

Institut für Material- und Festkörperforschung
Projekt Schneller Brüter

Quantitative Phase Analysis in the U,Pu-C-System by X-Ray Diffraction
C. Ganguly, D. Vollath

GESELLSCHAFT
FÜR
KERNFORSCHUNG M.B.H.

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KERNFORSCHUNGSZENTRUM KARLSRUHE

Institut für Material- und Festkörperforschung
Projekt Schneller Bruiter

Quantitative Phase Analysis in the $\mathrm{U}, \mathrm{Pu}-\mathrm{C}-$ System by X -Ray Diffraction
C. Ganguly ${ }^{x}$)
D. Vollath

Gesellschaft für Kernforschung mbH., Kar1sruhe

[^0]An absolute method is proposed in the following investigation for the quantitative phase analysis of mono-,di-and sesquicarbide and dioxide in the $\mathrm{U}-\mathrm{Pu}-\mathrm{C}-\mathrm{O}$ system by X -ray diffraction.

Theoretically, the integrated intensity for the different selected lattice planes of the above phases are calculated taking into consideration the crystal structure, Lorentz Polarisation Factor, multiplicity factor, temperature factor, absorption factor and unit cell volume. For the pure phase, the intensity ratios between different planes were found comparable with the corresponding measured integrated intensity ratios, thus confirming the basis of calculation.

Using these calculated values and experimentally determining the corresponding integrated intensities of the X-ray diffraction pattern any unknown carbide pellet of ' U ', ' Pu ' or ${ }^{\prime} \mathrm{U}-\mathrm{Pu}$ ' can be quantitatively analysed directly fcr mono, di, sesquicarbide and oxide phases.

Der vorliegende Bericht beschreibt eine absolute Methode zur quantitativen Phasenanalyse in Uran-Plutonium-Mischkarbiden durch Röntgenbeugung.

Über die Berechnung der Intensität für verschiedene Gitterebenen der interessierenden Phasen UC, $\mathrm{U}_{2} \mathrm{C}_{3}, \mathrm{UC}_{2}$ und UO_{2} bzw. der entsprechenden Plutoniumverbindungen, bei der die Kristallstruktur, der Lorentz-Polarisationsfaktor, der Flächenhäufigkeits- sowie der Temperatur- und Absorptionsfaktor berücksichtigt wurden, konnten Formeln für die relativen Intensitäten der einzelnen Beugungslinien angegeben werden.

Auf der Basis dieser Formeln kann nach der experimentellen Ermittlung der integrierten Intensitäten einzelner Beugungslinien der interessierenden Phasen die Konzentration dieser Gefügebestandteile ermittelt werden. Die Übereinstimmung des aus diesen Analysenwerten berechneten Äquivalentkohlenstoffgehaltes mit den chemisch ermittelten Werten ist gut.

Content

1. Introduction
2. Background of the X-ray methods for quantitative phase analysis
2.1 Direct Comparison Method
2.2 Internal Standard Method
2.3 Active Dilution Method
3. Method Used in the Present Investigation
3.1 Theoretical Calculation of the " K "-Values
3.1.1 Structure Factor $/ E /^{2}$
3.1.2 Structure Factor of "UC" and (U,Pu)C
3.1.3 Structure Factor of $\mathrm{U}_{2} \mathrm{C}_{3}$ and ($\left.\mathrm{U}, \mathrm{Pu}\right)_{2} \mathrm{C}_{3}$
3.1.4 Structure Factor of UC_{2} and (U, Pu) C_{2}
3.1.5 Structure Factor of UO_{2} and $(\mathrm{U}, \mathrm{Pu}) \mathrm{O}_{2}$

3.2 Temperature Factor

3.3 Lorentz Polarisation Factor
3.4 Multiplicity Factor
3.5 Absorption Factor
3.6 Unit Cell Volume
3.7 K-Values as a Function of Plutonium Concentration
4. Experimentally Determining the Intensity Values for the Selected Lines
4.1 Checking the Closeness of " K "-Ratio with the Corresponding Intensity Ratio for ($\mathrm{U} \cdot{ }_{85} \mathrm{Pu}^{\mathrm{H}}{ }_{15}$) C Lines
5. Analysis of the Mixed Carbide Pellets

Table 1-15

High metal atom density and thermal conductivity together with good irradiation stability led the physicists and engineers to consider uranium monocarbide and uranium plutonium mixed monocarbide as fuels for use in thermal and fast reactors respectively.

However, producing pure single phase (UC) or (U, Pu) C is somewhat difficult and the higher carbides $\mathrm{UC}_{2},(\mathrm{U}, \mathrm{Pu}) \mathrm{C}_{2}, \mathrm{U}_{2} \mathrm{C}_{3},(\mathrm{U}, \mathrm{Pu})_{2} \mathrm{C}_{3}$ are nearly always present specially in the hyperstoichiometric fuel. If too much of these phases are present then there is possibility of a transfer of carbon from fuel to clad giving rise to compatibility problems.

So one of the most important task in the carbide fuel quality control is to determine the exact amount of the phases present. Chemical analysis gives the amount of U, Pu free and total carbon but no information about the phases. Metallography allows the different phases present to be detected but cannot throw much light on the extent to which they are present.

Only by the X-ray diffraction method it is possible to get the precise quantitative phase analysis data.
2. Background of the X-ray methods for quantitative phase analysis /1/

The intensity of the diffraction pattern of a particular phase in a mixture of phases depends on the concentration of that phase in the mixture. To find a relation between diffracted intensity and concentration we must use the following basic equation which gives the integrated intensity of the (hkl) reflection from the phase " X "

$$
\begin{equation*}
I_{(h k 1)}^{x}=I_{o} \cdot C^{\cdot} \cdot\left\{/\left.F\right|_{h k 1} ^{2} \cdot p \cdot L P\right\}_{x} \cdot \frac{T^{\prime}}{V^{2}} \cdot A \cdot C_{x} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{I}_{(h k 1)}^{\mathbf{X}}= \text { The integrated intensity of the (hk1) reflection from } \\
& \text { component "X" } \\
&(h k 1)=\text { Miller's indices of a lattice plane }^{\text {(hin }}
\end{aligned}
$$

I_{0}	$=$	Intensity of the incident X -ray beam
$\mathrm{C}^{\text {- }}$	$=$ C^{-}	A constant which is independent of the kind and amount of the diffracting substance and is equal to $=\frac{e^{4} \lambda^{3} A}{m^{2} c^{4} \cdot 32 \pi r} \quad \text { where }$
e,m		charge and mass of the electron
c	$=$	velocity of light
λ	$=$	wavelength of the incident radiation
A		cross sectional area of the incident beam
r	$=$	radius of diffractometer circle
F	$=$	crystal structure amplitude and $/ F /^{2}$ is the crystal structure factor
LP	$=$	angular or Lorentz polarisation factor
T^{\prime}	$=$	temperature factor
V	$=$	unit cell volume
A	$=$	absorption factor
C_{x}		volume fraction of component "X"
P		multiplicity factor

For brevity we write

$$
K_{x}=\left\{/ F /_{h k 1}^{2} \cdot p \cdot L P \cdot\right\}_{x} \cdot \frac{T^{\prime}}{V^{2}} \cdot A
$$

and

$$
C=C^{\circ} \cdot I_{o}
$$

Doing this we get a short and handy form of equation (1) as

$$
\begin{equation*}
I_{(h k 1)}^{X}=C \cdot K_{x} \cdot C_{x} \tag{2}
\end{equation*}
$$

Equation (1) and (2) are the basic equations for the following analytical diffraction methods

- direct comparison method
- internal standard technique
- active dilution method

2.1 Direct Comparison Method

If any two components ' X ' and ' Y ' of a multi-component mixture are considered then from equation (2) for a particular reflexion (hkl) of the ' X^{\prime}-phase and (h'k'l) of the 'Y'-phase we can calculate the ratio of the intensities

$$
\begin{equation*}
\frac{I_{(h k 1)}^{x}}{I_{\left(h^{\prime} k^{\prime} 1\right)}^{y}}=\frac{K_{x(h k 1)}}{K_{y\left(h^{\prime} k^{\prime} 1\right)}} \cdot \frac{C_{x}}{C_{y}} \tag{3}
\end{equation*}
$$

The 1ines (hkl) of ' X^{\prime} and ($h^{\prime} k^{\prime} 1$) of ' Y ' should be of relatively stronger intensity and should not coincide or overlap with any line of other phases present. Further on they are called 'analytical' lines.

Thus in a mixture where ' X ' and ' Y ' are present, the ratio of their portion by volume is proportional to the ratio of the intensity of the reflexions chosen as analytical lines. Now if we can supply the proportionality constant ' M ' given by

$$
M=\frac{K_{x(k h 1)}}{K_{y\left(h^{\prime} k^{\prime} 1\right)}}
$$

by any suitable method we can calculate the ratio of their portion by volume. Earlier Conti, Toussaint and Vos /6/ used equation (3) for analysing a two component mixture of $U C$ and $U C_{2}$ respectively. The ratio ' M^{\prime} equal to $K_{x(h k 1)} / K_{y\left(h^{\prime} k^{\prime} 1\right)}$, they determined experimentally with mixtures of known concentrations of $U C$ and $U C_{2}$. The relative error of their analysis for synthetic samples were two percent.

Another direct method applied by Conti and others /6/ was by measuring the intensity of a reflexion of component ' X ' say $U C$, in the mixture and the same reflexion of the pure component ' X ' i.e. pure 'UC' and then using the following equation

$$
\frac{I_{\mathrm{UC}(h k 1)_{\text {mixture }}}}{I_{\mathrm{UC}(h k 1)_{\text {pure }}}}=\frac{\alpha \mu_{1}}{\left\{\alpha\left(\mu_{1}-\mu_{2}\right)+\mu_{2}\right\}}
$$

where
$\alpha=$ weight fraction of 'UC'
μ_{1} and μ_{2} are the mass absorption coefficient of the component
UC and $U C_{2}$ respectively

2.2_Interna1_Standard_Method

In this method a diffraction line from the phase being determined is compared with a line from a standard substance mixed with the sample, in the form of powder, in known proportions by weight.

Next a calibration curve is made from measurements on a set of synthetic samples, containing known concentration of a particular component say ' X ' and a constant concentration of a suitable standard.

After this the concentration of ' X ' in an unknown sample is obtained simply by measuring the ratio $I_{x} / I_{\text {standard }}$ for a composite sample containing the unknown component ' X ' and the same proportion of standard as was used in calibration.

For analysing the bi-component mixture of 'UC' and $U C_{2}$ Conti and others $/ 6 /$ selected 'Thoria' as an internal standard. The relative error in their analysis were three percent.

However the disadvantage of this method is that it is restricted to samples in powder form. Moreover dilution of the sample takes place and it is often difficult to find a suitable internal standard, which must be free of interferences from the constituents of the sample.

2.3_Active_Dilution_Method

Here the sample is diluted with a known amount of the component of interest. If ' a ' is the weight percentage added and I_{x} and I_{x+a} are respectively the intensities of a particular reflexion of component ' X ' before and after adding the portion a respectively then

$$
\begin{equation*}
\left(I_{x} / I_{x+a}\right)(h k 1)=\frac{x}{x+a} \tag{5}
\end{equation*}
$$

This method was applied earlier /6/ for determining small amounts of UC in UC_{2} samples.

