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Abstract

A transfer function is a very convenient mathematical
description of the dynamic behavior of a complex system
because all pertinent parameters are contained within it.
For this reason transfer functions are widely applied in
the field of reactor dynamics. Only linear systems or
linear approximations to nonlinear systems are amenable
to analysis by methods of complex plane transformations.
The thermal properties of a reactor (e.g. the specific
heat capacity, the thermal conductivity of the fuel and‘
the heat transfer coefficient of the gap between the fuel
and the coolant) however are functions of the temperature,
leading to nonlinearities in the system. As long as only
relatively small oscillatiqns are considered it seems
reasonable to use constant values for these properties,
corresponding to an average power and temperature level.
It will be shown that this simple linearization process
is only partially correct and may lead to considerable
errors even for small temperature variations. Therefore

a new linearization method has been developed by properly
modifying the transfer functions and by introducing addi-
tional parameters which are functions of the steady state
conditions. Temperature transients in nuclear reactors

are usually treated by applying the "lumped model" which
does not take into account any heat propagation effect,
Because it has been shown that these effects are not always
negligible /1,2/, space and time dependent equations for
the heat transfef— and - transport equations have been used.
Reactor transfer functions which account for the space and
time dependent heat transfer in a fuel element as well as
for the temperature dependent heat transfer coefficients
are considered. Numerical examples are given for the KNK
and SEFOR reactors.



bertragungsfunktionen fiir schnelle Reaktoren mit besonderer
Berlicksichtigung der Nichtlinearitdten und der r&umlichen

Abhdngigkeit des Widrmelibergangsprozesses

Zusammenfassung

Ubertragungsfunktionen bilden eine sehr bequeme mathematische
Darstellungsweise des dynamischen Verhaltens komplexer Systeme,
da sie alle einschlidgigen Parameter enthalten. Aus diesem Grunde
finden sie auch vielfache Anwendung auf dem Gebiet der Reaktor-
dynamik. Aber nur lineare Systeme oder lineare Approximationen
nichtlinearer Systeme k&nnen mit den Methoden der Funktional-
transformationen behandelt werden. Die thermodynamischen Eigen-
schaften eines Reaktors - z.B. die spezifische Widrmekapazitit
und thermische Leitfdhigkeit des Brennstoffs und die Wdrmeiiber-
gangszahl fiir den Spalt zwischen dem Brennstoff und der Brenn-
stoffhiille - sind jedoch temperaturabh&ngig, was zu Nichtlineari-
tdten in dem System fiihrt. Solange jedoch nur relativ kleine Os-
zillationen betrachtet werden, scheint es vernlinftig, konstante
Werte flir diese Parameter 2zu benutzen, welche den entsprechenden
Mittelwerten der Leistung und der Temperatur zuzuordnen sind.

Es wird gezeigt, daB diese einfache Linearisierung nur teilweise
zuldssig ist und selbst bei kleinen Temperaturschwankungen zu
betrdchtlichen Fehlern filihren kann. Deshalb wurde eine neue Li-
nearisierungsmethode entwickelt, durch geeignete Modifikation
der Ubertragungsfunktionen und durch Einfithrung von zusédtzlichen

Parametern, welche von den stationdren Bedingungen abh&dngen.

Normalerweise werden Temperaturtransienten in nuklearen Reaktoren \
mit Hilfe des sogenannten "lumped Modells" behandelt, welches
keine Wdrmeausbreitungseffekte berlicksichtigt. Da gezeigt wurde
/1,2/, daB diese Effekte nicht immer vernachlissigbar sind, wur-
den raum- und zeitabhidngige Gleichungen flir den Wirmeilbergang

und Wdrmetransport benutzt.

Es wurden dann Ubertragungsfunktionen berechnet, welche sowohl
den raum- und zeitabhd&ngigen Wdrmeaustausch im Brennelement

als auch die Temperaturabh&dngigkeit der Wdrmeilibergangsparameter
beridcksichtigen.

Numerische Beispiele werden flir die Reaktoren KNK und SEFOR

angegeben.
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I) Introduction

| In the case of small deviations from the stationary operating conditions, the .
dynamic behaviour of a nuclear reactor can be described by a set of linear differ-
ential equations. This assumption enables one to analyse the system by
using the transfer function method. A transfer function defines the system
completely, because all pertinent parameters are contained in it. This function
represents a very convenient mathematical description of the dynamic behaviour
of complex systems in case of small periodic oscillations. For this reason
transfer functions are widely applied in the field of reactor dynamics mainly
with respect to stability oconsiderations.

The assumption of small oscillations around the steady state values usually
guarantees the validity of the transfer function method. In the following sec-
tions it will be shown that this approach may lead to considerable errors if
the linearization process is not carried ocut correctly. The linearization of
'non linear effects" can be taken into account by properly modifying the trans-
fer functions and by introducing some additional parameters which are functions
of the steady state values of the input variables,

Temperature transients in nuclear reactors are usually treated by using the well
known lumped model, which does not take into account any heat propagation effect.
Since it has been shown that these effects are not always negligible /1,2/, space
and time dependent equations for heat transfer and transport equations have been
used in this paper. The solutions of the space and time dependent heat transfer
in a fue.l element accounts also for temperature dependent heat transfer coeffi-
cients,

Numerical examples are given in the case of the KNK and of the Sefor reactors.

