

KERNFORSCHUNGSZENTRUM

KARLSRUHE

Oktober 1974

KFK 2057

Institut für Material- und Festkörperforschung Projekt Schneller Brüter

Spaltgasverhalten in Oxid-Brennelementen für Schnelle Brüter

H. Zimmermann

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H.

KARLSRUHE

Als Manuskript vervielfältigt

Für diesen Bericht behalten wir uns alle Rechte vor

GESELLSCHAFT FÜR KERNFORSCHUNG M.B.H. KARLSRUHE

KERNFORSCHUNGSZENTRUM KARLSRUHE

KFK 2057

Institut für Material- und Festkörperforschung

Projekt Schneller Brüter

Spaltgasverhalten in Oxid-Brennelementen für Schnelle Brüter

von

H.Zimmermann

Gesellschaft für Kernforschung mbH., Karlsruhe

Dieser Bericht beruht auf Bestrahlungsdaten und Untersuchungsergebnissen aus den Heissen Zellen, für deren Zusammenstellung und Aufbereitung bzw. Erarbeitung von Vorauswertung ich allen beteiligten Mitarbeitern von IMF und RBT danke, im besonderen den Herren E.Ernst, D.Geithoff (IMF/III), H.Enderlein und H.Gräbner (RBT).

Als Manuskript eingereicht am 2.9.1974

Inhaltsverzeichnis

ð

	Seite
1. Einleitung	1
2. Brennstoff- und Bestrahlungsdaten	1
2.1 Bestrahlungen im FR 2	3
2.2 Bestrahlungen im BR 2	13
2.3 Bestrahlungen im DFR	15
2.4 Bestrahlungen im Rapsodie	18
3. Experimentelle Ergebnisse	19
3.1 Verfahren der Spaltgasbestimmung	19
3.2 Spaltgasdaten	20
3.2.1 FR 2-Bestrahlungen	20
3.2.2 BR 2-Bestrahlungen	20
3.2.3 DFR-Bestrahlungen	30
3.2.4 Rapsodie-Bestrahlungen	34
4. Diskussion	35
4.1 Spaltgasfreisetzung	35
4.2 Spaltgasrückhaltung	41
4.3 Einfluss des gebundenen Spaltgases auf die	2
mechanische Wechselwirkung Brennstoff-Hüll	le 47
4.4 Zusammenfassung	49
5. Literatur	51

.

Zusammenfassung

Im Rahmen der Nachbestrahlungsuntersuchungen an den im Projekt Schneller Brüter des Kernforschungszentrums Karlsruhe bestrahlten Oxid-Brennstäben wurden die gemessenen Spaltgasdaten ausgewertet. Die Brennstäbe waren in den Reaktoren FR 2 in Karlsruhe, BR 2 in Mol, DFR in Dounreay und Rapsodie in Cadarache bestrahlt worden. Die Spaltgasmengen wurden in drei Stufen als freigesetztes Spaltgas, als in Blasen und Poren zurückgehaltenes Spaltgas (Porenspaltgas) und als in sehr kleinen intragranularen Blasen und im Kristallgitter zurückgehaltenes Spaltgas (Gitterspaltgas) bestimmt. Das geschah durch Anbohren der Brennstabhülle, durch Mahlen des Brennstoffes sowie durch chemisches Auflösen des gemahlenen Brennstoffs.

Unter den Betriebsbedingungen schneller Brutreaktoren liegt die Spaltgasfreisetzung nach mittleren und hohen Abbränden bei 90% oder darüber. Die Freisetzungsrate ist nicht konstant, sondern es treten sogenannte breakaway-Freisetzungen auf.

Das gebundene Spaltgas erreicht Konzentrationen von ca. $1,5 \cdot 10^{-2}$ Gasatomen pro U+Pu-Atom in Brennstoffbereichen mit Temperaturen unter 1100° C. Die Konzentration nimmt ab mit steigender Temperatur. Oberhalb 1500° C beträgt sie nur noch ca. $2 \cdot 10^{-4}$ Gasatome pro U+Pu-Atom. Die Konzentration des Porenspaltgases ist je nach Temperaturbereich bis zu fünfmal höher als die des Gitterspaltgases. Es existiert eine Beziehung zwischen Hülldehnung und dem Gehalt an Porenspaltgas.

Es wird eine einfache empirische Formel zur Beschreibung der Spaltgasfreisetzungsrate angegeben, für deren Anwendung der Brennstoff in drei Temperaturzonen eingeteilt wird.

Fission Gas Behaviour in Oxid Fuel Elements of Fast Breader Reactors

Abstract

The fission gas behaviour in oxide fuel elements irradiated within the irradiation programme of the Fast Breeder Project at the Karlsruhe Nuclear Research Centre is reported and discussed. The fuel elements were irradiated in the reactors FR 2 in Karlsruhe, BR 2 in Mol, DFR in Dounreay, and Rapsodie in Cadarache. The amount of fission gas was measured in 3 steps as released fission gas, fission gas retained in bubbles and pores, and fission gas retained in very small intragranular bubbles and crystal lattice sites. This was done by piercing the fuel rods, by grinding the fuel, and by chemical solution of the powdered fuel, respectively.

Under the conditions prevailing in fast breeder reactors the fractional fission gas release is about 90% or more after medium and high burnups. The release rate is not constant, but there are periods with high release rates (break away releases).

The retained fission gas reaches concentrations of about $1,5 \cdot 10^{-2}$ gas atoms per U and Pu atom in fuel regions with temperatures below 1100° C. The concentration decreases with increasing temperature. At temperatures above 1500° C the concentration of the retained gas is about $2 \cdot 10^{-4}$ gas atoms per initial metal atom. Up to five times more fission gas is retained in bubbles and pores than in solution (fission induced) and in very small intragranular bubbles. There is a relation between the deformation of the cladding and the concentration of fission gas in bubbles.

A simple formula describing fission gas release rates in 3 temperature regions was obtained on the basis of measured release rates and concentrations of the retained fission gas.

1. Einleitung

Die Edelgase Xe und Kr stellen ca. 15% aller bei Kernspaltungen entstehenden Spaltprodukte. Ihr Verhalten wird weitgehend bestimmt durch ihre geringe Löslichkeit im Brennstoff, die bei Temperaturen, bei denen die thermische Diffusion grösser wird als die bestrahlungsbedingte, zur raschen Freisetzung aus dem Brennstoff oder zu einer Ausscheidung in Blasenform im Brennstoff führt. Im ersten Fall baut sich im Brennelement ein Spaltgasdruck auf und im zweiten Fall kommt es zu einer temperaturund druckabhängigen Volumenzunahme des Brennstoffes, dem Spaltgasschwellen. Die genaue Kenntnis des Spaltgasverhaltens ist deshalb wichtig für die Brennelementauslegung und für die Vorhersage des Brennstabverhaltens sowohl im stationären Zustand als auch vor allem beim instationären Betrieb und bei Betriebsstörungen.

Das Ziel dieser Arbeit ist die Aufstellung von Spaltgasbilanzen für verschiedene Abbrandzustände des Brennstoffes, wobei unterschieden wird zwischen freigesetztem und gebundenem Spaltgas. Im Hinblick auf Sicherheitsfragen bei einer Brennstabüberhitzung wird besonderes Gewicht auf das gebundene Spaltgas gelegt. Als experimentelles Material standen die Spaltgasdaten der im Rahmen des Projektes Schneller Brüter bestrahlten Brennstäbe zur Verfügung. Ausgewertet wurden die Spaltgasdaten aller Brennstäbe mit Oxidtabletten, soweit die Ergebnisse bis zum Frühjahr 1974 vorlagen.

2. Brennstoff- und Bestrahlungsdaten

In diesem Abschnitt werden die wesentlichsten Brennstoff- und Bestrahlungsdaten aufgeführt, soweit sie für das Spaltgasverhalten von Interesse sind. Zur genaueren Information wird auf die für die einzelnen Versuchsgruppen bzw. Bestrahlungsexperimente erschienenen KFK-Berichte verwiesen, die eine ausführliche Dokumentation aller Daten der Brennstoffherstellung, der Brennstäbe, der Bestrahlung und der Nachbestrahlungsuntersuchungen bieten. Sofern vorhanden, wird bei jeder Versuchsgruppe auch der KFK-Bericht genannt, der sich mit der Auswertung der Bestrahlungsergebnisse befasst. Es werden bei jeder Versuchsgruppe nur die Brennstäbe aufgeführt, die UO₂- oder UO₂-PuO₂-Tablettenbrennstoff enthielten und von denen Spaltgasdaten vorliegen.

- 1 -

Die wesentlichsten Einflussgrössen auf das Spaltgasverhalten sind der Abbrand und die Bestrahlungstemperatur, d.h. Spaltgasfreisetzung und -rückhaltung bei einem gegebenen Abbrand werden bestimmt durch das radiale Brennstofftemperaturprofil am Bestrahlungsende und seine vorangegangenen zeitlichen Änderungen. Das Temperaturprofil ergibt sich bei einer bestimmten Wärmeleitfähigkeit des Brennstoffes und der gegebenen Wärmequelldichte durch die Stableistung und die Brennstoffoberflächentemperatur. Um in den graphischen Darstellungen nicht zwei temperaturbestimmende Grössen zu haben, wurden die Stableistung und die Brennstoffoberflächentemperatur zur mittleren Brennstofftemperatur zusammengefasst. Es gilt:

$$T_{m} = \frac{1}{F} \int_{T_{K}}^{r_{B}} T(r) \cdot 2 \operatorname{frdr}_{ZK}$$

T_m mittlere Brennstofftemperatur

F Brennstoffquerschnittsfläche

- r_{ZK} Zentralkanalradius
- r_B Brennstoffaussenradius
- r Radius

T(r) radiusabhängige Brennstofftemperatur

- T_Z Zentraltemperatur
- T_B Brennstoffoberflächentemperatur

Unter der Voraussetzung einer parabolischen Temperaturverteilung

$$T(r) = T_Z - \frac{r^2}{r_B^2} (T_Z - T_B)$$

für einen Brennstoff ohne Zentralkanal bzw.

$$T(r) = T_Z - \frac{(r - r_{ZK})^2}{(r_B - r_{ZK})^2} (T_Z - T_B)$$

für einen Brennstoff mit Zentralkanal gilt für die mittlere Brennstofftemperatur

$$T_{m} = \frac{T_{Z} + T_{B}}{2}$$

bzw.

$$T_{m} = T_{Z} - \frac{T_{Z} - T_{B}}{(1 - x^{2}) (1 - x)^{2}} (\frac{1}{2} - \frac{4}{3}x + x^{2} - \frac{1}{6}x^{4})$$

mit

$$x = \frac{r_{ZK}}{r_B}$$

Bei der Bestimmung der mittleren Brennstofftemperatur T_m wurden die durchschnittlichen Werte der Stableistung und der Hülloberflächentemperatur während der letzten 10% der Bestrahlungsdauer benutzt. Die Wärmeübergangszahl zwischen Brennstoff und Hülle zur Bestimmung der Brennstoffoberflächentemperatur wurde nach der in den Gefügebildern zu beobachtenden Spaltbreite zwischen 50 und 0 µm zu 0,5 bis 1,2 W/cm² ^oC angenommen. Bei den Abbrandangaben wurden, soweit vorhanden, die radiochemisch bestimmten Werte verwendet.

2.1 Bestrahlungen im FR 2

Im thermischen Neutronenfluss des Karlsruher Forschungsreaktors FR 2 wurden im Rahmen der Brennelemententwicklung verschiedene Experimente mit unterschiedlichen Zielsetzungen durchgeführt /1/. Die Bestrahlungen erfolgten in Kapselversuchseinsätzen (KVE's), in denen drei oder vier relativ kurze Brennstabprüflinge übereinander angeordnet waren, die mit Thermoelementen zur Bestimmung der Hülloberflächentemperaturen versehen waren. Im folgenden wird eine kurze Übersicht über die bestrahlten Kapselversuchsgruppen und deren wichtigste Brennstoff- und Bestrahlungsdaten gegeben.

Kapselversuchsgruppe 1

```
Brennstoff: UO<sub>2</sub>, 91% TD
Anreicherung: 12,5% U-235
O/M-Verhältnis: 2,01
Pelletdurchmesser: 9,95 ± 0,01 mm (geschliffen)
Brennstoffsäulenlänge: 225 mm
diametraler Kaltspalt: 65 ± 10 µm
```

KVE	Prüf- ling	UO ₂ - Gew. g	Voll- last- tage	max.Ab- brand1) MWd/kgM	max.Stab- leistg. W/cm	nax.Stab- max.Hü11- leistg. temp. W/cm ^o C	
4	A−D	682,4	14	ca.0,75	ca. 370	ca. 450	ca. 1200
5	E,F	341,8	150	ca.8,1	ca. 370	ca. 450	ca. 1100

Tab. 1: Brennstoff- und Bestrahlungsdaten der Kapselversuchsgruppe 1

¹⁾Auf Grund thermischer Daten berechnet.

Kapselversuchsgruppe 2

```
Brennstoff: UO<sub>2</sub>, 92% TD
Anreicherung: 2% U-235
O/M-Verhältnis: 2,00 ± 0,01
Pelletdurchmesser in KVE 11: 9,74 ± 0,02 mm (ungeschliffen)
" " 13: 9,85 ± 0,01 mm (geschliffen)
Brennstoffsäulenlänge: 180 mm
diametraler Kaltspalt KVE 11: 260 ± 20 µm
KVE 13: 150 ± 10 µm
```

Tab. 2: Brennstoff- und Bestrahlungsdaten der Kapselversuchsgruppe 2

KVE	Prüf- ling	UO ₂ - Gew. g	Voll- last- tage	max.Ab- brand1) MWd/kgM	max.Stab- leistg. W/cm W/cm		T _m ,	°c
11	A5-A8	ca.530	58	ca. 3,8	ca. 450	ca. 510	ca.	1200
13	A1-A3	ca.407	131	ca. 8,5	ca. 450	ca. 510	ca.	1050

1) Auf Grund thermischer Daten berechnet.

Kapselversuchsgruppe 3

Die Dokumentation dieser Versuchsgruppe ist in /2/ enthalten. Entsprechend den Herstellungsbedingungen kann man vier Typen von UO₂-Pellets unterscheiden (Tab. 3), die neben UO₂-CeO₂-Pellets und Pulverbrennstoff in dieser Versuchsgruppe eingesetzt wurden.

Тур	Gründlings- dichte g/cm ³	Sintern	Pelletman- telfläche	% TD
A	5,25	2h / 1500 ⁰ C	geschliffen	88
В	4,84	2h / 1550 ⁰ C	ungesch1.	88
С	5,55	2h / 1600 ⁰ C	geschliffen	93
D	5,10	2h / 1700 ⁰ C	ungesch1.	93

Tab. 3: UO2-Pellettypen der Kapselversuchsgruppe 3

Folgende Daten gelten für alle Pellettypen:

Anreicherung: 11,5% U-235 O/M-Verhältnis: 2,01 Pelletdurchmesser: 6,25 mm Brennstoffsäulenlänge: 80 mm diametraler Kaltspalt: 160 ± 20 µm.

Die übrigen Brennstoff- und Bestrahlungsdaten sind in Tab. 4 aufgeführt.

Kapselversuchsgruppe 4a

Dokumentation: /3/ Versuchsauswertung /4/

Brennstoff: 85% UO₂ - 15% PuO₂, 85 und 90% TD Isotopenzusammensetzung des Pu: Pu-239 90,86% Pu-240 8,25% Pu-241 0,85% Pu-242 0,04% O/M-Verhältnis: 1,98 - 1,99 Brennstoffsäulenlänge: 80 mm

C C

Entsprechend dem Stabaufbau und den Brennstoffdaten kann man die Prüflinge in drei Typen einteilen (Tab. 5).

KVE	Prüflg.	Тур	Brennstoff- menge g	Zeit d	Abschal- tungen	Abbrand MWd/kgM	Stableist mittl.	., W/cm max.	Hüllten mittl.	p., ^o C max.	T _m , °C
20	1 5 7	D D C	24,9 24,9 25,2	30	2	6,42 6,63 5,71	550 560 515	580 615 565	449 463 427	469 538 460	1610 1630 1580
21	11 13	C D	25,2 24,9	87,5	11	18,8 17,7	534 522	585 550	442 433	475 455	1390 1370
23	3 9	C D	26,2 25,0	87	14	16,0 17,3	465 510	585 640	396 432	475 560	1490 1510
24	6	A	24,0	609,6	89	64,6	284	545	285	455	ca.580
25	2	A	23,9	280,2	43	48,9	472	725	444	550	1140
26	8 10	B A	23,7 24,0	220,5	34	41,0 42,9	458 515	630 634	390 402	506 487	1100 1170
27	12 14	B A	23,7 23,9	399,4	53	ca.55 58,7	365 390	614 576	322 341	500 456	ca.600 ca.600
28	BU 16	B B	23,6 23,7	542,8	80	62,3 63,2	317 292	503 550	307 286	420 455	ca.600 ca.600
29	15 AG CG DU	C A C D	25,2 24,0 25,2 24,9	132,5	17	27,8 29,6 30,0 26,8	505 490 516 524	610 610 688 604	406 413 451 429	494 487 536 462	1190 1180 1290 1270

Tab.4: Brennstoff- und Bestrahlungsdaten der Kapselversuchsgruppe 3

ו 9 ו

Тур	% TD	Pellet- durchm. mm	diam. Kaltspalt µm	Stabaufbau
I	90	6,20	200	1 Isoliertablette oben
IIa	90	6,20	200	je Isoliertabl. oben u.unten
IIb	85	6,25	135 ± 15	2 Isoliertabletten oben

Tab. 5:	Prüflingstypen	in	der	Kapselversuchsgruppe	4a
the second s					

Die Brennstoffmenge pro Stab und die Bestrahlungsdaten sind der Tab. 6 zu entnehmen.

Kapselversuchsgruppe 4b

Dokumentation: /5/

Brennstoff:	80% U0 ₂ -20%	Pu02, 8	84 und	90% T	D
Isotopenz	usammensetzu	ng des F	Pu: Pu	1-239	90,91%
			Pu	1-240	8,21%
			Ρυ	1-241	0,84%
			Ρι	1-242	0,04%
0/M-Verhä	1tnis: 1,98				
Brennstof	fsäulenlänge	: 80 mm	n		
Brennstof	fdurchmesser	: 5,10	± 0,02	2 mm	

Tab. 7: Prüflingstypen in der Kapselversuchsgruppe 4b

Тур	% TD	Stirnflächenein- senkung	diam.	Kaltspalt µm
I	90	beidseitig	155	± 15
II	90	einseitig	125	± 15
III	84	einseitig	140	± 10
IV	84	beidseitig	120	± 10

Die Brennstoffmenge pro Stab und die Bestrahlungsdaten sind der Tab. 8 zu entnehmen.

