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Abstract

For the measurement of point kinetics parameters of zero power
reactors many different methods have been widely used and
described in the literature. These include Rossi-a, probability
distribution, variance-over-mean, frequency analysis, and polarity
correlation of neutron detector signals. Up to now kinetics para­
meters of a coupled two-point reactor model have been measured only
by two noise analysis techniques: Rossi-a (correlation functions)
and frequency analysis (power spectral density, coherence functions)
using two detectors to obtain space-dependent neutron signals.

This paper describes for the first time investigations of two­
detector covariance measurements and their application to the
determination of coupled kinetics parameters. This technique
is compared with the Rossi-a method by theoretical considerations
and measurements using identical detector signals in both analysis
techniques. Results were also compared to those measured previously
at the same reactor by frequency analysis.

Theoretical formulas for the Rossi-a experiment and variance and
covariance measurements in a symmetrical two-point reactor model
were derived. The material properties and neutron lifetimes for
each reactor zone were assumed equivalent. The transport time of
neutrons from one zone to the other was neglected. The parameters
of the model include the decay constant of prompt neutrons and the
coupling reactivity of the two core zones. These parameters were
determined by least-squares fitting the theoretical curves to the
experimental data.

The measurements have been performed at the Argonaut Reactor
Karlsruhe (ARK) with a syrnmetrical two-slab core loading for
different subcritical levels. Variances and covariances of
neutron counts from detectors placed in both core regions were
measured intwo different ways.

In the first method the two-dimensional probability distribution
of the nurnber of counts from the detectors was measured using a
small digital computer. The computer was used to control the
gating times of two specially designed counting registers and
to calculate the first and second moments. From that the co­
variances were calculated in real time and displayed on a CRT
as a function of the counting time interval.

In the second method the variance and the covariance of the detector
pulses were directly measured without using the probability distri­
butions. For this purpose a new analyser based on a special calcu­
lational algorithm was developed.This analyser can be built easily
with low hardware expense.

I

The results obtained by the Rossi-a and variance method agreed quite
weIL. In contrast to point reactor parameter determination, where
Rossi-a and variance techniques are equivalent, the variance and
covariance method appear superior to the Rossi-a method in appli­
cations to coupled reactors. Kinetics parameters of a two-node
reactor model can be determined more accurately by the variance
technique.

The effect of dead-time losses in the signal channels or in the
analyser on the measured variances was also studied. The variance
technique was found to be more sensitive to dead-time than the
Rossi-a technique. Therefore variance measurements at fast reactors
yield incorrect results except special fast electronics is used
in the pulse channels.



Bestimmung kinetischer Parameter eines gekoppelten Reaktors durch
Messung der Kovarianz zweier Detektorsignale

Zusammenfassung

Während am Ein-Zonen-Reaktor mehrere Rauschmethoden zur Bestimmung
der punktkinetischen Parameter eingesetzt wurden, ist an gekoppelten
Reaktoren bisher nur die Rossi-a-Technik und die Frequenzanalyse zur
Bestimmung kinetischer Parameter nach einem Zweipunkt-Modell verwen­
det worden. In diesem Bericht wird die Messung der Varianzen und der
Kovarianz zweier Detektorsignale und ihre Verwendung zur Bestimmung
der Parameter gekoppelter Reaktoren behandelt. Die Methode wird theo­
retisch und experimentell (bei Verwendung identischer Detektorsignale
für beide Methoden) mit der Rossi-a-Technik und außerdem mit früheren
Ergebnissen aus einer Frequenzanalyse am selben Reaktor verglichen.

Zur Ableitung der theoretischen Formeln für das Rossi-a-Experiment
und Varianz- bzw. Kovarianzmessungen in einem symmetrischen Zwei­
Punkt-Reaktor wird angenommen, daß die Transportzeit der Neutronen
von einer Zone in die andere vernachlässigt werden kann. Durch An­
passung der theoretischen Kurven an die gemessenen Daten können die
Zerfallskonstante des prompten Neutronenflusses und die Kopplungs­
konstante gewonnen werden.

