence the course of the accident considerably.

The computer program SLB is a first attempt to describe the material transport during the accident theoretically. For this the reactor-core is subdivided into coolant channels radially, and into nodes axially. The material transport between the nodes of one and the same coolant channel is computed and the altered material distribution is given to a neutron kinetics program afterwards.

As an example the course of pump-coast-down accidents with various values of a material movement parameter is computed.

Acknowledgements

Herrn Dr. Küsters möchte ich für die vielen Diskusionen und wertvollen Anregungen danken, mit denen er die vorliegende und die weiterführenden Arbeiten tatkräftig förderte. Herrn Struwe danke ich für die Überlassung der in Abb.7 dargestellten Zeichnung.

Fr. Klumpp gebührt mein Dank für die Sorgfalt mit der sie sich um die Erstellung eines vervielfältigungsfähigen Manuskripts bemühte und Fr. Mangelmann für die saubere Ausführung der Zeichnungen.

Inhaltsverzeichnis

Zusammenfassung

Acknowledgements

1:	Einleitung und Definition des Begriffs "Brennstab- slumping"	5
2:	Der physikalische Ablauf des Brennstabslumpings	8
	2.1: Abschmelzen des Hüllrohrs	8
	2.2: Brennstoffbewegung im Zentralkanal	9
	2.3: Brennstoffejektionen aus dem Stabinneren	10
	2.4: Aufschmelzen des Stabquerschnitts und Verlust	16
	der mechanischen Stabstabilität	
3:	Überblick über notwendige experimentelle Untersuchungen	18
4:	Die gegenwärtige theoretische Behandlung des Brennstab-	20
	slumpings. Das Programm SLB	
5:	Anwendungsrechnungen beim Kühlmittelverlustunfall im Mark-1 Kern des SNR-300	25
6:	Ausblick auf künftige Modellverbesserungen	32
Anhai	ng	
	Al: Exakte Lösung der Bewegungsgleichung für die viskose	33
	instationäre Rohrströmung	
	A2: Ein- und Ausgabedaten des Rechenprogramms SLB	45
Zeicl	henerklärung	47
Lite	raturangaben	49

Seite

1. Einleitung und Definition des Begriffs "Brennstabslumping".

Gegenwärtig werden im Rahmen der Analyse von sogenannten "Bethe-Tait" Unfällen bei schnellen natriumgekühlten Brutreaktoren zwei Unfallketten mit extrem geringer Eintrittswahrscheinlichkeit (hypothetische Unfallketten) verfolgt:

der Reaktivitätsunfall, bei dem angenommen wird,
 daß der Reaktor durch eine nicht abgeschaltete
 positive Reaktivitätsrampe in eine Unfallsituation
 gelangt;

en al de la contra de estado a contra per esp

- der Kühlmittelverlustunfall, bei dem angenommen wird, daß der sekundliche Kühlmitteldurchsatz durch einen Bruch der Primärrohrleitung, oder dem Ausfall aller Kühlmittelpumpen auf null absinkt und gleichzeitig das gesamte Reaktorschutzsystem ausfällt /1/.

Beim <u>Reaktivitätsunfall</u> steigt die Reaktorleistung infolge der positiven Reaktivitätsrampe an und mit dieser die Brennstabtemperaturen.

Es kommt dadurch

- zum Schmelzen eines Teils des Stabquerschnitts über einen gewissen axialen Stabbereich,

- zum Druckaufbau im Hüllrohrinneren durch Aufbau von Brennstoffdampfdruck, durch Spaltgasfreisetzung beim

Schmelzen, durch thermische Expansion der bei der

Stabfabrikation eingeschlossenen Gase und der Spaltgase, durch Kompression dieser Gase infolge der beim Schmelzen auftretenden Volumenvergrößerung des Brenn-

en den sta**stoffs.** Die Alle Alleren steg en Dien alführenden som de Broeken gen. Gelf Die Aller blev en die State state state installt state die generation gelegende. Die state state state state die State state state state state state state state.

Zum Druck eingereicht am: 30.5.1974

Gleichzeitig nimmt die Festigkeit des Hüllrohrmaterials durch den Temperaturanstieg ab, sodaß schließlich das Hüllrohr versagt, Brennstoff in die Kühlkanäle austritt und dort im Verlaufe einer Brennstoff-Natrium Reaktion oder, sofern es zu dieser nicht kommt, eventuell mit dem Kühlmittel aus dem Kern ausgeschwemmt wird.

Beim <u>Kühlmittelverlustunfall</u> nimmt der Kühlmitteldurchsatz durch den Reaktorkern bei zunächst etwa konstanter Leistung ab. Durch die größere Verweildauer im Kern kommt es zur Aufheizung und schließlich zum sukzessiven Aussieden des Kühlmittels vom Kernzentrum nach außen /1,2/. Die dadurch verursachten Reaktivitätsänderungen führen zu einem starken Ansteigen der Reaktorleistung und damit auch der Brennstabtemperaturen. Gleichzeitig wird im ausgesiedeten Bereich die Brennstabkühlung stark vermindert, sodaß nach dem Verdampfen des Natriumrestfilms das Hüllrohr abzuschmelzen beginnt. Damit ist die Ausgangssituation des Brennstabslumpings erreicht.

Die Wahl des Begriffs "Slumping", mit "Fallen" oder "Stürzen" übersetzbar, zeigt wie man sich ursprünglich den Ablauf der nun folgenden Unfallphase vorstellte: Als ein nach unten Stürzen von Stabmaterialien durch die Einwirkung der Schwerkraft /3/.

In der Zwischenzeit ist durch Experimente und theoretische Ergebnisse klar, daß die Vorstellung von nach unten stürzenden Stabmaterialien reichlich unvollständig ist. Vielmehr laufen in dem der Betrachtung zugrunde liegenden Zeitintervall eine Reihe von komplizierten Vorgängen ab (siehe Abschn. 2) und unter bestimmten Bedingungen ist es denkbar, daß das "Stürzen" völlig umgekehrt wird und es anstatt dessen zu einer Materialbewegung nach oben kommt /4/.

Trotzdem war der historische Ausgangspunkt der theoretischen Beschreibung, also die Vorstellung von nach unten stürzenden Brennstabmaterialien gerechtfertigt. In Ermangelung einer genauen

-6-

Kenntnis der tatsächlich ablaufenden komplizierten Vorgänge nahm man den in seinen Auswirkungen schlimmsten Fall an. Dieses methodische Prinzip aller theoretischen Arbeiten auf dem Gebiet der Reaktorsicherheit, und die Notwendigkeit, ein verfügbares Rechenprogramm in sehr kurzer Zeit zu erstellen, waren auch die Randbedingungen der Arbeiten zu dem in Abschnitt 4 beschriebenen Modell und dessen Rechenprogramm SLB.

Obwohl, wie bereits erwähnt, die semantische Bedeutung des Begriffs "Slumping" die nach unserem heutigen Wissensstand ablaufenden Vorgänge nur unvollkommen charakterisiert, sei dieser in der Literatur eingebürgerte Begriff als Terminus technicus beibehalten und zur summarischen Bezeichnung aller Brennstabmaterialbewegungen in dem Zeitintervall zwischen dem Beginn des Abschmelzens der Stabhülle und dem Beginn der Reaktordisassemblyphase bzw.dem Abschalten des Reaktors während der Slumpingphase verstanden, mit Ausnahme der thermischen Ausdehnung und Verbiegung der Reststabsäule /5/. Mit dieser Definition ist der phänomenologische Rahmen des Begriffs "Brennstabslumping" abgesteckt. Im nächsten Abschnitt sollen die in diesem Rahmen nach unserem gegenwärtigen Wissen sich ereignenden Phänomene diskutiert werden.

(a) A set as a set of the set

2. Der physikalische Ablauf des Brennstabslumpings

Die Behandlung komplexer, schwer überschaubarer Abläufe wird stets dann erheblich erleichtert, wenn es gelingt das komplizierte Gesamtbild der Erscheinungen in einzelne, einfachere und überschaubare Teilabläufe zu trennen. Dieser Weg wird auch hier verfolgt. Dazu wird der Ablauf des Brennstabslumpings in einzelne phänomenologisch geschlossene Teilphasen unterteilt. Die einzelnen Teilphasen sind allerdings zeitlich nicht exakt separierbar; so kann bspw. das im Unterabschnitt 2.1 aufgeführte Hüllrohrabschmelzen während der gesamten übrigen Phasen 2.2 bis 2.4 stattfinden. Die Güte der theoretischen Behandlung des Gesamtproblems hängt davon ab, wie viele der einzelnen Teilphasen mathematisch beschrieben sind und wie gut das Zusammenwirken und die gegenseitige Beeinflussung der einzelnen Teilphasen in dem Rechenprogramm simuliert wird.