KVE	Prüflg.	Тур	Brennstoff- menge g	Zeit d	Abschal- tungen	Abbrand MWd/kgM	Stablei mittl.	st., W/cm max.	Hüllte mittl.	emp., [°] C max.	т _т , °с
33	B10 B 7 B 6	I I I	24,354 24,301 24,356	57	7	11,0 10,4 10,1	569 547 521	627 ~ 640 601	464 449 433	501 ~563 484	1350 1290 1280
34	B13 B12 B11	I I I	23,947 24,256 24,323	172	23	30,0 30,4 27,6	461 475 443	587 701 606	393 399 378	475 550 487	1220 1260 1210
35	4A/4 4A/2 4A/1	IIa IIa IIa	24,477 24,373 24,385	142	21	26,6 27,5 28,6	506 518 523	597 675 673	423 429 432	481 532 531	1240 1330 1320
36	4A/9 4A/8 4A/5 4A/3	IIa IIa IIa IIa	24,246 24,332 24,415 24,489	163	25	29,2 30,3 32,0 32,1	521 546 479 533	663 ~ 700 ~ 700 620	427 445 400 439	525 ~600 ~600 556	1260 1240 1200 1300
37	4A/19 4A/16 4A/15 B14	IIb IIb IIb I	22,887 23,226 22,828 24,208	391	54	60,8 62,1 71,9 66,4	401 391 403 395	561 512 559 587	341 332 345 335	457 425 456 475	>1100 ¹⁾ " "
38	4A/22 4A/21 4A/20	IIb IIb IIb	22,755 22,956 22,881	578	88	96,6 89,0 90,8	367 344 316	606 597 578	329 314 295	487 481 468	► 600 ¹⁾ "
40	4A/28 4A/25 4A/26 4A/27	IIb IIb IIb IIb	22,88 22,95 22,83 22,86	523		85,5 90,7 93,0 95,5	390 386 369 383	568 587 625 644	344 342 331 339	462 475 500 512	ca.750 "" "
41	4A/18 4A/23 4A/17	IIb IIb IIb	23,035 23,193 22,921	360	55	46,8 44,8 35,2	385 412 343	587 616 593	342 360 312	475 494 478	> 1000 ¹) "
45	4A/24	IIb	22,98	67	80	13,6	472	621	566	704	1550

1) Starke axiale Brennstoffverlagerungen sowie U-Pu-Entmischung

Tab.6: Brennstoff- und Bestrahlungsdaten der Kapselversuchsgruppe 4a

ו ∞

1

KVE	Prüflg.	Тур	Brennstoff- menge g	Zeit d	Abschal- tungen	Abbrand MWd/kgM	Stableis mittl.	t.,W/cm max.	Hüllte mittl.	mp., ^o C max.	T _m , ^o c
47	4B/4 4B/3 4B/2 4B/1	I I I I	15,935 15,893 15,924 15,870	484,3	77	95,3 100,0 100,0 103,0	313 273 279 -	444 444 496 529	385 343 350 -	520 520 575 609	1 180 1 100 1 100 -
48	4B/9 4B/8 4B/7 4B/5	II II II I	16,065 16,095 16,029 15,945	425,3	71	88,0 95,1 93,8 95,1	333 301 321 288	424 424 450 466	405 373 393 359	500 500 527 543	1200 1270 1290 1280
49	4B/11 4B/12 4B/10 4B/6	II II II I	16,189 16,245 16,042 15,925	637,1	95	117,9 124,3 130,4	281 188 309 146	536 477 545 527	352 230 381 212	616 554 625 606	830 650 770 -
55	4B/15 4B/14 4B/13	III III III	15,212 15,171 15,204	247,0	44	64,4 74,3 73,7	416 446 378	579 563 627	530 565 486	719 700 774	1320 1350 1210
56	4B/18 4B/17 4B/16	III III III	15,288 15,254 15,154	305,5	51	62,3 63,3 66,8	326 338 338	442 463 471	426 439 439	560 585 594	1000 1010 1030
57	4B/21 4B/20 4B/19	IV IV IV	15,359 15,365 15,208	460,4	68	89,4 93,0 88,2	291 305 310	450 445 461	385 402 407	569 563 582	1110 1170 1100
58	4B/24 4B/23 4B/22	IV IV IV	15,219 15,256 15,347	517,5	72	117,1 119,5 122,6	304 339 281	549 529 595	349 441 374	684 661 737	900 950 870

Tab. 8: Brennstoff- und Bestrahlungsdaten der Kapselversuchsgruppe 4b

.

- 9

I

Kapselversuchsgruppe 5a

Dieses als "integrierter Dichteversuch" bezeichnete Experiment hatte die Aufgabe, das Bestrahlungsverhalten des oxidischen Brennstoffes in Abhängigkeit von der Dichte zu ermitteln. In einem Brennstabprüfling werden jeweils Brennstofftabletten unterschiedlicher Dichte bestrahlt.

Dokumentation: KFK-Bericht, demnächst

Brennstoff:	80,5%	UO ₂ -19,	5% Pu	⁰ 2, 84,	, 87,	90,	93%	TD
Isotopenz	usammen	.setzung	des 1	Pu: I	?u-239	9 9	90,85	5%
				I	?u−24()	8,27	7%
				I	Pu−24	1	0,84	47
				I	2u−242	2	0,04	472
0/M-Verhä	ltnis:	1,98					•	
Brennstof	fsäulen	länge:	80 m	n				
Brennstof	fdurchm	esser:	6,12	mm				

diametraler Kaltspalt: 95 µm Bestrahlungsdaten: Tab. 9.

Kapselversuchsgruppe 5b

Brennstoff: UO ₂ -PuO ₂ , Pu-Anreicher	ung 35%	
Isotopenzusammensetzung des Pu:	Pu-239	90 , 84%
	Pu-240	8,27%
	Pu-241	0,85%
	Pu-242	0,04%
Tablettendichte: 86% TD		
0/M-Verhältnis: 1,98		
Brennstoffdurchmesser: 3,95 mm		

Brennstoffsäulenlänge: 80 mm

diametraler Kaltspalt: 150 ± 35 µm

Die Brennstoffmenge pro Stab und die Bestrahlungsdaten sind der Tab.10 zu entnehmen.

KVE	Prüflg.	Probe	Dichte % TD	Zeit d	Abschal- tungen	Abbrand MWd/kg ¹)	Stabl. mittl.	W/cm max.	Hülltem mittl	p., ^o C max.	т _т , ^о с
74	5A8	9	93,4	276,0	36	43,6	403	571	497	668	ca. 1700
		8	90,4	276,0	36		403	571	497	668	ca. 1700
73	5A6	9	93,1	91,4	14	16,0	327	502	420	598	ca. 1500
		8	84,2	91,4	14	·	327	502	420	598	ca. 1500
70			<u> </u>								
72	5A4	9	89,7	32,9	6	5,8	448	511	543	608	ca. 1700
		8	93,0	32,9	6		448	511	543	608	ca. 1700
									l		

1) Auf Grund thermischer Daten berechnet

Tab.	9:	Brennstoff-	und	Bestrahlungsdaten	der	Kapselversuchsgruppe	5a
				0			

1

KVE	Prüflg.	Brennstoff- menge g	Zeit d	Abschal- tungen	Abbrand ^{l)} MWd/kgM	Stableist mittl.	., W/cm max.	Hülltemp mittl.	., ^O C max.	T _m ,	°c
77	5B/4 5B/3 5B/2	9,4176 9,4241 9,4376	321,6	36	116,8 113,6 109,2	351 366 377	453 462 522	345 358 367	432 440 491	ca.	1400 ²⁾
80	5B/7 5B/6 5B/5	9,4284 9,4055 9,4661	342,7	38	114,5 113,6 109,9	345 343 333	469 476 443	340 338 330	446 452 423	ca.	1400 ²⁾
81	5B/9 5B/8 5B/1	9,3961 9,4025 9,5585	265,8	29	90,6 92,2 90,6	351 358 357	411 478 553	344 350 349	394 451 515	ca.	1400 ²⁾
82	5B/12 5B/11 5B/10	9,3908 9,3996 9,4103	265,8	29	93,5 90,5 85,7	362 352 331	468 475 475	353 344 327	442 448 448	ca.	1400 ²⁾ "

1) Auf Grund thermischer Daten berechnet

2) Teilweise starke axiale Brennstoffverlagerungen

Tab. 10: Brennstoff- und Bestrahlungsdaten der Kapselversuchsgruppe 5b

12 -

I

2.2 Bestrahlungen im BR 2

Die Bestrahlungen im belgischen Reaktor BR 2 in Mol erfolgten hinter einer Cadniumabschirmung. Damit lag das Intensitätsmaximum des Neutronenflusses im epithermischen Bereich. Die Längen der Brennstäbe bzw. der Brennstoffsäulen waren erheblich grösser als bei den Prüflingen der FR 2-Kapselversuchsgruppen, so dass axiale Stableistungs- und Hülltemperaturunterschiede das Brennstoff- und Spaltgasverhalten beeinflussten.

Experiment Mol 7A

Hierbei handelt es sich um die Bestrahlung eines Brennstabbündels mit sieben Stäben in einem Natrium-Loop.

Dokumentation: /6/ Versuchsauswertung: /7/ Brennstoff: 80% UO2-20% PuO2, 88,4% TD 91 % Isotopenzusammensetzung des Pu: Pu-239 Pu-240 8,2 % Pu-241 0,74% Pu-242 0,04% Pu-238 0,02% U-235-Anreicherung des U: 79% 0/M-Verhältnis: 1.98 Brennstoffdurchmesser: 5,01 mm Brennstoffsäulenlänge: 500 mm diametraler Kaltspalt: 120 µm Bestrahlungsbedingungen: Bestrahlungsdauer (Vollasttage) 139 d Zahl der Abschaltungen 17 Abbrand, gemittelt über die Stablänge 35 MWd/kgM 11 43 Abbrand, maximal maximale Stableistung 590 W/cm 600⁰C maximale Hüllmittentemperatur

Diese Werte gelten für die Aussenstäbe. Abbrand und Stableistung des Zentralstabes lagen um 5 bis 10% niedriger. Bezüglich des genauen zeitzeitlichen und axialen Verlaufs des Abbrandes, der Stableistung und der Hülltemperatur wird auf /6/ verwiesen.

Experiment Mol 8 B

Im Rahmen dieses Experiments wurden zwei Brennstäbe, die mit Druckgebern zur kontinuierlichen Messung des Spaltgasdruckes ausgerüstet waren, in Bestrahlungskapseln bestrahlt.

Brennstoff: 80% UO2-20% PuO2 Isotopenzusammensetzung des Pu: Pu-239 90,85% Pu-240 8,27% 0,84% Pu-241 Pu-242 0,04% U-235-Anreicherung des U: 93,2% Brennstoffdichte: 84% TD O/M-Verhältnis: 1,98 Brennstoffdurchmesser: 5,1 mm Brennstoffsäulenlänge: 500 mm Brennstoffgewicht pro Stab: 8 Bl 94,35 g 8 B2 93,70 g diametraler Kaltspalt: 140 um. B2 Bestrahlungsbedingungen B1 Bestrahlungsdauer (Bestrahlungstage 506 412 über 80% Reaktorleistung) Abbrand, gemittelt über Stablänge, MWd/kg 89,6 115 299 mittlere Stableistung, W/cm 308 maximale Stableistung, W/cm 484 453 mittlere Hüllaussentemperatur, ^oC 496 518

Experiment Mol 8 C

maximale Hüllaussentemperatur, ^oC

Dieses Experiment umfasst die Bestrahlung von zehn mit Druckaufnehmern ausgerüsteten Brennstäben in je einer Bestrahlungskapsel.

638

620

Brennstoff: 80% UO₂- 20% PuO₂ Isotopenzusammensetzung des Pu ähnlich wie bei Mol 8 B U-235-Anreicherung des U: 93% O/M-Verhältnis: 1,99 Brennstoffdurchmesser: 5,1 mm Brennstoffsäulenlänge: 520 mm

Die übrigen Brennstoffdaten sowie die Bestrahlungsbedingungen sind in der Tab. 11 aufgeführt. Die Bestrahlungsdaten sind internen Zyklusberichten entnommen. Eine experimentelle Bestätigung des berechneten Abbrandes steht noch aus.

Stab	Pelletdichte diam.Ausgangs- spalt % TD µm		Ab- brand MWd/kgM	Stablei max.	st.,W/cm mittl.	max.Hü11- temp. oC
1	95	70	79,4	564	340	662
2	95	70	84,9	344	215	686
3	95	70	90,1	582	380	580
4	95	70	94,1	392	245	666
5	87	70	96,4	594	395	646
6	87	70	92,2	382	235	590
7	87	70	95,8	590	395	614
8	87	70	82,8	376	215	678
9	87, 90,8, 95	25, 70, 127	74,0	555	335	662
10	87, 90,8, 95	25, 70, 127	93,8	586	375	620

Tab. 11: Brennstoff- und Bestrahlungsdaten der Mol 8 C-Stäbe

2.3 Bestrahlungen im DFR

Experiment DFR-304

Drei Brennstäbe wurden in einem Trefoil-Einsatz im schnellen Fluss des Dounreay Fast Reactors bestrahlt.

Dokumentation: /8/

Versuchsauswertung: /9/

- 15 -

Brennstoff: 80% UO₂-20% PuO₂, 89,2 % TD Isotopenzusammensetzung des Pu: Pu-239 90,75%

> Pu-240 8,3 % Pu-241 0,9 %

U-235-Anreicherung des U: 93% O/M-Verhältnis: 1,993 - 1,997 Tablettendurchmesser: 5,395 mm Brennstoffsäulenlänge: 360 mm mittleres Brennstoffgewicht pro Stab: 80,8 g diametraler Kaltspalt: 125 µm

Bestrahlungsbedingungen:	
Bestrahlungsdauer (Vollasttage)	220 d
Abbrand, gemittelt über die Stablänge	54,5 MWd/kg
maximal	59,0 "
maximale Stableistung	520 W/cm
maximale Hüllinnentemperatur	690 ⁰ C

Es lassen sich folgende mittlere Brennstofftemperaturen gegen Bestrahlungsende abschätzen:

unteres (heisses) Brennstoffende	ca.	1650 ⁰ C
Mitte der Brennstoffsäule	11	1650 ⁰ C
oberes (kaltes) Brennstoffende	"	1350 ⁰ C

Experiment DFR-350

Im Rahmen der Zusammenarbeit innerhalb von EURATOM wurde ein Brennstabbündel mit 77 Stäben im DFR bestrahlt; 23 Stäbe dieses Bündels wurden von der GfK hergestellt.

Dokumentation: /10/ Versuchsauswertung: /11/

Brennstoff: 80% UO ₂ -20% PuO ₂			
Isotopenzusammensetzung des Pu:	Pu-239	91,09%	
	Pu-240	8,15%	
	Pu-241	0,72%	
	Pu-242	0,04%	

U-235-Anreicherung des U: 86%
Brennstoffdichte ca. 90% TD
O/M-Verhältnis: 1,98
Tablettendurchmesser: 5,1 mm
Brennstoffsäulenlänge: 290 mm
Brennstoffgewicht pro Stab: ca. 55,5 g
diametraler Kaltspalt: 140 µm
Bestrahlungsbedingungen:
Bestrahlungsdauer: 202,7 Vollasttage
Reaktorabschaltungen: 19
mittlerer Abbrand: 48,6 MWd/kg
Abbrand- und Hülltemperaturverlauf s. Abb.l
Stableistungsverlauf s. Abb. 2
mittlere Brennstofftemperaturen gegen Bestrahlungsende
unteres Brennstoffende ca. 1500 ⁰ C
Mitte der Brennstoffsäule "1570 ⁰ C
oberes Brennstoffende "1500 ⁰ C

Die Temperaturberechnungen mit dem Rechenprogramm SATURN ergaben infolge der weitgehend gegenläufigen axialen Änderungen von Stableistung und Hülltemperatur relativ wenig voneinander abweichende Temperaturverteilungen für die verschiedenen axialen Positionen /12/. Beim Vergleich mit den DFR-304-Stäben ist zu beachten, dass diese Stäbe so angeordnet waren, dass sich die Mitte der Brennstoffsäule 2 cm unter Coremitte befand, also fast an der Stelle des maximalen Neutronenflusses, der 2,9 cm unter Coremitte auftritt. An dieser Stelle ist auch die Hülltemperatur bereits ziemlich hoch. Die 7 cm kürzeren Brennstoffsäulen der DFR-350-Stäbe dagegen waren weiter nach unten verschoben, so dass die kälteren oberen Enden die höheren Stableistungen aufwiesen.

Experiment DFR-435

Dokumentation: /13/

Auf Grund der erfolgreichen Bestrahlung des Brennstabbündels DFR-350 wurde beschlossen, acht Stäbe aus diesem Bündel unter der Bezeichnung DFR-435 weiter zu höherem Abbrand im DFR zu bestrahlen.Drei Stäbe blie-

- 17 -

ben dabei ohne Hüllrohrschaden. Sie erreichten folgende mittlere Abbrände:

Hierbei wurde, abweichend von /13/, ein Umrechnungsfaktor 10 MWd/kgM ≙ 1,07% Abbrand angenommen. Die Stableistungen bei der Weiterbestrahlung, die in Trefoileinsätzen stattfand, lag bei den verwendeten Reaktorpositionen um 4,5 bis 7% niedriger als bei DFR-350 im zentralen Hexagon.

2.4 Bestrahlungen im Rapsodie

Experiment Rapsodie-Monitor

Dieses Experiment umfasst die Bestrahlung von fünf Stäben. Bei zwei Stäben, AU 31 und BU 18, wurde das freie Spaltgas bestimmt.

Brennstoff: 70% UO₂-30% PuO₂, 87% TD U-235-Anreicherung des U: 83% O/M-Verhältnis Stab AU 31: 1,98 BU 18: 1,965 Pelletdurchmesser: 5,06 mm Brennstoffsäulenlänge: 320 mm Brennstoffgewicht: ca. 61,25 g diametraler Kaltspalt: 130 ± 40 µm.

Bestrahlungsbedingungen:

mittlerer Abbrand	56,6 MWd/kgM
max.Stableistung am Bestrahlungsende:	425 W/cm
max. Hüllinnenwandtemperatur:	635 ⁰ C

Experiment Rapsodie-Bündel

Die Bestrahlungen erfolgten in zwei Bündeln mit je 34 Brennstäben. Dokumentation: /14/ Brennstoff- und Bestrahlungsdaten: 70% UO₂-30% PuO₂, 87% TD U-235-Anreicherung des U: 83% max. Hüllmittentemperatur: ca. 610°C übrige Daten s.Tab. 12.

Bün- del	Stab	0/M	Brennstoff- säule mm	nnstoff- Gewicht Abbran le mm g max.		MWd/kg mitt1.	max.Stab- leistg.W/cm		
1	AM 07	2,000	320,18	62,1	92,7	80,1	408,7		
	AM 21	2,000	321,62	62,0	95,6	82,6	418,4		
	AM 35	2,000	317,86	60,4	99,0	85,5	426,2		
	BM 10	1,965	320,18	59,9	92,6	80,0	393,2		
	BM 12	1,965	323,00	61,3	92,4	79,8	398,9		
	BM 14	1,965	318,60	60,1	92,4	79,8	396,6		
	BM 16	1,965	318,50	59,7	94,1	81,3	400,8		
2	AU 20	1,990	322,80	61,4	92,6	80,0	407,1		
	AU 22	1,986	319,38	61,2	92,7	80,1	403,9		
	AU 24	1,977	317,90	60,9	97,5	84,3	423,8		
	AU 26	1,977	320,06	61,0	99,1	85,6	427,7		
	AU 37	1,977	318,12	61,0	99,1	85,6	429,3		
	BU 14	1,965	323,30	61,1	97,5	84,2	417,7		

Tab.12: Brennstoff und Bestrahlungsdaten der untersuchten Rapsodie-Stäbe

3. Experimentelle Ergebnisse

3.1 Verfahren der Spaltgasbestimmung

Die aus dem Brennstoff freigesetzten Spaltgasmengen wurden nach Anbohren der Brennstäbe unter Vakuum und Absaugen des gesamten Gases gaschromatographisch bestimmt (freies Spaltgas F). Zur Bestimmung der Menge und der axialen Verteilung des im Brennstoff zurückgehaltenen Spaltgases wurden an verschiedenen Stellen der Stäbe Brennstoffproben entnommen. Die Brennstoffmenge pro Probe betrug 1,5 bis 2g. Diese Proben wurden zunächst in einer Kugelmühle gemahlen und das während des Mahlprozesses freigesetzte Spaltgas bestimmt. Dieses Spaltgas wird im folgenden kurz als Porenspaltgas P bezeichnet, denn es stammt zum überwiegenden Teil aus Poren und Blasen. Beim Mahlen wurde der Brennstoff bis auf Teilchengrössen unter 1 µm zerkleinert. Dadurch dürfte sämtliches Spaltgas freigesetzt worden sein, das sich in intragranularen Blasen mit Durchmessern bis unterhalb 0,1 µm oder in Blasen und Poren an Korngrenzen und Subkorngrenzen befand. Die gemahlenen Proben wurden anschliessend in Salpetersäure aufgelöst, wobei das restliche Spaltgas freigesetzt wurde, das sich im Brennstoff in bestrahlungsbedingter Lösung oder in sehr kleinen Blasen innerhalb der Körner befand (Gitterspaltgas G).