This is specially suitable in the absence of a proper internal standard and for a system where all the components present have mass absorption coefficients which are close together. The disadvantage is also that it is necessary to use samples in the form of powders. The relative precision obtained by this method was three to five percent for zero to ten percent concentration range and two to three percent for concentration range from ten to hundred.
3. Method Used in the Present Investigation

In this paper the "Direct Method" is utilised. The " K " value, however is calculated from theory and not determined experimentally like earlier workers using synthetic samples. Because it is difficult to get synthetic samples of well known phase composition this particular approach to the analysis was preferred. An additional advantage of this method is that cut and ground specimen are directly used and there is no need of powdering the pellets.

The entire work can be classified under three headings.

- Theoretically calculating the "K" values of selected lines of UC, $\mathrm{UC}_{2}, \mathrm{U}_{2} \mathrm{C}_{3}, \mathrm{UO}_{2},(\mathrm{U}, \mathrm{Pu}) \mathrm{C},(\mathrm{U}, \mathrm{Pu}) \mathrm{C}_{2},(\mathrm{U}, \mathrm{Pu})_{2} \mathrm{C}_{3}$, and $(\mathrm{U}, \mathrm{Pu}) \mathrm{O}_{2}$. In the mixed U, Pu carbides and oxide the " K " values were calculated for uranium and plutonium in the ratio by weight of $70 / 30,75 / 25$, $80 / 20$ and $85 / 15$ respectively.
- Experimentally determining the intensities for these selected lines for $U C, U C_{2}, U_{2} C_{3}$ and UO_{2}. Since nearly pure specimen were used, the intensity ratio between two lines of a particular phase must be equal to their corresponding " K " ratio. The closeness of these ratio values were compared and used as parameters to judge the quality of the theoretical calculation.
- Using the theoretically calculated " K " values analysing quantitatively the $(\mathrm{U}, \mathrm{Pu}) \mathrm{C},(\mathrm{U}, \mathrm{Pu}) \mathrm{C}_{2},(\mathrm{U}, \mathrm{Pu})_{2} \mathrm{C}_{3}$ content of an unknown mixed carbide fuel. The "K"-ratio between different lines of the $(\mathrm{U}, \mathrm{Pu}) \mathrm{C}$ phase were compared with the corresponding intensity ratios.

3.1_Theoretica1_Calculation of the "K"-Values

3.1.1 Structure_Factor_(F12

Assuming that all the atoms in the crystal vibrate with the same amplitude the structure amplitude which is the resultant X-ray wave scattered by all the atoms of the unit cell may be written as /5/

$$
F_{h k l}=\begin{gathered}
n=N \\
\sum=1
\end{gathered} \quad f_{n} \cdot e^{2 \pi i}\left(h U_{n}+k V_{n}+1 W_{n}\right)
$$

where the summation over " n " goes over all the N atoms in the unit cell with fractional coordinates U_{n}, V_{n}, W_{n} and atomic scattering factors " f ". " F " is in general a complex number and so $/ F /{ }^{2}$ which comes in the intensity equation (1) is obtained by multiplying by its complex conjugate.

3.1 .2 Structure Factor of "UC" and_(U. \underline{U}_{2} Pu)C

The monocarbide phase has a NaCl type F.C.C. structure with the position of carbon and uranium atoms given in Table 1. For the mixed monocarbide the uranium position is assumed to be replaced by an average (U, Pu) atom proportional to their composition by weight. That is the distribution of the uranium and plutonium atoms are assumed to be homogeneous. The atom postion in this unit cell may be written in short, as

$$
\begin{aligned}
& 4 \text { "U" atoms at } 000+\text { face centering translations } \\
& 4 \text { "C" atoms at } \frac{1}{2} \frac{1}{2} \frac{1}{2}+\text { face centering translations }
\end{aligned}
$$

For (111), which is incidentally the analytical line selected for the monocarbide.

$$
\begin{aligned}
F_{(111)} & =4\left\{f_{U} \cdot e^{2 \pi i(1 \cdot 0+1 \cdot 0+1} 0\right) \\
& =4\left\{f_{C} \cdot e^{2 \pi i\left(1 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}+1 \cdot \frac{1}{2}\right)}\right\} \\
& \left.=f_{C}\right\}
\end{aligned}
$$

Therefore F_{111}^{2} (monocarbide) $=16\left(\mathrm{f}_{\mathrm{U}}-\mathrm{f}_{\mathrm{C}}\right)^{2}$

Similarly, calculating for (200), (220), (311), (422) and (511,333) planes we get

$$
\begin{array}{ll}
F_{(200)}^{2} & =16\left(f_{U}+f_{C}\right)^{2} \\
F_{(220)}^{2} & =16\left(f_{U}+f_{C}\right)^{2} \\
F_{(311)}^{2} & =16\left(f_{U}-f_{C}\right)^{2} \\
F_{(422)}^{2} & =16\left(f_{U}+f_{C}\right)^{2} \\
F_{(511,333)}^{2}=
\end{array}
$$

For the mixed uranium plutonium monocarbide " f_{U} " is replaced by $\mathrm{f}_{\mathrm{U}-\mathrm{Pu}}$ where
$f_{U+P u}=f_{U}$. (relative amount of "U") $+f_{P u}$ - (relative amount of "Pu")

The values of " f "Uranium, " f "Plutonium, " f "Carbon and " f "Oxygen are obtained from standard tables /2/ where " f " of any atom is given against its corresponding $\sin \theta / \lambda$ values. Details of the $/ F /^{2}$ values thus obtained for the monocarbide phase is given in Table 2.
In choosing the atomic scattering factor value of "carbon" for all the carbides the values found by Heorniand Ibers /5/ are taken. It is assumed that in none of the carbides the carbon exist as C^{+2} or C^{+4} but as carbon atom in "UC" and as molecule C_{2} in $U_{2} C_{3}$ and $U C_{2}$.

3.1.3 Structure factor_of $\mathrm{U}_{2} \mathrm{C}_{3}$ and $\left(\mathrm{U}_{2} \mathrm{Pu}_{2} \mathrm{C}_{3}\right.$

The sesquicarbide phase is a relatively complicated B.C.C. phase with eight molecules per unit cell. The space group is $1 \overline{4} 3 \mathrm{~d}-\mathrm{T}_{\mathrm{d}}^{6}$. The uranium atoms are in 16 -fold positions with $X=0.05$ as given in Table 1 . The carbon atoms are in 24 -fold positions with $y=0.295$.

That is the atomic positions of U and C are /4/

16 U atoms $-(.05, .05, .05),(.55, .45, . \overline{05}),(. \overline{05}, .55, .45)$, (.45, . $05, .55),(.30, .30, .30),(.80, .20, .70)$, (.70, .80, .20),(.20, .70, .80)

24 C atoms $-(.295,0$. 25) , $(.25,295,0),(0, .25, .295)$,
$(. \overline{295}, .50, .25),(.25, . \overline{295}, .5),(.5, .25, . \overline{295})$, (.545, .5, .25), (.25, .545, .5), (.5, .25, .545), (.455, .0, .25), (.25, .455, .0), ($0, .25, .455$)

For (310), the selected analytical line we get for the structure amplitude

$$
\begin{aligned}
F=2 f_{U}[& e^{2 \pi i(3 \cdot .05+1 \cdot .05+0 \cdot .05)}+e^{2 \pi i(3 \cdot .55+1 \cdot .45+} \\
& +0 \cdot(-.05))+e^{2 \pi i(30(-.05)+1 \cdot .55+0 \cdot .45)} \\
& +e^{2 \pi i(3 \cdot .45+1 \cdot(-.05)+0 \cdot .55)} \\
& +e^{2 \pi i(3 \cdot .30+1 \cdot .30+0 \cdot .30)} \\
& +e^{2 \pi i(3 \cdot .80+1 \cdot .20+0 \cdot .70)} \\
& +e^{2 \pi i(3 \cdot .70+1 \cdot .80+0 \cdot .20)} \\
& \left.+e^{2 \pi i(3 \cdot .20+1 \cdot .70+0 \cdot .80)}\right] \\
+f_{G} L & e^{2 \pi i(3 \cdot .295+1 \cdot 0+0 \cdot .25)} \\
& \left.+e^{2 \pi i(3 \cdot .25} 1 \cdot .295+0 \cdot 0\right) \\
& +e^{2 \pi i(3 \cdot 0+1 \cdot .25+0 \cdot .295)} \\
& +e^{2 \pi i(3 \cdot(-.295)+1 \cdot .50+0 \cdot .25)}
\end{aligned}
$$

$$
\begin{aligned}
& +e^{2 \pi i(3 \cdot .25+1 \cdot(-.295)+0 \cdot .5)} \\
& +e^{2 \pi i(3 \cdot .5+1 \cdot .25+0 \cdot(-.295)} \\
& +e^{2 \pi i(3 \cdot .545+1 \cdot .5+0 \cdot .25)} \\
& +e^{2 \pi i(3 \cdot .25+1 \cdot .545+0 \cdot .5)} \\
& +e^{2 \pi i(3 \cdot .5+1 \cdot .25+0 \cdot .545)} \\
& +e^{2 \pi i(3 \cdot .455+1 \cdot 0+0 \cdot .25)} \\
& +e^{2 \pi i(3 \cdot .25+1 \cdot .455+0 \cdot 0)} \\
& +e^{2 \pi i(3 \cdot 0+1 \cdot .25+0 \cdot .455)} \quad 7
\end{aligned}
$$

Now we know $e^{i} \varphi=\cos \varphi+i \sin \varphi$
and $\quad e^{-i} \varphi=\cos \varphi-i \sin \varphi$

Splitting all the exponential terms in terms of sine and cosine we have
$/ F /=2\left[{\underset{U}{f}}_{f}(0+i 3.804)+f_{C}(0+i 2.65616) _7\right.$
$/ F /^{2}=4\left(3.804 f_{U}+2.65616 f_{C}\right)^{2}$
Similarly, we obtain the structure factor for (211), (220), (321), (332) and (510, 431)
$/ \mathrm{F} /{ }^{2}$
(211)
$=4\left[\left(-1.382 f_{U}+2.70126 f_{C}\right)^{2}+\left(1.902 f_{U}-3.0365 f_{C}\right)^{2}\right]$
$/ F\left(\begin{array}{l}220 \\ 2\end{array}=4\left(5.236 f\left(\underset{U}{f}-4 f_{C}\right)^{2}\right.\right.$
$/\left.F\right|_{(321)} ^{2}=4\left[\left(-1.382 f_{U}-2.1432 f_{C}\right)^{2}+\left(-1,902 f_{U}^{f}-2.30069 f_{C}\right)^{2}\right]$

$$
\begin{array}{ll}
/ F /_{(332)}^{2} & =4\left[\left(-2 \cdot .36 f_{U}-2.1432 f_{C}\right)^{2}+\left(3.07756 f_{U}-0.3552 f_{C}\right)^{2}\right] \\
/\left.F\right|_{(510)} ^{2} & =4\left(3.804 f_{U}-0.5032 f_{C}\right)^{2} \\
/ F /_{(431)}^{2} & =4\left[\left(-4.736 f_{U}+2.65616 f_{C}\right)^{2}+\left(0.36322 f_{U}\right)^{2}\right]
\end{array}
$$

More details are given in Table III.