An der symmetrischen Zwei-Zonen-Ladung des Argonaut Reaktor Karls­
ruhe (ARK) wurde bei verschiedenen unterkritischen Zuständen die
Kovarianz auf zwei Arten bestimmt. Einmal wurde mitHilfe eines
Kleinrechners die zweidimensionale Wahrscheinlichkeitsverteilung
der in einem Zeitintervall gezählten Neutronenimpulse gemessen,
aus der dann die Varianzen und Kovarianzen berechnet wurden.
Im zweiten Fall wurden Varianz und Kovarianz direkt, also nicht
über die Wahrscheinlichkeitsverteilung, gemessen. Dazu wurde ein
neuer Analysator entwickelt, der mit Hilfe eines speziellen Algo­
rithmus die Varianz bzw. Kovarianz auf einfachere Weise und mit
geringerem hardware-Aufwand unmittelbar aus den Signalen ableitet.

Die Ergebnisse der Rossi-a und Varianzmessungen stimmen gut über­
ein. Während beim Punktreaktor die Bestimmung der Reaktorparameter
mit den beiden Methoden gleichwertig ist, können mit der Varianz­
Kovarianz-Methode die Parameter des gekoppelten Reaktors genauer
bestimmt werden als mit der Rossi-a-Technik.

Die Untersuchung von Totzeiten in den Signalkanälen oder im Ana­
lysator ergab, daß die Varianz-Methode empfindlicher auf Totzeit­
verluste reagiert als die Rossi-a-Methode. Vor allem bei schnellen
Reaktoren wird daher die Varianz-Technik faische Ergebnisse lie­
fern, es sei denn, daß besonders schnelle elektronische Bauteile
benutzt werden.
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1. Introduction

Because of the assumed separability of the space and time

variables of the neutron flux in reactors of relatively

small size, the neutron flux fluctuations caused by the

stochastic nature of the fission process are essentially

the same at all positions in such zero power reactors.

They differ only in their amplitudes which are proportional

to the space-dependent steady-state mean value of the neutron

flux. Time delays and phase shifts between flux variations

at any two space points within the reactor are negligible.

The neutron flux and its fluctuations at different positions

are completely coupled.

A large number of measurements using different techniques

of noise analysis /1,2,3,4,5,6,7/ have confirmed the pre­

dictions of the point reactor theory of neutron noise /8,7/.

The theoretical formulas are notexplicitely space-dependent.

The spatial dependence of the magnitude of neutron flux

fluctuations is taken into account implicitely by the

detector sensitivity defined as the ratio of the average

counting rate of the detector to the mean total fission

rate in the reactor. Therefore there is basically no difference

between one- and two-detector experiments with respect to the

reactor-kinetics parameters measured in small single-zone

zero power reactors. The only advantage of two-detector cross­

correlation measurements in such reactors is that a lower

detector efficiency and band-limited signal channels can be

used together /9,10,11/.

However in large reactors, due to finite neutron velocity

and migration length, one would expect time delays and a

certain degree of decouplinq between flux fluctuations at

different positions. This would lead to local effects and

space-dependent results in noise analysis experiments, as

clearly demonstrated in /12/. Discrepancies were also found

between point reactor theory and noise measurements in

compound reactor geometries and reflected cores /13,14,15/.
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Space-dependent theories predicted significant deviations

from point kinetics /16,17/.

In general, the energy dependence of the neutron flux also

has to be taken into account in the theoretical treatment

of reactor noise. The general problem of space and energy

dependent reactor noise has been attacked in several different

approaches, including modal and nodal expansions of the neutron

field /18,19,20/. The models developed in most theories are

of a complicated nature and not directly amenable to appli­

cation in practical experiments.

A reactor consisting of two loosely coupled separate core

regions can be described by a two-node or two-point reactor

model originally introduced by Baldwin /21/. Prom this model

simple expressions can be derived for the quahtities measured

with the different techniques of noise analysis in zero power

reactors. With these formulas coupled kinetics parameters can

be obtained directly from experimental results by least­

squares fitting, avoiding nurnerical calculations of space­

and time-dependent neutron fields.