3.2 Spaltgasdaten

In den folgenden Tabellen werden die Spaltgasdaten angegeben in Nmm³ Spaltgas pro g Oxidbrennstoff für alle drei Spaltgasanteile und in Spaltgasatome pro ursprünglich vorhandenem U- und Pu-Atom für das gebundene Spaltgas. Beim freigesetzten Spaltgas wird ausserdem die prozentuale Freisetzung angegeben.

3.2.1 FR 2-Bestrahlungen

Pro Brennstab wurden meist zwei Proben zur Bestimmung des gebundenen Spaltgases genommen. Wegen der geringen Länge der Stäbe liess sich keine systematische Abhängigkeit der Spaltgaskonzentration von der axialen Position im Stab erkennen.Es wird deshalb der Mittelwert beider Proben verwendet. Die Spaltgasdaten der FR 2-Kapselversuchsgruppen sind in den Tab. 13 bis 19 aufgeführt.

3.2.2 BR 2-Bestrahlungen

Experiment Mol 7 A

Wegen der Länge der Brennstoffsäulen dieser Stäbe und der axialen Unterschiede der Hülltemperatur, der Stableistung und des Abbrandes wurden zur Bestimmung des gebundenen Spaltgases mehrere Proben, verteilt über die Stablänge, entnommen. Die Ergebnisse der Spaltgasbestimmungen sind in der Tab. 20 aufgeführt. Zur besseren Anschaulichkeit ist die Konzentration des gebundenen Spaltgases in Abhängigkeit von der axialen Position zusammen mit dem Stableistungs- und Hülltemperaturverlauf in der Abb. 3 dargestellt.

- 20 -

KVE	Prüfling	freie	es Spalt	gas F	Por	Porenspaltgas P		Gitterspaltgas G			P + G			F + P + G	
	11011110	mm ³ /g	%	Xe/Kr	mm ³ /g	At./U-At.	Xe/Kr	mm ³ /g	At./U-At.	Xe/Kr	mm ³ /g	At./U-At.	Xe/Kr	mm ³ /g	Xe/Kr
4	D	-	—	-	1,49	0,02.10 ⁻³	3,0	12,98	0,16.10 ⁻³	6,5	14,48	0,17.10 ⁻³	5,9	-	-
	С	0,16	1,0	6,5	6,56	0,08.10^3	5,5	9,34	0,11.10 ⁻³	8,0	15,91	0,19.10 ⁻³	6,8	16,07	6,8
	В	3,65	30,3	6,6	2,60	0,03.10 ⁻³	4,4	5,75	0,07.10 ⁻³	6,5	8,35	0,10·10 ⁻³	5,8	12,00	5,9
	A	0,19	1,5	6,0	2,40	0,03.10 ⁻³	5,2	9,98	0,12.10 ⁻³	7,3	12,38	0,15.10 ⁻³	6,8	12,59	6,8
	Mittel	1,33	9,5	6,6	3,26	0,04.10 ⁻³	4,8	9,51	0,12.10 ⁻³	7.0	12,78	0,15·10 ⁻³	6,3	14,11	6,5
5	F	-	-	-	19,57	0,24.10 ⁻³	6,7	92,21	1,11.10 ⁻³	7,1	111,78	1,35.10 ⁻³	7,0	-	-
	E	49,19	28,3	6,3	37,35	0,45.10 ⁻³	6,8	87,47	1,05.10 ⁻³	5,2	124,81	1,50.10 ⁻³	5,7	174,00	5,9
	Mittel	49,19	29,4	6,3	28,46	0,34.10 ⁻³	6,8	89,84	1,08.10 ⁻³	6,2	118,30	1,42.10 ⁻³	6,3	167,49	6,3
												ļ			

Tab. 13: Spaltgasdaten der FR 2-Kapselversuchsgruppe 1

- 21

ł

KVE	Prüflg.	frei 3	es Spal	tgas F	Po	renspaltgas	Р	Gitt	erspaltgas G		3	P + G		F + P + G	
		mm /g	×	Xe/Kr	(e/Kr mm ³ /g At./U-At. Xe/Kr mm ⁷ /g At./U-At. Xe/Kr		mm /g	At./U.At.	Xe/Kr	mm /g	Xe/Kr				
11	A 8	7,58	18,1	7,4	18,40	0,22.10 ⁻³	7,1	15,94	0,19.10 ⁻³	6,1	34,34	0,41.10 ⁻³	6,6	41,92	6,8
	A 7	13,83	18,2	7,3	26,73	0,32·10 ⁻³	6,7	35,48	0,43.10 ⁻³	7,4	62,21	0,75.10 ⁻³	7,1	76,04	7,2
	A 6	13,78	17,4	7,1	21,56	0,26.10 ⁻³	5,0	44,02	0,53.10 ⁻³	7,6	65,58	0,79.10 ⁻³	6,7	79,36	6,8
	A 5	-	-	-	19,32	0,23.10 ⁻³	4,8	36,22	0,44.10 ⁻³	7,4	55,54	0,67.10 ⁻³	6,5	-	-
	Mittel	11,73	17,7	7,2	21,50	0,26.10 ⁻³	5,9	32,92	0,40.10 ⁻³	7,3	54,42	0,66.10 ⁻³	6,8	66,15	6,9
13	A 3	-	-	-	27,65	0,33.10 ⁻³	6,0	101,23	1,22.10 ⁻³	8,5	128,88	1,55.10 ⁻³	7,9	_	-
	A 2	-	-	-	24,05	0,29·10 ⁻³	5,7	119,95	1,44.10 ⁻³	8,5	144,01	1,74.10 ⁻³	8,0	-	-
	A 1	10,91	6,7	5,7	26,30	0,32.10 ⁻³	6,1	125,97	1,52.10 ⁻³	8,3	152,27	1,84.10	7,9	163,18	7,8
	Mittel	10,91	7,1	5,7	26,00	0,31.10 ⁻³	5,9	115,72	1,39.10 ⁻³	8,4	141,72	1,71.10 ⁻³	7,9	152,63	7,8

Tab.	14:	Spaltgasdaten	der	FR	2-Kapselversuchsgruppe	2
------	-----	---------------	-----	----	------------------------	---