The dicarbide phase is a CaC_{2} type body centred retragonal phase. The atom positions in the unit cell given in short as /4/

$$
\begin{aligned}
& 2^{\prime} U^{\prime} \text { atoms in (000) } \\
& 4^{\prime} C^{\prime} \text { atoms in } 00.38,00 . \overline{38}
\end{aligned}
$$

For (112), the selected analytical line we calculate the structure amplitudes

$$
\begin{gathered}
F_{112)}=2\left[f_{U} \cdot e^{2 \pi i(1 \cdot 0+1 \cdot 0+2 \cdot 0)}+f_{C}\left\{e^{2 \pi i(1 \cdot 0+1 \cdot 0+2 \cdot .38)}\right.\right. \\
\left.+e^{2 \pi i(1 \cdot 0+1 \cdot 0+2 \cdot \cdot \overline{38})}\right]
\end{gathered}
$$

or
$\mathrm{F}_{(112)}=2\left\{\mathrm{f}_{\mathrm{U}}+2 \cos (2 \pi \cdot 2 \cdot .38) \mathrm{f}_{\mathrm{C}}\right\}$
$=2\left(f_{U}+0.1256 f_{C}\right)$
$/ F \|_{(112)}^{2}=4\left(f_{U}+0.1256 f_{C}\right)^{2}$

Similarly we get for (101), (002), (110), (114) and (312) the following structure factor

$$
\begin{aligned}
& / F /_{(101)}^{2}=4\left(f_{U}-1.4579 f_{C}\right)^{2} \\
& / F /_{(002)}^{2}=4\left(f_{U}+0.1256 f_{C}\right)^{2} \\
& / F_{(110)}^{2}=4\left(f_{U}+2 f_{C}\right)^{2} \\
& / F_{(114)}^{\prime 2}=4\left(f_{U}-1.9842 f_{C}\right)^{2} \\
& / F_{(312)}^{\prime 2}=4\left(f_{U}+0.1256 f_{C}\right)^{2}
\end{aligned}
$$

Further details are given in Table IV.

3.1.5 Structure factor of UO $_{2}$ and_ $\left(\mathrm{U}_{2} \underline{\mathrm{Pu}}_{2} \underline{O}_{2}\right.$

The oxide phase has a CaF_{2} type F.C.C. structure with atom position of uranium and oxygen in short form given as /4/

$$
\begin{aligned}
& 4^{\prime} U^{\prime} \text { atoms at } 000+\text { face centering translation } \\
& 8^{\prime} 0^{\prime} \text { atoms at } \frac{1}{4} \frac{1}{4} \frac{1}{4}, \frac{3}{4} \frac{3}{4} \frac{3}{4}+\text { face centering translation }
\end{aligned}
$$

For (220) which is the selected analytical line for the oxide phase we well get for the structure amplitude.

$$
\begin{aligned}
& F_{(220)}=4\left[f_{U} \cdot e^{2 \pi i(0 \cdot 2+0 \cdot 2+0 \cdot 0)}+f_{0} \cdot e^{2 \pi i\left(\frac{1}{4} \cdot 2+\frac{1}{4} \cdot 2+\frac{1}{4} \cdot 0\right)}\right. \\
&\left.+f_{0} e^{2 \pi i\left(\frac{3}{4} \cdot 2+\frac{3}{4} \cdot 2+\frac{3}{4} \cdot 0\right)}\right]=4\left(f_{U}+2 f_{0}\right)
\end{aligned}
$$

$$
/ \mathrm{F}(220)^{\prime}=16\left(\mathrm{f}_{\mathrm{U}}+2 \mathrm{f}_{0}\right)^{2}
$$

Similarly we get the structure factor for (111), (200), (311) and (222)
$/ F /^{2}=16 f_{U}^{2}$
$\frac{/ F /^{2}}{(200)}=16(f-2 f)_{U}^{2}$
$/ F /_{(311)}^{2}=16 f_{U}^{2}$
$/ F /_{(222)}^{2}=16\left(f_{U}-2 f_{0}\right)^{2}$
Further details are given in Table V.

3.2 Temperature Factor /5/

The atoms in the lattice are in a continual state of thermal vibration and the amplitude of this vibration increases with temperature. This results in making the spectra weaker than they might otherwise have been, particularly in the higher orders, besides increasing the amount of incoherent scattering and increasing the background. A correction factor developed by Debye and Waller / 9 / for a simple cubic lattice but which can also be used for a closed packed lattice is a follows -

$$
T=\frac{6 h^{2}}{m k \theta}\left(\frac{1}{4}+\frac{(\alpha)}{\alpha}\right) \frac{\sin ^{2} \theta}{\lambda^{2}}
$$

where $m=$ mass of the vibrating atom
$h=P l a n c k ' s$ constant $=6.62 \times 10^{-27} \mathrm{erg} \mathrm{sec}$.
$\mathrm{k}=$ Boltzmann constant $=1.38 \times 10^{-16} \mathrm{erg} \cdot \mathrm{A}$
$T=$ absolute temperature in Kelvin
$\theta=$ Debye temperature of the substande or the characteristic temperature
$\alpha=\theta / T$
$\emptyset(\alpha)=1 / \alpha \int_{0}^{\alpha} \frac{z d z}{e^{z-1}}$, the well known Debye function.

For UC for example, the Debye temperature is $269^{\circ} \mathrm{K}$. Aiso the $\sin ^{2} 0$ values for (111) and (511, 333) are 0.0723 and 0.6510 respectively. The room temperature is assumed to be $295^{\circ} \mathrm{K}$. Putting all these values in the expression for temperature factor we have seen that the temperature factor is relatively small and hence not taken into consideration while calculating K values.

3.3 Lorentz Polarisation Factor /1/

This is the combination of certain tregonometrical factors which influence the intensity of the reflected beam. The Lorentz polarisation factor corresponding to Bragg angle θ is

$$
L P=\frac{1+\cos ^{2} 2 \theta}{\sin ^{2} \theta \cdot \cos \theta}
$$

The overall effect of these geometrical factors is to derease the intensity of reflections at intermediate angles compared to those in forward or backward directions. The Lorentz polarisation factor as calculated for all the planes chosen for the different phases are given in the Tables II - V.
3.4 Multiplicity Factor /1/

This may be defined as the number of different planes in a form having the same spacing. The value of ' p ' depends on the crystal system. Its value is higher when indices are unequal and depending upon the space group, it reaches a maximum value of 48 for the general form (hkl) in the cubic system.

Values of multiplicity factor as a function of (hkl) and crystal system (only cubic and tetragonal as all the phases under consideration belong to these two crystal system only) are given in Table VI.

3.5 Absorption Factor /2/

In caculating the integrated intensity allowance must be given for the photoelectric absorption of radiation within the crystal.

In this particular investigation the spectra emerges from the crystal on the same side as the incident beam. The specimen is in the form of a flat plate of effectively infinite thickness and makes equal angles with the incident and diffracted beams.

In such a symmetrical case of Bragg reflection the absorption factor' A 'is independent of the angle and is effectively equal to $A=1 / 2 / 4 \quad$.
Where ' f^{\prime} ' $=$ linear absorption coefficient of the sample. The specimens under consideration are chemical compounds. Their mass absorption coefficient is found from the following relation.

$$
\begin{aligned}
& \left(\frac{\mu}{\varphi}\right)_{U C}=\left(\frac{\mu_{1}}{\rho_{1}}\right)_{U}\left(\frac{A_{u}}{A_{U}+A_{C}}\right)+\left(\frac{\mu_{2}}{\rho_{2}}\right)\left(\frac{A_{C}}{A_{U}+A_{C}}\right) \\
& \left(\frac{\mu}{\varphi}\right)_{U_{2} C}=\left(\frac{\mu_{1}}{\varphi_{1}}\right)_{U}\left(\frac{2 A_{U}}{2 A_{U}+3 A_{C}}\right)+\left(\frac{\mu_{2}}{\rho_{2}}\right)_{C}\left(\frac{3 A_{C}}{2 A_{U}+3 A_{C}}\right) \\
& \left(\frac{\mu}{\varphi}\right)_{U C_{2}}=\left(\frac{\mu_{1}}{\rho_{1}}\right)\left(\frac{A_{U}}{A_{U}+2 A_{C}}\right)+\left(\frac{\mu_{2}}{\rho_{2}}\right)\left(\frac{2 A_{C}}{A_{U}+2 A_{C}}\right) \\
& \left(\frac{\mu}{\rho}\right)_{U O_{2}}=\left(\frac{\mu_{1}}{\rho_{1}}\right)\left(\frac{A_{U}}{A_{U}+2 A_{0}}\right)+\left(\frac{\mu_{3}}{\rho_{3}}\right)\left(\frac{2 A_{C}}{A_{U}+2 A_{0}}\right)
\end{aligned}
$$

Similarly for the other mixed phases where C_{U} and $C_{P u}$ are ' U ' and ' $P u^{\prime}$ concentration,

are the mass absorption coefficient of uranium, carbon, oxygen and plutonium respectively. $A_{U}, A_{C}, A_{0}, A_{P u}$ are the atomic weights of uranius, carbon, oxygen and plutonium respectively. Putting the values of the mass absorption coefficient of U, Pu, C and O as obtained for $C u K$ a radiation from Ref./7/and their respective atomic weights we get the mass absorption coefficients for each compound.
Once the mass absorption ($(\underset{\rho}{\mu}$) for a particular compound is calculated the absorption factor $1 / 2 \mu$ can be easily found knowing the theoretical density \mathscr{P} of the compound under consideration.

The value of the absorption factor thus obtained for all the phases are given in Table II - V.

3.6 Unit Cell Volume

For a cubic crystal the unit cell volume is given by the cube of the lattice parameter

$$
V=a^{3}
$$

Where $V=$ unit cell volume
$a=$ lattice parameter value.
For UC, $\mathrm{U}_{2} \mathrm{C}_{3}$ and UO_{2} the values of unit cell volume are as follows /3,4/

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{UC}}=(4.9605)^{3} \cdot \mathrm{~A}^{3} \\
& \mathrm{~V}_{\mathrm{U}_{2} \mathrm{C}_{3}}=(8.088)^{3} \cdot \mathrm{~A}^{3} \\
& \mathrm{~V}_{\mathrm{UO}}=(5.4691)^{3}=\mathrm{A}^{3}
\end{aligned}
$$

$$
\text { where } A=\sim 10^{-8} \mathrm{~cm}
$$

$$
\begin{aligned}
& \left(\frac{\mu}{\mathscr{P}}\right)_{U, P u C}=\left(\frac{\mu_{1}}{P_{1}}\right)_{U}\left(\frac{A_{U} \cdot C_{U}}{A_{U} \cdot C_{U}+A_{P u} \cdot C_{P u}+C}\right)+\left(\frac{\mu_{4}}{P_{4}}\right)_{P u}\left(\frac{A_{P u} \cdot C_{P u}}{A_{U} \cdot C_{U}+A_{P u} \cdot C_{P u}+C}\right) \\
& +\left(\frac{\mu_{2}}{\rho_{2}}\right)_{C}\left(\frac{A_{C}}{A_{U} \cdot C_{U}+A_{P u} \cdot C_{P u}+C}\right)
\end{aligned}
$$

In case of mixed $U-P u$ monocarbide, sesquicarbide or oxide the lattice parameter is calculated in the following way by applying vegard's law,for example

$$
a_{U, P u C}=c_{U C} \cdot a_{U C}+C_{P u C} \cdot a_{P u C}
$$

and

$$
v_{\mathrm{U}, \mathrm{PuC}}=\left(c_{\mathrm{UC}} \cdot a_{\mathrm{UC}}+c_{\mathrm{PuC}} \cdot a_{\mathrm{PuC}}\right)^{3}
$$

For the tetragonal dicarbide phase the unit cell volume is $V=a^{2} \cdot C$ where' a ' and ' c ' are the unit cell lattice parameter in horizontal and vertical directions respectively $C_{U C}$ and $C_{P u C}$ are the concentration of ' U ' and ' Pu ' monocarbide respectively.