2.1 Abschmelzen des Hüllrohres

Das Hüllrohrschmelzen nimmt etwas oberhalb der Coremittelebene seinen Ausgang /1/ und breitet sich von dort nach oben und unten aus. Durch den Hüllrohrmaterialtransport infolge der Schwerkraft und der Reibungskräfte zwischen dem strömenden Natriumdampf und dem Hüllrohrmaterial kann es daher zunächst zu einer Ansammlung von Hüllrohrmaterial um die Kernmittelebene kommen. Dies führt zu einer Abnahme der Reaktorreaktivität. Der Transport des Hüllrohrmaterials in äußere axiale Kernbereiche im weiteren zeitlichen Verlauf kehrt den negativen Reaktivitätsbeitrag um und mündet schließlich in einen positiven Beitrag.

Der Materialtransport durch die Schwerkraft kann durch die Natriumdampfströmung unterstützt oder durch diese gehemmt, bzw. umgekehrt werden, je nachdem ob die Richtung der Natriumdampfgeschwindigkeit und die Geschwindigkeit der Hüllrohrmaterialbewegung zum betreffenden Zeitpunkt und am betreffenden Ort gleich oder entgegengesetzt gerichtet sind.

-8-

Das Wiedererstarren in kälteren Zonen kann u.U. zum vollständigen Verschluß des Kühlkanals führen /6/ und damit die Natriumdampfströmung unterbrechen, eine Barriere für spätere Brennstoffbewegungen bilden und den Wiedereintritt von flüssigem Natrium in den Kühlkanal erschweren. Dies kann den weiteren Unfallverlauf erheblich beeinflussen.

Eine detaillierte mathematische Beschreibung des Hüllrohrmaterialtransports in einem Rechenprogramm ist aus diesem Grunde wünschenswert.

2.2 Brennstoffbewegung im Zentralkanal

Der sich bereits nach kurzer Betriebszeit ausbildende Kanal im Stabzentrum (Zentralkanal) stellt eine potentielle Möglichkeit für Brennstoffumverteilungen dar, sobald um das Stabzentrum Schmelzen einsetzt. Der Brennstofftransport erfolgt dabei durch die Schwerkraft und die Druckkräfte.

Das Ausmaß der Brennstoffverlagerung im Zentralkanal hängt davon ab, wieviel Brennstoff in der Ejektionsphase (siehe Abschn. 2.3) in den Kühlkanal transportiert wird und wieviel Zeit bis zum Schmelzen des gesamten Stabquerschnitts und damit bis zum Zusammenbruch der Brennstoffsäule vergeht.

Durch Wiedererstarren von geschmolzenem Brennstoff in kälteren Bereichen des Zentralkanals können sich feste Brennstoffbrücken bilden /7,8,9,10/, die zunächst eine Barriere für weitere Brennstoffbewegungen bilden. Durch den Aufbau unterschiedlicher Drücke zu beiden Seiten einer Brennstoffbrücke, kann es aber in der Folge bei Überschreitung eines Schwellwertes der Druckdifferenz zum schlagartigen Aufbrechen der Brücke und raschem Brennstofftransport kommen. Da die Stabzentraltemperatur in der Umgebung der Mittelebene ihr Maximum annimmt, werden dort auch die höchsten Drücke auftreten, sodaß der Brennstofftransport vorwiegend in Richtung der Stabenden erfolgt. Dies führt zu einer Abnahme der Reaktorreaktivität. Allerdings kann der gegen das obere Stabende transportierte Brennstoff durch die Schwerkraft wieder gegen die Stabmittelebene zurückkehren, falls genügend Zeit bis zum völligen Stabzusammenbruch vergeht.

2.3 Brennstoffejektionen aus dem Stabinneren

Wie verschiedene Experimente zeigen /11,12/ bildet die nach dem teilweisen oder vollständigen Abschmelzen des Hüllrohres verbleibende nackte Brennstoffsäule ein mechanisch stabiles Gebilde. Durch den Leistungsanstieg als Folge des Kühlmittelaussiedens und dem damit verbundenen Anstieg der Brennstabtemperaturen beginnt im Zentrum des Reststabs Brennstoff zu schmelzen; gleichzeitig baut sich im Inneren der nackten Brennstoffsäule aus folgenden Ursachen Druck auf:

- durch die Zunahme des Brennstoffdampfdruckes bei der Temperaturerhöhung /14/,
- durch die thermische Expansion von Spaltgasen und bei der Fabrikation des Stabes eingeschlossener Gase,
- durchFreisetzung von Spaltgasen beim Aufheizen und Schmelzen des Brennstoffs,
- durch Kompression von Gasen infolge der beim Brennstoffschmelzen auftretenden Volumenvergrößerung /15/.

Die Größe und Abhängigkeit des Stabinnendrucks von verschiedenen Parametern soll im Folgenden an Hand eines einfachen Modells abgeschätzt werden:

Abb.1: Modell zur Berechnung des Innendruckes der Brennstoffsäule

 v_1^G ... Volumenanteil der Brennstoffporen und des Zentralkanals am Gesamtvolumen V vor dem Schmelzen.

 v_1^B ... Volumenanteil des dichten Brennstoffs (ohne Poren) am Gesamtvolumen V vor dem Schmelzen.

Gesamtvolumen: $V = v_1^G + v_1^B = v_2^G + v_2^B$

Drücke:

 $p_{i} = p_{i}^{G} + p_{i}^{D} ; i = 1,2$ |Brennstoffdampfdruck

Gasdruck (eingeschlossene Gase und Spaltgase)

Bei Verwendung der Zustandsgleichung für ideale Gase ergibt sich für den Druck p_2^G die folgende Beziehung:

$$p_2^G = p_1^G \cdot \frac{n_2}{n_1} \cdot \frac{T_2}{T_1} \cdot \frac{v_1^G}{v_2^G}$$

 n_i ... Molzahl der Gase im Volumen v_i^G ; i = 1,2

 T_i ... absolute Temperatur (^oK);

 $\frac{n_2}{n_1} > 1$ da durch den Temperaturanstieg Spaltgase freigesetzt und durch Spaltungen produziert werden.

 $\frac{v_1^G}{v_2^G} \dots$ Verhältnis der Gasvolumina vor, zu jenem nach dem Schmelzen. Hängt ab von der Größe des Brennstoff-schwellens beim Schmelzen und sehr stark auch vom Anteil des Gasvolumens v_1^G am Gesamtvolumen V, d.h. davon ob der Stab einen Zentralkanal besitzt oder nicht.

Definitionen:

$$q := \frac{v_1^B}{v}$$

 $s := \frac{v_2^B}{v_1^B} - 1$

Nach der ersten Definition ist q bei Stäben ohne Zentralkanal gleich der "Theoretischen Brennstoffdichte"; bei Stäben mit Zentralkanal ist q < Theoretische Brennstoffdichte.

s stellt die Brennstoffvolumenzunahme beim Schmelzen dar. Das Verhältnis $\frac{v_1}{v_2^G}$ ist durch die beiden Größen q und s vollständig bestimmt:

Diese Beziehung ist in Abb. 2 graphisch dargestellt.

Schmelzen/Gasvolumen nach dem Schmelzen vom Brennstoffvolumenanteil vor dem Schmelzen Der Druck p₂ läßt sich daher wie folgt darstellen:

$$p_2 = p_2^G + p_2^D = p_1^G \frac{n_2}{n_1} \frac{T_2}{T_1} \frac{1}{1-s \frac{q}{1-q}} + p_2^D$$

Wie man der Abb. 2 entnehmen kann hängt der Stabinnendruck p_2 im Intervall 0.9 < q < 0.8 außerordentlich stark von q, dem Brennstoffvolumenanteil vor dem Schmelzen, ab. D.h. p_2 wird sehr stark davon beeinflußt, ob der Brennstab bereits einen Zentralkanal besitzt oder nicht. Im letzteren Fall sind wesentlich höhere Stabinnendrücke zu erwarten.

Der tatsächlich im Stabinnern herrschende Druck ist allerdings infolge der Gasleckage durch Stabrisse in den Kühlkanal kleiner:

 $p_2^{eff} = f \cdot p_2$; $0 < f \le 1$

Das Gasrückhaltevermögen f hängt von der Geschwindigkeit des Aufheizens (d.h. der Zeit die zur Gasleckage in den Kühlkanal zur Verfügung steht) und der Temperaturgeschichte des Stabes (d.h. wie viele und wie große Risse der Stab zur Gasleckage aufweist) ab. f kann nur experimentell bestimmt werden.

Abschätzung der Größe des Stabinnendruckes für einen Stab mit Zentralkanal:

Annahme:
$$T_1 = 3000 {}^{\circ}K$$
 $q = 0,7$
 $T_2 = 3673 {}^{\circ}K$ $s = 0,1$
 $p_1^G = 3 {}^{\circ}atm$ $\frac{n_2}{n_1} = 1,3$
 $p_a = 3 {}^{\circ}atm$ $f = 0,7$

gasförmig ¥., flüssig

80

fest

Abb. 3: Austritt von Brennstoff durch einen Stabriß

(Die axiale Lage des Stabrisses wurde in Abb.3 willkürlich in die Mitte der zentralen Kavität gelegt).

Für den Austrieb von Brennstoff durch Stabrisse aus dem Stabinneren in den Kühlkanal steht bei diesem Beispiel somit eine Druckdifferenz von

$$\Delta p = p_2^{\text{eff}} - p_a = 2,0 \text{ atm}$$

zur Verfügung.