- 22

Т

D	freies	Spalt;	gas F	Porenspaltgas P			Gitterspaltgas G			P + G			F + P + G		
Prufig.	mm ³ /g	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Xe:Kr	mm ³ /g	At./U-At.	Xe/Kr	mm ³ /g	At./U-At.	Xe/Kr	mm ³ /g	At./U-At.	Xe/Ki	r mm ³ /g	Xe/Kr	
1	120,23	58,8	7,2	47,63	0,57·10 ⁻³	5,4	36,52	0,44.10 ⁻³	9,0	84,15	1,01.10-3	7,0	204,37	7,1	
5	85,30	44,4	7,9	42,99	0,52·10 ⁻³	4,8	63,94	0,77·10 ⁻³	9,8	106,92	1,29.10 ⁻³	7,9	192,22	7,9	
7	41,67	35,7	9,7	17,51	0,21.10 ⁻³	1,7	57,50	0,69.10 ⁻³	13,7	75,01	0,90.10 ⁻³	10,9	116,67	10,5	
11	239,20	47,7	8,3	141,62	1,71.10 ⁻³	6,5	120,79	1,45.10 ⁻³	7,8	262,41	3,16.10 ⁻³	7,1	501,61	7,7	
13	189,61	41,3	6,4	140,53	1,69.10 ⁻³	5,8	128,00	1,54.10 ⁻³	9,1	268,53	3,23.10 ⁻³	7,4	458,14	7,0	
3	191,37	53,6	6,9	69,42	0,84.10 ⁻³	6,2	96,16	1,16.10 ⁻³	6,8	165,59	1,99.10 ⁻³	6,6	356,96	6,8	
9	247,76	60,2	8,2	83,96	1,01.10 ⁻³	5,3	76,67	0,92.10-3	9,5	163,62	1,97·10 ⁻³	7,3	411,38	7,8	
6	685,83	31,6	6,4	1187,56	14,30.10 ⁻³	7,7	293,97	3,54·10 ⁻³	7,7	1481,53	17,84·10 ⁻³	7,7	2167,37	7,3	
2	501,38	47,7	7,0	429,22	5,17·10 ⁻³	7,2	120,27	1,45.10 ⁻³	8,2	549,49	6,62·10 ⁻³	7,5	1050,87	7,3	
8	195,78	30,9	2,6	266,26	3,21·10 ⁻³	6,3	171,67	2,07·10 ⁻³	8,8	437,93	5,27·10 ⁻³	7,3	633,71	5,8	
10	318,54	40,5	4,6	295,93	3,56.10 ⁻³	5,8	172,05	2,07.10 ⁻³	9,1	467,98	5,63·10 ⁻³	7,0	786,52	6,0	
12	1395,78	-	6,9	_	-	-	-	-	-	-	-	-	-	-	
14	769,46	37,0	5,8	889,67	10,71.10 ⁻³	7,5	418,46	5,04.10 ⁻³	10,0	1308,13	15,75.10 ⁻³	8,3	2077,58	7,4	
BU	1663,31	61,1	8,5	791,56	9,53·10 ⁻³	4,6	268,89	3,24·10 ⁻³	8,8	1060,46	12,77.10 ⁻³	5,7	2723,77	7,4	
16	1727,00	59,1	8,7	930,00	11,197-10 ⁻³	7,7	265,84	3,20.10-3	8,2	1195,84	14,40.10 ⁻³	7,8	2922,84	8,3	
15	207,66	30,0	7,0	267,78	3,22·10 ⁻³	6,4	216,33	2,61·10 ⁻³	8,6	484,11	5,83·10 ⁻³	7,4	691,77	7,3	
AG	-	-	-	312,50	3,76.10 ⁻³	6,8	163,49	1,97.10 ⁻³	8,0	475,99	5,73.10-3	7,2	-	-	
CG	266,11	35,4	6,9	332,48	$4,00.10^{-3}$	6,0	152,25	$1,83 \cdot 10^{-3}$	5,7	484,73	$5,84 \cdot 10^{-3}$	5,9	750,84	6,3	
DU	225,78	33,7	7,0	215,96	2,60.10 ⁻³	6,6	227,77	2,74.10-3	8,3	443,73	5,34.10	7,5	669,51	7,3	
	Prüflg. 1 5 7 11 13 3 9 6 2 8 10 12 14 BU 16 15 AG CG DU	Prüflg. freies mm ³ /g 1 120,23 85,30 5 85,30 7 41,67 11 239,20 13 191,37 9 247,76 6 685,83 2 501,38 8 195,78 10 318,54 12 1395,78 14 769,46 BU 1663,31 16 1727,00 15 207,66 AG - CG 266,11 DU 225,78	Prüf1g. freies Spalt; mm ³ /g Spalt; z 1 120,23 58,8 5 85,30 44,4 7 41,67 35,7 11 239,20 47,7 13 191,37 53,6 9 247,76 60,2 6 685,83 31,6 2 501,38 47,7 8 195,78 30,9 10 318,54 40,5 12 1395,78 - 14 769,46 37,0 BU 1663,31 61,1 16 1727,00 59,1 15 207,66 30,0 AG - - CG 266,11 35,4 DU 225,78 33,7	Prüf1g.freiesSpaltgas F ma ³ /gXe:Kr1120,2358,87,2585,3044,47,9741,6735,79,711239,2047,78,313189,6141,36,43191,3753,66,99247,7660,28,26685,8331,66,42501,3847,77,08195,7830,92,610318,5440,54,6121395,78-6,914769,4637,05,8BU1663,3161,18,5161727,0059,18,715207,6630,07,0AGCG266,1135,46,9DU225,7833,77,0	Prüiflg. freies Spaltgas F mm ³ /g Xe:Kr mm ³ /g 1 120,23 58,8 7,2 47,63 5 85,30 44,4 7,9 42,99 7 41,67 35,7 9,7 17,51 11 239,20 47,7 8,3 141,62 13 189,61 41,3 6,4 140,53 3 191,37 53,6 6,9 69,42 9 247,76 60,2 8,2 83,96 6 685,83 31,6 6,4 1187,56 2 501,38 47,7 7,0 429,22 8 195,78 30,9 2,6 266,26 10 318,54 40,5 4,6 295,93 12 1395,78 - 6,9 - 14 769,46 37,0 5,8 889,67 BU 1663,31 61,1 8,5 791,56 16 1727,00 59,1 8,7 <td< td=""><td>Früf1g.freies Spaltgas F mm $^3/g$Porenspaltgas mm $^3/g$At./U-At.1120,2358,87,247,630,57.10^{-3}585,3044,47,942,990,52.10^{-3}741,6735,79,717,510,21.10^{-3}11239,2047,78,3141,621,71.10^{-3}13189,6141,36,4140,531,69.10^{-3}3191,3753,66,969,420,84.10^{-3}9247,7660,28,283,961,01.10^{-3}6685,8331,66,41187,5614,30.10^{-3}2501,3847,77,0429,225,17.10^{-3}8195,7830,92,6266,263,21.10^{-3}10318,5440,54,6295,933,56.10^{-3}121395,78-6,914769,4637,05,8889,6710,71.10^{-3}BU1663,3161,18,5791,569,53.10^{-3}161727,0059,18,7930,0011,19710^{-3}15207,6630,07,0267,783,22.10^{-3}AG312,503,76.10^{-3}DU225,7833,77,0215,962,60.10^{-3}</td><td>Prüf1g.freiesSpaltgas F m³/gPorenspaltgas P m³/gPorenspaltgas P m³/g1120,2358,87,247,630,57.10⁻³5,4585,3044,47,942,990,52.10⁻³4,8741,6735,79,717,510,21.10⁻³1,711239,2047,78,3141,621,71.10⁻³6,513189,6141,36,4140,531,69.10⁻³5,83191,3753,66,969,420,84.10⁻³6,29247,7660,28,283,961,01.10⁻³5,36685,8331,66,41187,5614,30.10⁻³7,72501,3847,77,0429,225,17.10⁻³6,310318,5440,54,6295,933,56.10⁻³5,8121395,78-6,914769,4637,05,8889,6710,71.10⁻³7,715207,6630,07,0267,783,22.10⁻³6,4AG312,503,76.10⁻³6,8CG266,1135,46,9332,484,00.10⁻³6,0DU225,7833,77,0215,962,60.10⁻³6,6</td><td>Prüiflg.freiesSpaltgas F m^3/gPorenspaltgas P m^3/gGit m^3/g1120,2358,87,247,630,57 · 10^{-3}5,436,52585,3044,47,942,990,52 · 10^{-3}4,863,94741,6735,79,717,510,21 · 10^{-3}1,757,5011239,2047,78,3141,621,71 · 10^{-3}6,5120,7913189,6141,36,4140,531,69 · 10^{-3}5,8128,003191,3753,66,969,420,84 · 10^{-3}6,296,169247,7660,28,283,961,01 · 10^{-3}5,376,676685,8331,66,41187,5614,30 · 10^{-3}7,7293,972501,3847,77,0429,225,17 · 10^{-3}7,2120,278195,7830,92,6266,263,21 · 10^{-3}5,8172,05121395,78-6,914769,4637,05,8889,6710,71 · 10^{-3}7,5418,46BU1663,3161,18,5791,569,53 · 10^{-3}6,4216,33AG312,503,76 · 10^{-3}6,8163,4915207,6630,07,0267,783,22 · 10^{-3}6,4216,33AG312,503,76 · 10^{-3}</td><td>freies Spaltgas F mm³/gPorenspaltgas P mm³/gGitterspaltgas mm³/g1120,2358,87,247,63$0,57 \cdot 10^{-3}$5,4$36,52$$0,44 \cdot 10^{-3}$585,3044,47,942,99$0,52 \cdot 10^{-3}$4,8$63,94$$0,77 \cdot 10^{-3}$741,6735,79,717,51$0,21 \cdot 10^{-3}$1,7$57,50$$0,69 \cdot 10^{-3}$11239,2047,78,3141,62$1,71 \cdot 10^{-3}$6,5120,79$1,45 \cdot 10^{-3}$13189,6141,36,4140,53$1,69 \cdot 10^{-3}$5,8128,00$1,54 \cdot 10^{-3}$9247,7660,28,283,96$1,01 \cdot 10^{-3}$5,376,67$0,92 \cdot 10^{-3}$6685,8331,66,41187,5614,30 \cdot 10^{-3}7,7293,97$3,54 \cdot 10^{-3}$2501,3847,77,0429,22$5,17 \cdot 10^{-3}$7,2120,27$1,45 \cdot 10^{-3}$8195,7830,92,6266,26$3,21 \cdot 10^{-3}$5,8172,05$2,07 \cdot 10^{-3}$10318,5440,54,6295,93$3,56 \cdot 10^{-3}$5,8172,05$2,07 \cdot 10^{-3}$121395,78-6,914769,4637,05,8889,67$10,71 \cdot 10^{-3}$7,5418,46$5,04 \cdot 10^{-3}$161727,0059,18,793,00011,197 to^{-3}7,7265,84<</td><td>freies Spaltgas F mm³/gOrenspaltgas P mm³/gGitterspaltgas G mm³/g1120,2358,87,247,630,57.10⁻³5,436,520,44.10⁻³9,0585,3044,47,942,990,52.10⁻³4,863,940,77.10⁻³9,8741,6735,79,717,510,21.10⁻³1,757,500,69.10⁻³13,711239,2047,78,3141,621,71.10⁻³6,5120,791,45.10⁻³9,83191,3753,66,969,420,84.10⁻³6,296,161,16.10⁻³6,89247,7660,28,283,961,01.10⁻³5,376,670,92.10⁻³9,56685,8331,66,41187,5614,30.10⁻³7,7293,973,54.10⁻³8,28195,7830,92,6266,263,21.10⁻³6,3171,672,07.10⁻³8,810318,5440,54,6295,933,56.10⁻³5,8172,052,07.10⁻³8,810318,5440,55,8889,6710,71.10⁻³7,5418,465,04.10⁻³8,810138,5440,55,8889,6710,71.10⁻³7,7265,843,20.10⁻³8,810138,5440,55,8889,6710,71.10⁻³7,7265,843,20.10⁻³8,811127,0059,1</td><td>freies Spaltgas F mm³/gForenspaltgas P mm³/gGitterspaltgas G mm³/gAt./U-At.Xe:KrGitterspaltgas G mm³/g1120,2358,87,247,63$0,57\cdot10^{-3}$5,436,52$0,44\cdot10^{-3}$9,084,15585,3044,47,942,99$0,52\cdot10^{-3}$4,863,94$0,77\cdot10^{-3}$9,8106,92741,6735,79,717,51$0,21\cdot10^{-3}$1,757,50$0,69\cdot10^{-3}$7,8262,4113189,6141,36,4140,53$1,69\cdot10^{-3}$5,8128,00$1,54\cdot10^{-3}$9,1268,533191,3753,66,969,42$0,84\cdot10^{-3}$6,296,16$1,16\cdot10^{-3}$6,8165,599247,7660,28,283,96$1,01\cdot10^{-3}$7,7293,973,54\cdot10^{-3}7,71481,532501,3847,77,0429,22$5,17\cdot10^{-3}$7,2120,27$1,45\cdot10^{-3}$8,2549,498195,7830,92,6266,263,21\cdot10^{-3}6,3171,672,07·10^{-3}8,8437,9310318,5440,54,6295,933,56·10^{-3}5,8172.052,07·10^{-3}8,81060,46161727,0059,18,793,00011,19740^{-3}7,7265,843,20·10^{-3}8,21195,8415207,6630,07,0<!--</td--><td>Prüfigfreies m^3/gSpaltgas XPorenspaltgas m^3/gAt./U-At. Xe/KrGitterspaltgas m^3/gGitterspaltgas At./U-At.P + 6 mm^3/g1120,2358,87,247,630,57 \cdot 10^{-3} 0,57 \cdot 10^{-3}5,436,520,44 \cdot 10^{-3} 0,77 \cdot 10^{-3}9,084,151,01 \cdot 10^{-3} 1,02 \cdot 10^{-3}585,3044,47,942,990,52 \cdot 10^{-3} 0,21 \cdot 10^{-3}5,436,520,44 \cdot 10^{-3} 0,77 \cdot 10^{-3}9,8106,921,29 \cdot 10^{-3} 0,90 \cdot 10^{-3}11239,2047,78,3141,621,71 \cdot 10^{-3} 1,69 \cdot 10^{-3}6,5120,791,45 \cdot 10^{-3} 0,84 \cdot 10^{-3}7,8262,41 3,16 \cdot 10^{-3}3191,3753,66,969,420,84 \cdot 10^{-3} 1,69 \cdot 10^{-3}6,296,161,16 \cdot 10^{-3} 0,92 \cdot 10^{-3}6,8165,591,99 \cdot 10^{-3}9247,7660,28,283,961,01 \cdot 10^{-3}5,376,670,92 \cdot 10^{-3}9,5163,621,97 \cdot 10^{-3}2501,3847,77,0429,225,17 \cdot 10^{-3}7,2120,271,45 \cdot 10^{-3}8,2549,496,62 \cdot 10^{-3}10318,5440,54,6295,933,56 \cdot 10^{-3}5,8172,052,07 \cdot 10^{-3}8,8437,935,27 \cdot 10^{-3}121395,78-6,914769,4637,05,8889,6710,71 \cdot 10^{-3}7,5<</br></br></td><td>Prüfigfreies Spaltgas F m³/gForenspaltgas F Xe:KrForenspaltgas F mm³/gGitterspaltgas C Mm³/gP + G1120,2358,87,247,630,57.10⁻³5,436,520,44.10⁻³9,084,151,01.10⁻³7,0585,3044,47,942,990,52.10⁻³4,863,940,77.10⁻³9,084,151,01.10⁻³7,0741,6735,79,717,510,21.10⁻³1,757,500,69.10⁻³13,775,010,90.10⁻³10,911239,2047,78,3141,621,71.10⁻³6,5120,791,45.10⁻³7,8262,413,161.0⁻³7,113189,6141,36,4140,531,69.10⁻³5,8128,001,54.10⁻³9,5163,621,97.10⁻³7,11453,66,969,420,84.10⁻³6,296,161,16.10⁻³6,8165,591,99.10⁻³6,69247,7660,28,283,961,01.10⁻³5,376,670,92.10⁻³9,5163,621,97.10⁻³7,72501,3847,77,0429,225,17.10⁻³7,2120,271,45.10⁻³8,8437,935,27.10⁻³7,310318,5440,54,6295,933,56.10⁻³5,8172,052,07.10⁻³8,8437,935,27.10⁻³7,31113195,78-6,9<</td><td>Freis Spaltzs Porenspaltas P Gitterspaltas Gitterspaltas Gitterspaltas P P Gitterspaltas Gitterspaltas</td></td></td<>	Früf1g.freies Spaltgas F mm $^3/g$ Porenspaltgas mm $^3/g$ At./U-At.1120,2358,87,247,630,57.10^{-3}585,3044,47,942,990,52.10^{-3}741,6735,79,717,510,21.10^{-3}11239,2047,78,3141,621,71.10^{-3}13189,6141,36,4140,531,69.10^{-3}3191,3753,66,969,420,84.10^{-3}9247,7660,28,283,961,01.10^{-3}6685,8331,66,41187,5614,30.10^{-3}2501,3847,77,0429,225,17.10^{-3}8195,7830,92,6266,263,21.10^{-3}10318,5440,54,6295,933,56.10^{-3}121395,78-6,914769,4637,05,8889,6710,71.10^{-3}BU1663,3161,18,5791,569,53.10^{-3}161727,0059,18,7930,0011,19710^{-3}15207,6630,07,0267,783,22.10^{-3}AG312,503,76.10^{-3}DU225,7833,77,0215,962,60.10^{-3}	Prüf1g.freiesSpaltgas F m ³ /gPorenspaltgas P m ³ /gPorenspaltgas P m ³ /g1120,2358,87,247,630,57.10 ⁻³ 5,4585,3044,47,942,990,52.10 ⁻³ 4,8741,6735,79,717,510,21.10 ⁻³ 1,711239,2047,78,3141,621,71.10 ⁻³ 6,513189,6141,36,4140,531,69.10 ⁻³ 5,83191,3753,66,969,420,84.10 ⁻³ 6,29247,7660,28,283,961,01.10 ⁻³ 5,36685,8331,66,41187,5614,30.10 ⁻³ 7,72501,3847,77,0429,225,17.10 ⁻³ 6,310318,5440,54,6295,933,56.10 ⁻³ 5,8121395,78-6,914769,4637,05,8889,6710,71.10 ⁻³ 7,715207,6630,07,0267,783,22.10 ⁻³ 6,4AG312,503,76.10 ⁻³ 6,8CG266,1135,46,9332,484,00.10 ⁻³ 6,0DU225,7833,77,0215,962,60.10 ⁻³ 6,6	Prüiflg.freiesSpaltgas F m^3/g Porenspaltgas P m^3/g Git m^3/g 1120,2358,87,247,630,57 · 10^{-3}5,436,52585,3044,47,942,990,52 · 10^{-3}4,863,94741,6735,79,717,510,21 · 10^{-3}1,757,5011239,2047,78,3141,621,71 · 10^{-3}6,5120,7913189,6141,36,4140,531,69 · 10^{-3}5,8128,003191,3753,66,969,420,84 · 10^{-3}6,296,169247,7660,28,283,961,01 · 10^{-3}5,376,676685,8331,66,41187,5614,30 · 10^{-3}7,7293,972501,3847,77,0429,225,17 · 10^{-3}7,2120,278195,7830,92,6266,263,21 · 10^{-3}5,8172,05121395,78-6,914769,4637,05,8889,6710,71 · 10^{-3}7,5418,46BU1663,3161,18,5791,569,53 · 10^{-3}6,4216,33AG312,503,76 · 10^{-3}6,8163,4915207,6630,07,0267,783,22 · 10^{-3}6,4216,33AG312,503,76 · 10^{-3}	freies Spaltgas F mm ³ /gPorenspaltgas P mm ³ /gGitterspaltgas mm ³ /g1120,2358,87,247,63 $0,57 \cdot 10^{-3}$ 5,4 $36,52$ $0,44 \cdot 10^{-3}$ 585,3044,47,942,99 $0,52 \cdot 10^{-3}$ 4,8 $63,94$ $0,77 \cdot 10^{-3}$ 741,6735,79,717,51 $0,21 \cdot 10^{-3}$ 1,7 $57,50$ $0,69 \cdot 10^{-3}$ 11239,2047,78,3141,62 $1,71 \cdot 10^{-3}$ 6,5120,79 $1,45 \cdot 10^{-3}$ 13189,6141,36,4140,53 $1,69 \cdot 10^{-3}$ 5,8128,00 $1,54 \cdot 10^{-3}$ 9247,7660,28,283,96 $1,01 \cdot 10^{-3}$ 5,376,67 $0,92 \cdot 10^{-3}$ 6685,8331,66,41187,5614,30 \cdot 10^{-3}7,7293,97 $3,54 \cdot 10^{-3}$ 2501,3847,77,0429,22 $5,17 \cdot 10^{-3}$ 7,2120,27 $1,45 \cdot 10^{-3}$ 8195,7830,92,6266,26 $3,21 \cdot 10^{-3}$ 5,8172,05 $2,07 \cdot 10^{-3}$ 10318,5440,54,6295,93 $3,56 \cdot 10^{-3}$ 5,8172,05 $2,07 \cdot 10^{-3}$ 121395,78-6,914769,4637,05,8889,67 $10,71 \cdot 10^{-3}$ 7,5418,46 $5,04 \cdot 10^{-3}$ 161727,0059,18,793,00011,197 to^{-3}7,7265,84<	freies Spaltgas F mm ³ /gOrenspaltgas P mm ³ /gGitterspaltgas G mm ³ /g1120,2358,87,247,630,57.10 ⁻³ 5,436,520,44.10 ⁻³ 9,0585,3044,47,942,990,52.10 ⁻³ 4,863,940,77.10 ⁻³ 9,8741,6735,79,717,510,21.10 ⁻³ 1,757,500,69.10 ⁻³ 13,711239,2047,78,3141,621,71.10 ⁻³ 6,5120,791,45.10 ⁻³ 9,83191,3753,66,969,420,84.10 ⁻³ 6,296,161,16.10 ⁻³ 6,89247,7660,28,283,961,01.10 ⁻³ 5,376,670,92.10 ⁻³ 9,56685,8331,66,41187,5614,30.10 ⁻³ 7,7293,973,54.10 ⁻³ 8,28195,7830,92,6266,263,21.10 ⁻³ 6,3171,672,07.10 ⁻³ 8,810318,5440,54,6295,933,56.10 ⁻³ 5,8172,052,07.10 ⁻³ 8,810318,5440,55,8889,6710,71.10 ⁻³ 7,5418,465,04.10 ⁻³ 8,810138,5440,55,8889,6710,71.10 ⁻³ 7,7265,843,20.10 ⁻³ 8,810138,5440,55,8889,6710,71.10 ⁻³ 7,7265,843,20.10 ⁻³ 8,811127,0059,1	freies Spaltgas F mm ³ /gForenspaltgas P mm ³ /gGitterspaltgas G mm ³ /gAt./U-At.Xe:KrGitterspaltgas G mm ³ /g1120,2358,87,247,63 $0,57\cdot10^{-3}$ 5,436,52 $0,44\cdot10^{-3}$ 9,084,15585,3044,47,942,99 $0,52\cdot10^{-3}$ 4,863,94 $0,77\cdot10^{-3}$ 9,8106,92741,6735,79,717,51 $0,21\cdot10^{-3}$ 1,757,50 $0,69\cdot10^{-3}$ 7,8262,4113189,6141,36,4140,53 $1,69\cdot10^{-3}$ 5,8128,00 $1,54\cdot10^{-3}$ 9,1268,533191,3753,66,969,42 $0,84\cdot10^{-3}$ 6,296,16 $1,16\cdot10^{-3}$ 6,8165,599247,7660,28,283,96 $1,01\cdot10^{-3}$ 7,7293,973,54\cdot10^{-3}7,71481,532501,3847,77,0429,22 $5,17\cdot10^{-3}$ 7,2120,27 $1,45\cdot10^{-3}$ 8,2549,498195,7830,92,6266,263,21\cdot10^{-3}6,3171,672,07·10^{-3}8,8437,9310318,5440,54,6295,933,56·10^{-3}5,8172.052,07·10^{-3}8,81060,46161727,0059,18,793,00011,19740^{-3}7,7265,843,20·10^{-3}8,21195,8415207,6630,07,0 </td <td>Prüfigfreies m^3/gSpaltgas XPorenspaltgas m^3/gAt./U-At. Xe/KrGitterspaltgas m^3/gGitterspaltgas At./U-At.P + 6 mm^3/g1120,2358,87,247,630,57 \cdot 10^{-3} 0,57 \cdot 10^{-3}5,436,520,44 \cdot 10^{-3} 0,77 \cdot 10^{-3}9,084,151,01 \cdot 10^{-3} 1,02 \cdot 10^{-3}585,3044,47,942,990,52 \cdot 10^{-3} 0,21 \cdot 10^{-3}5,436,520,44 \cdot 10^{-3} 0,77 \cdot 10^{-3}9,8106,921,29 \cdot 10^{-3} 0,90 \cdot 10^{-3}11239,2047,78,3141,621,71 \cdot 10^{-3} 1,69 \cdot 10^{-3}6,5120,791,45 \cdot 10^{-3} 0,84 \cdot 10^{-3}7,8262,41 3,16 \cdot 10^{-3}3191,3753,66,969,420,84 \cdot 10^{-3} 1,69 \cdot 10^{-3}6,296,161,16 \cdot 10^{-3} 0,92 \cdot 10^{-3}6,8165,591,99 \cdot 10^{-3}9247,7660,28,283,961,01 \cdot 10^{-3}5,376,670,92 \cdot 10^{-3}9,5163,621,97 \cdot 10^{-3}2501,3847,77,0429,225,17 \cdot 10^{-3}7,2120,271,45 \cdot 10^{-3}8,2549,496,62 \cdot 10^{-3}10318,5440,54,6295,933,56 \cdot 10^{-3}5,8172,052,07 \cdot 10^{-3}8,8437,935,27 \cdot 10^{-3}121395,78-6,914769,4637,05,8889,6710,71 \cdot 10^{-3}7,5<</br></br></td> <td>Prüfigfreies Spaltgas F m³/gForenspaltgas F Xe:KrForenspaltgas F mm³/gGitterspaltgas C Mm³/gP + G1120,2358,87,247,630,57.10⁻³5,436,520,44.10⁻³9,084,151,01.10⁻³7,0585,3044,47,942,990,52.10⁻³4,863,940,77.10⁻³9,084,151,01.10⁻³7,0741,6735,79,717,510,21.10⁻³1,757,500,69.10⁻³13,775,010,90.10⁻³10,911239,2047,78,3141,621,71.10⁻³6,5120,791,45.10⁻³7,8262,413,161.0⁻³7,113189,6141,36,4140,531,69.10⁻³5,8128,001,54.10⁻³9,5163,621,97.10⁻³7,11453,66,969,420,84.10⁻³6,296,161,16.10⁻³6,8165,591,99.10⁻³6,69247,7660,28,283,961,01.10⁻³5,376,670,92.10⁻³9,5163,621,97.10⁻³7,72501,3847,77,0429,225,17.10⁻³7,2120,271,45.10⁻³8,8437,935,27.10⁻³7,310318,5440,54,6295,933,56.10⁻³5,8172,052,07.10⁻³8,8437,935,27.10⁻³7,31113195,78-6,9<</td> <td>Freis Spaltzs Porenspaltas P Gitterspaltas Gitterspaltas Gitterspaltas P P Gitterspaltas Gitterspaltas</td>	Prüfigfreies m^3/g Spaltgas XPorenspaltgas m^3/g At./U-At. Xe/KrGitterspaltgas m^3/g Gitterspaltgas At./U-At.P + 6 mm^3/g 1120,2358,87,247,630,57 \cdot 10^{-3} 0,57 \cdot 10^{-3}5,436,520,44 \cdot 10^{-3} 0,77 \cdot 10^{-3}9,084,151,01 \cdot 10^{-3} 1,02 \cdot 10^{-3}585,3044,47,942,990,52 \cdot 10^{-3} 0,21 \cdot 10^{-3}5,436,520,44 \cdot 10^{-3} 0,77 \cdot 10^{-3}9,8106,921,29 \cdot 10^{-3} 0,90 \cdot 10^{-3}11239,2047,78,3141,621,71 \cdot 10^{-3} 1,69 \cdot 10^{-3}6,5120,791,45 \cdot 10^{-3} 0,84 \cdot 10^{-3}7,8262,41 3,16 \cdot 10^{-3}3191,3753,66,969,420,84 \cdot 10^{-3} 	Prüfigfreies Spaltgas F m ³ /gForenspaltgas F Xe:KrForenspaltgas F mm ³ /gGitterspaltgas C Mm ³ /gP + G1120,2358,87,247,630,57.10 ⁻³ 5,436,520,44.10 ⁻³ 9,084,151,01.10 ⁻³ 7,0585,3044,47,942,990,52.10 ⁻³ 4,863,940,77.10 ⁻³ 9,084,151,01.10 ⁻³ 7,0741,6735,79,717,510,21.10 ⁻³ 1,757,500,69.10 ⁻³ 13,775,010,90.10 ⁻³ 10,911239,2047,78,3141,621,71.10 ⁻³ 6,5120,791,45.10 ⁻³ 7,8262,413,161.0 ⁻³ 7,113189,6141,36,4140,531,69.10 ⁻³ 5,8128,001,54.10 ⁻³ 9,5163,621,97.10 ⁻³ 7,11453,66,969,420,84.10 ⁻³ 6,296,161,16.10 ⁻³ 6,8165,591,99.10 ⁻³ 6,69247,7660,28,283,961,01.10 ⁻³ 5,376,670,92.10 ⁻³ 9,5163,621,97.10 ⁻³ 7,72501,3847,77,0429,225,17.10 ⁻³ 7,2120,271,45.10 ⁻³ 8,8437,935,27.10 ⁻³ 7,310318,5440,54,6295,933,56.10 ⁻³ 5,8172,052,07.10 ⁻³ 8,8437,935,27.10 ⁻³ 7,31113195,78-6,9<	Freis Spaltzs Porenspaltas P Gitterspaltas Gitterspaltas Gitterspaltas P P Gitterspaltas Gitterspaltas	