Zum Druck eingereicht am 3.9.1974



ITI) Description of the model

1) Basic features of the model

We consider a delayed critical reactor, operating at steady state conditions at
a certain power level. The operating conditions of this reactor can be varied
by a multiple reactivity input system. For this input system, small oscillations
compared to their mean values are assumed, so that J.n a first approximation the
effects due to the higher harmonics can be neglected. With this assumption the
mathematical model of the reactor can be reduced to a set of linear differential
equations with constant coefficients and is therefore amenable to transfer func-
tion theory. |

Fig., (1) shows a block diagram of the model with the three main components which
determine the dynamic behaviour of the reactor namely: the input system, the
zero power transfer function and the feedback effects. The model covers only

the reactor: i.e. feedback effects through the ocoolant loops are not included.

The multiple réactivity input system is characterized by the following three
parts: (A) direct reactivity input e.g. by ‘control rod rovement, (B) reactivity
effects caused by oscillations of inlet coolant temperature "Aes" through the
transfer function "R(0)" and (C) reactivity effects caused by oscillations of the
coolant flow " 22" through the transfer function "M(0)".

K(o) denotes the well known /3/ zero power transfer function derived from the
space independent neutron kinetic equations. This means that for the neutron
kinetics the point reactor model has been used, which assumes that the spatial
distribution of the neutron flux does not depend on the time. Therefore K(0) is
only a function of the prompt neutron lifetime "1" and the delayed neutron para-
meters of the fissile materials. All feedback effects are classified in the two
following cathegories: Power feedback effects at constant coolant temperatures
(transfer function "Q(o)") and reactivity power feedback effects through the
variations of the coolant temperatures (transfer function "S(o)").




2) Reactivity effects due to temperature oscillations

Each reactivity change (Fig. 1) for both J.ntemal feedbac:k mecham.sns as well -
as for external inputs (except for AK input) is calculated by multiplying the
variation' of the average temperature’ (upon which the reactlvity change is depen-
dent) by the associated reactlwty/tenperatuxe coefficient The osc:.llations
of these temperatures are calculated (for given steady state conditlons i.e,
for given values of the coolant inlet temperature 980 , _of the coolant outlet
of the ocoolant flow and of the po»er) from the osc1llations of the power, of
the ooclant flcw and of the inlet temperature o
_ The reactor has -been devided into different zones as indicated in. F:Lg. 2. Each
zone 1is characterized by the material composition, the geon‘etry, the therm)dy
namical parameters, the average temperatures, the react1v1ty coefficients and
the heat sources. Fig., 2 shows a genej:al concept of the model, which is appli- -
cable to different types of reactors e.g. the SNR 300, KNK, and SEFOR. Not all
of these zones are always present in a reactor configuration. For example zone 7
is present in SEFOR but not in SNR 300 and KNK. The user of the program has to
choose the zones which are necessary. The main coolant flow is the same for all
reactor types. The coolant enters the reactor from the ~ lateral and lower plenum
. (zones 8 and 5 respectively). From the lower plenum at the bottom of the ‘reactor
the coolant goes into the reactor in the vertical upright direction (through the
lower axial blanket, the core and the upper axial blanket), and leaves the
reactor from the mixing zone. The amount of power, produced in the different
zones and in the various materials must be specified.

Most important is the heat flux from the fuel to the coolant in zone 1. It is
described by considering an average fuel pin with associated coolant channel.
The coolant channel is characterized by a coolant cross section S1. The coolant
flow is detemmined by the coolant inlet temperature, the coolant outlet tempe-
rature and the power with the assumption of an equal pressure drop in all
channels, i.e. the mass flow distribution over the whole core cross-section is
assumed to be flat. | |

Figs. 3a and 3b show a scheme of the cell with the corresponding temperature
profiles. A model for the heat transfer from the fuel to the coolant in a
simple geometry has been previously described /1,2/. It is based on the



instationary heat balance equations with spatial variables which take into
account the heat propagation inside a fuel element in the radial direction /1/
and the heat transport by the coolant in the axial direction /2/ with the
following assumptions:(a) uniform heat production within the entire fuel pin
volure and (b) no heat conduction in the axial direction inside the fuel pin.
This model has been modified to account for the nonlinear effects due to the
thermal parameters of the fuel and to the changes of the heat transfer coeffi-
cient of the gap between fuel and cladding. |

Fuel is located only in the core (zone 1). The ¥~ray absorption in the struc-
ture materials produces heat which is transferred from the structure materials
to the coolant. Since these effects are of secondary importance, a simple lumped
model has been used to describe the heat transfer process. This approximatim'

is satisfactory because the temperature distribution within a structure material
is flat and the fractional energy absorbed small. Adjacent zones are linked

by means of boundary conditions of the coolant flow and of the coolant tempera-
tures at the interface, '

The dynamic heat exchange in the radial direction from the core and the lateral
plenum to thev static sodium between the core and the shroud is taken into account
by using the static temperatures as input parameters. The static and dynamic
heat propagation from the core and the lateral plenum to the radial blanket is
neglected because in this region the dominating heat transport is due to the
coolant which by-passes the core.