Vernachläßigt man den Energieverlust des austretenden Brennstoffstrahls infolge Reibung in den Stabrissen, dann wird durch diese Druckdifferenz der Brennstoffstrahl auf die Geschwindigkeit

$$v_{e} = \left[\frac{2 \cdot \Delta p}{\rho}\right]^{1/2} = \left[\frac{2 \cdot 2 \cdot 9.807 \cdot 10^{5}}{8.7}\right]^{1/2} = 670 \text{ cm/sec}$$

beschleunigt. Geschwindigkeiten dieser Größe wurden auch bei experimentellen Untersuchungen festgestellt /13/.

Kennt man die für den Austrieb von Brennstoff aus dem Stabinneren zur Verfügung stehende gesamte Fläche A der Risse, kann die sekundlich in den Kühlkanal transportierte Brennstoffmenge m der Dichte ρ berechnet werden:

$$\mathbf{m} = \mathbf{A} \cdot \mathbf{v} \cdot \boldsymbol{\rho}$$

Dieses Beispiel zeigt, daß bereits vor dem Verlust der mechanischen Stabilität der Brennstoffsäule Brennstoff in die Kühlkanäle gelangen kann. Die dort erfolgende axiale Verteilung des Brennstoffs führt zu einer Rückwirkung auf die Reaktorreaktivität und damit auch der Reaktorleistung.

Für die zutreffende theoretische Beschreibung des Brennstofftransports aus dem Stabinneren in den Kühlkanal müssen insbesondere die Unsicherheiten in den Bandbreiten der Parameter q, f und A durch experimentelle Untersuchungen eingeengt werden.

2.4 Aufschmelzen des Stabquerschnitts und Verlust der mechanischen Stabstabilität

Ist der Stabquerschnitt vollständig, oder so weitgehend aufgeschmolzen, daß der Stab seine mechanische Stabilität verliert, wird der über dem Durchschmelzbereich liegende Stabteil durch den Verlust der Unterstützung nach unten fallen. Es kann dabei zur vollständigen oder teilweisen Behinderung der Fallbewegung durch die Brennstababstandshalter, die gegenseitige Behinderung der durch thermische Spannungen verbogenen Stäbe und durch die Gegendrücke von Natrium-, Brennstoff- und Hüllrohrmaterialdampf, sowie von Spaltgas kommen. Der obere Stabteil führt also eine komplizierte,nicht exakt definierbare Bewegungsform aus.

Das im Durchschmelzbereich vorhandene flüssige Stabmaterial fließt

in den Kühlkanal und wird in diesem, je nach den dort herrschenden Bedingungen, weitertransportiert. Größe und Richtung des Brennstofftransports hängen von der Druckverteilung im Kühlkanal ab. Die Druckverteilung kann die Materialbewegung durch die Schwerkraft unterstützen, sie behindern oder ganz umkehren. (Materialbewegung nach oben /4/.) Durch Wiedererstarren von Brennstoff in kälteren Zonen können Barrieren für den weiteren Brennstofftransport entstehen.

Erfolgt der Brennstofftransport aber so weit, daß ein Kontakt mit flüssigem Natrium entsteht, verursachen die bei der thermischen Reaktion zwischen Brennstoff und Natrium entstehenden Drücke eine neuerliche Materialumverteilung.

Denkbar, aber experimentell noch wenig abgesichert ist, ob es anstelle des allmählichen Aufschmelzens des Stabquerschnitts mit nachfolgendem Abfließen von flüssigem Material in den Kühlkanal, zu einem plötzlichen Aufsprengen des Stabbereiches mit der höchsten thermischen Belastung kommt. Das Aufsprengen und die Fragmentierung des Brennstoffs in einzelne feste Körner könnte durch die im festen Gefüge eingeschlossenen Spaltgasblasen erfolgen, deren Druck durch die Temperaturzunahme ansteigt und sich bei sehr rascher Aufheizung in der zur Verfügung stehenden Zeit nicht ausreichend entlasten kann.

Dieser Mechanismus kann aber wahrscheinlich nur bei Brennstäben wirksam werden, in denen im Verlauf ihres Abbrands bereits ausreichend Spaltgas produziert wurde und auch dann vermutlich nur, wenn sie erheblichen Temperaturgeschwindigkeiten, d.h. steilen Reaktivitätsrampen, ausgesetzt sind.

Das Bekanntwerden experimenteller Untersuchungsergebnisse muß zur Klärung dieser Frage abgewartet werden.

المعلى الجامعة الأهلية وإلى الراجعة العلم المالية الحالية المعلم المعلم المالية الماليات أراح المحالية. المعلم الجام المعالي حالية المعلم الأفري المالية أنها في المالية المعالية.

and the contraction of the state of the stat

·

3. Überblick über notwendige experimentelle Untersuchungen

Zur Absicherung der theoretischen Modellvorstellungen zum Ablauf des Brennstabslumpings sind noch eine Reihe von Experimenten erforderlich. Besondere Schwierigkeiten bereitet bei den experimentellen Untersuchungen die exakte Nachbildung der während eines Unfalls in einem Leistungsreaktor herrschenden Bedingungen. Um zu repräsentativen Versuchsergebnissen zu gelangen, müssen besonders die radiale und axiale Verteilung der Brennstabtemperaturen während des Versuchs, sowie die Aufheizgeschwindigkeit des Teststabes weitgehend den Verhältnissen beim Unfall in einem Leistungsreaktor entsprechen. Naturgemäß können diese Bedingungen am besten in Versuchsreaktoren nachgebildet werden, die imstande sind den Teststäben eine ausreichende Leistung aufzuprägen. Ein derartiger Reaktortyp ist aber in Europa frühestens nach dem Abschluß von Umbauarbeiten am Versuchsreaktor CABRI in Cadarache verfügbar.

Wegen der schweren Beobachtbarkeit des Verhaltens der Probe während Versuchen in Testreaktoren, eignen sich solche Experimente besonders für <u>globale Untersuchungen</u>. Sie dienen dazu den physikalischen Ablauf des Brennstabslumpings besser kennen zu lernen. Dazu gehört unter anderem die Beantwortung der Frage, ob es zur Aufsprengung der Brennstoffsäule kommt, oder die Vorstellung von abfließendem Brennstoff zutreffender ist. Dies läßt sich weitgehend mit Hilfe der nach Beendigung des Versuchs vorliegenden Stabbruchstücke feststellen, ohne das Verhalten des Teststabes während des Versuchs direkt beobachtet zu haben.

Zur Untersuchung einer Reihe von <u>speziellen Teilphänomenen</u> ist es jedoch denkbar die erforderlichen Bedingungen auch mit nichtnuklearer Stabheizung ausreichend genau zu erzeugen. Solche Untersuchungen sollten umfassen:

- die Art der Bewegung des oberen festen Stabteils nach dem Verlust der mechanischen Stabstabilität,
- das Hüllrohrabschmelzen und den eventuellen Kühlkanalverschluß

durch wiedererstarrtes Hüllrohrmaterial,

- den Brennstofftransport im Zentralkanal,
- die Bestimmung des Gasrückhaltevermögens f der nackten Brennstoffsäule, der Rißfläche A und des Brennstoffanteils q (Definition dieser Parameter erfolgte in Abschn. 2.3),
- die Möglichkeit der Fragmentierung von festen Brennstoff in einzelne Körner durch die im Gefüge eingeschlossenen Spaltgasblasen,
- die Möglichkeit des Aufschäumens (foaming) von flüssigem Brennstoff bei Stäben mit höherem Abbrand, durch eingeschlossene und nach dem Schmelzen expandierende Spaltgasblasen.

(a) If the provide the set of the boots of the set o

ekse oli vyrak okazaký úregitov oli krekovní ^solo jo zele vyraku krokeký krek vyratel vale žale krakekek mel vyřekov úru 100 mlatické krokeka okene král (zele v sekková) v oli vyrak kr jekse vrodnekka vyklesová teks Die gegenwärtige theoretische Behandlung des Brennstabslumpings. Das Programm SLB.

Die Schwierigkeiten in der theoretischen Behandlung des Brennstabslumpings liegen auf Grund der spärlichen experimentellen Untersuchungen zu diesem Problem in erster Linie in der Erstellung eines Modells, das die in ihrem physikalischen Ablauf teilweise noch unbekannten Vorgänge zutreffend wiedergibt und erst in zweiter Linie in der mathematischen Beschreibung dieses Modells. Hinzu kam für das Rechenprogramm SLB die Erschwernis, daß es für die Sicherheitsanalyse des SNR-300 relativ kurzfristig erstellt und verfügbar gemacht werden mußte, ohne daß auf bereits existierende Programme zurückgegriffen oder aufgebaut werden konnte. Auch waren einzelne während des Brennstabslumpings auftretende Effekte noch unbekannt und konnten deshalb nicht in das Modell einfließen. Dazu gehören z.B. die Ejektionen von Brennstoff aus dem Stabinneren, die im Kernforschungszentrum Karlsruhe von Alexas u.a. bei Versuchen mit elektrisch beheizten Stäben nachgewiesen wurden /12,13/.