Tab. 15: Spaltgasdaten der FR 2-Kapselversuchsgruppe 3

1 N

23 -

		freie	es Spalt	gas F	I	Porenspaltgas P			itterspaltgas	G	1	P + G	P + G		F + P + G	
KVE	Prüflg.	mm ³ /g	%	Xe/Kr	m ³ /g	Atome Metallatom	Xe/Kr	mm ³ /g	Atome Metallatom	Xe/Kr	mm ³ /g	Atome Metallatom	Xe/Kr	mm ³ /g	Xe/Kr	
33	B 10	110,09	36,0	15,7	117,76	1,42.10 ⁻³	17,8	77,92	0,94.10 ⁻³	19,1	195,68	2,36.10-3	18,8	305,77	17,3	
	B 7	106,83	39,2	19,6	84,86	1,02.10-3	12,5	80,67	0,97.10-3	21,5	165,53	2,00.10-3	16,9	272,36	18,0	
	B 6	98,09	37,4	17,5	89,67	1,20.10-3	16,3	64,62	0,78.10-3	17,0	164,29	1,98.10 ⁻³	16,6	262,38	16,9	
34	B 13	370,28	48,3	32,2	253,47	3,05-10 ⁻³	17,8	142,86	1,72.10 ⁻³	14,8	396,33	4,78.10 ⁻³	16,7	766,60	24,2	
	B 12	554,50	-	28,9	318,78	3,84.10 ⁻³	13,5	- ,	-	-	-	-	-	-	-	
	B 11	570,04	-	16,0	-	-	-	153,24	1,85.10 ⁻³	20,2	-	-	-	-	-	
35	4A/4	133,51	23,8	7,0	271,86	3,28·10 ⁻³	17,5	155,77	1,88.10 ⁻³	23,3	427,62	5,15.10 ⁻³	19,6	561,14	16,6	
	4A/2	156,65	28,1	5,6	253,93	3,06·10 ⁻³	15,9	146,53	1,77·10 ⁻³	23,2	400,46	4,83.10 ⁻³	18,6	557,11	14,9	
	4A/1	169,16	27,2	5,6	297,75	3,59·10 ⁻³	16,8	148,65	1,79·10 ⁻³	21,0	446,40	5,38.10 ⁻³	18,2	615,51	14,7	
36	4A/9	293,12	43,8	10,2	258,90	3,12·10 ⁻³	17,6	117,89	1,42.10 ⁻³	18,9	376,79	4,54.10 ⁻³	18,0	669,91	14,6	
	4A/8	200,07	36,7	9,4	214,35	2,58·10 ⁻³	15,2	130,77	1,58.10 ⁻³	22,1	345,12	4,16.10 ⁻³	17,8	545,18	14,7	
	4A/5	394,92	50,1	22,9	217,11	2,62·10 ⁻³	14,0	177,48	2,14·10 ⁻³	26,4	394,59	4,76.10 ⁻³	19,6	789,51	21,3	
	4A/3	-	-	-	207,53	2,50·10 ⁻³	14,0	88,75	1,07·10 ⁻³	15,2	296,28	3,57.10 ⁻³	14,4	-	-	
37	4A/19	-	-	-	237,71	2,86.10 ⁻³	24,2	59,61	0,72.10 ⁻³	41,8	297,32	3,58.10 ⁻³	27,7	-	-	
	4A/16	1358,82	82,8	20,6	228,18	2,75·10 ⁻³	21,3	54,53	0,66.10 ⁻³	25,0	282,71	3,41·10 ⁻³	22,0	1641,53	20,9	
	4A/15	1427,63	73,0	16,7	463,03	5,58·10 ⁻³	21,8	82,59	1,00·10 ⁻³	24,2	545,62	6,58·10 ⁻³	22,2	1973,25	18,2	
	B 14	1000,50	58,0	20,6	531,04	6,40.10 ⁻³	18,0	160,00	1,93·10 ⁻³	14,3	691,04	8,33-10 ⁻³	17,2	1691,54	19,2	
38	4 A/ 22	2094,05	73,0	18,4	492,67	5,94·10 ⁻³	17,6	228,20	3,38·10 ⁻³	24,5	772,87	9,31·10 ⁻³	20,1	2866,91	18,9	
	4A/21	2357,99	76,3	17,5	504,78	6,08·10 ⁻³	17,6	226,64	2,73.10 ⁻³	23,4	731,42	8,81.10 ⁻³	19,4	3089,40	17,9	
	4A/20	1873,17	68,3	17,8	597,39	7,20·10 ⁻³	17,1	273,37	3,29.10 ⁻³	22,6	870,76	10,49·10 ⁻³	18,5	2743,93	18,1	
40	4A/28	1597,90	59,5	18,6	741,53	8,94.10 ⁻³	16,5	343,92	$4,14 \cdot 10^{-3}$	21,5	1085,45	13,08·10 ⁻³	18,1	2683,35	18,4	
	4A/25	1671,02	58,5	18,7	1003,31	12,09.10-3	16,9	184,17	2,22.10 ⁻³	22,3	1187,48	14,31.10 ⁻³	17,8	2858,50	18,3	
	4A/26	1585,63	57,6	15,5	790,80	9,53.10-3	16,9	376,43	4,54.10 ⁻³	19,6	1167,23	14,07.10 ⁻³	17,8	2752,86	16,4	
	4A/27	1825,46	62,4	20,6	705,99	8,51.10 ⁻³	16,7	349,96	4,22.10 ⁻³	23,2	1055,95	12,72.10 ⁻³	18,8	2881,41	19,9	
41	4A/18	1652,92	_	18,3	i		I	I	I	-		ļ	I .			
	4A/23	1611,48	-	17,9	k	eine Bestimm	ıng der	gebunder	nen Spaltgase							
	4A/17	1684,92	-	17,2								^	1	I	,	
45	4A/24	321,06	69,0	23,8	114,72	1,38.10 ⁻³	12,3	29,38	0,35.10 ⁻³	22,5	144,10	1,74.10 ⁻³	14,4	465,16	20,9	

Tab. 16: Spaltgasdaten der FR 2-Kapselversuchsgruppe 4a

- 24 -

~

		freie	freies Spaltgas F 3.		Porenspaltgas P			G	Gitterspaltgas G			P + G		F + P + G	
KVE	Prüflg.	mm ³ /g	%	Xe/Kr	mm ³ /g	Atome Metallatom	Xe/Kr	mm ³ /g	Atome Metallatom	Xe/Kr	mm ³ /g	Atome Metallatom	Xe/Kr	mm ³ /g	Xe/Kr
47	4B/4	1819,27	76,8	18,5	464,97	5,60·10 ⁻³	11,5	85,03	1,03.10 ⁻³	26,5	550,00	6,63.10-3	13,8	2369,27	17,4
	4B/3	1956,21	75,1	18,6	561,93	6,77.10 ⁻³	16,5	85,97	1,04.10 ⁻³	23,2	647,90	7,81.10 ⁻³	17,4	2604,11	18,3
	4B/2	1603,87	70,9	16,7	505,58	6,09·10 ⁻³	14,2	154,10	1,86.10 ⁻³	23,3	659,68	7,95·10 ⁻³	16,3	2263,55	16,6
	4B/1	1705,73	63,8	16,2	750,42	9,04·10 ⁻³	16,6	216,36	2,61.10 ⁻³	24,3	966,78	11,65.10 ⁻³	18,3	2672,51	17,0
48	4B/9	1636,48	72,2	17,9	510,71	6,15·10 ⁻³	16,1	118,65	1,43.10 ⁻³	22,2	629,35	7,58.10-3	17,2	2265,83	17,7
	4B/8	1696,18	77,6	16,1	371,19	4,47·10 ⁻³	15,9	118,28	1,43.10 ⁻³	22,7	489,47	5,90·10 ⁻³	17,5	2185,65	16,4
	4B/7	2009,48	80,3	17,8	386,53	4,66·10 ⁻³	15,0	107,73	1,30.10 ⁻³	24,7	494,26	5,96·10 ⁻³	17,1	2503,74	17,7
	4B/5	1995,99	78,6	17,5	415,45	5,01.10 ⁻³	15,3	127,35	1,54.10 ⁻³	20,1	542,80	6,54-10 ⁻³	16,4	2538,79	17,3
49	4B/11	2226,82	67,8	16,6	861,17	10,38.10 ⁻³	17,7	194,61	2,35.10 ⁻³	18,5	1055,78	12,72.10 ⁻³	17,9	3282,60	17,0
	4B/12	2405,66	67,2	14,8	963,08	11,61.10 ⁻³	21,2	209,86	2,53.10 ⁻³	17,9	1172,93	$14, 13 \cdot 10^{-3}$	20,6	3578,60	16,7
	4B/10	2391,85	66,3	15,2	974,48	11,74.10 ⁻³	16,4	239,47	2,87.10 ⁻³	21,7	1213,95	14,63·10 ⁻³	17,4	3605,80	15,9
	4B/6	2489,17	-	15,9	-	-	-	-	-	-	-	-	-	-	-
55	4B/15	1199,71	-	18,2	-	_	-	. –	_	-	-	-	-	-	-
	4B/14	1528,57	74,1	18,5	381,91	4,60.10 ⁻³	16,1	152,86	1,84.10 ⁻³	25,7	534,78	$6,44 \cdot 10^{-3}$	18,8	2063,35	18,6
	4B/13	1464,09	74,8	18,2	332,25	4,00.10 ⁻³	14,8	160,00	1,93.10 ⁻³	31,1	492,25	5,93.10 ⁻³	20,1	1956,33	18,7
56	4B/18	698,91	40,0	17,3	828,78	9,99.10 ⁻³	15,6	217,48	2,62.10 ⁻³	25,9	1046,27	12,61.10 ⁻³	17,8		17,6
	4B/17	819,85	44,7	18,1	818,31	9,86·10 ⁻³	16,1	197,11	2,38.10 ⁻³	21,7	1015,42	$10,24 \cdot 10^{-3}$	17,2		17,6
	4B/16	832,70	47,8	17,8	705,41	8,50·10 ⁻³	15,9	200,69	2,42.10 ⁻³	21,5	906,11	10,92.10 ⁻³	17,1		17,5
57	4B/21	1987,43	78,5	16,7	419,23	5,05·10 ⁻³	15,2	124,67	1,50.10 ⁻³	26,8	543,90	6,55·10 ⁻³	17,8	2531,33	16,9
	4B/20	2402,86	83,0	17,3	376,42	4,54.10 ⁻³	16,2	117,27	1,41.10 ⁻³	22,7	493,68	5,95·10 ⁻³	17,8	2896,55	17,4
	4B/19	2262,63	80,5	18,0	395,96	4,77.10 ⁻³	15,6	150,66	1,82.10 ⁻³	24,0	546,61	6,59·10 ⁻³	17,9	2809,24	18,0
58	4B/24	2415,40	69,8	18,8	801,24	9,66·10 ⁻³	16,6	244,23	2,94.10 ⁻³	23,8	1045,47	12,60.10 ⁻³	18,3	3460,87	18,6
	4B/23	2458,70	75,2	18,6	791,64	9,54·10 ⁻³	16,5	177,05	2,13.10 ⁻³	30,5	808,69	9,75.10-3	16,8	3267,39	18,2
	4B/22	2341,50	68,3	18,6	943,77	11,37·10 ⁻³	16,6	142,70	1,72.10-3	26,4	1086,47	13,09.10 ⁻³	17,9	3427,97	18,4
1	1														

Tab. 17: Spaltgasdaten der FR 2-Kapselversuchsgruppe 4 b

- 25

.

KVE	Prüf- ling	Pro- be	mm ³ /g	Porenspaltgas <u>Atome</u> Metallatom	s P Xe/Kr	Gi mm ³ /g	tterspaltgas <u>Atome</u> Metallatom	G Xe/Kr	mm ³ /g	P + G Atome Metallatom	Xe/Kr
74	5A8	9	48,13	5,80.10-4	14,2	-	-	-	-	-	_
		8	60,12	7,24.10-4	8,4	27,28	3,29.10 ⁻⁴	22	87,40	1,05.10 ⁻³	12,7
73	5A6	9	92,68	1,12.10 ⁻³	14,1	85,48	1,03.10 ⁻³	22,7	178,16	2,15.10 ⁻³	18,2
		8	95,49	1,15.10 ⁻³	14,0	108,59	1,31.10 ⁻³	24,8	204,08	2,46·10 ⁻³	19,7
72	5A4	9	50,38	6,07·10 ⁻⁴	11,4	34,52	4,16.10-4	28	84,90	1,02.10 ⁻³	18,1
		8	42,59	5,13.10-4	10,9	58,76	7,08.10 ⁻⁴	26,1	101,35	1,22.10 ⁻³	19,7

Tab. 18: Spaltgasdaten der FR 2-Kapselversuchsgruppe 5a

26 -

ł

KVE	Prüflg.	freies Spaltgas F mm ³ /g % Xe/Kr		Pore mm ³ /g	Porenspaltgas P mm ³ /g Atome Metallatom Xe/Kr		Gitterspaltgas G mm ³ /g <u>Atome</u> Metallatom Xe/Kr			mm ³ /g	P + G Atome Metallatom	$F + P + mm^3/g$	G Xe/Kr		
		2002 15		17 (2(0, 20	2 22 10-3	16.0								
''	5B/4	3093,15		1/,6	268,30	3,23.10	10,8	-	4	-	-	3	-	-	-
	5B/3	3272,46	93,1	17,8	214,94	2,59.10	14,6	26,32	3,17.10	21,1	241,26	2,91.10	15,3	3513,72	17,6
	5B/2	3519,96	91,4	17,3	295,43	3,56.10-3	16,7	34,32	4,14.10 ⁻⁴	21,4	329,75	3,97.10 ⁻³	17,2	3849,71	17,2
80	5B/7	3160,66	-	17,6	300,68	3,62.10 ⁻³	17,9	_	-	-	-	-	-	-	_
	5B/6	3137,53	-	17,3	323,82	3,90.10 ⁻³	16,4	-	-	-	-	_	-	-	-
	5B/5	3053,00	-	17,6	314,33	3,79·10 ⁻³	17,5	-	-	-	-	-	-	-	-
81	5B/9	2453,15	86,6	17,4	262,01	3,16.10 ⁻³	14,7	118,17	1,42.10 ⁻³	29,7	380,18	4,58.10 ⁻³	19,3	2833,33	17,7
	5B/8	2588,31	-	17,4	274,27	3,31.10 ⁻³	16,5	-	-	-	-	-	-	-	-
	5B/1	2611,29	-	17,4	305,88	3,69·10 ⁻³	15,4	-	-	-	-	-	-	-	-
82	5B/12	2573,80	88,6	16,6	290,45	$3,50.10^{-3}$	16,2	39,95	4,81.10 ⁻⁴	19,8	330,40	3,98.10 ⁻³	16,7	2904,20	16,6
	5B/11	2670,33	89,5	16,9	241,30	2,91.10 ⁻³	14,8	72,82	8,77.10 ⁻⁴	30,5	314,12	3,79.10 ⁻³	18,4	2984,45	17,1
	5B/10	2551,46	87,6	17,3	325,47	3,92.10 ⁻³	15,1	34,95	4,21.10 ⁻⁴	12,0	360,42	4,34.10 ⁻³	14,8	2911,88	17,0

Tab. 19: Spaltgasdaten der FR 2-Kapselversuchsgruppe 5b

×

7

۲

	freies S	paltgas F	Position	Po	renspaltgas P		Git	terspaltgas G		P + G			
Stab	mm ³ /g	Xe/Kr	der Probe, cm ¹)	mm ³ /g	Atome Metallatom	Xe/Kr	mm ³ /g	Atome Metallatom	Xe/Kr	mm ³ /g	Atome Metallatom	Xe/Kr	
1	559,2	9,0	2,3	102,9	1,23.10 ⁻³	5,9	52,3	6,26.10 ⁻⁴	7,2	155,2	1,86.10 ⁻³	6,3	
			3,6	123,5	1,48.10 ⁻³	6,0	-	- ,	-	_	2	-	
			4,7	161,3	1,93.10-3	6,4	46,6	5,58.10-4	9,1	207,9	2,49.10-3	7,0	
			26,3	209,2	2,50.10-3	5,3	86,1	1,03.10-3	9,0	295,3	3,53.10-3	6,4	
			46,0	197,0	2,36.10-3	6,1	55,7	6,66.10 ⁻⁴	7,6	252,7	3,02.10 ⁻³	6,4	
3	818,7	6,8	4,0	59,1	7,07.10 ⁻⁴	6,6	33,0	3,95.10-4	10,0	92,1	1,10.10 ⁻³	7,8	
			26,5	203,0	2,43.10 ⁻³	6,0	92,7	1,11.10 ⁻³	12,2	295,7	3,54·10 ⁻³	7,9	
			46,0	169,6	2,03.10 ⁻³	6,4	104,0	1,24.10 ⁻³	9,0	273,6	3,27.10 ⁻³	7,4	
5	653,1	5,7	12,5	156,2	1,87.10 ⁻³	5,8	39,7	4,75.10-4	9,4	195,9	2,34.10 ⁻³	6,5	
			26,0	224,1	2,68·10 ⁻³	5,3	51,2	6,13.10 ⁻⁴	12,3	275,3	3,29·10 ⁻³	6,6	
			43,0	179,9	2,15.10 ⁻³	5,9	74,4	8,90.10-4	7,7	254,3	3,04.10 ⁻³	6,4	
6	789,4	6,7	4,5	77,2	9,24·10 ⁻⁴	6,1	76,4	9,14.10-4	8,4	153,6	1,84.10 ⁻³	7,2	
			26,5	202,8	2,43.10 ⁻³	5,6	111,9	1,34.10 ⁻³	14,4	314,7	3,77·10 ⁻³	8,7	
			46,0	216,1	2,59.10 ⁻³	6,5	102,4	1,23.10 ⁻³	9,6	318,5	3,81·10 ⁻³	7,5	
7	743,3	8,6	11,7	155,1	1,86.10 ⁻³	6,0	47,9	5,73.10 ⁻⁴	7,7	203,0	2,43.10-3	6,4	
		-	25,3	177,7	2,13.10 ⁻³	6,7	44,6	5,34.10-4	9,8	222,3	2,66 10 ⁻³	7,3	
		- 1	42,5	141,1	1,69·10 ⁻³	6,1	75,7	9,06.10 ⁻⁴	8,1	216,8	3,59·10 ⁻³	6,8	
9	749,9	6,7	12,0	120,2	1,44.10 ⁻³	5,7	54,3	6,50·10 ⁻⁴	9,2	174,5	2,09·10 ⁻³	6,8	
6	-		26,5	303,1	3,63.10 ⁻³	7,5	33,8	4,04.10 ⁻⁴	8,3	336,8	4,03·10 ⁻³	7,6	
			43,5	212,7	2,54.10 ⁻³	9,2	67,4	8,06.10-4	10,3	280,1	3,35·10 ⁻³	9,4	

1) Entfernung der Probenmitte vom oberen Brennstoffsäulenende

Tab. 20: Spaltgasdaten der Mol 7A-Stäbe

- 28

Т
Am oberen Ende der Brennstoffsäule ($T_m \gtrsim 1500^{\circ}C$) beträgt die über alle Stäbe gemittelte Spaltgaskonzentration ca. $2 \cdot 10^{-3}$ Gasatome/Metallatom, in Stabmitte ($T_m \approx 1400^{\circ}C$) ca. $3,5 \cdot 10^{-3}$ und am unteren Brennstoffsäulenende ($T_m \approx 1300^{\circ}C$) ca. $3,1 \cdot 10^{-3}$ Gasatome/Metallatom.Die über die Stablänge gemittelte Gaskonzentration ist $2,83 \cdot 10^{-3}$ Atome/Atom oder 0,24 cm³/g Brennstoff. Bei einer mittleren Freisetzung von 0,75 cm³/g (ohne Zentralstab, dessen Abbrand niedriger ist) ergibt sich die mittlere prozentuale Freisetzung zu ca. 76%.

Experiment Mol 8 B

An den beiden Stäben dieses Experimentes war keine Bestimmung des freigesetzten Spaltgases möglich, denn der Stab Mol 8 B 1 war defekt und beim Stab Mol 8 B 2 misslang die Bestimmung. Die Spaltgasfreisetzung konnte deshalb nur auf Grund der Gasdruckbestimmungen ermittelt werden. Die auf diese Weise erhaltenen Freisetzungskurven sind in Abb.4 dargestellt. Die Messwerte wurden /15/ entnommen. Beim Stab B 2 war der Druckaufnehmer bereits nach einem Abbrand von ca. 40 MWd/kgM ausgefallen.

Proben zur Bestimmung des gebundenen Spaltgases wurden bei beiden Stäben nur in der Nähe des Stableistungsmaximums entnommen. Die mittleren Brennstofftemperaturen an diesen Stellen lagen bei oder über 1500[°]C. Die Ergebnisse sind in der Tab. 21 aufgeführt.

Stab Probe	Po mm ³ /g	orenspaltgas Atome Metallatom	P Xe/Kr	Gi mm ³ /g	tterspaltgas Atome Metallatom	G Xe/Kr	mm ³ /g	P + G Atome Metallatom	Xe/Kr
B1/12	58,4	7,01·10 ⁻⁴	6,2	-	-	_	-	_	-
/15	62,1	7,46.10 ⁻⁴	7,6	10,8	1,29.10 ⁻⁴	9	72,9	8,75·10 ⁻⁴	7,8
B2/18	63,7	7,64.10 ⁻⁴	6,6	-	_		-	-	-

Tab.	21:	Gebundenes	Spaltgas	in	den	Mo1	8B-Stäben

Experiment Mol 8C

Die Nachbestrahlungsuntersuchungen der Stäbe dieses Experimentes sind noch nicht abgeschlossen. Die auf Grund der kontinuierlichen Messung des Gasdruckes bestimmten Spaltgasfreisetzungswerte sind in Abhängigkeit vom Abbrand in den Abb. 5 bis 7 dargestellt. Die Abb.8 bis 15 zeigen die Freisetzungsraten und die Stableistungen der Stäbe Mol 8 C1 bis C8 in Abhängigkeit vom Abbrand sowie die über den Gesamtabbrand gemittelten Werte beider Grössen. Die Freisetzungsrate ist das Verhältnis der pro Zeiteinheit freigesetzten Spaltgasmenge zu der in der gleichen Zeiteinheit erzeugten Spaltgasmenge. Die Zahlenangaben in den Abb. 8 bis 15 sind die Reaktorabschaltungen in den Abbrandintervallen.