3) Non linearities in the time dependent heat transfer equations

The heat propagation calculations are complicated by the fact that the thermo-
dynamic parameters such as the specific heat capacity "x1 A" of the fuel; the
fuel thermal conductivity ">\1 A" and the heat transfer coefficient of the gap
between the fuel and the clad "h1 A" are temperature dependent. The influence
of these effects at steady state is shown in the Figures 4a and 4b. Fig.4a
shows the difference between the average fuel temperature T1 M and the coolant
1A Fig.4b shows the dif-

ference between T1 M and the fuel surface temperature Typg @ @ function of PDyp-

temperature @1 0 as a function of the power density PD

These curves have been obtained with X 12 and h1 A being analytical functions of T and




PD1 A If >% Aand h1 A are constant these temperature differences become linear
functions of PD, (indicated in Figs. 4a and 4b by means of the dotted lines).
The rather large deviations from linearity are due to the decrease of %Awith
fuel temperatures and the increase of h.‘ a With reactor power. It is evident
therefore that for steady state calculations the temperature dependence of A
and h1 A must be considered. In addition this dependence must also be considered
in the case of the analysis of the oscillatory behaviour. If in fact constant
values of )‘1 A and h1 a are used, the oscillations would follow the dotted line
instead of being tangent to the curve (Fig. 4a). Generally this makes a diffe-
rence which should not be neglected. It is however difficult to find an analy-
tical solution of the dynamic heat transfer equations with temperature depen-
dent heat transfer parameters. Therefore the following approach was followed.
First the steady state heat transfer equations were solved by assuming for )\1 Al
h1 A and X1a the following equations

1

A 1

(T) = = (II-1)
1A C T‘lAO (TA-‘I‘1AO)
- 2 3 -
h1A = A0+A1 (1=‘D10)+A2 (PD1O) +A3 (PD1O) +B1T1BO (11-2)
Ry

1

X1A = *2— J )((T)2r dr (II"B)
R1 o
with

2 (II-4)

X(T) = Xqtx,THX3T
The parameters c, TA; Xqr Xg and X3 were obtained by fitting experimental results,

The coefficients Byr By By, Ag and B, are also input data (see Appendix 2).

The time dependent heat transfer equations in the case of small temperatures
oscillations about an average value are then solved with the following assump-

tions:



- The average value X1a according to eq. (II-3) was used instead of x(T).

A properly chosen effective value ">‘eff" is used for A1 A (see chapter IIT).

The change of the gap heat transfer coefficient "h,.," has been supposed to

1A
be linearly dependent upon the changes of the linearly averaged temperature

of the fuel and the cladding temperature.

4) Diagram of the feedback transfer functions

In Fig. 1 only a very schematic diagram of the feedback model and of the reacti-
vity input system is shown. The overall transfer functions of this diagram are
however obtained from many transfer functions describing the different physical
effects in the different regions of the reactor.

Fig. 5a and 5b give a detailed schematic diagram of the model with all transfer
functions and reactivity coefficients involved.

The following different cathegories of basic transfer functions are used in
the model:

F(o) for material temperature changes due to power oscillations

G(o) for material temperature changes due to coolant temperature
oscillations

V(o) for coolant temperature changes due to power oscillations
U(o) for coolant temperature changes due to coolant flow oscillations

W(o) for coolant temperature changes due to coolant temperature
oscillations in a lower axial position

The nomenclature for the indices referring to the different zones and materials
are given in Fig. 2 and Appendix 1.

All these transfer functions are normalized to 1 for o¢+0 i.e. they become 1 in
the limiting case of steady state conditions.

The reactivity ocoefficients C (?,K) account for feedback reactivities which are
associated to the average temperature changes of the various materials in the
different zones. They are input data for the program.
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I1I) Mathematical Fundamentals

1) Heat Transfer from the Fuel to the Cladding
in Radial Direction

We consider the time dependent heat transfer parabolic

equation for the heat transfer within the fuel
3T1A

div(A1Ag?ad Tqa) * PDyp = P4aXqa 5T

(I11I-1)

Here the derivative of the enthalpy I with respect to the

9aT1A

time is replaced by the product X1a 356 Where X1a denotes

an average thermal capacity, as explained later.

In cylindrical geometrx,by neglecting the heat transfer in

the axial direction}eq.III-1 becomes

9T T
1 9 12 _ 1A
T Maf =55 * PDyg = Pqa X4 THE

(ITI-2)

by introducing the dimensionless radius y = ﬁE——,eq.III—Z

becomes 1BI

A 2 2 9Ty

1Y 73y * Ripr PPia = Ripr P1a Xqa o

b) Solution_of eg.III-3_at_Steady State_Conditions

—— o D e G T D exe e Ok e G S e e e G e e S A e o G e A s D D D G D I e OT G e e

At steady state conditions eq.III-3 becomes

ar
1 d 1A0 2 -
v ag MmoY Tay ) * Ripr PPqa = ©

)
All notations used in this paragraph are
explained in Appendix 1.