In Ermangelung von ausreichenden experimentellen Befunden, die es erlaubt hätten eine genaue Vorstellung vom physikalischen Ablauf des Brennstabslumpings zu gewinnen, mußte das Modell so beschaffen sein, daß es in Bezug auf die Schwere des Unfallverlaufes zu pessimistischen Ergebnissen führt.

Dieses erste Modell /17,16/ teilt den in Zylindergeometrie behandelten Reaktorkern radial in Kühlkanäle ein; jeder Kühlkanal wird axial in drei Zonen unterteilt.

Die mathematische Beschreibung des Slumpingmodells erfolgt in dem Rechenprogramm SLB. SLB ist in das Programmsystem CAPRI /18,19,20,21/ implementiert.

Die Temperaturverteilung des Stabes und die axiale Verteilung der Schmelzanteile am Stabquerschnitt vor Beginn des Brennstabslumpings wird in den Thermodynamikmoduln von CAPRI berechnet. Erreichen die Stäbe eines Kühlkanals über eine vorgegebene axiale Mindestausdehnung die Slumpingauslösekriterien, dann wird die Spaltzone dieses Kühlkanals in drei Zonen unterteilt und der Modul SLB angelaufen. Die mittlere Zone (Zone O3 in Abb. 5) umfaßt dabei jenen Bereich, in dem die Slumpingauslösekriterien erfüllt sind.

Zone 04 enthält noch feste Brennstabteile Zone 03 enthält flüssiges Brennstabmaterial Zone 01 enthält feste Brennstabstümpfe

Abb. 5 :

Kühlkanal bei und nach Erreichen der Slumpingauslösekriterien (t_s : Slumpingbeginn)

Nach Slumpingbeginn findet zwischen den drei Zonen ein Austausch von Brennstabmaterial statt. Zur mathematischen Beschreibung dieses Materialtransports liegt dem Rechenprogramm SLB folgende Modellvorstellung zugrunde:

Das homogen verteilt angenommene Material der mittleren Zone 03 fließt wie eine viskose Flüssigkeit in den freien Raum zwischen den Brennstabstümpfen der untersten Zone 01 ab. Das abfließende Material wird der Zone 03 homogen entzogen. Die Strömungsfront ist in Abb. 5 durch die Koordinate $z_2(t)$ dargestellt. $z_2(t)$ ist die Lösung der Bewegungsgleichung der Strömung einer viskosen Flüssigkeit (Navier-Stokes-Gleichung) in einem Rohr. Sie konnte im Rahmen des zugrunde liegenden Modells analytisch gelöst werden (siehe Anhang A 1):

$$z_{2}(t) = h_{1} - (-g + f_{2} \frac{1}{\rho} \frac{dp}{dz}) \frac{R^{2}}{\nu} \left[\frac{t - t_{s}}{8} - 4 \frac{R^{2}}{\nu} \sum_{n=1}^{\infty} \frac{1 - e^{-\nu} \left(\frac{\beta_{n}}{R}\right)^{2} (t - t_{s})}{\beta_{n}} \right]$$

$$0 \le f_{2} \le 1$$

Der obere Stabteil, der durch das Aufschmelzen in der mittleren Zone seine Unterstützung verliert, fällt nach unten. Die Fallbewegung wird durch die Abstandshalter und durch die gegenseitige Sperrung der zu diesem Zeitpunkt infolge thermischer Spannungen sicher verbogenen Stäbe behindert. In dem Modell wird angenommen, daß die Größe der Bewegungsbehinderung linear mit der Geschwindigkeit zunimmt.

Die der Bewegung durch die Gravitations- und Druckkräfte entgegenwirkende Kraft lautet daher:

$$K = -m \cdot \xi \cdot \frac{dz}{dt}$$

ξ ... Behinderungskoeffizient

Für die Bewegungsgleichung des fallenden Stabteils erhält man damit:

$$\frac{d^2 z_5}{dt^2} + \xi \frac{d z_5}{dt} = g - f_5 \frac{1}{\rho} \frac{d p}{d z}$$
$$0 \le f_5 \le 1 \quad ; \quad g < 0$$

Anfangsbedingungen: $z_5(t_s) = h_3$

$$\frac{dz_5}{dt}(t_s) = 0$$

Unter diesen Anfangsbedingungen ergibt sich als Lösung:

$$z_{5}(t) = h_{3} - (-g + f_{5} \frac{1}{\rho} \frac{dp}{dz}) \frac{t-t_{s} - \frac{1}{\xi} \left[1 - e^{-\xi(t-t_{s})}\right]}{\xi}$$

Im Rechenprogramm SLB wird das aus der Zone 4 in die Zone 3 fallende Stabmaterial homogen über die Zone 3 verteilt. Die Materialverteilung zu einem beliebigen Zeitpunkt t wird durch die Volumenanteile von Brennstoff und Stahl in jeder Zone mathematisch beschrieben:

$$\omega_{4}^{(m)}(t) = \Omega_{4}^{(m)}$$

$$\begin{split} \omega_{3}^{(m)}(t) &= f^{(m)} \cdot \Omega_{3}^{(m)} + \left\{ f^{(m)} \cdot \Omega_{4}^{(m)} \cdot \left[h_{3} - z_{5}(t) \right] - \left[\left(c_{3}^{(m)}(t) \right) \cdot \left[h_{1} - z_{2}(t) \right] \cdot \left(1 - \Omega_{1}^{(1)} - \Omega_{1}^{(2)} - \Omega_{5} \right) \right] \cdot \left[q_{F} \right\} \cdot \left[h_{2} - h_{1} \right] \\ & \circ q_{F} \right\} \cdot \left[h_{2} - h_{1} \right] \end{split}$$

$$\left\langle c_{3}^{(m)}(t) \right\rangle = \frac{1}{z_{2}(t) - h_{1}} \int_{t_{s}}^{t} \frac{\omega_{3}^{(m)}(t')}{\omega_{3}^{(1)}(t') + \omega_{3}^{(2)}(t')} \frac{d}{dt} z_{2}(t') dt'$$

$$\omega_{2}^{(m)}(t) = \Omega_{1}^{(m)} + \left\langle c_{3}^{(m)}(t) \right\rangle \cdot (1 - \Omega_{1}^{(1)} - \Omega_{1}^{(2)} - \Omega_{s}) \cdot q_{F}$$

 $\omega_{l}^{(m)}(t) = \Omega_{l}^{(m)}$

m = 1 ... Brennstoff
m = 2 ... Hüllrohrmaterial

Diese gegenüber dem Ausgangszustand zur Zeit t_s veränderte Materialverteilung wird an das neutronenkinetische Programm des Programmsystems CAPRI zur Berechnung der Reaktivitäts- und Leistungsänderung des Reaktors übergeben. 5. Anwendungsrechnungen beim Kühlmittelverlustunfall im Mark-l Kern des SNR-300

Die Eingabedaten des Programms SLB (siehe Abschn. A2) können in drei Gruppen unterteilt werden:

- a) Daten welche die Geometrie des Modells, den Zeitpunkt des Slumpingbeginns und den aktuellen Zeitpunkt festlegen:
 GF, GV, R, H1, H2, H3, H4, T0, T, VI1(1), VI2(2), VI3(1), VI3(2), VI4(1), VI4(2), VS;
- b) Materialdaten
- NY, F(1), F(2);
- c) übrige Daten
 - XI, QF.

Die Daten der Gruppe (a) werden im Thermodynamikteil des Programmsystems CAPRI berechnet und liegen damit für den Modul SLB fest. Die Materialdaten sind im Hinblick darauf, daß das dem Programm SLB zugrunde liegende Modell die tatsächlich ablaufenden physikalischen Vorgänge nur in erster Näherung beschreibt ausreichend bekannt.

QF liegt in der Nähe von 1.

Schwer einzugrenzen ist hingegen die Bandbreite des Behinderungskoeffizienten XI. Einerseits ist denkbar, daß eine Fallbewegung der oberen Stabteile eines Subassemblys durch die Behinderung noch intakter Abstandshalter und durch die gegenseitige Sperrung der einzelnen, durch thermische Spannungen verbogenen Stäbe gänzlich verhindert wird. Dies würde in der mathematischen Beschreibung XI → ∞ entsprechen.

Andererseits könnten die Stabteile im freien Fall gegen die Kernmitte fallen, wenn z.B. die Abstandshalter abgeschmolzen sind und die Verbiegung der Stäbe nur schwach ist. Dies würde XI \rightarrow 0 entsprechen.

Um den Einfluß des Behinderungskoeffizienten XI auf den Verlauf eines Kühlmittelverlustunfalls zu studieren, wurden für den Mark-1 Kern des SNR-300 Rechnungen mit XI \rightarrow 0 (freier Fall), XI = 0.3 und XI $\rightarrow \infty$ (totale Verblockung) durchgeführt. Für sämtliche Rechnungen war

Die Unterteilung des Reaktorkerns in Kühlkanäle entsprach der in Abb. 4 dargestellten. Der Beginn des Brennstabslumpings wurde dann angenommen, wenn in einem Kühlkanal über mindestens drei Thermodynamikzonen im Mittel mindestens 45 % des Stabquerschnitts geschmolzen ist und die mittlere Hüllrohrtemperatur in allen drei Zonen 1400°C überschritt. Diese Kriterien wurden im thermisch am höchsten belasteten Kühlkanal 1 5.5415 sec nach Unfallbeginn erreicht; im Kühlkanal 2 nach 5.5475 sec.