3.2.3 DFR - Bestrahlungen

Experiment DFR - 304

Das freie Spaltgas konnte nur beim Stab G 3 bestimmt werden, da die beiden anderen Stäbe bei der Demontage beschädigt wurden. Dieser Freisetzungswert und die gefundenen Werte des Poren- und Gitterspaltgases sind in der Tab. 22 aufgeführt. Der axiale Konzentrationsverlauf des gebundenen Spaltgases ist zusammen mit dem Abbrand- und Hülltemperaturverlauf in der Abb.16 dargestellt.

Experiment DFR - 350

Das freie Spaltgas wurde, soweit möglich, bei allen bei der GfK untersuchten Brennstäben bestimmt. Die Ergebnisse sind in der Tab.23 aufgeführt. Der Mittelwert der pro Stab freigesetzten Spaltgasmenge -ohne Stab G 14liegt bei 54,17 cm³. Für den aus der Reihe fallenden Wert des am Bündelrand stehenden Stabes G 14 von 73,32 cm³ lässt sich auf Grund der bekannten Bestrahlungsdaten keine Erklärung finden. Dieser hohe Freisetzungswert könnte auf eine kurzzeitige Temperaturerhöhung am Bestrahlungsende zurückzuführen sein. Zwar gibt es keine Erklärung für die vermutete Temperaturerhöhung, doch deutet auch das von den Werten der übrigen Stäbe stark abweichende Zentralkanalvolumen des Stabes G 14 auf eine Temperaturzunahme. Das Zentralkanalvolumen des Stabes G 14 ist mit einem Wert von 0,455 cm³ deutlich niedriger als die Zentralkanalvolumina der anderen Stäbe, die zwischen 0,709 und 0,873 cm³ liegen. Die Ursache hierfür ist

Stab	freies S _I mm ³ /g	paltgas F Xe/Kr	Position der Pro- be, cm ¹⁾	I mm ³ /g	Porenspaltgas P Atome Metallatom	Xe/Kr	mm ³ /g	Gitterspaltgas Atome Metallatom	G Xe/Kr	mm ³ /g	P + G <u>Atome</u> Metallatom	Xe/Kr
G 1	-	_	3,3 18,1	198,4 22,0	$2,37 \cdot 10^{-3}$ $2,64 \cdot 10^{-4}$ $7,22 \cdot 10^{-4}$	6,6 5,6	114,7 66,9	$1,37 \cdot 10^{-3}$ $8,00 \cdot 10^{-4}$ $3,93 \cdot 10^{-4}$	6,8 11,5 8 1	313,1 88,9 94 0	$3,74 \cdot 10^{-3}$ 1,06.10 ⁻³	6,7 10,0
G 2			4,3 13,0 32-3	99,4 120,2 39,2	$1, 19 \cdot 10^{-3}$ $1, 44 \cdot 10^{-3}$ $4, 69 \cdot 10^{-4}$	7,0 6,3 5,6	58,3 48,4 10,7	$6,97 \cdot 10^{-4}$ $5,79 \cdot 10^{-4}$ $1,28 \cdot 10^{-4}$	7,3 8,7 5,4	157,7 168,6 49,9	$1,89 \cdot 10^{-3}$ 2,02 \cdot 10^{-3} 5,97 \cdot 10^{-4}	7,1 7,0 5,6
G 3	1448,0	6,3	3,8 6,0 16,3	219,6 178,9 14,6	$2,63 \cdot 10^{-3}$ $2,14 \cdot 10^{-3}$ $1,74 \cdot 10^{-4}$	7,8 6,4 6,9	94,5 93,8 9,3	$1,13 \cdot 10^{-3} \\ 1,12 \cdot 10^{-3} \\ 1,12 \cdot 10^{-4}$	8,5 6,6 5,8	314,1 272,7 23,9	$3,76 \cdot 10^{-3}$ $3,26 \cdot 10^{-3}$ $2,86 \cdot 10^{-4}$	8,0 6,4 6,5
			17,5 30,8	22,0 31,6	$2,63 \cdot 10^{-4}$ $3,78 \cdot 10^{-4}$	6,8 6,1	- 15,9	- 1,90·10 ⁻⁴	- ,5	- 47,5	- 5,68.10 ⁻⁴	8,2

1) Entfernung vom oberen Brennstoffende

-

Tab. 22: Spaltgasdaten der DFR - 304-Stäbe

- 31

I

Position im Bün- del	cm ³	freies S mm ³ /g	paltgas F Xe/Kr	[%] 1)	_% 2)
aussen	59,06	1056,5	6,8	82,1	77,0
aussen	60,81	1101,6	6,6	85,6	80,3
innen	60,40	1094,2	7,1	85,0	79,7
aussen	73,32	1311,6	6,5	101,9	95,6
innen	58,22	1049,0	6,3	81,6	76,5
aussen	46,77	845,8	7,1	65,8	61,7
aussen	53,84	986,1	7,0	76,7	71,9
innen	47,05	866,5	7,0	67,4	63,2
aussen	55,68	1010,5	6,3	78,6	73,7
innen	52,49	964,1	6,0	75,1	70,4
aussen	50,00	915,8	6,8	71,2	66,8
innen	50,00	912,4	6,7	70,9	66,5
innen	55,75	1024,8	6,8	79,6	74,7
	Position im Bün- del aussen aussen innen aussen innen aussen innen aussen innen aussen innen innen aussen	Position im Bün- del cm ³ aussen 59,06 aussen 60,81 innen 60,40 aussen 73,32 innen 58,22 aussen 46,77 aussen 53,84 innen 47,05 aussen 55,68 innen 50,00 innen 50,00 innen 50,00 innen 50,00	Position im Bün- delfreies S mm³/gaussen59,061056,5aussen60,811101,6innen60,401094,2aussen73,321311,6innen58,221049,0aussen46,77845,8aussen53,84986,1innen47,05866,5aussen55,681010,5innen52,49964,1aussen50,00915,8innen50,00912,4innen55,751024,8	Position im Bün- delfreies Spaltgas Faussen59,061056,56,8aussen60,811101,66,6innen60,401094,27,1aussen73,321311,66,5innen58,221049,06,3aussen46,77845,87,1aussen53,84986,17,0innen47,05866,57,0aussen55,681010,56,3innen52,49964,16,0aussen50,00915,86,8innen55,751024,86,8	Position im Bün- delfreies Spaltgas F mm^3/g \chie/Kr χ^{1} aussen59,061056,56,882,1aussen60,811101,66,685,6innen60,401094,27,185,0aussen73,321311,66,5101,9innen58,221049,06,381,6aussen46,77845,87,165,8aussen53,84986,17,076,7innen47,05866,57,067,4aussen55,681010,56,378,6innen52,49964,16,075,1aussen50,00915,86,871,2innen55,751024,86,879,6

Tab. 23: Spaltgasfreisetung der DFR - 350 - Stäbe

1) prozentuale Freisetzung bei Annahme von 0,30 Spaltgasatomen/Spaltung
2) " " " 0,32 " "

vermutlich eine durch höhere Temperatur bedingte stärkere Schwellung beim Stab G 14.

Das gebundene Spaltgas wurde nur an zwei Stäben bestimmt. Die Konzentrationen sind in der Tab.24 in Abhängigkeit von der axialen Position aufgeführt. Sie ändern sich nur relativ wenig über die Stablänge. Lediglich die Probe 6 des Stabes G-50 liefert einen ungewöhnlich hohen Wert, ohne dass hierfür ein Grund ersichtlich ist. Eine fehlerhafte Probennahme ist nicht auszuschliessen.

Stab	Pro- be	Position der Pro- be, cm ¹⁾	P mm ³ /g	orenspaltgas P Atome Metallatom	Xe/Kr	Gi mm ³ /g	tterspaltgas <u>Atome</u> Metallatom	G Xe/Kr	mm ³ /g	P + G Atome Metallatom	Xe/Kr
G 39	7	2,5	166,3	1,99.10 ⁻³	6,9	96,5	1,15.10 ⁻³	6,4	262,8	3,14·10 ⁻³	6,7
	8	8	172,6	2,06.10 ⁻³	6,8	99,9	1,20.10 ⁻³	7,5	272,5	3,26.10 ⁻³	7,1
	9	14,5	150,6	1,80.10 ⁻³	6,3	72,1	8,62.10-4	7,1	222,7	2,66.10 ⁻³	6,6
	10	20,5	209,4	2,50.10 ⁻³	6,0	51,5	6,16,10-4	7,9	260,9	3,12.10 ⁻³	6,4
	11	27,5	223,8	2,67.10 ⁻³	6,5	71,8	8,58.10-4	6,3	295,5	3,53·10 ⁻³	6,4
G 50	2	4	208,8	2,50·10 ⁻³	5,5	63,6	7,61.10 ⁻⁴	6,6	272,5	3,26.10 ⁻³	5,8
	4a	10	110,3	1,32.10 ⁻³	5,9	114,5	1,37.10 ⁻³	7,9	224,8	2,69.10 ⁻³	6,9
	6	20,5	358,5	4,29·10 ⁻³	6,9	198,4	2,37.10 ⁻³	6,9	556,9	6,66·10 ⁻³	6,9
	9a	27,5	223,8	2,68.10 ⁻³	5,8	56,3	6,74.10 ⁻⁴	9,7	280,1	3,35.10-3	6,6

1) Entfernung vom unteren Brennstoffende

Tab. 24: Gebundenes Spaltgas der DFR-350-Stäbe

ယ ယ

I

1

.

Experiment DFR-435

An den drei unversehrt gebliebenen Stäben wurde das freie Spaltgas bestimmt (Tab. 25),

Tab.	25:	Freies	Spaltgas	in	den	DFR-435-Stäben

Stab	cm ³	freies mm ³ /g	Spaltgas Xe/Kr	F [%] 1)	7 ²)
G 9	97,04	1742,2	5,9	91,3	85,6
G 17	93,37	1688,4	6,4	105,3	98,8
G 19	95,93	1700,9	6,7	106,1	99,5

1)prozentuale Freisetzung bei Annahme von 0,30 Spaltgasatomen/Spaltung
2) " " " 0,32 " "

3.2.4 Rapsodie-Bestrahlungen

Rapsodie-Monitor

An zwei Stäben wurde das freigesetzte Spaltgas bestimmt. Die Ergebnisse sind in der Tab.26 aufgeführt.

Tab. 26: Spaltgasfreisetzung der Rapsodie-Monitor-Stäbe

Stab	cm ³	freies mm ³ /g	Spaltgas Xe/Kr	F [%] 1)	_% 2)
AU 31	78,82	1285,8	14,4	88,7	83,1
BU 18	88,52	1446,4	14,4	98,2	92,1

1) prozentuale Freisetzung bei Annahme von 0,30 Spaltgasatomen/Spaltung
2) " " 0,32 " "

Rapsodie-Bündel

Die Ergebnisse der Bestimmungen des freien Spaltgases sind in der Tab.27 wiedergegeben.

Bün- del	Stab	cm ³	freies S _l mm ³ /g	paltgas F Xe/Kr	⁷ 2 ¹)	2) %
1	AM 07	110,54	1780,0	6,4	83,1	77,9
	AM 21	122,40	1974,2	7,5	89,3	83,7
	AM 35	127,15	2105,1	7,4	91,9	86,2
	BM 10	118,74	1982,3	6,0	92,4	86,6
	BM 12	125,55	2048,1	7,6	95,6	89,7
	BM 14	102,30	1702,2	7,7	79,5	74,5
	BM 16	109,80	1839,2	8,9	84,3	79,0
2	AU 20 AU 22 AU 24 AU 26 AU 37 BU 14	95,12 99,58 108,66 117,83 106,20 115,90	1549,2 1627,1 1784,2 1931,6 1741,0 1896,9	6,5 6,5 6,1 6,9 7,4 6,3	72,3 75,9 79,0 84,1 75,8 84,0	67,8 71,1 74,0 78,9 71,1 78,7

	Tab.	27:	Spaltgasfreisetzung	der	Rapsodie-Stäbe
--	------	-----	---------------------	-----	----------------

1) prozuentale Freisetzung bei Annahme von 0,30 Spaltgasatomen/Spaltung
2) " " " 0,32 " "

4. Diskussion

4.1 Spaltgasfreisetzung

Als Wert für die Spaltgasfreisetzung wird allgemein der prozentuale Anteil des freigesetzten am erzeugten Spaltgas angegeben. Die Menge des erzeugten Spaltgases kann, wenn keine Bestimmung des gebundenen Spaltgases erfolgt oder wegen starker axialer Änderungen der Gaskonzentration infolge unterschiedlicher Betriebsbedingungen eine hinreichend genaue Bestimmung nicht möglich ist, häufig nur berechnet werden. Hierfür ist die Kenntnis der eingesetzten Brennstoffmenge, des mittleren Abbrandes und der Zahl der pro Spaltung entstehenden Spaltgasatome erforderlich. Während die beiden erstgenannten Grössen fast immer mit ausreichender Genauigkeit bekannt sind, ist die Zahl der pro Spaltung erzeugten Xe- und Kr-Atome nicht für alle Fälle klar. Sie ist abhängig vom Spaltstoff und vom Neutronenspektrum, das die Spaltgasmenge in zweifacher Hinsicht beeinflussen kann: direkt über die Ausbeute bei der Spaltung und über die Umwandlung kurzlebiger Isotope in stabile.

Bei der Spaltung von U-235 und Pu-239 mit thermischen Neutronen entstehen nach neueren Literaturangaben /16, 17, 18/ 0,24 bis 0,25 stabile Xeund Kr-Atome pro Spaltung. Das Xe/Kr-Verhältnis beträgt nach diesen Literaturangaben ca. 5,5 bei U-235- und ca. 13,7 bei Pu-239-Spaltung. Der Wert von 0,25 Gasatomen pro Spaltung ist jedoch zu niedrig, um die tatsächlich entstandenen Spaltgasmengen zu erklären. Bei einer Rückrechnung auf Grund der bei den FR 2-Versuchsgruppen ermittelten Spaltgasmengen und der bekannten Brennstoff- und Abbranddaten ergibt sich, dass pro Spaltung ca. 0,3 Gasatome entstanden sein müssen. Dieser Wert lässt sich auch theoretisch begründen, wenn man berücksichtigt, dass das instabile Xe-135 wegen seines hohen Einfangquerschnittes für thermische Neutronen von 3,6.10⁶ barn fast vollständig durch (n,γ) -Reaktion in das stabile Xe-136 umgewandelt wird. Bei vollständiger Umwandlung ergibt sich dann nach /16, 17, 18/ ein Wert von 0,3 bis 0,32 Gasatomen pro Spaltung. Bei thermischen Neutronenflüssen von 10¹³ bis 10¹⁴ n/cm²·s, wie sie bei den FR-2-Bestrahlungen auftreten, ist die Abbaukonstante des Xe-135 durch (n,γ) -Reaktion 40 bis 400 mal so gross wie die ß-Zerfallskonstante, d.h. fast das gesamte Xe-135 wird in Xe-136 umgewandelt. Das bestätigen auch die gefundenen mittleren Xe/Kr-Verhältnisse von 7,4 bei den UO₂-Versuchsgruppen FR 2-1,2 und 3 und von ca. 18 bei den UO2-PuO2-Versuchsgruppen, die sich nur durch nahezu vollständige Umwandlung erklären lassen.

Etwas anders sind die Verhältnisse bei Bestrahlungen im schnellen Neutronenfluss. Es sind keine zuverlässigen Angaben über (n,γ)-Wirkungsquerschnitte der interessierenden Spaltgasisotope bekannt. Die wenigen Angaben für Neutronen hoher Energie deuten jedoch daraufhin, dass sie klein sind.

- 36 -

Auch die beobachteten Xe/Kr-Verhältnisse geben keinen Hinweis auf eine nennenswerte Entstehung stabiler Xe- oder Kr-Isotope durch Neutroneneinfangprozesse. Die gemessenen Xe/Kr-Verhältnisse entsprechen in etwa den auf Grund der Spaltungsanteile der Spaltstoffe zu erwartenden. Der theoretische Wert von 0,24 bis 0,26 Gasatomen pro Spaltung nach /18, 19/ reicht jedoch nicht aus, die bei Bestrahlung in schnellen Flüssen entstandenen Spaltgasmengen zu erklären. Auch hier muss man bei Versuchsauswertungen einen Wert von 0,3 bis 0,32 Gasatomen pro Spaltung annehmen, um gemessene Spaltgasmengen, oft sogar nur die freigesetzten, zu erklären.

Abb.17 zeigt die prozentuale Spaltgasfreisetzung der untersuchten Brennstäbe in Abhängigkeit vom Abbrand. Parameter in dieser Abbildung ist die mittlere Brennstofftemperatur. Die obere und die untere gestrichelte Linie geben die Grenzen des Streubandes der Freisetzungswerte an, die der Literatur für Brennstabbestrahlungen mit Mischoxidpellets entnommen wurden. Die eigenen Messwerte füllen dieses breite Streuband voll aus. Nach der Einführung der mittleren Brennstofftemperatur am Bestrahlungsende als Parameter -wobei drei Temperaturgruppen mit den mittleren Temperaturen 1000, 1250 und 1500°C gewählt wurden- erkennt man, dass die unteren Werte von den Brennstäben mit niedriger mittlerer Brennstofftemperatur stammen. Das sind die Stäbe aus den FR 2-Bestrahlungen, bei denen die Stableistung und die Hülltemperatur im Laufe des Abbrandes stark abfielen. Den oberen Bereich des Streubandes füllen die Freisetzungswerte der Brennstäbe mit hoher mittlerer Brennstofftemperatur aus. Alle drei Freisetzungskurven zeigen einen grundsätzlich ähnlichen Verlauf. Nach einem steilen Anfangsanstieg folgt ein s-förmiger Kurvenverlauf mit einem relativ starken Anstieg zwischen 10 und 60 MWd/kgM Abbrand, der um so später eintritt, je niedriger die Brennstofftemperatur ist. Danach erfolgt eine Abflachung der Freisetzungskurven.

Einen ähnlichen Verlauf der Spaltgasfreisetzung mit dem Abbrand ergeben die kontinuierlichen Druckmessungen an den Mol 8 C-Stäben (Abb.5 bis 7). Auch diese Kurven zeigen in dem oben angegebenen Abbrandbereich im allgemeinen eine starke Zunahme der prozentualen Freisetzung. Deutlicher kommt dieser Effekt noch in den Abb.8 bis 15 zum Ausdruck, die

- 37 -

die Freisetzungsraten der Stäbe Mol 8 Cl bis C8 zeigen. Die Freisetzungsraten unmittelbar zu Beginn der Bestrahlung waren nicht zu ermitteln, da sie durch desorbierte Fremdgase verfälscht wurden. Bei Abbränden zwischen 15 und 40 MWd/kgM werden erstmals Freisetzungsraten erreicht, die der mittleren Freisetzungsrate (= prozentuale Freisetzung am Bestrahlungsende) entsprechen oder diese übersteigen, wobei teilweise sogar Werte über eins auftreten. Nach einem darauffolgenden kurzzeitigen Abfall wird dann meist noch ein zweites Maximum zwischen 50 und 70 MWd/kgM gefunden, bei dem die Werte zum Teil erheblich über eins liegen. Bei Abbränden über 75 MWd/kgM liegen dann die Freisetzungsraten fast immer etwas unter eins. Grössere Schwankungen treten dann kaum noch auf bzw. sie lassen sich bei diesen Abbränden fast immer durch Schwankungen der Stableistung im betrachteten Abbrandintervall erklären. Ein Einfluss der Zahl der Abschaltungen auf die Freisetzungsrate ist nicht erkennbar, allerdings gibt es diesbezüglich auch keine gravierenden Unterschiede in den Abbrandintervallen.