(III-3)

(II1-4)



were the subscript "O" indicates the steady state.

Integration of eq.III-4 gives

4T
140 _ _ ¥y
Mao Tay . - T 2 Rer PPia

If the temperature dependence of A1

following function

1 1
1A0 C T1AO(TA—T1AO

)

with C and TA being constants,

A

~Watt
L

cmoK—

(I1I-5)

is described by the

(ITI-6)

(III-7)

one gets easily by integrating eq. (III-5)
T PD, , (1-y2)
1as0 Aty
T,-T €
(y) = T 1AS0
1A0 A 2
: T1as0 PDyao (1-y7)
+ 5——5———— e
1ASO
where T1ASO is the surface temperature of the cylinder at
steady state conditions and
2
0 = R181°Ta Z—cm3 5
4 Watt-

The volume average temperature T

&BI

Tiamo = 3 Ty po2Trdr

1BI"

1AMO

1

= O 7

is given by

(III-8)

(ITI-9)




From eq. (II1I-7) and (III-3) one gets

T T oPD
A 1ASO 1A0 -0,
T = ——— 1n| 1+ (e -1) [ K_/ (II1-10)
1AMO @PD1AO TA
The central fuel temperature Tyaco results from eq, (III-7)
for r=0, i.e. y=0 '
o _1ASO
AT -T :
_ A "1ASO -0, 3 _
Tiaco ~ [ K./ (III-11)
1 + T1ASO fPD1AO
T,~T €
A "1ASO

Let us now consider the approximate solution of eqg.(III-3)
in case of small oscillations.
This solution is obtained by putting in eq. (III-3)

A=A = const , (III-12)

The constant "Aeff" denoting an effective thermal conductivity

- is chosen by imposing some conditions which are specified below.

The constant “x1A“ denotes the specific thermal capacity

averaged over the whole volume and is simply given by

R 1

X(T1A)2rndr = 2 x(T1A)y dy (ITI-13)

0



- 10 -

From eq. (III-7) onhe gets easily

2y dy = - “a 1 ar
¥ oy 9PDyp  Typ(Tp~Tqp)

1A

(TIII-14)

Putting the relation (II-4) for x(T,,) and eq.(III-14) in
1A ,

eq. (III-13) and integrating one gets finally

T1acotT1aso

T -T
~ 1, 1 1ACO~ ~1ASO
X1a = X97X2 Tiamo*X3 o2 9PD L
A

-1
E'—+

Z_Watt sec 7

g OK
We write now eq.(III—3) with Aeff
Aeff 9 AT 2 2 AT
vy 3y Y5y *tRier PPia = PqaRipr¥ia 3t
2
P1aXqaR
by introducing the radial time scale t,, = 1A71A 1BI
A
eff
and the dimensionless time t = EE—
1A

eq. (III-16) becomes

2 2
 Tyn 1 Tqpn  Rypr Tqn

7 Y vy 7 PDyg = 57— = O
ay eff

( 1A) = 0 (no heat flux in the center)
) =0

;eff (§T1A) = hap(Tas T8

1B % y=1

(continuous heat flux between
fuel surface and cladding)

12 T1aco’ T1aso a  2TyacoTiaso”

(ITII-15)

(ITII-16)

(TII-17)

(ITIT-18)

(ITI-19)

(IITI~-20)

(ITI-21)




Considering small varlatlgns AT1A, AT1AS’ AT1B' APD1A, Ah1AB
from the steady state conditions, eq.(III-19) and the associated
boundary conditions (III-20) and (III-21) become respectively

2
AT AT R? JAT
21A ¢ 1 12, 181 APD,, - Lt (I11-22)
3y Y 3y A 3t
eff
3AT
( —2) =0 | (T11-23)
Y g0
3AT R
1A ~ Rpr - _ ) .
(=353 o=t Yorf L hypp (ATypg=8T ) +8hy 5 (Tyag6~T1p0) -/

(IT1I-24)

In the eqs.(III-22,23 and 24) the subscript "O" indicates
the values of the variables at steady state conditions.
Eq. (ITI-22) will be solved by means of the Laplace Trans-
formation. In the Laplace domain egs. (III-22,23 and 24)

become respectively

2 r R % ’
d Ag + l déT + 1BI APD,]A _ SAT,IA” -0 (I11-25)
dy y 9y eff

anr”
(=55 = 0 (III-26)

Y gm0 .
% R
AAT __ R4pr - 5 PR _
dy )y=1 © T gt L Dyap(ATypg ATy g Mhyap(T1as0™T180’