K-Values as a Function of Plutonium Concentration

The ' K ' values as they are defined by equation (2) were found for the $\mathrm{U}-\mathrm{Pu}$ composition of $10 / 30,75 / 25,80 / 20,85 / 15$ for the mixed monocarbide, dicarbide, sesquicarbide and the mixed oxide. The ' K ' values are not so much affected by the variation of the plutonium content from zero to thirty percent. All the variations in' K^{\prime} values were less than one pereent. So as the influence of the plutonium content on the ' K ' value was very small a linear function was choosen to describe their dependence. The ' K ' values falling slightly as the plutonium content went up.

Equations of ' K ' for the different lines of the different phases are given as a function of plutonium concentration in Table VII.

4. Experimentally Determining the Intensity Values for the Selected Lines

A11 the pellets used for these determinations were hot mounted in a resin. Fresh surface was exposed by cutting the mounted pellets into halves by the diamond tipped cut off wheels. The exposed fresh surface was then ground, polished, cleaned and finally loaded on the X-ray diffractometer.

For each plane first the diffracting angle corresponding to the maximum intensity was approximately determined. If this value is ' x '. Then the specimen was scanned from $(x-1.5)^{\circ}$ to $(x+1.5)^{\circ}$. In all the case a good peak with a uniform background nas obtained. The intensity corresponding to a particular diffracting angle 2θ was automatically punched on a paper tape. After the scanning, with a computer program which reads the datas from the paper tape, plots intensity versus ' $2 \theta^{\prime}$ ', cuts off the background intensity by a least mean square method and finally calculates the area under the peak by normal trapezoidal method, the integrated intensity values of the different lines were obtained.

For the UO_{2} and UC phase we see that there is a fairly good agreement between the K-ratio and intensify-ratio. The difference in their values being less then 10%. For the UC_{2} and $\mathrm{U}_{2} \mathrm{C}_{3}$ the K-ratio and intensityratio matching was quite good but not as close as compared to UO_{2} and $U C$ phase. The eeason being the $U C C_{2}$ sample had in it $U C, U_{2} C_{3}$ and UO_{2} phases (as was seen from the diffraction pattern). Same with $\mathrm{U}_{2} \mathrm{C}_{3}$ pellet which had also $\mathrm{UC}, \mathrm{UC}_{2}$ and UO_{2} in it. Now many lines of the different phases have the nearly same diffraction angle (2θ values). For example (110) of UC_{2} have 2θ value 36.06° which nearly ovexlaps with (200) of UC having 2θ value 36.19°. Similarly (220) of $U_{2} C_{3}$ and (111) of UC have very close 2θ values of 31.25 and 31.2° respectively. Also (112) of UC_{2} and (220) of UO_{2} have close 2θ values of 47.5° and 47.2°. Similarly (${ }_{4}^{510} 431$) of $\mathrm{U}_{2} \mathrm{C}_{3}$ and (222) of UO_{2} have 2θ values of 58.10° and 58.4° respectively. These overlapping of the phases present may be responsible for the slightly higher variation between ' K ' and intensity ratio of the dicarbide and sesquicarbide phases. Table VIII, $I X, X$ and $X I$ gives the detail of the closeness of ' K ' and ' A ' ratio (i.e. the intensity ratio).

4.1 Checking the Closeness of ${ }^{\prime} K$ '-Ratio with the Corresponding Intensity Ratio for ($\mathrm{U}_{{ }^{\circ}} 85^{\mathrm{Pu} \cdot}{ }_{15}$) C Lines

An unknown sample of (U, Pu) C containing good amount of ($\mathrm{U}, \mathrm{Pu})_{2} \mathrm{C}_{3}$ and low quantity of $(\mathrm{U}, \mathrm{Pu}) \mathrm{C}_{2}$ and $(\mathrm{U}, \mathrm{Pu}) \mathrm{O}_{2}$ was scanned to obtain the patterns for (111), (200), (220) and (311) of (U, Pu) C. The
intensfies of all these lines were corrected as they all overlapped with some lines of $(U, P u)_{2} C_{3}$ or $(U, P u) C_{2}$. Table X gives the detail of the lines overlapping. The corrected intensity values are obtained from the following reations

$$
\begin{aligned}
& I_{(\mathrm{U}, \mathrm{Pu}) \mathrm{C}}^{(111)} \text { (corrected) }=\mathrm{I}_{(\mathrm{U}, \mathrm{PuC})}^{(111)} \text { (measured) }-{\left.\underset{\left(\mathrm{K}_{220}\right.}{\mathrm{K}_{310}}\right)}_{(\mathrm{U}, \mathrm{Pu})_{2} \mathrm{C}_{3}}^{(\mathrm{U}, \mathrm{Pu})_{2} C_{3}} \text { (measured) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{I}_{(\mathrm{U}, \mathrm{Pu}) \mathrm{C}}^{(220)} \text { (corrected) }=\mathrm{I}_{(\mathrm{U}, \mathrm{Pu}) \mathrm{C}}^{(220)} \text { (measured) }-{\left.\frac{\mathrm{K}_{200}+\mathrm{K}_{103}}{\mathrm{~K}_{112}}\right)}_{\left(\mathrm{U}, \mathrm{Pu}^{\prime} \mathrm{C}_{2}\right.} \cdot \mathrm{I}_{(\mathrm{U}, \mathrm{Pu}) \mathrm{C}_{2}}^{(112)} \text { (measured) }
\end{aligned}
$$

The 'K'-ratio matched quite well with the intensity ratio but not as well
as compared to the matching in case of the pure uranium monocarbide.
The ' K '-values of (111), (200), (220) and (311) for (U. 85 Pu .15) C are given
in Table 12.
5. Analysis of the Mixed Carbide Pellets

Before starting analysing unknown carbide samples we must select one analytical line from each phase. The basis of choosing are as follows -
a) The line should be of relatively higher intensity.
b) Overlapping or closely adjacent lines from different phases should be avoided as far as practicable.
c) The diffracting angle to be selected must be less than 110° which is the upper limit of scanning with the existing goniometer set up.

In monocarbide all the lines are overlapping with some lines of the dicarbide, sesquicarbide or the oxide. So only on the basis of relatively stronger intensity (111) was selected as an analytical line.

For the dicarbide, sesquicarbide and oxide (112), (310) and (220) are chosen respectively as analytical line as they satisfy all the chosen criteria given above. Though (112) of dicarbide and (220) of oxide have very close 2θ values of 47.5° and 47.05° but it was possible to resolve them nicely. Now let $X_{M C}, X_{M C}, X_{M_{2}} C_{3}, X_{M O_{2}}$ be the volume precent of the mixed monocarbide, dicarbide, sesquicarbide and oxide respectively. Then

$$
\begin{equation*}
\mathrm{X}_{\mathrm{MC}}+\mathrm{X}_{\mathrm{MC}_{2}}+\mathrm{X}_{\mathrm{M}_{2} \mathrm{C}_{3}}+\mathrm{X}_{\mathrm{MO}_{2}}=1 \ldots \tag{17}
\end{equation*}
$$

Let the intensity value, i.e. the area of the peak under the diffraction pattern be $I_{M C}, I_{M C_{2}}, I_{\mathrm{M}_{2} C_{3}}$ and $\mathrm{I}_{\mathrm{MO}_{2}}$ respectively. Then for the (310) $\mathrm{M}_{2} \mathrm{C}_{3}$ which is a line free from overlapping from other lines,

$$
\begin{equation*}
\frac{I^{(310)}}{M_{2} C_{3}}=X_{M_{2} C_{3}} \cdot K_{M_{2} C_{3}}^{(310)} \quad \ldots \tag{18}
\end{equation*}
$$

Similarly for (112) MC_{2} and (220) MO_{2} which are also free from overlapping

$$
\begin{align*}
& \mathrm{I}_{\mathrm{MC}}^{2} \tag{19}
\end{align*} \quad=\quad \mathrm{X}_{\mathrm{MC}_{2}}, \quad \mathrm{~K}^{(112)} \mathrm{MC}_{2}
$$

$$
\begin{align*}
& \mathrm{I}^{(220)} \\
& \mathrm{MO}_{2}
\end{align*} \quad=\mathrm{X}_{\mathrm{MO}_{2}} \cdot \mathrm{~K}^{(220)}
$$

For (111) MC which is overlapping with (220) $M_{2} C_{3}$

$$
\begin{equation*}
\mathrm{I}_{\mathrm{MC}^{111}}+\mathrm{M}_{2} \mathrm{C}_{3} 220=\mathrm{I}_{\mathrm{MC}}^{(111)}+\mathrm{I}^{(220)} \mathrm{M}_{2} \mathrm{C}_{3} \tag{21}
\end{equation*}
$$

Again comparing the intensity ratio of $M_{2} C_{3}$ between (310) and (220)

$$
\begin{align*}
& I^{(310)} \quad K^{(310)} \\
& \frac{\mathrm{M}_{2} \mathrm{C}_{3}}{\mathrm{I}^{(220)}}=\frac{\mathrm{M}_{2} \mathrm{C}_{3}}{\mathrm{~K}^{(220)}} \tag{22}\\
& \mathrm{M}_{2} \mathrm{C}_{3} \quad \mathrm{M}_{2} \mathrm{C}_{3} \\
& I_{M_{2} C_{3}}^{(220)}=\frac{I_{M_{2} C_{3}}^{(310)} \cdot K_{M_{2} C_{3}}^{(220)}}{K^{(310)}}{ }_{M_{2} C_{3}}
\end{align*}
$$

From equation (21) and (22) intensity contribution from (111) of MC alone will be

$$
\begin{equation*}
I_{M C}^{(111)}=I_{M C}^{(111)}+M_{2} C_{3}^{(220)}-\frac{I_{2}^{(310)} \cdot K_{3}^{(220)}}{K_{M_{2}}^{(310)}} M_{2} C_{3} C_{3} \tag{23}
\end{equation*}
$$

Similarly

Solving equations (17), (24), (25) and (26) we can find out the volume percent of the mixed carbides and oxide that is

$$
\mathrm{X}_{\mathrm{MC}}, \quad \mathrm{X}_{\mathrm{MC}_{2}}, \quad \mathrm{X}_{\mathrm{M}_{2} C_{3}} \quad \text { and } \quad \mathrm{X}_{\mathrm{MO}_{2}}
$$

Table XIII and XIV gives the detail of the analysis of Mol-1//K2 samples. The weight percent in Table XIV for the respective phases were calculated from the volume percent using the following ratio.

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{MC}}=\frac{\mathrm{X}_{\mathrm{MC}} \cdot \mathrm{MC}}{G} ; \mathrm{C}_{\mathrm{M}_{2} \mathrm{C}_{3}}=\frac{\mathrm{X}_{\mathrm{M}_{2} \mathrm{C}_{3} \cdot \mathrm{M}_{2} \mathrm{C}_{3}}}{G} \\
& \mathrm{C}_{\mathrm{MC}_{2}}=\frac{\mathrm{X}_{\mathrm{MC}_{2}} \cdot \mathrm{MC}_{2}}{\mathrm{G}} ; \quad \mathrm{G}=\mathrm{X}_{\mathrm{MC}} \cdot{ }_{\mathrm{MC}}+\mathrm{X}_{\mathrm{M}_{2} \mathrm{C}_{3}} \cdot \mathrm{M}_{2} \mathrm{C}_{3}+\mathrm{X}_{\mathrm{MC}_{2}} \cdot \mathrm{MC}_{2}
\end{aligned}
$$

Where $C_{M C}, C_{M_{2}} C_{3}, C_{M C}$ are the weight percent of the respective carbides are their theoretical densities.
 The carbon equivalent as obtained from the analysis figure agreed quite well with the figures obtained from chemical analysis as given by the suppliers.