This has been shown by Albrecht and Seifritz for the two-node

coherence function /22,23/ and by Dragt for correlation functions

of ionisation chamber signals from a two-slab reactor /24/.

Later Viehl and Seifritz /25,26/ published theoretical and

experimental investigations on power spectral densities of

neutron signals from an unsyrnrnetric coupled reactor. Two-

node and four-node models have been used also by Penland and

Hanauer /15/ and Penland /20/ to describe the effect of re­

flectors on power spectral densities measured at the Oak Ridge

Research Reactor and Pool Critical Assembly, respectively.

In this work a simple one-group two-node theory for Rossi-~,

variance and covariance measurements with two detectors in

a reactor composed of two weakly coupled core regions is

developed. Theoretical formulas were verified by experimental

results obtained at the two-slab Argonaut reactor at Karlsruhe.
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Two prompt neutron decay modes, coupling and total reactivity

were determined for this reactor.

A study on coupling effects in athermal two slab reactor was

published by Dalfes and Tlirkcan /27/ also. They used a more

general nodal theory for interpretation of correlation func­

tions only and applied it successfully to experiments at the

Argonaut-type Low Flux Reactor (LFR) at Petten with two-slab

and annular core configurations. Reactor parameters were de­

termined from a correlation matrix equation instead of aleast

squares fitting procedure.

Variances and Covariances of neutron counts from two detectors

have been used for the first time by Harris et al./28,29/ to

study spatial coupling effects of neutron flux. They measured

and calculated a modified coefficient of correlation derived

from covariances and variances of counts from detectors in a

long very weakly coupled seed-blanket reactor and a well­

coupled cylindrical reactor. It was found that the correlation

coefficient can be used to check dynamic reactor models.

However, direct information about kinetic parameters such as

coupling coefficient, time constants and reactivity could not

be determined in this case because the theoretical model did

not use them explicitely. These parameters have been deduced

directly from the variance and covariance measurements and

are reported in this paper for the first time.

Investigations of coupled kinetics using noise analysis

techniques at coupled fast /30/ and fast-thermal systems

/31,32,33/ have been published by Mihalczo, Murley, Edel­

mann et al. and Dalfes et al., respectively. Moderator­

reflected fast assemblies were studied by Borgwaldt et al.

using a modal synthesis method /34/.
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2. Two-node theory for Rossi-a, variance and covariance

measurements for symmetrical systems

In the common theory of noise analysis experiments /8/ a

general formula has been derived for the results measured

with different techniques, characterized by their specific

network response functions. Its specialized form for the

point reactor model is

where

(1)

;.,.
t

k

actual output of signal channel i

mean value of r i

Kronecker's symbol

detector efficiency in counts per fission

total fission rate of one node

network response functions, n=1,2

Fourier trans form of an(t)

effective neutron multiplication factor

a nuclear material parameter /35/
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f prompt neutron lifetime

f{(w) source transfer function of point reactor

Prom equ. (1) only the correlation functions measured in Rossi-a

experiments with one and two detectors will be derived directly.

Variance and covariance functions can be more easily obtained

in a different way. Therefore equ. (1) is given in a form which

is true only for Rossi-a experiments: the first term on the

right-hande side does not appear in the general formula and

has been added only to account for trivial coincidences pro­

duced in an auto correlation experiment at zero delay.

It will be shown that equation (1) also holds for noise

measurements in a symmetrical two-node reactor system if

the point reactor transfer function is replaced by an

equivalent function of the two-point reactor. This pseudo

transfer function is derived from the two-node model used

by Albrecht and Seifritz /22/. It is described by the block

diagram in figure 1. Its major properties are:

(1) Each node has a distinct input Si (6» which is a neutron

source in our case and a distinct output Ni(~) which is

the neutron population, i=1,2.

(2) Aperturbation of one node by the other only arises due

to the output of the perturbing node affecting the input

of the perturbed node.