(I11-27)

where s denotes the indépendent variable in the Laplace
domain and "*" indicates the operation of the Laplace
transformation. The solution of eq.(III-25) with the

associated boundary condition (III-26) is



2

T, Y = 81 APD AJ Y ' II-28
A 1A = _S—Agf—f— D1O + o(y s) . (I )

The constant "A" is calculated by using the boundary
condition (III-27). This gives

%

R
1 1BI - ® ]
1a8T1as0"T1o’ -/

A= /Thy (AT, -
V=53, (1=5) “efs 1AB " 1AS

ATV ) +AR
1p)
(ITI-29)

From eq. (ITI-28 and 29) we get

R R
*  _ T1BI % Jo (yl-s) 1BI - .
APD, . + [ hypp (AT ,c=0T 0

= e—— )+
1A SAeff 1A 1:;J1(7:§) Aeff 1AB

AT

&

+Ahy 25 (T1a50"T180) -/

(II1-30)
For y=1 eq. (III-30) gives
. Ah* R
o 1 #  “AB _ 1 1BI %
AT as . Y ATq1g h1AB(T1ASO T80’ *5775) 2h1ABAPD1A
7 (s)
(T1II-31)
)h_'l
where ZzZ(s) = - Jo( —Slﬁ (I1I-32)
27:§J1(7—s)
A
y = iﬁ__iﬁé___ (ITI-33)
1BI "1AB
With the two abbreviations
G (s) = —-D (ITI-34)
1 4 =L




_ 1/sz(s) _ 1 ,~-._ 5 _
FS(S) = m = -‘?—S- Z 3 GS(SL/ (III 35)

eq. (ITII-31) becomes

Ah R

* % 1AB 1BI
AT = G_(s)AT, _~ (T -T )G_ (s) + F_(s)APD
1AS s 1B 1AS0 "1BO’ "s h1AB 2h1AB s

%
1A

(ITI-36)

We calculate now AT:A from eq. (III-28) by imposing the condition
% b .

AT1A = AT1AS for y=1. This gives

%
%t

AT 2
1S R APD, (I1I-37)
Jo(=8)  sr_gcTo(]-s) |

By putting eq. (III-37) into eq.(III-28), we get

2 C—
it = Ripr - -1 - Jo (y lI-s) 7APD* + QQLXKEEL AT? (IT1-38)
1A Shoeg so(f=s) ™ 3018 "

Let us now consider the two average temperatures:

1
AT:AL = 2/AT7Ady linear average temperature (III-39)
‘0
and
A
3 &
AT;AM = ZJ/AT;Aydy volume average temperature (ITII-40)

0

Taking into account eq. (III-38), the egs.(III-39 and 40)
become respectively



H]

Tiam =

R H ()t%)
1IBI & ,-"0 - %
= L TS + H,(]-s)_] aPD
Sheff 2 T 2Y=32(s) 1 (s 1A
_H_(]-s) - p
+ 1 - % / L 4 H1(7'_:s‘2_/ AT;AS
27-sz (s)
2
R
1BI - 1 1 %
R L - sty APD1A * 5275y 2Tias

(IT1-41)

(II1-42)

In order to have the exact solution at steady state conditions

(s >0) the two terms

(ITI-41 and 42) must be multiplied by properly chosen

_Hotl=s)

on the right side of each one of egs.

27"EZ(s)

(ITI-43)

(ITI-44)

coefficients Br,r 9pr By and oy BY doing this eq.(III-41) and
(III-42) become

* _ fBI 1 ,-Ho (7-s) y‘“ y * + 11
TiaL “PLEx_; 2 —= oty ([=sL/8PDy ey 15/

27”52( )
+H, (7-2) 7} 1AS

T* - RfBI - 1 - % 1 %

1am = Puosh_ 7 LY - 57ET-/2PPia * *n 520y 2Tias

Let us now substitute AT

1AS
o APDya P
We get(by using = )
PD, Pg
h*
1AB
T1an™%1CL (S)AT1B 181 () (T4 A50"T1po’ h1AB+
B,
* (P4as0™Tipo) * (optgy) Fy(s)

AP
Po

%

in eqgs. (III-43 and 44) by means

(ITITI-45)



E]
Ah
£ 1B
ATiam = ouF (S)AT1B M T1ag07T1B0! Fs (8) Ripg
(T an=To ) o R F, ( )AP* (ITI-46)
1ASO ~1BO *MT8y “M'S'TBg
where _
| : _H (7P§
G (8) = G (s) {1 o+ 1, (]-s)] (TTI-47)
27‘;Z(s)
H (]-s)
6 1 - - T ,~ "0
Fo(8) = =2 L {a /T1-G, (s)7+ (B ~ar) & ["—2— + H, (7"21/
L BL+6aLy S L L L "L 2 'ZY:;Z(S)
(III-48)
B
_ 8y 1 M-, 1 i A -
FM(S) = _————BM+8YGM s T Z 1 —————sz(s) _/+(1M 7 () FS(S)- (ITI-49)