Das Hüllrohrmaterial wurde so behandelt, als ob es sich als homogene Mischung mit dem Brennstoff bewegen würde.

Der sich bei den Rechnungen ergebene zeitliche Verlauf des Brennstoff-Volumenanteils in Zone 3 ist in Abb. 6 graphisch dargestellt.

Abb. 6: Zeitlicher Verlauf des Brennstoffvolumenanteils in Zone 3

-26-

Die singulären Stellen der Ableitungen bei den Kurven für $XI \rightarrow 0$, XI = 0.3 und XI = 3.0 entstehen immer dann, wenn das Material der Zone 4 vollständig in Zone 3 eingetaucht ist. Wird dieser Zustand erreicht, hört die Brennstoffzufuhr in die Zone 3 augenblicklich auf.

Der Reaktor erreicht jedoch sowohl mit XI \rightarrow 0 als auch mit XI = 0.3 lange vor dem vollständigen Eintauchen der Zone 4 in die Zone 3 den promptkritischen Zustand und das Übergabekriterium für die nachfolgende Dissasemblyphase /23/.

医卡克德里氏素 计算法分词 建氯化镍 法公司 化物理试验检查 法主诉讼通知者 化试剂 法法法定 化合合物 化合金

Küh lkanal	Siedebeginn t _B /sec/	Slumpingbeginn t _S /sec/	
1	4.5567	5.5415	
2	4.7365	5.5475	
4	5.1465	-	
5	5.2227	-	
7	5.2977	-	
8	5.5955	-	

Abb.7: Leistungs- und Reaktivitätsverlauf beim Kühlmittelverlustunfall SNR-300 / Mark-1

Fallen die oberen Stabteile nach dem Verlust der mechanischen Stabstabilität im freien Fall (XI \rightarrow 0), oder nahezu freien Fall (XI = 0.3) gegen die Kernmittelebene, gelangt mehr Material aus der Zone 4 in die Zone 3, als aus Zone 3 in die Zone 2 abfließen kann. Der Brennstoffanteil in Zone 3 nimmt dadurch zu (siehe Abb. 6). In Zone 2 fließt Brennstoff aus der Zone 3 in die Kühlkanäle zwischen den Brennstabstümpfen. Auch in dieser Zone nimmt daher der Brennstoffanteil zu. Es entsteht somit um die Mittelebene der Spaltzone eine Brennstoffansammlung.

age _{ag} in search in search year sector en anno 1000 an search 2000 anno 1000 anno 1000. Anno 1000 anna

Die Reaktivitätsänderung im Laufe der Zeit infolge der Brennstoffansammlung um die Mittelebene der Spaltzone ist in Abb. 7 durch die Kurve ρ_s graphisch dargestellt.

Im Rahmen des den Rechnungen zugründe liegenden pessimistischen oder

Modells entsteht schließlich eine positive Slumpingreaktivitätsrampe von ca. 20 \$/sec die den Reaktor schnell in den überpromptkritischen Zustand führt. Auch der hauptsächlich vom Aussieden des äußersten, achten Kühlkanals der Spaltzone herrührende negative Reaktivitätsbeitrag, kann den Reaktor nicht mehr abfangen.

Völlig anders verläuft der Unfall, wenn man annimmt, daß die oberen Stabteile nach dem Verlust der mechanischen Stabstabilität nicht gegen die Kernmittelebene fallen (XI $\rightarrow \infty$). Abb. 6 entnimmt man, daß in diesem Fall der Brennstoffanteil in Zone 3 sofort nach Slumpingbeginn abzunehmen beginnt.

Abb. 9: Zeitlicher Verlauf der Zonengrenzen $z_2(t)$, $z_5(t)$ und Brennstoffanteile zur Zeit t_s und $t_1 > t_s$ für XI- $\sim \infty$

In diesem Fall laufen nebeneinander zwei konkurrierende Effekte ab:

Durch das Abfließen von Brennstoff aus der Zone 3 nimmt der Brennstoffanteil in dieser Zone ab. Dadurch entsteht ein negativer Beitrag zur Reaktorreaktivität.

Durch das Auffüllen der Kühlkanäle zwischen den Brennstabstümpfen der Zone 2 mit dem aus der Zone 3 abgeflossenem Brennstoff, nimmt der Brennstoffanteil in der Zone 2 zu. Dadurch entsteht ein positiver Beitrag zur Reaktorreaktivität. Die Zunahme dieses Beitrags wird jedoch umso kleiner, je weiter sich die Zonengrenze $z_{2}(t)$ von der Mittelebene der Spaltzone weg nach außen verschiebt. Wie der zeitliche Verlauf der Slumpingreaktivität ρ_{c} in der Kurve III der Abb. 7 zeigt, überwiegt zunächst der zuletzt genannte, positive Reaktivitätsbeitrag. Ungefähr 5.725 sec nach Unfallbeginn kehrt sich dies jedoch um und es beginnt der vom Entleeren der Zone 3 herrührende negative Reaktivitätsbeitrag zu dominieren. Die Slumpingreaktivität beginnt abzunehmen. Durch die Begrenzung des vom Slumping herrührenden Reaktivitätsbeitrages führen die vom Doppler-Effekt und vom Kühlmittelaussieden verursachten negativen Beiträge zu einer Abnahme der Gesamtreaktivität. Der Reaktor wird schließlich unterkritisch und schaltet sich neutronisch ab.

Gelingt es durch konstruktive Maßnahmen, mit Sicherheit zu verhindern, daß bei einem Durchschmelzen des Stabquerschnitts und dem damit verbundenen Verlust der mechanischen Stabstabilität der über dem Durchschmelzbereich liegende Brennstoff gegen die Kernmitte fällt, dann würde sich der Reaktor durch die Brennstoffumverteilung während der Slumpingphase ohne äußeren Eingriff selbsttätig abschalten. Dies wäre somit ein inhärenter Abschaltmechanismus, der den Unfall bereits vor dem Aufbau von hohen Drücken beendet, die den gesamten Kern zerstören. Die Unfallfolgen werden dadurch erheblich vermindert. Beim gerechneten Beispiel des Mark-1 Kerns im SNR-300 beschränken sie sich auf die Zerstörung der Brennstäbe in den beiden innersten Kühlkanälen.

ALL REAL PROPERTY.

-31-

6. Ausblick auf künftige Modellverbesserungen

Die Notwendigkeit, das gegenwärtige Modell zu verbessern und weiterzuentwickeln, wurde durch die seit dem Beginn der Arbeiten an diesem Modell eingetretene Zunahme des Wissens über den physikalischen Ablauf der während der Slumpingphase auftretenden Phänomene durch neuere experimentelle und theoretische Ergebnisse besonders augenfällig.

So können z.B. die experimentell entdeckten Brennstoffejektionen (siehe Abschn. 2.3) mit dem gegenwärtigen Modell nicht simuliert werden. Auf Grund des in Abschn. 5 geschilderten Unfallverlaufs bei Verblockung des oberen Stabteils (XI $\rightarrow \infty$) ist es jedoch denkbar, daß der Reaktor sich in der Ejektionsphase abschaltet, während der ja ebenfalls der obere Stabteil an Ort und Stelle bleibt. Voraussetzung dafür ist, daß genügend Brennstoff, in ausreichend vielen Brennelementen, in die Kühlkanäle gelangt und dort an den Rand der Spaltzone transportiert wird.

Ein anderes aus den Rechnungen gewonnenes Ergebnis ist, daß das Hüllrohrabschmelzen erheblich früher einsetzt als bei Beginn der Arbeiten am gegenwärtigen Modell angenommen wurde. Daraus ergibt sich die Notwendigkeit, das Abschmelzen des Hüllrohrmaterials und die eventuelle Wiedererstarrung in kälteren Zonen gesondert zu beschreiben.

Ein neues Modell sollte daher neben der Beschreibung der Brennstabmaterialbewegung nach dem Aufschmelzen, bzw. Aufsprengen des Stabquerschnitts unter Verlust der mechanischen Stabstabilität insbesondere auch in der Lage sein, die Slumpingteilphasen Hüllrohrmaterialabschmelzen und Brennstoffbewegung im Zentralkanal, sowie Brennstoffbewegung während der Phase der Brennstoffejektionen aus dem Stabinnern darzustellen. Der Einfluß von Natrium-, Brennstoff-, Hüllrohrmaterialdampfdrücken und Spaltgasdrücken ist zu berücksichtigen.

Als mathematisches Gerüst zur Beschreibung dieser Effekte werden die hydro- und thermodynamischen Gleichungen verwendet und auf einen diskretisierten Ortsraum bezogen.