(3) The nodes have identical transfer functions (7(w) (point

reactor source transfer function)

(4) The coupling between nodes is identical, i.e. coupling

in both directions is described by the same coupling

function K(w) •

(5) The sources to the two nodes are uncorrelated and sta­

tistically the same. That is, they have the same mean

value, auto power spectral density and their cross
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Power spectral density is zero ( $.$.14-= S.S.*')
t 1. J J

Then the auto and cross power spectral densities of the

outputs are

N,. N..*= 1N..j2._j G /-Z ISi /~ (1+ IKrL )

Z z t /1- K.2.I Z

MN.*=/\/'.N~=1&1'&:l Re (K) ISi /z
l J J 1 /1- K2 /2

iJj= 4,2 ; i.pj

wherein

(2)

( 3 )

It has been assumed that the Fourier transforms of the input

and output signals also exist in the limiting case of a in­

finite sample length T, otherwise ~r~; has to be replaced
by its expectation or mean value /36/.

By dividing the output power spectral densities by the input

power spectral density one obtaines two real functions which

can be taken as the square modulus of two transfer functions:

(4)

(5)

With these transfer functions the results of neutronic noise

experiments for the two-node reactor can be calculated from

equ. (1) using the proper network response functions. However,

different transfer functions have to be used for auto and

cross-correlation experiments in order to account for the

spatial dependence of two-node reactor results.
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For this purpose, the coupling function K(w) has to be

calculated first. It is derived from the two-node kinetics

equations /21/. Neglecting delayed neutrons and the delay

in neutron coupling, one finds /22/ for a symmetrical system

with

K e /f(tJ) = _. .
.Il. O<+t~

e coupling reactivity between nodes

~ prompt neutron generation time

(6)

0<- J3-p- 7J1.."' prompt neutron decay constant of a
single node without coupling

jO reactivity of one node

j3 effective delayed neutron fraction

The transfer function cr(W)of each node derived from the

point kinetics equations without delayed neutrons is

G(ev)= 0<; itJ

The network response functions for the Rossi-~ experiment

and their Fourier transforms are

a-t (t)= alt)

a:t-(t)=d (i-T)

A" (UJ)== 1
A.z (I'.J)= e- i",r

(7)

(8)

(9)

Substituting equs. (8) ,(9) and (4) with (6) and (7) into equ. (1),

the auto correlation function of the counting rate of a neutron

counter placed in one node of the reactor results:

TI.. (T'= ~. -f"(T) + ~.z -f rW/j/}) (.1. e-«",T+ .::L e-ot.z T)
r\u I '7,' 0 'i 'f,f:l. ~ 0(.2. (10)
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with

In a similar way the crosscorrelation function for two detectors,

one in each node, is calculated from equs.(1), (5), (8) and (9):

( 11)

The decay constans a 1 and a 2 depend on the decay constant a of

the two nodes without coupling and the coupling reactivity E

divided by the prompt neutron generation time

The correlation functions consist of a slower, a 1 , and a

faster, transient decay mode a 2• If a 2 is much larger than

a 1 , i.e. in the case of strong coupling, the correlation

functions will be influenced by the transient only for

short delay times. On the other hand, with very small

coupling the difference between the two decay modes will

become negligible.

(12 )

( 13)

Equation (11) also holds for a crosscorrelation experiment

with detectors in the same region when the two exponential

terms within the brackets are added as in equ. (10). Similar

results were also found by Dragt /24/ in a different, some­

what more complicated derivation.

The results obtained for the two-node reactor differ from

thoseof the one-point model by the existence of two ex­

ponential terms instead of only one in the auto and cross­

correlation functions. These terms are the same as in the

point model except for the different decay constants and

coefficients which depend on the degree of coupling as can

be seen from equs. (12), (13). Increasing the coupling in­

creases the difference between auto and crosscorrelation

results as well as the difference between both of them and
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point reactor results. When the coupling between the nodes

becomes negligible, i.e. E=O, equ. (10) reduces to the corres­

ponding equation of the point reactor. However in the cross­

correlation function (11) the correlated part vanishes and

only the product of signal mean values remains.