The width of the gap between the fuel and the cladding chaﬁges

with the linear average fuel temperature T and with the

1AL

cladding temperature T The resulting changes in the heat

1B°*
transfer coefficient h1AB can therefore be expressed by
B B A B
Abyap  _ ATy AL ATyp
5 = g (T e y =" T —7 y - (ITII-50)
1AB 1ASO "1BO 1ASO "1BO

. The parameters "e¢" and "n" are dimensionless coefficients,

which will be determined by steady state calculations.
Taking into account (III-50), eq.(III-45) becomes

b3
B AP

Tian = ¥1ap1%1an (8 ATy 5Ky arp (Tiar g T1p0) Fiag (8) 55 (TII-5M)



1

2

B
— 1 - € : L
Fiass) = € oo L Fs(s)-Tiga—(aL+€7)Gs(S)F1AL(S)-7
1 = (o, +==) L
T+ea L 6y
L
: 3L+6yaL GS(S)F1AL(S)
6y 1+eaL Fs(s)
= F (s) (III-61)
s | 8L+6yaL
6Y 1+eaL »
ar
= (—VAMO = Tino 7 =
Kiamr —‘(8T1BO )p=const = *m{1HN EKjALT-/ *ME1aST (111-62)
tLik p
AMO O [
K = (—%5—) . — = (II1-62)
1AMP %P0 "Typ=const "1AMO T1BO
_ T1aso"Timo - P W P 7 -
T1AMO—T1BO -M 8y 1+eaL L 6y~
_MasoT1mo fmo, g ;
T1aM0-T1B0 8y M “1ASP-
G (s) .
Gyay(s) = F (s) —223 (IT1-63)
S
8 a,€ B
_ 1 - M M ‘L -
Fiam(s) = By %yt By Lloygtgy Fy(s) 1+eaL(“L+6y)Fs(S)F1AL(51/
o, +t=—— (o, +—=)
M 8y 1+eaL L 6y
4 OME BL+6YGL FS(S)F1AL(S)
1-4
= F, (s) ’ 1+€aL BM+8YaM FM(S) (III-64)
M 4 o,, € B_+6yva
124 M L L
3 1+€aL BM+8yaM

The constant parameters K

Kyampr Yr€r v Opr Oyr Bpe By

1as7’ %1anr’ Kiamrs ®iaspr Kianpe

can be calculated in principle

from the steady state conditions. But they are not all

independent;



Let us start from the following expressions:

K1AST =1 4+ n - €K1ALT. (ITI-58)
- 1+n _
Kianr = % Tear, (III-52)
Kiamr = *MK1asT (TII-62)
K =1 - e log 4 e | (III-59)
1ASP T+ea L T 6y
8. T -7
1 L. “1ASO " 1BO
K = g (a  + = — (III-53)
1aLe ~ THeap L &Y T, 0"Tino
By - T -7
_v - “1ASO “1BO
K =/ + a. K _ — (III-62)
1AMP 8y M asp-/ T =T0S

From egs. III-59 and III-53 we get

1-K T -T
. = 1ASP 1ASO “1BO (III-65)

Kiare T1ano~T1Bo

From eq. III-58 we get

1 + €K (I1I-66)

n = Kiasr T 1ALT

From eqs. III-58 and III-52

K . K
4 = 1+n_1§LT = K1ALT (III-67)
1ALT 1AST
X1amr
and from eq. III-62 we get Uy = (ITI-68)
KiasT

By combining egs. III-53 and III.65, we get




y _1 T1aso ~ T1mo (TI1-69)
B ® Kiarp (T1aro T1o’ ~*1X1asp (T1as0 T 180’

Eq.(III-Gf) can be written as follows

Yy _ 1 T1as0 = T1po _ (ITI-70)
By 8 Kiamp (T1amo T180 ~*MF1ASP (L1450 1BO)

Taking into account eq.III-69, eq.III-65 becomes

1-K
e = —1ASE_ . (III-71)

T,
*rXiasptey

At this point we must decide how to choose "y" (e.q. Aeff)‘
Since the reactivity effects depend upon the volume average

temperature of the fuel T it seems logical to determine

1AM’
this temperature most precisely. This means to impose the

condition

B, = 1 ‘ (I11-72)

With this condition eq.III-70 becomes

Yy = & ~1A50 ~ 7130 (I11-73)

& Kyamp T1amo~T180’ “*MK1asp (T1aso 180
Since analytical expressions for KyaLm and K1ALP are not
available the following approximations will be used

K¥iazr = Kramr (IT1-74)

and
~

BL = By = 1 (ITI-75)
From €qs.III-67, III-68 and III-74 it follows

a. = a (III-76)



Taking into account egs.III-75 and III-76, eq.III-71 becomes

1-¥
e = —-12SP (I11-77)

*wK1asptEY

2} Heat Transfer between Fuel and Coolant in Radial Direction

Fig.6 shows a block diagram of the electrical analogue for
the heat flux in radial direction from the fuel to the coolant

corresponding to the model of Fig.3a,b. The cladding is simulated
by its heat capacity 845 .