References:
/1/ B.D. Cullity:
Elements of X-ray Diffraction, Addison-Wesley Publishing Comp. Inc. Reading (1959)
/2/ International Tables of X-ray Crystallography, Kynoch Press Birmingham (1952)
/3/ E.K. Storms: The Refractory Carbides, Academic Press, New York (1967)
/4/ W.B. Pearson: Handbook of Lattice Spacing and Structure of Metals and A1loys, London Perganon Press 1958
/5/ A. Taylor: X-ray Metallography, John Wiley and Sons. INC, New York, London, 1961, Pg. 928
/6/ R. Conti, C.J. Toussaint, G.Vos: Anal. Chem. Acta 41 (1968) 83
/7/ R. Theisen, D. Vollath: Tabellen der Massenschwächungskoeffizienten von Röntgenstrahlen, Verlag Stahleisen 1967
/8/ T. Atoda, I. Higashi, J. Takahaski, Y. Sasa, M. Kobayaski: Science Papers I.P.C.R. 55 (1961) 217
/9/ I. Waller:
Z. Physik 51, 213 (1923)

Table 1 Detail of the Crystal Structure of Dioxide, Mono, Di and Sesquicarbide of 'U', ' Pu ' and (U-Pu)

	Struc- ture Type	Space Group	No. of Atoms in Unit Cel1	Atomic Positions	Detail of the Exact Atom Position
$\begin{aligned} & \text { Di } \\ & \text { Oxide } \end{aligned}$	$\begin{aligned} & \text { Cubic, } \\ & \mathrm{CaF}_{2} \\ & (\mathrm{C}-1) \end{aligned}$	F m 3 m (Internat. Table 225)	$\begin{aligned} & 4^{\prime} U^{\prime} \\ & 8^{\prime} 0^{\prime} \end{aligned}$	$\begin{aligned} & \left(000,0 \frac{1}{2} \frac{1}{2}, \frac{1}{2} 0 \frac{1}{2}, \frac{1}{2} \frac{1}{2} 0\right)+ \\ & 4^{\prime} U^{\prime} U^{\prime} \text { in (a) } 000 \\ & 8^{\prime} 0^{\prime} \text { in (c) } \frac{1}{4} \frac{1}{4} \frac{1}{4}, \frac{3}{4} \frac{3}{4} \frac{3}{4} \end{aligned}$	
Mono Carbide	Cubic, NaCL (B-1)	F m 3 m (Internat. Table 225)	$\begin{aligned} & 4 \text { 'U' } \\ & 4 \text { 'C' } \end{aligned}$	$\begin{aligned} & \left(000, \frac{1}{2} \frac{1}{2} 0, \frac{1}{2} 0 \frac{1}{2}, 0 \frac{1}{2} \frac{1}{2}\right)+ \\ & 4^{\prime} U^{\prime} \text { in(a) }(0000) \\ & 4^{\prime} C^{\prime} \operatorname{in}(b)\left(\frac{1}{2} \frac{1}{2} \frac{1}{2}\right) \end{aligned}$	
$\begin{aligned} & \text { Di } \\ & \text { Carbide } \end{aligned}$	$\begin{aligned} & \text { Tetrag. } \\ & \mathrm{CaC}_{2} \\ & (\mathrm{C}-11 \mathrm{a}) \end{aligned}$	$\mathrm{I}_{4} / \mathrm{mm} \mathrm{m}^{\mathrm{m}}$ (Internat. Table 139)	$\begin{aligned} & 2^{\prime} \mathrm{U}^{\prime} \\ & 4^{\prime} \mathrm{C}^{\prime} \end{aligned}$	$\begin{aligned} & \left(\begin{array}{lll} 0 & 0 & \left.0, \frac{1}{2} \frac{1}{2} \frac{1}{2}\right)+ \\ 2 & \text { 'U' in }(a)\left(\begin{array}{lll} 0 & 0 & 0 \end{array}\right) \\ 4^{\prime} \mathrm{C}^{\prime} & \text { in }(\mathrm{e})\left(\begin{array}{lll} 0 & 0 & Z \end{array}\right),\left(\begin{array}{lll} (0 & 0 & \bar{Z} \end{array}\right), \\ \quad & \text { where } Z=0.38 \end{array}\right. \end{aligned}$	$\begin{aligned} & ' \overline{U '} \text { in }\left(\begin{array}{lll} 0 & 0 & 0 \end{array}\right) \\ & \text { ' } \mathrm{C} \text { ' in }(00.38),(00 . \overline{38}) \end{aligned}$
Sesqui Carbide	Cubic ${ }^{\mathrm{D}}{ }_{\mathrm{c}}$	I 43 d (Internat. Table 220)	$\begin{aligned} & 16{ }^{\prime} \mathrm{U}^{\prime} \\ & 24^{\prime} \mathrm{C}^{\prime} \end{aligned}$	$\begin{aligned} & \left(000, \frac{1}{2} \frac{1}{2} \frac{1}{2}\right)+ \\ & \left.16^{\prime} U^{\prime} \text { in (c) (xxx), (} \frac{1}{4}+x, \frac{1}{4}+x, \frac{1}{4}+x\right) \\ & \left(\frac{1}{2}+x, \frac{1}{2} x, \bar{x}\right) N\left(\frac{3}{4}+x, \frac{1}{4} x, \frac{3}{4} x\right) N \\ & \left.24^{\prime} C^{\prime} \text { in (d) (y } 0 \frac{1}{4}\right) A,\left(\bar{y} \frac{1}{2} \frac{1}{4}\right) A \\ & \left(\frac{1}{4}+y, \frac{1}{2}, \frac{1}{4}\right) A\left(\frac{3}{4}-y \cdot 0 \cdot \frac{1}{4}\right) A \\ & \text { where } x=0.05 \text { for }^{\prime} U^{\prime} \\ & y=0,295 \text { for ' }^{\prime} C^{\prime} \end{aligned}$	

Table 2 Pure Uranium-Monocarbide and Uranium Plutonium Mixed Monocarbide

Phase	Line	$\sin ^{2} \theta$	$\frac{\operatorname{Sin} \theta}{\lambda}$	$\mathrm{f}_{\mathrm{U}-\mathrm{Pu}}$	f_{c}	Equation for	$/ \mathrm{F} /{ }^{2} \cdot 10^{5}$	L.P.	P	$\frac{1}{2} \mu \cdot 10^{-5}$	$\frac{1}{v} \cdot 10^{-5}$	${ }^{1} \mathrm{~K}^{\prime} \cdot 10^{-1}$
UC	111	0.0723	0.174	79.89	3.98	$F=4(f u-f c)$	0.9220	24.867	8			1.158
$\phi=13.63$	200	0.0964	0.201	77.33	3.57	$F=5(f u+f c)$	1.0472	18.023	6			0.715
g / cc	220	0.1929	0,285	69.98	2.64	$F=4(f u+f c)$	0.8438	7.947	12	9.4078	6.7119	0.508
$a=4.9605{ }^{\circ}$	311	0.2652	0.334	66.01	2.27	$F=4(f u-f c)$	0.6500	5.368	24			0.529
$a=4.9605 A$	511, ${ }^{422}$	0.5687 0.6510	0.494 0.524	55.05 53.34	1.70 1.65	$\mathrm{F}=4 \quad(\mathrm{fu}+\mathrm{fc})$ $\mathrm{F}=4$ $=11-f c)$	0.6500 0.5153 0.4275	2.728 2.837	24 32			0.213 0.245
U ${ }_{85} \mathrm{Pu}{ }_{15}$	111	0.0723	0.174	80.17	3.98		0.9287	24.867	8			1.149
	200	0.0964	0.201	77.60	3.57		1.0542	18.023	6			0.709
$\phi=13.6105$	220	0.1927	0.285	70.23	2.64	same as the	0.8496	7.957	12	9.2870	6.6967	0.504
g/cc	311	0.2650	0.334	66.25	2.27	lines for pure	0.6549	5.374	24			0.525
$a=4.9624 \mathrm{~A}$	422	0.5782	0.493	55.32	1.70	UC	0.5203	2.728	24			0.212
$a=4.9624 A$	511, 333	0.605	0.523	53.60	1.65		0.4318	2.836	32			0.244
U $\cdot 80^{\mathrm{Pu}} \cdot 20^{\mathrm{C}}$	111	0.0723	0.174	80.26	3.98		0.9309	24.867	8			1.146
. 80 Pu 20	200	0.0963	0.201	77.69	3.57		1.0565	18.044	6		0.	0.708
$\phi=13.604$	220	0,1927	0.285	70.31	2.64	same as the	0.8516	7.957	12	9.2474	6.6917	0.503
g/cc	311	0.2649	0.334	66.33	2.27	lines for pure	0.6566	5.376	24			0.524
$\mathrm{a}=4.9630{ }^{\circ}$	422	0.5780	0.493	55.39	1.70	UC	0.5215	2.728	24			0.211
$\mathrm{a}=4.9630 \mathrm{~A}$	511, 333	0.6503	0.523	53.67	1.65		0.4330	2.835	32			0.243
U. $75^{\mathrm{Pu}} .25^{\mathrm{C}}$	111	0.0722	0.174	80.35	3.98		0.9331	24.905	8			1.144
	200	0.0963	0.201	77.78	3.57		1.0588	18.044	6			0.706
$\phi=13.5975$	220	0.1926	0.285	70.40	2.64	same as the	0.8536	7.962	12	9.2084	6.6866	0.502
g / cc	311	0.2648	0.334	66.41	2.27	lines for pure	0.6582	5.379	24			0.523
	422	0.5779	0.493	55.46	1.70	UC	0.5228	2.728	24			0.211
$a=4.9636 \mathrm{~A}$	511, 333	0.6502	0.523	53.74	1.65		0.4341	2.835	32			0.242
U. $70^{\mathrm{Pu}} \cdot 30^{\mathrm{C}}$	111	0.0722	0.174	80.45	3.98		0.9354	24.905	8			1.142
$\phi=13.59$	200	0.0963	0.201	77.87	3.57		1.0612	18.044	6			0.704
	220	0.1926	0.285	70.48	2.64	same as the	0.8555	7.962	12	9.1697	6.6816	0.501
	311	0.2648	0.334	66.49	2.27	lines for pure	0.6599	5.379	24			0.522
$a=4.9642 A$	422	0.5778	0.493	55,53	1.70	UC	0.5242	2.728	24			0.210
	511, 333	0.6500	0.523	53.81	1.65		0.4352	2.834	32			0.242