Die Vorgänge bei der Spaltgasfreigabe können folgendermassen beschrieben werden: Zu Beginn der Bestrahlung, wenn sich durch schnelle Porenwanderung zum Zentrum der Zentralkanal bildet, ist die Spaltgasfreisetzungsrate relativ hoch; denn zu diesem Zeitpunkt ist die Temperatur des Brennstoffes am höchsten und die Zone rascher Porenwanderung am weitesten nach aussen ausgedehnt. Die wandernden Poren nehmen das entstandene Spaltgas auf und setzen es am Zentralkanal frei. In dieser Anfangsphase der Bestrahlung dürfte das der entscheidende Freisetzungsmechanismus sein. Nach älterer Auffassung ist Poren- und Spaltgasblasenwanderung überhaupt der Hauptfreisetzungsmechanismus bei hoher Temperatur, nach neuerer Ansicht /20/ ist jedoch auch in der Stengelkristallzone Gasdiffusion der wesentlichste Freisetzungsmechanismus, während die Blasen- und Porenwanderung nur mit weniger als 25% an der Freisetzung beteiligt ist.

Nach der Ausbildung des Zentralkanals und dem Schliessen des Spaltes zwischen Brennstoff und Hülle kommt es jeweils zu einem Abfall der Brennstofftemperatur und zu einer Verkleinerung der Hochtemperaturzone mit schneller Spaltgasfreisetzung. Dadurch nimmt die Spaltgasfreisetzungsrate zunächst etwas ab, weil in den Zonen mittlerer und niedriger Temperatur das entstehende Spaltgas zum überwiegenden Teil noch gespeichert wird (s.Kap. 4.2). Erst wenn es zur sogenannten break-away-Freisetzung kommt -der Freisetzung durch das Aufreissen von dicht mit Spaltgasblasen belegten Korngrenzen infolge gegenseitiger Blasenberührung- steigt die Freisetzungsrate an, zum Teil auf Werte deutlich über eins. Die prozentuale Freisetzung nimmt dadurch erheblich zu. Wann dieser Effekt eintritt und wie stark er ausgeprägt ist, hängt neben der zeitlichen Änderung der thermischen Spannungen im Brennstoff infolge von Leistungsänderungen im wesentlichen von der Temperaturverteilung ab. Wie die Abb. 17 zeigt, verschiebt er sich mit abnehmender Brennstofftemperatur zu höheren Abbränden.

Auf Grund der an den Mol 8C-Stäben gemessenen Freisetzungsraten kann man annehmen, dass die hohen Freisetzungsraten unter 40 MWd/kgM Abbrand im wesentlichen durch den break-away-Mechanismus in der Kornwachstumszone bedingt sind, während die zwischen 50 und 70 MWd/kg auftretenden hauptsächlich durch das Aufreissen der Korngrenzen in der äusseren Zone ohne Gefügebeeinflussung hervorgerufen werden. Die häufig beobachtete Abnahme der Freisetzungsrate nach einer break-away-Freisetzung auf Werte erheblich unter eins deutet auf ein teilweises "Ausheilen" der aufgerissenen Korngrenzen und einen Wiederanstieg des Gasspeichervermögens des Brennstoffes. Damit verbunden wäre nach einem gewissen Abbrand eine erneute, wenn auch schwächere break-away-Freisetzung aus der betreffenden Brennstoffzone.

Auf einen Wiederanstieg des Gasspeichervermögens des Brennstoffes nach einer sehr hohen Freisetzungsrate lässt auch die Abb.18 schliessen, die die auf das jeweilige Brennstoffgewicht bezogenen freigesetzten Spaltgasmengen der in den schnellen Flüssen des DFR und des Rapsodie unter vergleichbaren Bedingungen bestrahlten Teststäbe in Abhängigkeit vom Abbrand wiedergibt. Auf eine sehr hohe Freisetzungsrate zwischen 48 und 60 MWd/kgM Abbrand folgt eine wesentlich niedrigere im Abbrandbereich zwischen 60 und 95 MWd/kgM. Anhand der wenigen bis jetzt bei hohen Abbränden zur Verfügung stehenden Daten kann noch nicht entschieden werden, ob der Wiederabfall der Freisetzungsrate wirklich auf ein zunehmendes Spaltgasspeichervermögen des Brennstoffes infolge Strukturoder Eigenschaftsänderungen bei hohen Abbränden zurückzuführen ist, oder

- 39 -

ob sich lediglich Perioden hoher und niedriger Freisetzungsraten abwechseln, also eine wiederholte break-away-Freisetzung mit anschliessender Ausheilung der aufgerissenen Korngrenzen erfolgt. Die Ergebnisse der FR 2-Bestrahlungen bis zu hohen Abbränden sind zur Deutung wegen des Leistungsabfalls zum Bestrahlungsende nicht heranziehbar.

Die Abhängigkeit der Spaltgasfreisetzung von der Ausgangsdichte des Brennstoffes ist in der Abb.19 dargestellt. Parameter in dieser Abbildung sind die mittlere Brennstofftemperatur und der Abbrand, wobei die Werte zu Gruppen zusammengefasst wurden. Allgemein ist aus der Literatur bekannt, dass die Freisetzung mit abnehmender Dichte zunimmt. Man erkennt diese Tendenz auch aus den beiden unteren Streubändern, die die Werte mit niedriger Bestrahlungstemperatur und geringem Abbrand umfassen. Bei hoher Brennstofftemperatur und hohem Abbrand findet man dagegen keine Abhängigkeit von der Ausgangsdichte mehr; denn im Laufe des Abbrandes findet durch Porenwanderung, Schwell- und Kriechvorgänge eine Porositätsumverteilung statt, die um so schneller abläuft, je höher die mittlere Brennstofftemperatur ist. Dadurch stellt sich ein Endzustand ein, der nicht mehr von der Ausgangsdichte abhängt /21/. Eine Beeinflussung der Spaltgasfreisetzung durch die Ausgangsporosität kann also nur vor dem Erreichen dieses Endzustandes erfolgen, und zwar durch das höhere Temperaturniveau und die stärkere Porenwanderung bei einem Brennstoff niedriger Dichte und dadurch, dass eine höhere Ausgangsporosität auch eine höhere offene Porosität beinhaltet und offene Poren Transportwege des Spaltgases zur freien Oberfläche darstellen.

Den Einfluss des Ausgangs-O/M-Verhältnisses auf die Spaltgasfreisetzung zeigt die Abb.20. Die Ergebnisse stammen aus den Rapsodie-Bestrahlungen, wo Brennstoffe mit unterschiedlichem O/M-Verhältnis eingesetzt wurden. Man sieht, dass die Freisetzung bei Stäben, die unter identischen Bedingungen bestrahlt wurden, mit abnehmendem O/M-Verhältnis zunimmt. Die Ursache hierfür dürfte im wesentlichen in der schlechteren Wärmeleitfähigkeit des stärker unterstöchiometrischen Materials zu suchen sein, die zu höheren Brennstofftemperaturen führt. Das bestätigen auch die Gefügeuntersuchungen, die bei den Stäben mit niedrigerem O/M-Verhältnis weiter nach aussen ausgedehnte Stengelkristall- und Kornwachstumszonen er-

- 40 -

gaben. Das O/M-Verhältnis könnte jedoch auch über Nachsinterungsvorgänge im Brennstoff, die sich auf die Breite des Spaltes zwischen Brennstoff und Hülle auswirken, die Spaltgasfreisetzung beeinflussen /22/. In jedem Fall ist der Einfluss des O/M-Verhältnisses kein direkter.

4.2 Spaltgasrückhaltung

Ein Teil des erzeugten Spaltgases wird im Brennstoff zurückgehalten. Dieses Spaltgas liegt in bestrahlungsbedingter Lösung oder ausgeschieden in Blasen vor und trägt zur Brennstoffschwellung bei. Die Kenntnis der Konzentration des zurückgehaltenen Spaltgases ist wichtig für die Vorhersage des Brennstabverhaltens bei Leistungsimpulsen oder Störungen in der Kühlung; denn in derartigen Fällen kann dieses Spaltgas durch plötzliches Entweichen, u.U. verbunden mit örtlich sehr hohen Gasdrücken, und durch starkes Schwellen infolge Bildung grösserer Blasen möglicherweise die Ursache für ein Brennstabversagen sein. Keramographische Untersuchungen an einem Brennstab, der nach einer Vorbestrahlung einem kurzzeitigen Leistungsimpuls ausgesetzt war, zeigten die Bildung einer neuen Spaltgasblasenpopulation /23/.

Die Konzentration des gebundenen Spaltgases in Abhängigkeit vom Abbrand ist in der Abb.21 für verschiedene mittlere Brennstofftemperaturen dargestellt. Die entsprechenden Darstellungen für das Gitter- und Porenspaltgas sind die Abb.22 und 23. Auf Grund dieser Kurvenverläufe kann man das Spaltgasverhalten im Brennstoff in groben Zügen folgendermassen beschreiben: Zu Beginn der Bestrahlung steigt zunächst die Konzentration des in bestrahlungsbedingter Lösung befindlichen Spaltgases an. Das erkennt man an der nahezu linearen Zunahme der Gitterspaltgaskonzentration mit dem Abbrand am Bestrahlungsbeginn. Sie strebt dann jedoch relativ rasch einem Sättigungswert zu, der um so schneller erreicht wird und um so niedriger liegt, je höher die Brennstofftemperatur ist. Mit zunehmender Sättigung der Gitterspaltgaskonzentration steigt der Gehalt an Porenspaltgas, der unmittelbar zu Beginn der Bestrahlung nur langsam zunahm, stärker an, d.h. immer mehr Spaltgas wird aus dem Brennstoffgitter ausgeschieden, vornehmlich in Blasen an Korngrenzen. Bei hohen

- 41 -

zunächst in Korngrenzenblasen.

Die Belegungsdichte der Korngrenzen mit Blasen nimmt dann im Laufe des Abbrandes immer mehr zu, bis sie sich gegenseitig berühren und die Korngrenze dadurch aufreisst und ihren Spaltgasinhalt freisetzt (break-away-Mechanismus). Bei einer mittleren Brennstofftemperatur von 1250°C erkennt man das an dem Anstieg der Konzentration des Poren- und des gebundenen Spaltgases bis ca. 30 MWd/kgM Abbrand und dem darauffolgenden Abfall. Bis zu einem Abbrand von ca. 60 MWd/kgM streuen dann die Werte des Poren- und des gebundenen Spaltgases stark, einmal weil der break-away-Mechanismus in den verschiedenen Temperaturbereichen des Brennstoffes bei verschiedenen Abbrandzuständen auftritt - nach Frost /24/ bei Temperaturen unter 1050°C bei 6% Abbrand, im Temperaturbereich 1050 bis 1500°C bei 4% und bei Temperaturen zwischen 1500 und 1750°C bei 2%- zum anderen weil er wesentlich von den Betriebsbedingungen abhängt, nämlich durch Rissbildung und Spannungsänderungen im Brennstoff infolge Änderungen der Leistung oder der Wärmeabfuhr. Bei Abbränden über 60 MWd/kgM erfolgt dann ein Wiederanstieg der Porenspaltgaskonzentration und damit des gebundenen Spaltgases auf Werte, die erheblich über denen des Maximums bei 30 MWd/kgM liegen. Der Kurvenverlauf bei einer mittleren Bestrahlungstemperatur von 1500°C ist ähnlich, wenn auch der break-away-Mechanismus, u.U. wegen fehlender Messpunkte, nicht so stark ausgeprägt ist. Oberhalb 60 MWd/kgM macht sich jedoch auch hier ein Anstieg der Konzentration des Porenspaltgases bemerkbar. Für eine mittlere Brennstofftemperatur von 1000[°]C fehlen für die Darstellung der Abbrandabhängigkeit die Konzentrationswerte bei niedrigen und mittleren Abbränden.

Gegenwärtig kann mangels Messwerten noch nicht entschieden werden, ob die bei Abbränden um oder über 80 MWd/kgM festgestellten Gaskonzentrationen Sättigungswerte darstellen, oder ob sich das Spaltgasspeichervermögen des Brennstoffes weiter erhöht. Die bei den Mol 8 B 1- und Mol 8 C-Brennben gemessenen Freisetzungsraten bei hohen Abbränden deuten auf eine Erhöhung des Rückhaltevermögens. Jedoch sind die erreichten Abbrände noch zu niedrig, um eine endgültige Aussage machen zu können. Aus anderswo festgestellten Freisetzungswerten bei hohen Abbränden lassen sich ebenfalls keine Aussagen gewinnen, da relativ geringe Änderungen der Konzentration des gebundenen Spaltgases bei hohen Abbränden und hohen Freisetzungen nur kleine Auswirkungen auf die prozentuale Freisetzung haben und damit im üblichen Streubereich dieser Werte liegen.

Bei Betrachtung der Abb.21 bis 23 fällt auf, dass die Poren- und auch die Gitterspaltgaskonzentration im UO₂ bei gleichem Abbrand fast stets über den Konzentrationen im Mischoxid liegen. Die Hauptursache hierfür besteht darin, dass im UO₂ Spaltgasentstehung und -speicherung homogen erfolgen, während in dem mechanisch gemischten UO₂-PuO₂ die Spaltungen in der kälteren Brennstoffaussenzone, in der keine ausreichende Homogenisierung des Brennstoffes stattfand und die den grössten Teil des Spaltgases speichert, überwiegend in den PuO₂-Inseln stattfinden. Das hier entstandene Spaltgas wird dann auch zum überwiegenden Teil in diesen PuO₂-Bereichen gespeichert. Dadurch trägt das UO₂ nur wenig zur Spaltgasspeicherung bei.

In den Abb. 24 bis 26 sind die Konzentrationen des gebundenen Spaltgases und seiner beiden Anteile in Abhängigkeit von der mittleren Brennstofftemperatur dargestellt. Parameter in diesen Abbildungen ist der Abbrand. In den Streubändern der Messwerte des Poren- und damit auch des gebundenen Spaltgases liegen die Werte hohen Abbrandes bei gleicher Temperatur meist über den Werten niedrigen Abbrandes. Bei der Abhängigkeit der Gitterspaltgaskonzentration von der mittleren Brennstofftemperatur ist ein Einfluss des Abbrandes auf die Lage der Messpunkte im Streubereich nicht erkennbar. Damit wird bestätigt, dass die Konzentration des Gitterspaltgases schon nach relativ niedrigen Abbränden ihren Sättigungswert erreicht.

Aus der Abhängigkeit der Konzentrationen der einzelnen Spaltgasanteile von der mittleren Brennstofftemperatur lassen sich die Konzentrationen in verschiedenen Temperaturbereichen des Brennstoffes abschätzen. Man erhält dann für Abbrände um 80 MWd/kgM die in der Tab. 28 angegebenen Spaltgaskonzentrationen.

Tab. 28:	Konzentrationen des	gebundenen Spaltgases im
<u></u>	UO ₂ -PuO ₂ -Brennstoff	nach 80 MWd/KgM Abbrand

Temperatur- bereich °C	Gasko Gitterspaltgas G	nzentration, Atom Porenspaltgas P	/Metallatom gebundenes Gas P+G
<1100 1100-1300 1300-1500 >1500	$3,2 \cdot 10^{-3}$ $1,5.10^{-3}$ $5 \cdot 10^{-4}$ $1 \cdot 10^{-4}$	$ \begin{array}{r} 11,5\cdot10^{-3} \\ 7 \cdot10^{-3} \\ 1,7\cdot10^{-3} \\ 1 \cdot10^{-4} \end{array} $	$ \begin{array}{r} 14,7\cdot10^{-3} \\ 8,5\cdot10^{-3} \\ 2,2\cdot10^{-3} \\ 2 \cdot10^{-4} \end{array} $

In der Abb.27 ist die Konzentration des Gitterspaltgases nach Tab. 28 in Abhängigkeit von der Temperatur dargestellt. Gleichzeitig wurde der Versuch unternommen, diese Konzentration und ihre Temperaturabhängigkeit zu berechnen. Wie bereits erwähnt, besteht das Gitterspaltgas aus zwei Anteilen: dem in bestrahlungsbedingter Lösung befindlichen Gas und dem in kleinen intragranularen Blasen enthaltenen. Von diesen Blasen wird angenommen, dass sich ihre Grösse auf Grund des Gleichgewichtes zwischen Gasaufnahme durch Diffusion, sowohl thermische als auch bestrahlungsbedingte, und Gasverlust durch Wiederauflösung einstellt.

Zur Berechnung des gelösten Spaltgases wurde die Formel von Pati /25, 26/ benutzt:

c = fft -
$$\frac{1}{b} [(4 \ln)^{2/3} (3v)^{1/3} D_g c (fft - c)^{1/3} - ff]$$

- c Konzentration des gelösten Spaltgases, Atome/cm³
- f Zahl der Spaltgasatome pro Spaltung
- F Spaltungsrate, Spaltungen/cm³·s
- t Bestrahlungszeit, s
- b Wiederauflösungsparameter, s
- n Blasendichte, cm^{-3}
- v von der Waals' Konstante für Xe, cm³
- D_{g} Gasatomdiffusionskoeffizient, cm²/s.

Den Rechnungen wurden folgende Bedingungen und Zahlenwerte zugrunde gelegt:

f = 0,3 $\dot{F} = 3 \cdot 10^{13} \text{ cm}^{-3} \text{ s}^{-1}$ $t = 5 \cdot 10^{7} \text{ s}$ $b = 2 \cdot 10^{-5} \text{ s}^{-1} \text{ in Anlehnung an /23, 25/}$ $v = 8,5 \cdot 10^{-23} \text{ cm}^{3}$

Für den Gasatomdiffusionskoeffizienten D wurden die angekreuzten Werte der Abb. 28 benutzt. Diese Abbildung wurde der Arbeit von Ronchi und Matzke /27/ entnommen und stellt eine Zusammenfassung aller als zuverlässig zu betrachtenden Literaturdaten dar.

Für die Dichte der intragranularen Blasen wurden die experimentell bestimmten Werte nach /28/ zugrunde gelegt, deren Abhängigkeit von der Bestrahlungstemperatur in der Abb.29 dargestellt ist. Diese Blasen mit Durchmessern unter 50 Å tragen mit ca. 5·10⁻⁴ Gasatomen pro Metallatom zur Konzentration des Gitterspaltgases bei.

Abb. 27 zeigt, dass die Übereinstimmung zwischen gemessenen und berechneten Gitterspaltgaskonzentrationen bis zu einer Temperatur von 1500°C relativ gut ist. Die beste Übereinstimmung wird erreicht, wenn für die Gasatomdiffusionskoeffizienten oberhalb ca. 1150°C die oberen Grenzwerte des in Abb.28 eingezeichneten Streubandes 2 verwendet werden, die die Wechselwirkung der diffundierenden Gasatome mit Gitterdefekten und anderen Gasatomen berücksichtigen. Bei Temperaturen über 1500°C tritt eine beträchtliche Abweichung auf, weil Cornell et al. /28/ bis 1580°C Blasen beobachteten, deren Grösse und Dichte eine Konzentration von ca. 5.10⁻⁴ Atomen/Atom bedeuten. Bei höheren Temperaturen jedoch sollte die Konzentration dieses Spaltgasanteiles infolge zunehmender Blasenbeweglichkeit abnehmen, wie der aus den eigenen Messungen ermittelte Wert von 1.10⁻⁴ Gasatome/Metallatome zeigt.