TASO—-,;BU
uWiAB N
Y
— AWN—> > AW - 5
? \NQAB Vvhag i
. p—
gAL;As 1B ATy g A0,

Fig.6 Model for the heat flow in radial direction from the
fuel surface to the coolant

The thermal resistances between the fuel and the coolant are the
thermal resistance of the cladding

W = 1BE _ "1BI Jcm °x 7
1B R, pptR Watt -
\._ 2% (_1BE_1BI,
1B 2

(ITI-78)
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the thermal resistance between fuel and cladding

1 —cm °x 7
W' = L S l e (III"?S)
1AB h1A21tR1BI Watt

and the thermal resistance between cladding and coolant

1 1 -cm K Ok -
W! = = / _ (ITI-79)
1BE h1BE21tR1BE INuA1E wWatt

with the cladding to sodium heat transfer coefficient

Nu A
1E - Watt =
R [ —5==—_7 (III-80)
BE 2 R1BE cm2 Ok

A0

In this model we consider only the average cladding temperature
because the heat transfer time constant for the cladding is
small compared to those of the fuel, the coolant and the moderator.

In this case W can be split into two equal parts, which are

1B
1 1 °
added to WAB and WBC'
W _ 1 1, Rige R Ripr( _ 1 1 Z-cm K 5
1B 21R4py ] hyp  RypptRypr Mg 2xRipy hyap Watt-
(ITI-81)
R,_.-R . o
1 1 1BE T1BI 1 -cm K =
w. =1 + / 7 (III-82)
1BE f [NuA1E R1BE+R1BI 2A1B f Watt

-1
R -R R
with hy,o = { o + BE_IBL  _1BI ) Hatt 5 (III-83)
12 Riee*tRisr MiB



With these resistances the average steady state fuel surface

temperature T is calculated from the average coolant

1ASO

temperature 810 by the following equations:

a“]APO -0 -
Tiaso = T1po * N, 1, WiaB [ "K_/ (II1I-84)
with o P
T =00t Fop2 W A W (II1-85)
1BO 107 N, L, 1BE -

With reference to Fig.6 we can write the following equation

in the Laplace domain:

ATy —amt iy P Aty —ne” f
- - - .
1A _1B , 1280 7180 _ 1B 1, ¢ AB i (III-86)
1AB AW1AB ~\W1BE 1A

. . X ® 9t
CoTblng eq.I11I-86 with the relations for AT1AS’ Ah1AB and

%
AT1AL namely the eqs.III-56, III-50 and III-51 and eliminating
% )
* . .
AT1AS' Ah1AB and AT1AL from these equations, one gets
- 1 1 eKianr®ian(s) . Kiasr%as (),
MTyp L g BT P S — YW T T w /
1A 1BE 1AB 1AB 1AB 1AB
A
I N ~¢X9a5p (T1a10"T180’ F1aL (S
= W..... Z +
1BE W1AB

+ (I11-87)

- %
(T1as0"T1B0’ ¥1aspF 125 (5) 7 AP
- 7P

W o

1AB




Introducing the symbols

Tis0 ~ %10

1BE
A = — = o ——— (III-BB)
Tyaso™T1Bo LEPN:
typ = tm CWonp /Sec] (III-89)

eq.IITI-87 becomes

. t
i 1B - : -
AQHEB{}+SE:; * A l1+n-€K1ALTG1AL(S)—KTASTG1AS(S)—/_}

%
= A6

1 + A Z-eK

1a1p (T1a1.0"T1Ro’ F1aL (8)

+ Kyasp (T1as0™T1B0 F1as (8) -/ 55 (I11-90)
This can be written in the form
% * AP* i
AT1B = G1B(S) AO1 + (T1BO_81O)F1B(S) —Eg (IX1-91)
where
-1
Gy (8) = 1+sEl§ + A /T+n-eK G (s)-K G (s)/
1B = T et ALT 1AL 1AST 1AS ‘°=
tg - %1f !
= 2 = G -
1+st1A + AsyFs(s)(1+n)[1+1+aLE 1AL(s)_/ (ITI-92)

TiaLo™T1mo T1as0™T1Bo

—~ F (s)+K —
1ALP T1BO 810 1AL 1ASP T1BO 810

F,g(s) = A Gp(s)/eK

1B Fias(sL/

Gyp(8) LU1=Rypgp) Fyap (8)+K agpFiag (s)/



*

Inserting now AT1B

from eq.III-9%91 into eq.III—S?/qives

*

N % - AP _
ATyam = KramrCiam (91881 + Koamp (Tiamo™810) Fran(s) 55 (11I793)
where
Kiamr = Kiamr (I11-94)
= G G -
T T T, =0
—— 1AMO”~ " 1BO 180”10
K = K o PP+ K ——— (ITII-96)
1AMP 1AMP T 0 =0, TAMT T =8
F (s) = K1amp (T1am0~T180) F1am (5) *¥ 1 aur (T1807010) C1am (8)Fqp (5)
1AM
Riame (T1amo~T1mo) * ¥1amr (T1807%10
(II1-97)

Taking into account eq.III-88 and III-63, eqs.III-96 and 97

- can be written in the form

K']AMP = Z-GMK’]ASP + .z_bé + A KTAMT—7 Z1ASO—Z1BO (T11-98)
12M0~ " 10
— (2 ¥1asptEy-/Fam (5) ¥AR aMpCyay () Fyp (8)
Fiam(s)= B (II1-99)
“ME9asp * By * 2 Kiamr




3) Heat Transport by Means of the Coolant in Axial Direction

The heat transfer from the cladding to the coolant in radial
direction and by the coolant in axial direction is basically
treated in a similar way as described in /2/. The model
underlying this report is however more general in so far as
it takes into account also the heat exchange between the
coolant and the structure materials. In addition all new
results of the previous sections have to be.incorporated in

the heat balance for the coolant.