-32-

ANHANG

Al. Exakte Lösung der Bewegungsgleichung für die viskose instationäre Rohrströmung

Problemstellung: Es ist die instationäre Bewegung einer viskosen Flüssigkeit in den Strömungskanälen der Zone 2 mathematisch zu beschreiben.

Abb. 10 : Geometrie des Strömungskanals in Zone 2

Die Bewegungsgleichung der viskosen Strömung im dreidimensionalen Raum lautet in Einsteinscher Summationskonvention (x_3 -Koordinate entspricht z-Achse in Abb. 5) /25,26,27/:

$$\frac{\partial \mathbf{v}_{j}}{\partial t} + \mathbf{v}_{i} \frac{\partial \mathbf{v}_{j}}{\partial \mathbf{x}_{i}} = -\frac{\partial \mathbf{v}}{\partial \mathbf{x}_{j}} - \frac{1}{\rho} \frac{\partial \mathbf{p}}{\partial \mathbf{x}_{j}} - \frac{1}{\rho} \frac$$

Randbedingung:

$$\vec{v}(\vec{x},t) / = 0$$

 $\vec{v}(\vec{x},t) / S_{\alpha}$, Zelle 0 = $\vec{v}(\vec{x},t) / S_{\alpha}$, Zelle α
 $\alpha = 1,2,3,4$

Anfangsbedingung:

$$\vec{v}(\vec{x},t_s) = 0$$

Durch die folgenden drei Annahmen kann das Randwertproblem (1) vereinfacht und in eine analytisch lösbare Gestalt gebracht werden:

(a) Die Strömung sei eindimensional.

(2)
$$v_j = u \delta_{j3}$$

(b) Die Viskosität µ sei konstant.

$$0 = -\frac{\partial V}{\partial x_{1}} - \frac{1}{\rho} \frac{\partial p}{\partial x_{1}}$$

$$0 = -\frac{\partial V}{\partial x_{2}} - \frac{1}{\rho} \frac{\partial p}{\partial x_{2}}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x_{3}} = -\frac{\partial V}{\partial x_{3}} - \frac{1}{\rho} \frac{\partial p}{\partial x_{3}} - \frac{\mu}{\rho} \left[\frac{2}{3} \frac{\partial^{2} u}{\partial x_{3}^{2}} - \frac{\partial^{2} u}{\partial x_{1} \partial x_{1}} - \frac{\partial^{2} u}{\partial^{2} x_{3}} \right]$$

$$(3) = -\frac{\partial V}{\partial x_{3}} - \frac{1}{\rho} \frac{\partial p}{\partial x_{3}} + \nu \left[\Delta u - \frac{1}{3} \frac{\partial^{2} u}{\partial x_{3}^{2}} \right]$$

(c) Die Dichte sei konstant.

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} \rho v_i = 0 \quad (\text{Kontinuitätsgl.})$$

aus $\rho = \text{const.} \rightarrow \frac{\partial v_i}{\partial x_i} = 0$
und aus $v_i = u \cdot \delta_{i3} \rightarrow \boxed{\frac{\partial u}{\partial x_3} = 0}$

Setzt man dies in die Gleichung (3) ein, dann erhält man:

$$\frac{\partial u}{\partial t} = -\frac{\partial V}{\partial x_3} - \frac{1}{\rho} \frac{\partial p}{\partial x_3} + v\Delta u$$

$$\frac{\partial V}{\partial x_3} = -g \quad ; \quad g < 0$$

0

Annahme:

Definition: G: = $g - \frac{1}{\rho}$

 $\frac{\partial^2 p}{\partial x_3^2}$

$$\frac{\partial u}{\partial t} - v\Delta u = G \qquad (4)$$

<u>q6</u> 9x3

Die partielle Differentialgleichung (4) besitzt die Gestalt einer eindimensionalen, inhomogenen Wärmeleitungsgleichung. Diese Gleichung kann analytisch gelöst werden, wenn man die komplizierte Geometrie des Strömungskanals durch eine einfachere ersetzt. Hierzu bietet sich die Zylindergeometrie an.

Abb. 11 : Äquivalente Zylindergeometrie des Strömungskanals in Zone 2

Das vollständig formulierte Randwertproblem lautet unter den vorhergehenden Annahmen

$$\frac{\partial u(r,t)}{\partial t} - v\Delta u(r,t) = G$$

Laplaceoperator in Zylinderkoordinaten:

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r}$$
(5)

Randbedingung:

$$\begin{array}{c} u(\mathbf{R}, \mathbf{t}) = 0 & \dots \\ \left| u(0, \mathbf{t}) \right| < \infty & \dots \end{array} \right\} \quad \forall \mathbf{t} \in [\mathbf{t}_{s}, \infty)$$

Anfangsbedingung:

$$u(\mathbf{r}, \mathbf{t}_{s}) = 0 \dots \forall \mathbf{r} \in [0, \mathbb{R}]$$

Bei der Lösung dieses Problems stört die Inhomogenität auf der rechten Gleichungsseite von (5).Mit dem folgenden Ansatz kann man sie wegschaffen:

$$u(\mathbf{r},t) = f(\mathbf{r}) + w(\mathbf{r},t)$$

Einsetzen in DG (7): der später statuten sich der Berner und in der Berner Steffenstellte Statuten auf der Berner sich der Berner und der Berner und der Berner und der Berner statuten der

ويراجع المرور وفرقت المراجب بالمرواجين فيارك المعاوي المراجع والمترين متعمين المراجع والمعتقر فالمتر فالمناصر والمناص

$$\frac{\partial w(\mathbf{r},t)}{\partial t} - v\Delta w(\mathbf{r},t) = v\Delta f(\mathbf{r}) + G$$

Diese Gleichung wird homogen wenn

$$\nu \Delta \mathbf{f}(\mathbf{r}) + \mathbf{G} = \mathbf{O}$$

Geforderte Randbedingung: f(R) = 0 (6) $/f(o)/ < \infty$

Die DG für w(r,t) lautet dann:

$$\frac{\partial w(\mathbf{r},t)}{\partial t} - v \Delta w(\mathbf{r},t) = 0$$
 (7)

Aus den Rand- und Anfangsbedingungen von Gl. (5) und (6) ergeben sich als Randbedingungen für Gl. (7):

Randbedingung: w(R,t) = 0 $/w(0,t)/ < \infty$ Anfangsbedingung: $w(r,t_s)^2 = -f(r)$ mean distribution of the factor is the fac Anstellte der einen inhomogenen partiellen Differentialgleichung (5) hat man nun zwei homogene Differentialgleichungen zu lösen; nämlich die gewöhnliche Differentialgleichung (6) für f(r) und die partielle Differentialgleichung (7) für w(r,t).

Zur Lösung der Differentialgleichung (7) verwendet man zweckmäßigerweise den sogenannten Separationsansatz:

$$w(\mathbf{r},\mathbf{t}) = S(\mathbf{r}) \cdot T(\mathbf{t})$$

Nach dem Einsetzen dieses Ansatzes in (7) kann man durch geeignete Umordnung erreichen, daß sämtliche von r abhängigen Glieder auf einer Gleichungsseite stehen und sämtliche von t abhängigen auf der anderen.

Eine solche Gleichung kann aber nur dann identisch erfüllt sein, wenn jede Gleichungsseite ein und derselben, aber sonst beliebigen Konstanten K gleich ist. Man erhält daher die folgenden beiden gewöhnlichen Differentialgleichungen:

$$\frac{d^2 S(r)}{dr^2} + \frac{1}{r} \frac{dS(r)}{dr} + \frac{\kappa}{v} S(r) = 0$$

(9)

(8)

RB: S(R) = 0/S(o)/ < ∞

a, K... beliebige Konstante

Würde $\frac{\kappa}{\nu}$ = 1 sein, dann wäre (9) jene Differentialgleichung, der die Besselfunktionen nullter Ordnung genügen.

Durch folgende Variablentransformation kann aber (9) in eine Besselsche Differentialgleichung übergeführt werden:

$$x = \left(\frac{\kappa}{\nu}\right)^{1/2} r = k \cdot r ; \quad k^{2} = \frac{\kappa}{\nu}$$
$$S(r) \equiv \overline{S}(x)$$

Damit wird (9) zu:

(10)
$$\frac{d^2\overline{S}(x)}{dx^2} + \frac{1}{x} \frac{d\overline{S}(x)}{dx} + \overline{S}(x) = 0 \dots$$

-39-

.... Besselsche Differentialgleichung für die Besselfunktionen nullter Ordung /28/

Randbedingungen:

(a)
$$\overline{S}(x) = 0$$

 $r=R$

(b) $\overline{S}(o) < \infty$

Wegen (b) scheidet die Besselfunktion 2. Art (Neumannsche Funktion) als Lösung aus, da diese im Ursprung einen Pol besitzt,

d.h.

$$\overline{S}(x) = J_0(x) \quad bzw.$$

$$S(r) = J_0(k \cdot r)$$

 $J_{o}(x)$... Besselfunktion 1. Art, nullter Ordnung

Die Besselfunktionen $J_{o}(k \cdot r)$ erfüllen die Differentialgleichung (10) für beliebige Werte von k und damit von κ . Die Randbedingungen von (10) sind jedoch nur für abzählbar unendlich viele, diskrete Werte von k erfüllt:

$$S(R) = J_{0}(k \cdot R) = 0 \quad \leftrightarrow \quad k \cdot R = \beta_{n}$$

$$n = 1, 2, \dots$$

Damit lauten die Lösungen der Differentialgleichung (8) und (9):

$$T_{n}(t) = a_{n} e^{-v} \left(\frac{\beta_{n}}{R}\right)^{2} (t-t_{s})$$

$$W_{n}(r,t) = T_{n}(t) \cdot S_{n}(r)$$

$$S_{n}(T) = J_{o} \left(\frac{\beta_{n}}{R} \cdot r\right)$$

$$w_{n}(r,t) = T_{n}(t) \cdot S_{n}(r)$$

$$n = 1,2,3,...$$

Jede Funktion $w_n(r,t)$ erfüllt nun die DG und die Randbedingung von (7).