Formulas for the variance and covariance of detector counts

can be derived from equ. (1) in the same way as for auto and

crosscorrelation functions when the network response functions

and their Fourier transforms are taken to be

Oi:t~T

otherwise

Then

1
-i(.l)T

A
1
(,,)=A,(cu) = - e

N i4J T

Yi(t) = not (t-7jt)
T

..y.., _ ././ 'I _ n.'
''i -Wi 7 - T

(14 )

(15 )

with ni (t - T) t) the number of counts from detector i

in the time interval (t - 0 t) and ni i ts mean value.

However, if the correlation functions Rij(T) are known,

variance and covariance formulas can be easily obtained by

integrating these functions /8/:

T T

ninj(T) = JdtJdt.. Rij(t..-t.j
() ()

From this measured quantities can be calculated according

to equ.(1) as follows:

(16)

r r
er, (T) tlf, ni ni (r) - Ji.. yt. - ni C(,. =~ fdt rat C,.lt-t) (17)

l.J / __ . _ "7 j_,,_,' ju.:Ju;,z ~ l(~ '1

n~· nj n, nJ 0 0
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where (;lj denotes the time dependent (correlated) part of

the correlation functions arising from the integral in (1).

Actually, it is not necessary to perform this calculation

because Ci;' (r) from equs. (10), (11) are the sum and difference

of two correlation functions similar to those valid for the

point-reactor model the integral (16) of which is known to be

proportional to

Therefore it follows immediately that the variance and co­

variance distributions are given by

(18 )

(19 )

The asymptotic values for large counting intervalls are

with

(20)

(21)

The behaviour of equs. (17) and (18) depends on both decay

constants within the whole range of counting intervalls.

It is expected therefore that variance and covariance

measurements can be used more suceess~ully than Rossi-a

measurements with one and two detectors to determine a 1 , a 2 ,
and the coupling reactivity.
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3. Experimental set-up and measurement techniques

The measurements were performed at the Argonaut Reactor Karls­
ruhe (ARK) with a two-slab core configuration at different

levels of subcriticality. The main features of this reactor

are well-known. The special two-slab core which was used for

the experiments reported here is described in /23,37,38/.

Two BF3 counters connecte~ in parallel were used as neutron
detectors in each slab. They were placed at symmetrical po­

sitions at the outer periphery of the active core zones to
be sensitive only to neutrons from the adjacent core zone.

Conventional electronics equipment was used to obtain nor­

malized fast signal pulses suitable for tape recording and

analysis. The dead-time of the two signal channels was 1 ~s.

Noise analysis of the signals was mainly performed off-line

using a tape recorder although the newly developed analysers

for Rossi-a and variance measurements were especially designed
for real-time analysis.

The major interest of this work was concerned with variance

and covariance measurements and their potential to determine

coupled kinetics parameters. Rossi-a measurements were per­

formed on the same records for comparison of the two techniques

and their results with respect to their sensitivity to coupling
effects in neutron noise. In this context special attention
was paid to the influence of dead-time losses on the results
in both cases.

Rossi-a measurements were performed with a new type of time

analyser developed to overcome the problems with conventional

analysers arising from dead-time losses in their trigger

channel. Resulting discrepancies between theory and experiment

have been studied in theoretical and experimental investigations

/39,40,41,42,43,44/. The new analyseris described in /43,44,32/
where modified Rossi-a techniques and background problems are
also discussed. The analyser - in principle a very flexible and
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versatile digital version of the delayed coincidence analyser

used in the first Rossi-a experiments by Orndoff /45/ ­

measures the true correlation function of pulse signals.

This is accomplished by using a shift register as a delay

line providing time cycle superposition capability.

For the measurment of variance and covariance of detector

counts two different techniques were applied. In the first

technique a small digital computer coupled to agated twin

counting register was used to measure simultaneously the

one- and two-dimensional probability distributions of counts

arriving during time intervals of variable length T in one

or two pulse channels. The computer automatically controlled

the gating times of the counting registers between 1 ~s and

1s as specified by software input. Between successive counting

intervals a break of 10 ~s was needed for data transfer from

the counting registers to the computer memory and reset.