Einen qualitativen Hinweis darauf, dass thermische Diffusion eine Rolle beim Spaltgastransport spielt, geben die Xe/Kr-Verhältnisse der drei Spaltgasanteile (Tab. 29). Abgesehen von den durch Neutronenspektrum und Spaltstoff bedingten Unterschiede dieser Verhältnisse bei den einzelnen Experimenten, zeigen alle Ergebnisse, dass das Xe/Kr-Verhältnis des freigesetzten Spaltgases nahezu dem des erzeugten entspricht. Das

	Experiment							
	FR 2-1,2,3	FR 2-4a	FR 2-4b,5b	Mol 7A	DFR-304	DFR-350		
Brennstoff								
UO ₂ -Gehalt, Gew%	100	85	80	80	80	80		
PuO ₂ -Gehalt, "	-	15	20,35	20	20	20		
U-Anreicherung, %	<u>≤</u> 12,5	0,7	0,7	79	93	86		
Neutronenfluss	therm	therm.	therm.	epitherm.	schnell	schnell		
freies Spaltgas F	7,3	18,5	17,3	7,0	6,3	6,7		
Porenspaltgas P	6,8	17,1	16,3	6,3	6,4	6,3		
Gitterspaltgas G	8,6	21,6	22,9	9,7	8,7	7,1		
gebundenes Spaltgas P+G	7,4	18,5	17,6	7,2	7,1	6,7		
gesamtes Spaltgas F+P+G	7,4	18,5	17,5	7,0	6,4	6,7		

Tab. 29: Xe/Kr-Verhältnisse der verschiedenen Spaltgasanteile

46 -

I

gleiche gilt für das Xe/Kr-Verhältnis des gebundenen Spaltgases. Lediglich bei höheren mittleren Brennstofftemperaturen wurde im gebundenen Spaltgas etwas mehr Xe gefunden als es dem Erzeugungsverhältnis entspricht. Das bedeutet, dass sich der höhere thermische Diffusionskoeffizient der kleineren Kr-Atome bemerkbar macht. Noch auffälliger wird diese Tatsache, wenn man die Xe/Kr-Verhältnisse des Poren- und des Gitterspaltgases in Tab. 29 betrachtet. Das durch Diffusionstransport ausgeschiedene Porenspaltgas hat in allen Fällen ein deutlich niedrigeres Xe/Kr-Verhältnis als das Gitterspaltgas.

4.3 Einfluss des gebundenen Spaltgases auf die mechanische Wechselwirkung Brennstoff-Hülle

Das Schwellen des Brennstoffs durch Spaltgasblasenbildung führt beim stationären Reaktorbetrieb und beim Vorhandensein innerer Hohlräume im Brennstoff infolge der hohen Kriechgeschwindigkeit des Oxids nur zu einem begrenzten Kontaktdruck zwischen Brennstoff und Hülle. Nach SATURN-Rechnungen /29/ ist unter den stationären Betriebsbedingungen eines Schnellen Brüters bei Stableistungen über 400 W/cm nur mit Kontaktdrücken von weniger als 40 kp/cm² zu rechnen. Auch ein in-pile Experiment zur direkten Messung des Schwelldruckes ergab, dass der Schwelldruck bei einer Stableistung von 500 W/cm unterhalb 25 kp/cm² lag /30/. Drücke dieser Grössenordnung können noch nicht zu einer plastischen Aufweitung einer 0,35 bis 0,4 mm starken Edelstahlhülle im interessierenden Temperaturbereich führen.

Entscheidend für die beobachteten plastischen Hüllaufweitungen ist die mechanische Wechselwirkung zwischen Brennstoff und Hülle bei Leistungsund/oder Hülltemperaturänderungen infolge unterschiedlicher thermischer Ausdehnungen des Brennstoffes und der Hülle /31, 32/. Voraussetzung für die wiederholte Wirksamkeit dieses Mechanismus ist das Blockieren oder Ausheilen der bei den Temperaturänderungen im Brennstoff entstandenen Risse sowie das Schliessen eines evtl. entstandenen Spaltes. Unter den möglichen Mechanismen, die das entstandene Leervolumen teilweise stabilisieren oder vernichten können /33/, spielt das Spaltgasschwellen vermutlich eine wesentliche Rolle.

- 47 -

Bei den hochabgebrannten Brennstäben der Versuchsgruppen FR 2-4b und FR 2-5b lässt sich tatsächlich ein Zusammenhang zwischen dem Gehalt an Porenspaltgas und der Hüllaufweitung erkennen (Abb.30 und 31). In beiden Versuchsgruppen steigt mit zunehmender Hüllaufweitung die Konzentration des Porenspaltgases an. Die unterschiedlichen Konzentrationen in beiden Versuchsgruppen sind durch die unterschiedlichen Brennstofftemperaturen bedingt, die bei der Versuchsgruppe FR 2-5b höher waren. Ein systematischer Zusammenhang zwischen Gitterspaltgaskonzentration und Hüllaufweitung ist nicht erkennbar.

Das Spaltgasschwellen kann das Schliessen von Rissen und Spalten bewirken, weil der Brennstoff an deren Oberflächen unter keiner Druckspannung steht und deshalb die hohe <u>freie</u> Schwellrate des Oxids in diesen Bereichen wirksam werden kann. Zur Druckabhängigkeit der Gasschwellrate können keine exakten Angaben gemacht werden, da keine experimentell bestimmten Werte bekannt sind, jedoch ist zu erwarten, dass sie bei Temperaturen oberhalb ca. 1100[°]C erheblich ist. So berechnete Kämpf /34/ mit dem GRASS-Code für eine Brennstofftemperatur von 1490[°]C nach 3 Atom-% Abbrand bei einer Stableistung von 200 W/cm folgende Druckabhängigkeit:

Druck (at.)	Schwellrate (%/% Abbrand)				
1	20				
10	0,8				
100	0,003				

Wenn diese Werte -vermutlich bedingt dadurch, dass der GRASS-Code nur Blasenwanderung als Gastransportmechanismus berücksichtigt- auch nicht ganz realistisch erscheinen, so geben sie doch einen Hinweis, mit welcher Druckabhängigkeit u.U. zu rechnen ist, so dass Risse und Spalte durch Blasenneubildung und -vergrösserung in relativ kurzer Zeit verschwinden können. Bei mehrmaliger Wiederholung dieses Vorganges kommt es dann zu einem merklichen Anstieg der Porenspaltgaskonzentration, während die Konzentration des Gitterspaltgases davon praktisch unberührt bleibt, da sich nach jeder abgeschlossenen Blasenneubildung bei den betrachteten hohen Abbränden rasch wieder die Sättigungskonzentration einstellt. Einen Beitrag zur Erhöhung des Gehaltes an Porenspaltgas können auch ausgeheilte Risse leisten, die nicht mit der freien Oberfläche in Verbindung stehen und Spaltgas aufgenommen haben. Die Menge dieses eingeschlossenen Spaltgases ist jedoch klein und kann die Erhöhung der Porenspaltgaskonzentration allein nicht erklären, da der Gasdruck in diesen Rissen im Vergleich zu dem in Spaltgasblasen sehr gering ist. Rechnet man den zusätzlichen Porenspaltgasgehalt bei Hüllaufweitung auf das durch die Aufweitung neu entstandene Leervolumen um, so kommt man bei den jeweiligen Betriebstemperaturen im äusseren Brennstoffring zu Gasdrücken von ca. 400 kp/cm² bei den FR 2-4b-Stäben und ca. 270 kp/cm² bei den FR 2-5b-Stäben. Derartige Drücke können nur in Spaltgasblasen von $\leq 0,1$ µm Durchmesser herrschen.

4.4 Zusammenfassung

Die experimentell bestimmten Spaltgasmengen deuten daraufhin, dass pro Spaltung 0,3 bis 0,32 Spaltgasatome entstehen, und zwar sowohl im thermischen als auch im schnellen Neutronenfluss. Während sich für Bestrahlungen im thermischen Neutronenfluss diese hohe Ausbeute durch Umwandlung des instabilen Xe-135 in das stabile Xe-136 infolge (n,γ) -Reaktion erklären lässt, ist sie für Bestrahlungen im schnellen Fluss auf Grund bekannter Daten nicht erklärbar.

Die Spaltgasfreisetzungsrate, aufgetragen über den Abbrand, ist nicht konstant. Sie wird beeinflusst durch den sogenannten break-away-Mechanismus, d.h. das Aufreissen von dicht mit Spaltgasblasen belegten Korngrenzen. Dieser Effekt tritt in den einzelnen Temperaturzonen des Brennstoffes bei verschiedenen Abbränden auf. Er verschiebt sich mit abnehmender Temperatur zu höheren Abbränden. Nach einer break-away-Freisetzung ist eine teilweise "Ausheilung" der aufgerissenen Korngrenzen wahrscheinlich.

Auf Grund der gemessenen Daten ist unter den Betriebsbedingungen Schneller Brüter bei mittleren und hohen Abbränden mit Freisetzungen von 90% und darüber zu rechnen. Für eine genauere Darstellung der Spaltgasfreisetzung und -rückhaltung wird empfohlen, folgende empirisch ermittelte Formel für die Freisetzungsrate zu benutzen: - 50 -

A Abbrand

 A_{C} Grenzabbrand, unter dem FR = 0 gesetzt wird

n Konstante, bestimmt das Abbrandintervall, in dem FR veränderlich ist.

Eine gute Übereinstimmung mit experimentell gefundenen Spaltgasdaten ergab sich bei folgender Einteilung der Temperaturzonen und Wahl der Konstanten:

Temperaturzone ^O C	A _G , MWd/kgM	n	
< 1100	25	2,2	
1100 - 1500	12,5	2,4	
> 1500	1	2,4	

Die Spaltgasrückhaltung in der nicht restrukturierten Gefügezone ist beträchtlich. Es treten Gaskonzentrationen von 1,5 $\cdot 10^{-2}$ Gasatomen pro Metallatom auf. 20 bis 25% dieses Gases (Gitterspaltgas) befindet sich in strahlungsbedingter Lösung oder in sehr kleinen intragranularen Blasen (Durchmesser <100 Å). 75 bis 80% des Gases ist in grösseren Spaltgasblasen enthalten (Porenspaltgas). Mit steigender Brennstofftemperatur nimmt die Konzentration des gebundenen Spaltgases ab. Bei Temperaturen über 1500°C ist nur noch mit ca. 2 $\cdot 10^{-4}$ Gasatomen/Metallatom zu rechnen.

Es besteht ein Zusammenhang zwischen Porenspaltgaskonzentration und Hüllaufweitungen von Brennstäben in der Weise, dass bei grösserer Hüllaufweitung höhere Gehalte an Porenspaltgas gefunden werden.

Die Brennstoffparameter Ausgangs-O/M-Verhältnis und Ausgangsdichte der Pellets beeinflussen im untersuchten Parameterbereich das Spaltgasverhalten nur indirekt über die Wärmeleitfähigkeit und das Nachsinterverhalten, das sich auf die Breite des Brennstoff/Hülle-Spaltes auswirkt.

Die hier gemachten Aussagen zum Spaltgasverhalten beziehen sich im wesentlichen auf Mischoxid mit mikroskopisch inhomogener Pu-Verteilung. Inwieweit die Pu-Verteilung Einfluss auf das Spaltgasverhalten hat, ist schwer abzuschätzen. Die wenigen Ergebnisse an UO₂-Bestrahlungen lassen vermuten, dass eine homogene Spaltstoffverteilung zu einer etwas höheren Konzentration des gebundenen Spaltgases führt.

Literatur

- /1/ D.Freund Auslegung, Bestrahlung und Nachuntersuchung der Oxidbrennstabproben im FR 2 KFK 1376 (1972)
- /2/ D.Geithoff, D.Freund, K.Kummerer Auslegung, Bestrahlung und Nachuntersuchung der UO₂-Brennstabprüflinge in der FR 2-Kapsel-Versuchsgruppe 3 KFK 1239 (1971)
- /3/ D.Freund et al. Auslegung, Bestrahlung und Nachuntersuchung der UO₂-PuO₂-Brennstab-Bestrahlungsexperimente der FR 2-Kapsel-Versuchsgrüppe 4a KFK 1523 (1973)
- /4/ W.Dienst et al. Auswertung der Untersuchungsergebnisse an den bestrahlten UO2-PuO2-Brennstäben der Versuchsgruppe FR 2-4a KFK 1727 (1973)
- /5/ P.Weimar, Th.Dippel, D.Freund Auslegung, Bestrahlung und Nachuntersuchung der UO₂/PuO₂-Brennstab-Bestrahlungsexperimente der FR 2-Kapsel-Versuchsgrüppe 4b KFK 1952 (1974)
- /6/ K.Kummerer, D.Geithoff, P.Weimar Auslegung, Bestrahlung und Nachuntersuchung des UO₂-PuO₂- Brennstab-Bündels Mo1-7A KFK 1522 (1972)
- /7/ W.Dienst et al. UO₂-PuO₂-Brennstabbündel-Bestrahlung Mol 7A. Auswertung der Untersuchungsergebnisse an den bestrahlten Brennstäben KFK 1736 (1973)

- /8/ P.Dünner, C.Heyne Bestrahlungsexperiment DFR-304. Stabspezifikation, Bestrahlungsablauf und Ergebnisse der Nachuntersuchungen Interatom, Technischer Bericht ITB 72,55 (1972)
- /9/ K.Ehrlich et al. UO₂-PuO₂-Brennstab-Bestrahlung im Trefoil-Einsatz DFR-304. Auswertung der Untersuchungsergebnisse an den bestrahlten Brennstäben KFK 1864 (1974)
- /10/ D.Geithoff, K.Kummerer Auslegung, Bestrahlung und zerstörungsfreie Nachuntersuchung des UO₂-PuO₂-Brennstab-Bündels DFR-350 KFK 1377 (1972)
- /11/ K.Ehrlich et al. U02-Pu02-Brennstabbündel-Bestrahlung DFR-350. Auswertung der Versuchsergebnisse an den bestrahlten Brennstäben KFK 1960 (1974)
- /12/ H.Elbel Analyse des Bestrahlungsversuches DFR-350 mit Hilfe des Rechenprogrammes SATURN-1a in: KFK 1273/2 (1973) 112-2
- /13/ D.Geithoff, W.Ernst
 Bestrahlungsablauf des GfK-Trefoils DFR-435
 interner Bericht
- /14/ D.Haas RAPSODIE two mixed oxide fuel subassemblies irradiation report BN 7402-05 (1974)
- /15/ H.Sebening unveröffentlicht
- /16/ M.Lammer, O.J.Eder Discussion of Fission Product Yield Evaluation Methods and a New Evaluation IAEA Symp. on Applications of Nuclear Data in Science and Technology, Paris, 1973
- /17/ E.A.C.Crouch Fission Product Chain Yields from Experiments in Thermal Reactors IAEA Symp. on Applications of Nuclear Data in Science and Technology, Paris, 1973
- /18/ M.E.Meek, B.F.Rider Compilation of Fission Product Yields NEDO-12154 (1972)

- /19/ K.F.Flynn, L.E.Glendenin Yields of Fission Products for Several Fissionable Nuclides at Various Incident Neutron Energies ANL-7749 (1970)
- /20/ Hj.Matzke, C.Ronchi Model Calculations of Fission Gas Behavior and Swelling during Power Rise unveröffentlicht
- /21/ G.Ondracek, B.Schulz Die gemessene Porositätsverteilung bestrahlter oxidischer Brennstoffe und ihr Einfluss auf das Temperaturprofil Reaktortagung Berlin, 1974
- /22/ W.Dienst persönliche Mitteilung
- /23/ D.Stahl et al. Fission-gas Behavior Studies ANL-RDP-12 (1972) 6.27
- /24/ B.R.T. Frost Studies of Irradiation Effects in Ceramic Fuels at Harwell Ceramic Nuclear Fuels, Intern.Symp. Washington, 1969
- /25/ S.R. Pati et al. Re-Solution-Controlled Fission-Gas Behavior in UO₂ Irradiated in a Fast Flux J.Nucl.Mat. 50 (1974) 227
- /26/ S.R.Pati Irradiation-Induced Re-Solution of Fission Gases in Oxide Fuels Trans.Am.Nucl.Soc. 14 (1971) 580
- /27/ C.Ronchi, Hj.Matzke Calculations on the In-pile Behaviour of Fission Gas in Oxide Fuels EUR 4877e (1972)
- /28/ R.M.Cornell et al. The Role of Bubbles in Fission Gas Release from UO J.Nucl.Mat. 30 (1969) 170
- /29/ H.Kämpf, H.Elbel, F.Depisch Die Behandlung des mechanischen und thermischen Verhaltens von Brennstäben in SATURN 1 KFK 1477 (1971)
- /30/ D.Brucklacher, W.Dienst Experimentelle Ergebnisse zur mechanischen Wechselwirkung zwischen Oxidbrennstoff und Hülle in: KFK 1273/2 (1973), 112-55

- /31/ D.P.Hines, S.Oldberg, E.L.Zebroski Non-steady-state Factors in Models for Swelling of Oxide Fuels Nucl.Appl.Technol. 9 (1970) 338
- /32/ D.Brucklacher, W.Dienst Experimental Results on the Mechanical Interaction between Oxide Fuel and Cladding IAEA Symp. on Fast Reactor Fuels and Fuel Elements, Brüssel, Juli 1973
- /33/ D.Brucklacher, W.Dienst, H.Zimmermann Die mechanische Belastung der Hülle durch den Brennstoff in: KFK 1999 (1974)
- /34/ H.Kämpf Theoretische Abhängigkeiten des Gasschwellens und der Gasfreisetzung von Betriebsparametern Reaktortagung Berlin, 1974

Abb. 1 : DFR - 350 - axialer Abbrand - und Hülltemperaturverlauf nach (10)

1 55 -

Abb. 18: Spaltgasfreisetzungswerte der DFR-und Rapsodie-Stäbe in Abhängigkeit vom Abbrand

Abb. 17: Spaltgasfreisetzung in Abhängigkeit vom Abbrand

Abb. 16: Konzentration des gebundenen Spaltgases der DFR-304 – Stäbe in verschiedenen axialen Positionen mit Abbrand-und Hülltemperaturverlauf

Abb. 15: Spaltgasfreisetzungsrate und mittlere Stableistung des Stabes Mol8C8 in Abhängigkeit vom Abbrand

Abb. 11: Spaltgasfreisetzungsrate und mittlere Stableistung des Mol 8C4 in Abhängigkeit Stabes vom Abbrand

Abb. 9: Spaltgasfreisetzungsrate und mittlere Stableistung des Stabes Mol 8C2 in Abhängigkeit vom Abbrand

Abb. 7: Spaltgasfreisetzung der Stäbe Mol 8C9 und 10 in Abhängigkeit vom Abbrand

Abb. 5: Spaltgasfreisetzung der Stäbe Mol 8C1-4 in Abhängigkeit vom Abbrand

- 65 -

%, pnuzissisnispylod2

vom Abbrand Abhängigkeit .u 88-Stäbe Mol der Abb. 4 : Spaltgasfreisetzung

Abb. 3: Konzentration des gebundenen Spaltgases der Mol 7A-Stäbe in verschiedenen axialen Positionen mit Stableistungs- und Hülltemperaturverlauf nach (6)

Abb. 19: Spaltgasfreisetzung in Abhängigkeit von der Ausgangsdichte des Brennstoffes

Abb. 20: Abhängigkeit der Spaltgasfreisetzung der Rapsodie-Stäbe vom Ausgangs-O/M-Verhältnis

- 10 -

Abb. 21: Konzentration des gebundenen Spaltgases in Abhängigkeit vom Abbrand

Abb. 22: Gitterspaltgaskonzentration in Abhängigkeit vom Abbrand

- 72 -

Abb. 24: Konzentration des gebundenen Spaltgases in Abhängigkeit von der mittleren Brennstofftemperatur

- 74 -

Abb. 25: Porenspaltgaskonzentration in Abhängigkeit von der mittleren Brennstofftemperatur

Abb. 26: Gitterspaltgaskonzentration in Abhängigkeit von der mittleren Brennstofftemperatur

Abb. 27: Gitterspaltgaskonzentration — Vergleich der gemes = senen und berechneten Werte

Abb. 28: Abhängigkeit der Spaltgasatomdiffusionskoeffizienten von der Temperatur nach (27)

 \mathfrak{B} lasendichte ,1017 \mathfrak{B} lasen/cm³

- 79 -

Abb. 30: Abhängigkeit der Porenspaltgaskonzentration von der Hüllauf= weitung bei den FR2-4b-Brennstäben mit Abbränden über 85 MWd/kgM und mittleren Brennstofftemperaturen um 1200 °C