Die allgemeine Lösung erhält man daher durch Überlagerung der $w_n(r,t)$:

(11)
$$\mathbb{W}(\mathbf{r},\mathbf{t}) = \sum_{n=1}^{\infty} a_n e^{-\nu} \left(\frac{\beta_n}{R}\right)^2 (\mathbf{t}-\mathbf{t}_s) J_o\left(\frac{\beta_n}{R}\mathbf{r}\right)$$

a_nbeliebte Konstante

$$w(\mathbf{r},\mathbf{t}) = -f(\mathbf{r})$$

noch nicht. Um w(r,t_s) an diese Anfangsbedingung anpassen zu können, muß man die Funktion f(r) kennen. f(r) wird durch die Differentialgleichung (6) definiert. Die Differentialgleichung und die Randbedingungen lauteten (siehe Gl. (6)):

$$\frac{d^2 f(r)}{dr^2} + \frac{1}{r} \frac{df(r)}{dr} = -\frac{G}{v}$$

Randbedingungen: f(R) = 0/ $f(o) / < \infty$

Als Lösung erhält man:

(12)
$$f(r) = -\frac{G}{4\nu} (R^2 - r^2)$$

Die Besselfunktionen $\left\{J_{o}\left(\frac{\beta_{n}}{R}r\right); n=1,2,3,\ldots\right\}$ bilden ein vollständiges, orthogonales Funktionensystem. Daher kann die Funktion f(r) nach Besselfunktionen entwickelt werden. Man erhält:

(13)
$$f(\mathbf{r}) = \sum_{a=1}^{\infty} \frac{G}{\nu} \frac{2R^2}{\beta_n^3 J_1(\beta_n)} J_0\left(\frac{\beta_n}{R}\mathbf{r}\right)$$

Mit dieser Darstellung von f(r) kann w(r,t) sehr einfach an die Anfangsbedingung

$$w(r,t_{c}) = -f(r)$$

angepaßt werden.

$$w(\mathbf{r}, \mathbf{t}_{s}) = \sum_{a=1}^{\infty} a_{n} J_{o} \left(\frac{\beta_{n}}{R} \mathbf{r}\right)$$
$$= -f(\mathbf{r}) = -\sum_{n=1}^{\infty} \frac{G}{\nu} \frac{2R^{2}}{\beta_{n}^{3}J_{1}(\beta_{n})} J_{o} \left(\frac{\beta_{n}}{R} \mathbf{r}\right)$$

Da die Besselfunktionen $J_o\left(\frac{\beta_n}{R}r\right)$; n = 1,2,... voneinander linear unabhängig sind muß gelten:

$$a_{n} = -\frac{G}{\nu} \frac{2 R^{2}}{\beta_{n}^{3} J_{1}(\beta_{n})}$$

Einsetzen in G1. (11):

$$w(\mathbf{r},\mathbf{t}) = -2 R^2 \frac{G}{\nu} \sum_{n=1}^{\infty} \frac{e^{-\nu} \left(\frac{\beta_n}{R}\right)^2 (\mathbf{t} - \mathbf{t}_s)}{\beta_n^3 J_1(\beta_n)} \qquad J_o\left(\frac{\beta_n}{R} \mathbf{r}\right)$$

Für die Geschwindigkeitsverteilung der instationären Strömung im Rohr mit Kreisquerschnitt setzten wir an

$$u(r,t) = f(r) + w(r,t)$$

Die Geschwindigkeitsverteilung lautet daher:

$$u(\mathbf{r},\mathbf{t}) = \mathbf{f}(\mathbf{r}) + w(\mathbf{r},\mathbf{t})$$

$$= 2 R^{2} \frac{G}{\nu} \sum_{n=1}^{\infty} \frac{1 - e}{\beta_{n}^{3} J_{1}(\beta_{n})} J_{0}\left(\frac{\beta_{n}}{R} r\right)$$
(14)

Bildet man die Grenzwerte $\lim_{v \to 0} u(r,t)$, d.h. ideale Flüssigkeit ohne innere Reibung, und $\lim_{R \to \infty} u(r,t)$, d.h. kein Einfluß der umschließenden Wand auf die Bewegung der Flüssigkeit, dann erhält man:

$$\lim_{V \to 0} u(\mathbf{r}, t) = Gt$$
$$\lim_{R \to \infty} u(\mathbf{r}, t) = Gt$$

Diese Grenzwerte sind physikalisch sinnvoll. Damit sind zwei notwendige Bedingungen für die Richtigkeit der Lösung (14) erfüllt.

Mittelt man u(r,t) über den Strömungsquerschnitt dann erhält man:

(15)
$$\overline{u}(t) = \frac{2}{R^2} \int_{0}^{R} r u(r,t) dr = -v \left(\frac{\beta_n}{R}\right)^2 (t-t_s) = \frac{G}{v} (2R)^2 \sum_{n=1}^{\infty} \frac{1-e}{\beta_n^4}$$

G wurde fefiniert als: $F = g - \frac{1}{\rho} \frac{dp}{dx_3} = g - \frac{1}{\rho} \frac{dp}{dz}$

Der zurückgelegte Weg der mittleren Strömungsfront ist gegeben durch:

$$\frac{dz_2(t)}{dt} = \overline{u}(t)$$

Anfangsbedingung: $z_2(t_s) = h_1$

Die Lösung lautet:

(16)
$$z_2(t) = h_1 - (-g + \frac{1}{\rho} \frac{dp}{dz}) \frac{R^2}{\nu} \left[\frac{t-t_s}{8} - 4 \frac{R^2}{\nu} \sum_{n=1}^{\infty} \frac{-\nu \left(\frac{\beta_n}{R}\right)^2 (t-t_s)}{\beta_n^6} \right]$$

Damit ist die Bewegungsgleichung für die instationäre Strömung einer viskosen Flüssigkeit in einem Rohr mit Kreisquerschnitt exakt gelöst.

Setzt man

$$R = 2 \cdot R_{H}$$

wobei

 $R_{H} = \frac{F}{U}$... hydraulischer Radius des Kühlkanals,

dann wird durch Gleichung (16) auch die Strömung des Brennstoffs in den Kühlkanälen des Reaktorkerns im Rahmen des zugrundeliegenden Modells ausreichend genau beschrieben.

Ist nicht der gesamte Strömungskanalquerschnitt mit Material ausgefüllt sondern nur ein Teil davon, dann trägt auch nicht der gesamte Druckgradient $\frac{1}{\rho} \frac{dp}{dz}$ zum Materialtransport bei. In diesem Fall kann die Bewegung angenähert durch (17) beschrieben werden.

(17)
$$z_{2}(t) = h_{1} - (-g+f_{2}\frac{1}{\rho}\frac{dp}{dz})\frac{R^{2}}{\nu}\left[\frac{t-t_{s}}{8} - 4\frac{R^{2}}{\nu}\sum_{n=1}^{\infty}\frac{-\nu\left(\frac{\beta_{n}}{R}\right)^{2}(t-t_{s})}{\beta_{n}^{6}}\right]$$

 $0 \leq f_2 \leq 1$

a and a a second of the	14. T	e de la companya de l	and the second
Tab. 1: Eingabe	edaten		
	1 I	1 gr., s	
	Variable		
Symbol	in	Dimension	Bedeutung
0,	SLB	Dimension	Dettenrung
			1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 -
- 1 dp		. 2	
$-g+f_{5 \rho dz}$	GF	m/sec	Gravitations u. Druckkraft auf
			den oberen Stabteil
$0 < \pm 5 \leq 1$	Na sa statuta (187		
	·		
1 do	an watro Alero. F	. 2	
$-g+f_2 - \frac{dp}{dz}$	GV	m/sec ⁻	Gravitations u. Druckkraft auf das
2 9 62			aus Zone 3 abfließende Material
$0 < t_2 < 1$			
		2,	
v	Νĭ	cm /sec	Kinematische Zahigkeit
τ	ντ	-1	Robindorungekooffiziont
5	AT.	sec	beninderungskoerrizient
R	R	cm	$R = 2 \cdot R : R \dots$ hydraulischer
			H, H
		and a second second second	Radius des Kühlkanals
-	OF	1	WashWitzin Jan 618aaiaam
$\mathbb{C}^{\mathcal{C}}$ is $\mathbb{C}^{\mathbf{Q}}_{\overline{\mathbf{F}}}$ and the even	Ųr	1:	verhaltnis des von flussigem
			Mat. ausgefüllten Querschnitts
			zum Gesamtquerschnitt des Kühl-
· · · · · · · · · · · · · · · · · · ·		•	
			kanals in Zone 2
	an an Alth		
1	77.1		
¹¹ 1	п		
	- I.		
h_2	H2	m	
			Zonengrenzen (siehe Abb.5)
h,	H3	m	
3			
L.	11/		J
¹¹ 4	n4 '	111	
(;)			
f ⁽¹⁾	F(1)	1	Dichte des festen Materials 1
			Dichte des flussigen Materials 1
			i = 1, 2
ts	то	sec	Zeitpunkt des Slumpingbeginns
-			
	l		