After counting a specified number of counting intervals of

same length T, the first and second moments of the probability

distribution were calculated and variances and covariances

were derived according to equ.(17). Then the measurement

continued with the next specified counting time interval.

Probability distributions and variance curves were displayed

on a CRT during measurements. In off-line measurements of

tape recorded data the same record was used for analyis with

different counting intervals. start and rewind of the tape

recorder was also controlled by the computer. Thus, the

measurements could be performed completely automatically.

In the second method variance or covariance of detector pulses

was directly measured without using the probability distri­

butions. For this purpose a new analyser based on a special

calculational algorithm was developed /38/. This method has

the advantage that a relatively small amount of hardware is

necessary. Fig.2 shows the block diagram of the apparatus.

Within the time interval T there are two sequences of n1' n2

pulses in channel 1 resp. 2. The variance and covariance is

defined by
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k+ e covariance

~=e. variance

with AI

nk .= ~ nki

N
N

~ n"'inUnk·ne =
.. .,

N

N = total number of time intervals T

Accordingly the analyser must multiply n 1i and n 2i for each

time interval T and add these products. The mean number of

pulses nk will be obtained by counting simultaneously the

pulses of each channel during the total measuring time.

Fig.3 shows how the multiplication process is performed.

If it is assumed that no pulses appear simultaneously in

the two channels the pulse sequences n 1 and n 2 can be
it it

divided into sub-sequences n 1j , n
2k

• During a subsequence

there is no pulse in the other channel. Each sub-sequence
it ~'r

n 1j , n 2k is multiplied by the total number of pulses which

have arrived from the beginning of the time interval Ti in

the other channel. These partial results are summed and

the desired result n 1 • n 2 is obtained.

The multiplication is realized by the apparatus shown in

Fig.2. The two sequencies are counted in two binary registers

B1 and B2 . The addition of the actual content of one register

to the content of the corresponding normal pulse counters

Z1 ..• Za is initiated by each pulse arriving in the other

channel.
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This corresponds to the multiplication process explatned

above: Each sub-sequence is multiplied by the sum of pulses

which have arrived since the beginning of the time inter­

val T in the other channel. The sum of the contents of the
i-1counters Zi multiplied by the value 2 of the corres-

ponding binary register output is the required result n 1 ·n2 •

Before the beginning of the next time interval, the binary

registers are reset (but not the counters Ji). At the end

of N time intervals T the sum of products ~ nV·n~j· is

stored in the counters Zi. J-

The afore-mentioned condition that no pulses appear

simultaneously in the two channels is non-realistic.

Therefore an electronic separation of pulses is done

by a special non-coincidence logic /38/. If two pulses

are separated less than the maximum switching time of

the registers one pulse is delayed by this device.

The new analyser is suitable for two-or one-detector ex­

periments. For variance measurements input 1 and 2 of the

analyser are connected.
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4. Results and Conclusions

Tape records of detector signals at 7 different subcritical

states of ARK between -5 ~ and -4 $ were analysed (each 600

sec long). The interesting parameters a 1 , a 2 and Q were

determined by least-squares fitting the theoretical curves

(10,11) and (18,19) to the results from the Rossi-a and

variance-measurements, respectively. Fig.4 shows two typical

results of variance and covariance measurements. In tab.1

the fitted parameters are listed for different subcritical

levels of ARK. For comparison the same tape records were

analysed by the Rossi-a-method. Fig.5 and tab.2 show the

correlation functions and the results for the significant

parameters.