Table 3 Pure Uranium Sesquicarbide and Uranium Plutonium Mixed Sesquicarbide

Phase	Line	$\sin ^{2} \theta$	$\frac{\sin \theta}{\lambda}$	$\mathrm{f}_{\mathrm{U}-\mathrm{Pu}}$	f_{c}	Equation for ' F '	$/ \mathrm{F} /{ }^{2} 10^{5}$	L.P.	P	$\frac{1}{2 \mu} \cdot 10^{-4}$	$\frac{1}{v} 2 \cdot 10^{-6}$	$\begin{aligned} & \text { 'K'value } \\ & .10^{-1} \\ & \hline \end{aligned}$
$\begin{aligned} & \mathrm{U}_{2} \mathrm{C}_{3} \\ & \phi=12.88 \\ & \mathrm{~g} / \mathrm{cc} \\ & \mathrm{a}_{0}=8.088 \AA \end{aligned}$	211	0.0544	0.151	82.08	4.34	$\mathrm{F}=-1.382 \mathrm{f}_{\mathbf{u}}+2.70126 \mathrm{f}_{\mathrm{c}}+\mathrm{i}\left(1.902 \mathrm{f}_{\mathbf{u}}-3.0365 f_{c}\right)$	1.2309	33.917	24			0.365
	220	0.0726	0.175	79.80	3.98	$\mathrm{F}=5.236 \mathrm{f}_{\mathrm{u}}-4 \mathrm{fc}$	6.4627	24.754	12			0.699
	310	0.0907	0.195	77.90	3.66	$F=i(3.804 f u+2.65616 f c)$	3.7466	19.310	24	1.0192	3.5723	0.632
	321	0.1270	0.231	74.73	3.21	$\mathrm{F}=-(1.382 \mathrm{fu}+2.1432 \mathrm{fc})-\mathrm{i}(1.902 \mathrm{fu}+2.30069 \mathrm{fc})$	1.3800	13.117	48			0.316
	332	0.1995	0.290	69.55	2.60	$F=-(2.236 \mathrm{fu}+2.1432 \mathrm{fc})+\mathrm{i}(3.07756 \mathrm{fu}-0.3552 \mathrm{fc})$	2.8547	7.626	24			0.190
	510,431	0.2358	0.315	67.52	2.40	$F=i(3.804 f u-0.5032 f c)$	$\begin{aligned} & 2.6140 \\ & 3.9530 \end{aligned}$		24			
$\begin{gathered} \left.{ }^{(\mathrm{U}} .85 \mathrm{Pu} .15\right) \\ \mathrm{C}_{3} \\ \phi=12.859 \\ g / \mathrm{cc} \\ \mathrm{a}_{\mathrm{o}}=8.095 \AA \end{gathered}$	211	0.0543	0.151	82.36	4.34	Same as the lines for pure $\mathrm{U}_{2} \mathrm{C}_{3}$	1.2403	33.965	24			0.362
	220	0.0724	0.175	80.17	3.98		6.5232	24.818	12			0.695
	310	0,0905	0.195	78.17	3.66		3.7716	19.348	24	1.0070	3.5549	0.627
	321	0.1268	0.231	74.90	3.21		1.3854	13.146	48			0.313
	332	0.1992	0.290	69.80	2.60		2.8754	7.640	24			0.189
	510,431	0.2354	0.315	67.76	2.40		$\begin{aligned} & 2.6331 \\ & 3.9528 \end{aligned}$	6.218	24 48			0.563
$\left.\begin{gathered} \left(\mathrm{U}_{85} \mathrm{Pu} .15\right) \mathrm{C}_{3} \\ \phi=12.84 \\ \mathrm{~g} / \mathrm{cc} \\ \mathrm{a}_{0}=8.097 \dot{\mathrm{~A}} \end{gathered} \right\rvert\,$	$\begin{array}{\|l} 211 \\ 220 \\ 310 \\ 321 \\ 332 \\ 510,431 \end{array}$	0.0543	0.151	82.46	4.34		1.2445	33.991	24			0.361
		0.0724	0.175	80.26	3.98		6.5388	24.833	12			0.694
		0.0905	0.195	78.26	3.66	Same as the lines for pure $\mathrm{U}_{2} \mathrm{C}$	3.7800	19.360	24	1.0030	3.5491	0.625
		0.1267	0.231	74.99	3.21		1.3885	13.155	48			0.312
		0.1991	0.290	69.89	2.60		2.8823	7.645	24			0.188
		0.2353	0.315	67.85	2.40		2.6395		24			
							3.9821	6.222	48			0.563
$\left\|\begin{array}{c} \left(\mathrm{U}_{.85} \mathrm{Pu}_{15}\right) \mathrm{C}_{3} \\ \phi=12.83 \\ \mathrm{~g} / \mathrm{cc} \\ \mathrm{a}_{0}=8.099 \AA \end{array}\right\|$	$3\left\{\begin{array}{l} 211 \\ 220 \\ 310 \\ 321 \\ 332 \\ 510,431 \end{array}\right.$	0.0543	0.151	82.55	4.34		1.2465	34.005	24			0.360
		0.0724	0.174	80.35	3.98		6.5543	24.845	12			0.692
		0.0904	0.195	78.35	3.66	Same as the lines for pure $\mathrm{U}_{2} \mathrm{C}$	3.7885	19.370	24	0.9990	3.5433	0.623
		0.1266	0.231	75.07	3.21		1.3915	13.162	48			0.311
		0.1990	0,289	70.06	2.61		2.8963	7.650	24			0.188
		0.2352	0.314	67.99	2.41		$\begin{aligned} & 2.6505 \\ & 3.9919 \end{aligned}$	6.226	24 48			0.563
$\begin{gathered} { }^{(\mathrm{U}} 70^{\mathrm{Pu}} .30{ }_{22^{3}} \mathrm{C}^{3} \\ \phi=12.82 \\ \mathrm{~g} / \mathrm{cc} \\ \mathrm{a}_{0}=8.101 \mathrm{~A} \end{gathered}$	211	0.0542	0.151	82.64	4.34	Same as the lines for pure $\mathrm{U}_{2} \mathrm{C}_{3}$	1.2496	34.026	24			0.359
	220	0.0723	0.174	80.45	3.98		6.5699	24.860	12			0.690
	310	0.0904	0.195	78.44	3.66		3.7969	19.382	24	0.9951	3.5376	0.622
	321	0.1989	0.289	70.14	3.21		1.3946	7,655	48			0.310
	332	0.1266	0.231	75.16	2.61		2.9031	13.170	24			0.188
	510,431	0.2350	0.314	68.07	2.41		2.6566		24			
							4.0178	6.230	48			0.563

Table 4
Pure Uranium Dicarbide and Uranium Plutonium Mixed Dicarbide

Phase	Line	$\sin ^{2} \theta$	$\frac{\sin \theta}{\lambda}$	$\mathrm{f}_{\mathrm{U}-\mathrm{Pu}}$	fc	Equation for ${ }^{\text {P }} \mathrm{F}$ '	$/ \mathrm{F} /{ }^{2} 10^{5}$	L.P.	P	$\frac{1}{2 \mu} \cdot 10^{-4}$	$\frac{1}{v} 2^{\cdot 10^{-4}}$	${ }^{\prime} K^{\prime} \cdot 10^{-1}$
$\begin{gathered} \text { Pure } U C_{2} . \\ \begin{array}{c} a=3.5190 A \\ c=5.9790 \dot{A} \\ 申=11.68 \\ \mathrm{~g} / \mathrm{cc} . \end{array} \end{gathered}$	101	0.0645	0.165	80.75	4.12	$\mathrm{F}=\mathrm{fu}-1.4589 \mathrm{fc}$	0.2234	28.190	8	1.1499	1.8242	1.056
	002	0.0664	0.167	80.56	4,09	$\mathrm{F}=\mathrm{fu}+0.1256 \mathrm{fc}$	0.2575	27.317	2			0.295
	110	0.0958	0.201	77.33	3.57	$F=f u+2 f c$	0.2854	18.161	4			0.435
	112	0.1622	0.261	72.00	2.87	$\mathrm{F}=\mathrm{fu}+0.1256 \mathrm{fc}$	0.2094	9.810	8			0.345
	114	0.3614	0.390	61.82	1.99	$\mathrm{F}=\mathrm{fu}-1.9842 \mathrm{fc}$	0.1339	3.729	8			0.084
	312	0.5455	0.479	56.01	1.74	$F=f u+0.1256 \mathrm{fc}$	0.1265	2.742	16			0.116
$\begin{aligned} & \left(\mathrm{U}_{.85} \mathrm{Pu}_{.15}\right) \mathrm{C}_{2} \\ & \mathrm{a}=3.5356 \dot{\mathrm{~A}} \\ & \mathrm{c}=5.9962 \mathrm{~A} \\ & \phi=1\} . \dot{C}^{49} \end{aligned}$	101	0.0640	0.164	81.12	4.14	Same as the lines for pure $U C_{2}$	0.2255	28.450	8	1.1526	1.7798	1.052
	002	0.0660	0.167	80.84	4.09		0.2581	27.490	2			0.291
	110	0.0949	0.200	77.69	3.58		0.2880	18.342	4			0.434
	112	0.1609	0.260	72.34	2.88		0.2114	9.904	8			0.344
	114	0.3589	0.389	62.12	2.00		0.1353	3.756	8			0.083
	312	0.5406	0.477	56.35	1.75		0.1280	2.747	16			0.115
$\begin{aligned} & \left(\mathrm{U}_{80} \mathrm{P} u_{20}\right) \mathrm{C}_{2} \\ & \mathrm{a}=3.5412 \AA \\ & \mathrm{c}=6.002 \AA \\ & \phi=11.42 \\ & \mathrm{~g} / \mathrm{cc} \end{aligned}$	101	0.0638	0.164	81.22	4.14	Same as the lines for pure $U C_{2}$	0.2261	28.538	8	1.1536	1.7652	1.051
	002	0.0659	0.167	80.93	4.09		0.2587	27.544	2			0.290
	110	0.0946	0.200	77.78	3.58		0.2886	18.408	4			0.434
	112	0.1605	0.260	72.43	2.88		0.2119	9.935	8			0.343
	114	0.3581	0.388	62.27	2.00		0.1359	3.766	8			0.083
	312	0.5390	0.476	56.49	1.75		0.1286	2.749	16			0.115
$\begin{aligned} & \left({ }_{.75}{ }^{\left.\mathrm{Pu}_{.25}\right) \mathrm{C}_{2}}\right. \\ & a=3.5467 \dot{\mathrm{~A}} \\ & \mathrm{c}=6.0077 \dot{\mathrm{~A}} \\ & \phi=11.36 \\ & \mathrm{~g} / \mathrm{cc} \end{aligned}$	101	0.0636	0.164	81.31	4.14	Same as the lines for pure $U C_{2}$	0.2266	28.626	8	1.1547	1.7509	1.050
	002	0.0657	0.166	81.12	4.11		0.2599	27.613	2			0.290
	110	0.0943	0.199	77.96	3.60		0.2901	18.474	4			0.433
	112	0.1601	0.260	72.51	2.88		0.2124	9.966	8			0.343
	114	0.3573	0.388	62.35	2.00		0.1363	3.775	8			0.083
	312	0.5374	0.475	56.62	1.75		0.1292	2.751	16			0.115
$\begin{gathered} \left(\mathrm{U}_{70} \mathrm{Pu}_{35}\right) \mathrm{C}_{2} \\ \mathrm{a}=3.5523 \dot{\mathrm{~A}} \\ \mathrm{c}=6.0135 \dot{\AA} \\ \phi=11.29 \\ \mathrm{~g} / \mathrm{cc} \end{gathered}$	101	0.0634	0.163	81.50	4.16	Same as the lines for pure UC_{2}	0.2276	28.715	8	1.1558	1.7366	1.049
	002	0.0656	0.166	81.21	4.11		0.2605	27.664	2			0.289
	110	0.0940	0.199	78.05	3.60		0.2907	18.539	4			0.433
	112	0.1597	0.259	72.69	2.89		0.2134	9.998	8			0.343
	114	0.3565	0.388	62.42	2.00		0.1367	3.784	8			0.083
	312	0.5358	0.475	56.69	1.75		0.1296	2.753	16			0.114