A2 Ein- und Ausgabedaten des Rechenprogramms SLB

Symbol	Variable in SLB	Dimension	Bedeutung
t	Т	sec	aktueller Zeitpunkt
$\Omega_1^{(i)}$	VII(I)	1	$\Omega_{\mathbf{k}}^{(i)}$ Volumenanteil des
$\Omega_3^{(i)}$	VI3(I)	1	Materials i in Zone Ok bei
$\Omega_4^{(i)}$	VI4(I)	1	
ດ s	vs	1	Volumenanteil des Struktur- materials

Tab.2: Ausgabedaten

Variable in SLB	Dimension	Bedeutung
25	m	Zonengrenzen (siehe Abb.5)
Z2	m	
V3(I)	1	$\omega_{k}^{(i)}(t)\ldots$ Volumenanteil des
V2(I)	1	Materials i in Zone k zur Zeit t; i=1,2
VG3	1	$\omega_3(t) = \omega_3^{(1)}(t) + \omega_3^{(2)}(t)$
VG2	1	$\omega_2(t) = \omega_2^{(1)}(t) + \omega_2^{(1)}(t)$
. :		
	Variable in SLB Z5 Z2 V3(I) V2(I) VG3 VG2	Variable in SLBDimensionZ5mZ2mV3(I)1V2(I)1VG31VG21

Zeichenerklärung

Abschnitt 2

e
Æ

Abschnitt 4, Al

J_(x) 1 Besselfunktion 1. Art, n-ter Ordnung Index m=1 ... Brennstoff m m=2 ... Hüllrohrmaterial gcm⁻²sec⁻² dp Druckgradient im Kühlkanal dz von Material ausgefüllter Teil des Kühl-1 qF kanalquerschnitts/ Gesamtquerschnitt des Kühlkanals $R = 2 \cdot R_{\mu}$; R_{μ} ... hydraulischer Radius R $\dot{c}m$ des Kühlkanals aktueller Zeitpunkt t sec Zeitpunkt des Slumpingbeginns ts sec u = $v_3 \dots z$ -Komponente der Geschwindigkeit \vec{v} cm/sec u cm^2/sec^2 Gravitationspotential Ŵ cm/sec j_{te}-Geschwindigkeitskomponente;j=1,2,3 v_i $z_{2}(t)$ cm Zonengrenzen zur Zeit t (\rightarrow Abb.5) $z_5(t)$ cm n_{te}-Nullstelle der Besselfunktion 1.Art, 0_{ter}-1 β_n Ordnung. $J_{0}(\beta_{n}) = 0; n=1,2,3,...$ 1...i=j ^δij 1 0...i≠j ; i,j = 1,2,3 δ_{ij} sec^{-1} beliebige Konstante κ Poise Viskosität ш cm^2/sec kinenematische Zähigkeit ν sec⁻¹ ξ Behinderungskoeffizient g/cm³ Dichte des Stabmaterials ρ $\Omega_{\mathbf{k}}^{(m)}$ 1 Volumenanteil des Materials m in Zone Ok bei Slumpingbeginn ; m = 1,2 ; k = 1,3,4Ω s Volumenanteil des Strukturmaterials 1 $\omega_{L}^{(m)}(t)$ Volumenanteil des Materials m in Zone k zur 1 Zeit t; m = 1, 2, ; k = 1, 2, 3, 4

Literaturhinweise

- /1/ G. Heusener et al.: Analysis of Hypothetical Accidents for SNR-300. KFK 1834 (1973)
- /2/ P. Wirtz:

Ein Beitrag zur theoretischen Beschreibung des Siedens unter Störfallbedingungen in natriumgekühlten schnellen Reaktoren KFK 1858 (1973)

- /3/ W.T. Sha, A.E. Walter: An Integrated Model for Analyzing Disruptive Accidents in Fast Reactors Nuc. Scie. Eng. <u>44</u> (1971)
- /4/ A. De Volpi et al.: Fast-Neutron Hodoscope Visualization of Fuel-Movement in a 7-Pin-Loss-of Flow Simulation Trans. Am. Nucl. Soc., Vol. 16, p 182 (1973)
- /5/ B. Kuczera: BREDA - Ein Rechenmodell für die Verformung des Brennstabes eines Na-gekühlten Schnellen Brutreaktors unter transienter Belastung KFK 1729 (1972)
- /6/ W.R. Bohl, T.J. Heames: A Cladding Motion Model for LMFBR Loss-of-Flow Accident Analysis Trans. Am. Nucl. Soc., Vol.17, p 358 (1973)
- /7/ J.E. Hanson et al.: Experimental Studies of Transient Effects in Fast Reactor Fuels, Series II GEAP - 4804 (1965)
- /8/ J.E. Hanson et al.: Experimental Studies of Transient Effects in Fast Reactor Fuels, Series III GEAP - 4469 (1967)

- /9/ T. Hikido, J.H. Field: Molten Fuel Movement in Transient Overpower Tests of Irradiated Oxide Fuel GEAP - 13 543 (1969)
- /10/ G.R. Thomas, J.H. Field: Transient Overpower Irradiation of Axially - Restrained, Zero-Burnup, Fast Reactor Fuel Specimens GEAP - 13 562 (1969)
- /11/ R.R. Stewart et al.: Studies of Fast Reactor Fuel Element Behavior under Transient Heating to Failure ANL - 7552 (1969)
- /12/ A. Alexas: Experimentelle Untersuchungen zum Brennstab-Versagen KFK 1273/2 (1973)
- /13/ A. Alexas et al.: Experimentelle Untersuchungen zum Brennstab-Versagen KFK 1272/4 (1973)
- /14/ D. Miller: The Effect of Melting on UO₂ Thermodynamic Properties. ANL - 7610 (1970)
- /15/ G. Karsten: Das Betriebsverhalten eines Brennelementstabes KFK 700 (1969)
- /16/ G. Angerer: Theoretische Beschreibung des Brennstabslumpings KFK 1272/4 (1973)
- /17/ M.G. Stevenson: Analysis of Fuel Behavior ANL - 7872 (1971)

/18/ D. Struwe:

Hypothetische Störfalluntersuchungen am Mark-1 Kern des SNR-300 mit dem Programmsystem CAPRI-1 Interner Bericht (in Vorbereitung)

- /19/ D. Struwe et al.: CAPRI - A Computer Code for the Analysis of Hypothetical Core Disruptive Accidents in the Predisassembly Phase Submitted to ANS Topical Conf. on Fast Reactor Safty, April 1974
- /20/ G. Angerer et al.: Simulation eines Ausfalls aller Kühlmittelpumpen in einem natriumgekühlten schnellen Brutreaktor. Beitrag zur KTG-Fachtagung der Fachgruppen Reaktorphysik und Thermo-Fluiddynamik, Januar 1974
- /21/ B. Kuczera et al.: Ansätze zur Behandlung hypothetischer Störfälle in natriumgekühlten schnellen Brutreaktoren KFK-Nachrichten 1/73 (1973)
- /22/ H.C. Tsai, D.R. Olander: The Viscosity of Molten Uranium Dioxide Trans. Am. Nucl. Soc. <u>15</u>, p 211 (1972)
- /23/ P.Schmuck et al.: Untersuchungen und Programmentwicklungen zu Disassembly-Vorgängen in natriumgekühlten schnellen Brutreaktoren KFK 1272/4 (1973)
- /24/ G. Angerer, D. Struwe: Theoretische Behandlung des Brennstabslumpings während eines Kühlmittelverlustunfalls bei schnellen natriumgekühlen Brutreaktoren. Beitrag zur Reaktortagung 1974
- /25/ L.D. Landau, E.M. Litschitz: Lehrbuch der theoretischen Physik; Bd. VI, Hydrodynamik Akademie Verlag Berlin (1966)

/26/ Kerson Huang:

Statistische Mechanik ; Bd. I Hochschultaschenbücher-Verlag (1964)

/27/ R.B. Bird et al.: Transport Phenomena John Wiley & Sons, Inc. (1960)

/28/ Jahnke - Emde - Lösch: Tafeln höherer Funktionen Teubner Verlagsgesellschaft (1960)