From measurements and calculations the following statements

can be made:

a) In contrast to point reactor parameter measurements,

application of the variance method to determine kinetic

parameters in coupled reactors is superior to the Rossi-a­

method. The coupling between neutron flux fluctuations

in both core zones influences all measuring points of the

variance, but mainly the asymptotic values for large

counting time intervals. Therefore fitting of 3 parameters

to the measured variances will give better results than

the Rossi-a-method. There coupling influences the corre­

lation function at very short delay-times only. The fast

transient a 2 is resolved badly and so the additional more

difficult fitting of 4 parameters will be burdened with

considerable errors.

b) There is no difference between the results for the kinetic

parameters in the covariance and variance measurements.

c) The Rossi-a-method with one detector (autocorrelation)

gives better results in two-slab-cores than two-detector
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(crosscorrelation) measurements. This can be explained

by the fact, that the transport time of neutrons between

the two core-zones was neglected in the theory. This

time is about 0.28 msec /23/ and is therefore in the

range of the channel width of the time analyser. Hence

the value of the fast transient a 2 which influences

only the first channels can be distorted. This effect is

not observed in the variance method, because the fast

transient influences essentially the asymptotic part of

the curves. There the corresponding time intervals are

much larger than the transport time of neutrons.

d) The fitted value of the near critical parameter a 2 is

too small. Therefore the computed coupling reactivity e

is also too small. We can understand this error if we

look at the absolute values of a 1 and a2. Near critical,

a 2»a1 and thus the predominance of the first terms in

equ. (10,11) and (18,19) is influenced only weakly by the
. a1second terms, which are we1ghted additionallyby a2 and

(~~)2, respectively. Therefore the fitting of parameters

at near critical is expected to be less accurate.
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Dead-time los ses

The two methods are rather sensitive to dead-time losses

in the counting-tubes or the connected electronic networks.

In /43/ the influence of dead-time on the amplitude of the

correlation function measured by the Rossi-a-method has been

studied. The influence of dead-time losses on variance­

measurements was now investigated by analysis of neutron

detector signals with artificially introduced variable dead­

time after each passed pulse. Fig.6 shows the results of

variance analysis for various dead-times. The mean counting

rate was about 520 counts/sec, corresponding to a mean time

between pulses t p of about 1_9 msec. A dead-time of T=O.01-tp
has a considerable influence on the measured variance of a

pulse sequence. The dead-time losses can be described satis­

factory up to values of T = 100 ~sec = O.05-tp by a formula

given in /46/. With the aid of this formula it is possible

to estimate the correct kinetic parameters at one-detector

point reactor experiments if dead-time T is known.
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Tabelle 1

COVARIANCE AUTOVARIANCE eastern core zone

pL1-1 - -1- - -1- XL-sec-1_1 - -1- - -1- XL-sec-1_1o,1 L sec _/ o,2L sec _/ O,1 L sec _/ O,2 L sec _/

-3.9 187.3 393.1 102.9 180.2 385.1 102.4

-3.7 175.9 387.4 105.7 167.3 385.7 109.2

-2.5 133.5 359.2 112.8 126.4 359.7 116.6

-1.7 103.8 338.0 117.1 98.6 333.9 117.6

-0.8 69.8 294.3 112.2 68.8 298.7 114.9

-0.28 47.9 227.5 89.8 47.5 227.7 90.1

-0.05 39.5 179.1 69.8 39.6 173.7 67.0

rv
,g:".



Tabelle 2

CROSSCORRELATION AUTOCORRELATION eastern core zone

pL-:.fl.7 - -1- - -1- E: - -1- - -1- - -1- E: - -1-cx 1Lsec _/ cx 2Lsec _/ AL sec _/ cx 1L sec _/ cx 2L sec _/ AL sec _/

-3.9 183.1 676.6 246.7 179.9 391.4 105.7

-3.7 178.1 480.2 151.0 169.9 384.6 107.3

-2.5 148.8 451.3 151.2 124.9 359.2 117.1

-1.7 103.9 506.1 201.1 96.0 261.6 82.8

-0.8 82.7 308.3 112.8 67.9 297.9 115.0

-0.28 54.6 355.7 150.5 47.0 226.0 89.5

-0.05 45.9 394.1 174.1 37.0 151.8 57.4

cx 2 and € from crosscorrelation measurements not reliable (cf. 15 f.)

f\.)

111
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