Table 5 Pure Uranium Dioxide and Mixed Uranium Plutonium Dioxide

Phase	Line	$\sin ^{2} \theta$	$\frac{\sin \theta}{\lambda}$	$\mathrm{f}_{\mathrm{U}-\mathrm{Pu}}$	fo	Equation for ${ }^{\prime} \mathrm{F}{ }^{\prime}$	$/ \mathrm{F} /{ }^{2} \cdot 10^{5}$	L.P.	P	$\frac{1}{2 \mu} \cdot 10^{-4}$	$\frac{1}{v} 2 \cdot 10^{-5}$	${ }^{\prime} \mathrm{K}^{\prime} \cdot 10^{-1}$
$\begin{aligned} & \mathrm{UO}_{2} \\ & \phi=10.96 \mathrm{~g} / \mathrm{cc} \\ & \mathrm{a}=5.4691 \mathrm{~A} \end{aligned}$	111	0.0595	0.158	81.42	6.36	$F=4(f u+0 . f o)$	1.0606	30.781	8			1.230
	200	0.0793	0.182	79.13	5.94	$F=4(f u-2 f o)$	0.7236	22.446	6			0.459
	220	0.1587	0.258	72.25	4.70	$F=4(f u+2 \mathrm{fo})$	1.0667	10.071	12	1.2595	3.7368	0.607
	311	0.2182	0.303	68.47	4.06	$\mathrm{F}=4$ (fur $+0 . \mathrm{fo}$)	0.7501	6.830	24			0.579
	222	0.2380	0.316	67.44	3.90	$F=4(f u-2 f o)$	0.569	6.135	8			0.131
$\begin{aligned} & \left(\mathrm{U}_{.85} \mathrm{Pu}_{15}\right) \mathrm{O}_{2} \\ & \phi=11.03 \mathrm{~g} / \mathrm{cc} \\ & \mathrm{a}=5.458 \mathrm{~A} \end{aligned}$	111	0.0597	0.158	81.70	6.35		1.0679	30.669	8			1.222
	200	0.0797	0.183	79.32	5,92		0.7285	22.33	6			0.455
	220	0.1593	0.259	72.43	4.68	Same as for pure UO_{2}	1.0705	10.023	12	1.2331	3.7821	0.600
	311	0.2190	0.304	68.64	4.04		0.7538	6.799	24			0.574
	222	0.2390	0.317	67.70	3.89		0.5727	6.103	8			0.130
$\begin{aligned} & \left(\mathrm{U}_{80} \mathrm{Pu}_{.20}\right) \mathrm{O}_{2} \\ & \phi=11.06 \mathrm{~g} / \mathrm{cc} \\ & \mathrm{a}=5.4545 \AA \end{aligned}$	111	0.0598	0.159	81.69	6.33		1.0678	30.602	8			1.216
	200	0.0798	0.183	79.40	5.92		0.7303	22.299	6			0.454
	220	0.1595	0.259	72.51	4.68	Same as for pure UO_{2}	1.0727	10.008	12	1.2246	3.7973	0.599
	311	0.2194	0.304	68.72	4.04		0.7556	6.785	14			0.572
	222	0.2393	0.318	67.61	3.88		0.5732	6.094	8			0.130
$\begin{aligned} & \left(\mathrm{U}_{.75} \mathrm{Pu}_{25}\right) \mathrm{O}_{2} \\ & \phi=11.08 \mathrm{~g} / \mathrm{cc} \\ & \mathrm{a}=5.4508 \AA \end{aligned}$	111	0.0599	0.159	81.79	6.33		1.0703	30.555	8			1.213
	200	0.0799	0.183	79.49	5.92		0.7322	22.268	6			0.454
	220	0.1597	0.259	72.60	4.68	Same as for pure UO_{2}	1.0750	9.991	12	1.2161	3.8126	0.598
	311	0.2196	0.304	68.81	4.04		0.7575	6.774	24			0.571
	222	0.2396	0.318	67.69	3.88		0.5748	6.083	8			0.130
$\begin{aligned} & \left(\mathrm{U}_{.70} \mathrm{Pu}_{.30}\right) \mathrm{O}_{2} \\ & \phi=11.11 \mathrm{~g} / \mathrm{cc} \\ & \mathrm{a}=5.4472 \dot{\mathrm{~A}} \end{aligned}$	111	0.0599	0.159	81.88 79.49	6.33 5.90		1.0727	30.510	8			1.210
	200	0.0799	0.184	79.49	5.90		0.7329	22.233	6			0.452
	220	0.1599	0.260	72.60	4.67	Same as for pure UO_{2}	1.0743	9.975	12	1.2077	3.8280	0.595
	311	0.2199	0.304	68.89	4.04		0.7593	6.762	24			0.570
	222	0.2399	0.318	67.77	3.88	-	0.5763	6.074	8			0.129

Table 6 Multiplicity Factors for 'Cubic' and 'Tetragonal' Crystal System

Cubic:	hk1	hh1	ok1	okk	hhh	ool	
$\mathrm{MO}_{2}, \mathrm{MC}$,	48^{+}	24	24^{+}	12	8	6	
$\mathrm{M}_{2} \mathrm{C}_{3}$							
Tetragonal: hk1	hh1	ok1	hko	hho	oko	ool	
MC_{2}	16^{+}	8	8	8^{+}	4	4	2

${ }^{+}$These are the usual multiplicity factors. In some crystals, planes having these indices comprise two forms with the same spacing but different structure factor, and the multiplicity factor for each form is half the value given above.

Table 8 ' K ' and ' A ' Ratio Comparison of 'UC '

Line	2θ	$\begin{aligned} & \text { K-value } \\ & .10^{-1} \end{aligned}$	Intens. Area	Comparison of 'K'	and ' A ' ratio	Percent Diff.
				K-ratio	A-ratio	
(111)	$31 \cdot 2^{\circ}$	1-158	$4: 2: 10^{5}$	$\mathrm{K}_{111} / \mathrm{K}_{220}=2.27$	$A_{111} / A_{220}=2.10$	7.40
				$\mathrm{K}_{111} / \mathrm{K}_{311}=2.19$	$A_{111} / A_{311}=2.01$	8,20
(220)	$52 \cdot 10^{\circ}$	0.508	$1.9969 \cdot 10^{5}$	$\mathrm{K}_{111} / \mathrm{K}_{422}=5.436$	$A_{111} / A_{422}=5.217$	4.02
				$\mathrm{K}_{220} / \mathrm{K}_{311}=0.960$	$\mathrm{A}_{220} / \mathrm{A}_{311}=0.958$	2.08
(311)	$61 \cdot 99$	0.529	$2.0844 \cdot 10^{5}$	$\mathrm{K}_{220} / \mathrm{K}_{422}=2.385$	$\mathrm{A}_{220} / \mathrm{A}_{422}=2.480$	3.83
				$\mathrm{K}_{311} / \mathrm{K}_{422}=2.48$	$A_{311} / A_{422}=2.59$	4.40
(422)	99.05	0.213	$\begin{array}{r} 0.80498 \\ 10^{5} \end{array}$			

Table 7 Equations giving the ' K ' values, of different lines of different phases, as a function of the Plutonium concentration ' C^{\prime}, between 0% to $30 \% \mathrm{Pu}$

Phase	Line	Equation ' K ' =f (c)
Mono Carbide	$\begin{aligned} & (111) \\ & (200) \\ & (220) \\ & (311) \\ & (422) \\ & \binom{511}{333} \end{aligned}$	$\begin{aligned} \mathrm{K}^{111} & =1.158 \cdot 10^{-1}-5.33 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ \mathrm{~K}^{200} & =0.715 \cdot 10^{-1}-3.66 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ \mathrm{~K}^{220} & =0.508 \cdot 10^{-1}-2.33 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ \mathrm{~K}^{311} & =0.528 \cdot 10^{-1}-2.266 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ \mathrm{~K}^{422} & =0.213 \cdot 10^{-1}-1.00 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ 511 & \mathrm{~K}^{333} \end{aligned}$
Di Carbide	$\begin{aligned} & (101) \\ & (002) \\ & (110) \\ & (112) \\ & (114) \\ & (312) \end{aligned}$	$\begin{aligned} & \mathrm{K}^{101}=1.056 \cdot 10^{-1}-2.33 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{002}=0.295 \cdot 10^{-1}-2.00 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{110}=0.435 \cdot 10^{-1}-6.66 \cdot 10^{-4} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{112}=0.345 \cdot 10^{-1}-6.66 \cdot 10^{-4} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{114}=0.0838 \cdot 10^{-1}-2.66 \cdot 10^{-4} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{312}=0.116 \cdot 10^{-1}-6.66 \cdot 10^{-4} \mathrm{C}_{\mathrm{Pu}} \end{aligned}$
Sesqui Carbide	$\begin{gathered} (211) \\ (220) \\ (310) \\ (321) \\ (322) \\ (510,431) \end{gathered}$	$\begin{aligned} & \mathrm{K}^{211}=0.365 \cdot 10^{-1}-2.00 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{220}=0.699 \cdot 10^{-1}-3.00 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{310}=0.632 \cdot 10^{-1}-3.33 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{321}=0.316 \cdot 10^{-1}-2.00 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{332}=0.190 \cdot 10^{-1}-6.66 \cdot 10^{-4} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{510,431}=0.570 \cdot 10^{-1}-2.33 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \end{aligned}$
Oxide	$\begin{aligned} & (111) \\ & (200) \\ & (220) \\ & (311) \\ & (222) \end{aligned}$	$\begin{aligned} & \mathrm{K}^{111}=1.23^{\cdot} 10^{-1}-6.66 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{200}=0.459 \cdot 10^{-1}-2.33^{\cdot} 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{220}=0.607 \cdot 10^{-1}-4.00 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{311}=0.579 \cdot 10^{-1}-3.00 \cdot 10^{-3} \mathrm{C}_{\mathrm{Pu}} \\ & \mathrm{~K}^{222}=0.131 \cdot 10^{-1}-6.66 \cdot 10^{-4} \mathrm{C}_{\mathrm{Pu}} \end{aligned}$

Table 9 ' K ' and ' A ' Ratio Comparison of $U_{2} C_{3}$

Line	2θ	$\begin{gathered} \text { K-value } \\ \cdot 10^{-1} \end{gathered}$	Intensity Area	Comparison of ' K ' and ' A ' ratios		Percent Diff.
				K-ratio	A-ratio	
(220)	31.25	0.699	$1.514^{*} 10^{5}$	$\mathrm{K}^{220} / \mathrm{K}^{310}=1.106$	$A^{220} / A^{310}=1.147$	3.70
				$\mathrm{K}^{220} / \mathrm{K}^{321}=2.212$	$A^{220} / A^{321}=2.082$	5.90
(310	35.05	0.632	$1.320^{\circ} 10^{5}$	$\mathrm{K}^{220} / \mathrm{K}_{431}^{510}=1.22$	$A^{220} / A_{431}^{510}=1.10$	9.83
				$\mathrm{K}^{310} / \mathrm{K}^{321}=2.000$	$A^{310} / A^{321}=1.816$	9,20
(321)	41.75	0.316	$0.727^{1} 10^{5}$	$K^{310} / K_{431}^{510}=1.10$	$A^{310} / A_{431}^{510}=0.964$	12.27
				$K_{431}^{510} / K^{321}=1.804$	$A_{431}^{510} / A^{321}=1.887$	4.6
$\binom{510}{431}$	58.10	0.570	$1.3718 \cdot 10^{5}$			

Table 10 ' K ' and 'A' Ratio Comparison of $U C_{2}$

Line	2θ	$\begin{aligned} & \text { K-value } \\ & \cdot 10^{-1} \end{aligned}$	Intensity Area	Comparison of ' K ' and ' A ' ratios		Percent Diff.
				K-ratio	A-ratio	
(110)	36.06	0.435	$3.56 \cdot 10^{5}$	$K^{110} / K^{112}=1.26$	$A^{110} / A^{112}=1.13$	10.31
				$K^{110} / K^{114}=5.19$	$A^{110} / A^{114}=5.02$	3.27
(112)	47.50	0.345	$3.15 \cdot 10^{5}$	$\mathrm{K}^{110} / \mathrm{K}^{312}=3.75$	$A^{110} / A^{312}=3.95$	5.33
				$K^{112} / K^{114}=4.12$	$A^{112} / A^{114}=4.44$	7.76
(114)	73.90	0.0838	$0.7088^{\cdot 10^{5}}$	$\mathrm{K}^{112} / \mathrm{K}^{312}=3.09$	$A^{112} / A^{312}=3.44$	10.17
				$\mathrm{K}^{312} / \mathrm{K}^{114}=1.38$	$A^{312} / A^{114}=1.27$	7.9
(312)	95.22	0.116	$0.90104^{*} 10^{5}$			

Table 11 ' K ' and 'A' Ratio Comparison of UO_{2}

Line	2θ	k-value$\cdot 10^{-1}$	Intensity Area	Comparison of ' K ' and ' A '-ratio		Percent Diff.
				K-ratio	A-ratio	
(111)	28.30	1.230	$9.200 \cdot 10^{5}$	$\mathrm{K}^{111} / \mathrm{K}^{200}=2.6799$	$A^{111} / A^{200}=2.4084$	10.13
				$K^{111} / \mathrm{K}^{220}=2.0259$	$A^{111} / A^{220}=1.9205$	5.20
(200)	32.80	0.459	$3.820^{\prime} 10^{5}$	$\mathrm{K}^{111} / \mathrm{K}^{311}=2.1241$	$A^{111} / A^{311}=1.9700$	7.25
				$\mathrm{K}^{220} / \mathrm{K}^{200}=1.3228$	$A^{220} / A^{200}=1.2540$	5.20
(220)	47.2	0.607	$4.7903 \cdot 10^{5}$	$\mathrm{K}^{220} / \mathrm{K}^{311}=1.0485$	$\mathrm{A}^{220} / \mathrm{A}^{311}=1.0258$	2.16
				$\mathrm{K}^{311} / \mathrm{K}^{200}=1.2617$	$A^{311} / A^{200}=1.2225$	3.10
(311)	55.8	0.579	$4.670 \cdot 10^{5}$			

Table $12{ }^{\prime} K$ ' and ' A ' Ratio Comparison of Mixed (U-Pu) Monocarbide

Line	$\begin{gathered} 2 \theta \\ \text { Scanned } \end{gathered}$	Phase Present in this Range (Within Monocarbide Peaks)	Total Area under Peak 10^{5}	Corrected Area for Monocarbide - 10^{5}	K -values$\cdot 10^{-1}$	Comparison of ${ }^{\prime} \mathrm{K}^{8}$ and ${ }^{\text {d }} \mathrm{A}^{\prime}$ ratios		Percent Diff
						$\frac{\mathrm{K}^{111}}{\mathrm{~K}^{200}}=1.620$	$\frac{A^{111}}{A^{200}}=1.49$	8.02
(111)	$\begin{array}{r} 29.5^{\circ}- \\ 32.35 \end{array}$	$\begin{aligned} & (\mathrm{U}, \mathrm{Pu}) \mathrm{C}^{111} \\ & +(\mathrm{U}, \mathrm{Pu})_{2} \mathrm{C}_{3}^{220} \end{aligned}$	3.5132	3.36456	1.149	$\frac{K^{111}}{K^{200}}=2.270$	$\frac{A^{111}}{A^{220}}=1.973$	13.08
						$\frac{\mathrm{k}^{111}}{\mathrm{~K}^{311}}=2.190$	$\frac{A^{111}}{A^{311}}=1.822$	16.8
(200)	$\begin{gathered} 34.5^{\circ}- \\ 37.5 \end{gathered}$	$\begin{aligned} & (\mathrm{U}, \mathrm{Pu}) \mathrm{C}^{200} \\ & +\quad(\mathrm{U}, \mathrm{Pu}) \mathrm{C}_{2}^{110} \end{aligned}$	2.2786	2.26417	0.709	$\frac{\mathrm{K}^{200}}{\mathrm{~K}^{220}}=1.405$	$\frac{A^{200}}{A^{220}}=1.327$	5.5
						$\frac{\mathrm{K}^{200}}{\mathrm{~K}^{311}}=1.32$	$\frac{A^{200}}{A^{311}}=1.226$	6.8
(220)	$\begin{gathered} 50.5^{\circ}- \\ 53.5 \end{gathered}$	$\begin{aligned} & (\mathrm{U}, \mathrm{Pu}) \mathrm{C}^{220} \\ & +(\mathrm{U}, \mathrm{Pu}) \mathrm{C}_{2}^{200} \\ & (\mathrm{U}, \mathrm{Pu}) \mathrm{C}_{2}^{103} \end{aligned}$	1.719	1.7054	0.504	$\frac{\mathrm{K}^{311}}{\mathrm{~K}^{220}}=1.04$	$\frac{A^{311}}{A^{220}}=1.08$	3.84
(311)	$\begin{gathered} 60.5^{\circ}- \\ 63.5 \end{gathered}$	$\begin{aligned} & (\mathrm{U}, \mathrm{Pu}) \mathrm{C}^{311} \\ & +(\mathrm{U}, \mathrm{Pu}) \mathrm{C}_{2}^{004} \end{aligned}$	1.8477	1.8466	0.525			

Table 13 ' K ' values of some lines of ($\mathrm{U} .85{ }^{\mathrm{Pu}} .15$) C_{2} which will be needed for getting the exact intensity values of (U, Pu) C lines.

Line	$\sin ^{2} \theta$	$\frac{\sin \theta}{\lambda}$	$\mathrm{f}_{\mathrm{U}-\mathrm{Pu}}$	${ }^{\text {f }}$ C	Equation for (F)	$\left(F^{2}\right) \cdot 10^{5}$	L.P.	P	$\frac{1}{2 \mu} \cdot 10^{-4}$	$\frac{1}{v^{2}} \cdot 10^{-4}$	K ${ }^{-10^{1}}$
(200)	0.1916	0.284	70.31	2.65	$\mathrm{F}=\mathrm{f}_{\mathrm{U}}+2 \mathrm{f}_{\mathrm{C}}$	0.2287	8.011	4			0.1503
(103)	0.1973	0.288	69.97	2.63	$F=f_{U}+1.2748 f_{C}$	0.2150	7.732	8	1.1526	1.7798	0.2727
(004)	0.2655	0.335	66.17	2.67	$F=f_{U}-1.9842 f_{C}$	0.1521	5.360	2			0.0334

Table 14:

Angle of Scanning	2θ and (hkl) of the phases present				' K ' values of the lines of the respective phases $\cdot 10^{-1}$				Peaks of the diffraction pattern	
2θ	(U, Pu) C	$(\mathrm{U}, \mathrm{Pu})_{2} \mathrm{C}_{3}$	$(\mathrm{U}, \mathrm{Pu}) \mathrm{C}_{2}$	$(\mathrm{U}, \mathrm{Pu}) \mathrm{O}_{2}$	(U, Pu) C	$(\mathrm{U}, \mathrm{Pu})_{2} \mathrm{C}_{3}$	$(\mathrm{U}, \mathrm{Pu}) \mathrm{C}_{2}$	$(\mathrm{U}, \mathrm{Pu}) \mathrm{O}_{2}$	Separate	Overlapped
$29.5{ }^{\circ}-32.5^{\circ}$	$\begin{aligned} & \left(31.2^{\circ}\right) \\ & (111) \end{aligned}$	$\begin{aligned} & \left(31.25^{\circ}\right) \\ & (220) \end{aligned}$	$\begin{aligned} & 29.86 \\ & (002) \end{aligned}$	-	1.14897	0.695	-	-		$\begin{aligned} & (111) \mathrm{MC}+ \\ & (220) \mathrm{M}_{2} \mathrm{C}_{3} \end{aligned}$
$34.0^{\circ}-37.5^{\circ}$	$\begin{aligned} & \left(36.19^{\circ}\right) \\ & (200) \end{aligned}$	$\begin{aligned} & \left(35.05^{\circ}\right) \\ & (310) \end{aligned}$	$\begin{aligned} & 36.06 \\ & (110) \end{aligned}$	-	-	0.627	-	-	$\begin{aligned} & (310) \\ & \mathrm{M}_{2} \mathrm{C}_{3} \end{aligned}$	-
$46^{\circ}-49^{\circ}$	-	-	$\begin{aligned} & 47.5^{\circ} \\ & (112) \end{aligned}$	$\begin{aligned} & 47.05^{\circ} \\ & (220) \end{aligned}$	-	-	0.344	0.6005	(220) MO_{2} (112) MC_{2}	-

Table 15:

Sample Number	Phases	Intensity of the Phases	Volume Percent	Weight Percent	Carbon Equivalent	
					As given	As found by xray
$\begin{aligned} & \text { Mo1-11 } \\ & \text { /K2 } \end{aligned}$	$\begin{aligned} & \mathrm{MC}+\mathrm{M}_{2} \mathrm{C}_{3} \\ & \mathrm{M}_{2} \mathrm{C}_{3} \\ & \mathrm{MC}_{2} \end{aligned}$	$\begin{aligned} & 3.51 \cdot 10^{5}\left(\mathrm{MC}^{111}+{ }^{11} \mathrm{M}_{2}{ }_{3}{ }^{220}\right) \\ & 1.34 \cdot 10^{4}\left(\mathrm{M}_{2} \mathrm{C}_{3}{ }^{110}\right) \\ & 1.1 \cdot 10^{3}\left(\mathrm{MC}_{2}{ }^{2}\right) \end{aligned}$	$\begin{array}{r} 92 \\ 7 \\ 1 \end{array}$	$\begin{gathered} 92.5 \\ 6.5 \\ 1 \end{gathered}$	5.00	5.04
X-2	$\begin{aligned} & \mathrm{MC}+\mathrm{M}_{2} \mathrm{C}_{3} \\ & \mathrm{M}_{2} \mathrm{C}_{3} \\ & \mathrm{MC}_{2} \end{aligned}$	$\begin{aligned} & 1.84 \cdot 10^{5}\left(\mathrm{MC}^{111}+{ }_{\left.\mathrm{M}_{2} \mathrm{C}_{3}{ }^{310}\right)}\right. \\ & 0.923 \cdot 10^{4}\left(\mathrm{M}_{2} \mathrm{C}_{3}{ }^{310}\right) \\ & 0.214 \cdot 10^{4}\left(\mathrm{MC}_{2}{ }^{112}\right) \end{aligned}$	$\begin{array}{r} 87.8 \\ 8.6 \\ 3.6 \end{array}$	$\begin{array}{r} 88.7 \\ 8.2 \\ 3.1 \end{array}$		

[^0]: x)
 B.A.R.C. -Bombay, India