Assuming that the two structure materials (characterized by
the indices "C" and "D") have the same length as the fuel
rods and can be adedquately associated to the coolant channel,

the heat conduction equation for the coolant is

T, -6 T, .—-06 T, -8 L) 28
1B 1, ¢ 1, 1B 1. S Par X (et + v =V)  (III-100)
W W W 1 "1E *1E '3t 92
1BE 1CE 1DE
with
x = Z axial coordinate

_T = helght of the cylinder' This can be transfgrmed~1nto

Tim 7%, Tic T % Tib T8 1 %%, v %%
Wige$1P1eX1E Mce$1P1eX1e WipeS1P1X1e  Bia 9T Ig 9x
(IIT-101)
If we set
m 1 L
1A 1 i R (III-102)

Ay S1P9eX1e V' WipE



we get
my 1 (T10=84) (T,p=8,) 38, 238,
A (T1B_81) M~ o 3 (W - 181 + 9%
Y 1cE 1P 1EX1E 10E $1P1EX1E
Ma t1a(Tyc™89) E1a(Tip=8) 38, 4 4,
2y (T1p78) + 57 R =3 Yt 1% (III-103)
Y 1cE 1P 1EX1E 1DES1P1EX1E ,

Considering the variation of the system from the stationary

conditions,the following symbols are introduced

AT15 = T4 T Timo 46, =8, = 845
A1e = Tie 7 Tico bv =v - v, (II1-104)
Aip = Tip = Tipo

The subscript "O" indicates the initial steady state condition

and "A" indicates the variation from the steady state condition.

L
From 1' = t1/v v 1
A we get 1.9, Av v . 1 = —$ -1
T ! I~ -
1 - L1/vo lo v Vo Vo 1
o) t1A
1 1 Av
v = _l—'-H+%)
o)
With this relations eq.III-103) becomes
’ ) ) -
™A% 4o _se.) JE1a (0T c788,) 18, (8T p06,)
Ay 1B "1 Wamm $1P 1 mX Wing S PpX
1CEY11ET1E 1DEY1"E™MME
= AY E%Q + (14hv) da6., 346, (III-108)
vo dx Vo 9X O 9Tt

Performing the Laplace transformation and neglecting the

second order term AV. 9481
vo ox

one gets




¥
* ae dase, (s) 1 9
Av(s) 40 1 . i\ _ 1A o = % _ -
Ve ix + = + losAQ(s) = Ay [AT1B(S) AQ(SL/
(&7, ~£8.) (a1 -267)
+ 1/W§ LA 1/°§ 1 (III-106)
Wice$1P1EX1E WipES1P1EX1E
Using the eq.III-91 and corresponding equations for AT1C and
, dBo _ _
AT1D and the relétlon = = (8130 8120)M(X) one dgets
aae’” (s) m, 1 Lyv(r, -8, )
d1 + /I's+ 12 2(1- 1B) + d * _1BO 10 (1—G1B)_7 AGT(S) =
X | ¥ 1BES1P1EX1E
] . -—
Mate o o e B P/wT1c0™®10 Fre | B wT100™% 10 Fip
Ay 1BO 710 1B P W1CE53 1EX1 WipES1P1EX1E
¢
_ Av{(s) - -
vy (843078120) M(x) (III-107)
Using the relations
Pooq = Ny§pepxygY (843579 50) (IT1-108)
Poa‘lA = L1N1 (PD10 1BI n) (ITT-109)
= p2 -
T1BO—81O = R1BITEPD1OW1BE (ITI-110)
P a
_ o 1cC -
T1c0™%10 = N;T; MicE (III-111)
P a
- - _o'1D -
T100™%10 T WL, "1pE (ITI-112)
L (III-113)
Av/v = Au/u o ot o= o
and with respect to frequency analysis s = jwt1A = ot1A

(i.e. o = jw)/the eq.,III=-107 can be transformed into



ase, () My (1=Gyg (o)) _
dx +/t 1axcr(1 Ayot1A )+t1ax°m1CF1C(°)+t1ax°m1DF1D(°l/Ae4d
=Av (o) *1c “1p . _

- vg““+a1 2t a1 (0 Fa - Brax1e (O e F1ax1p 90/ (843078 20)

-M(x)ég (ITI-114)

Eq.(IIXI-114) can be written as follows

iﬁg%iil + y1(o)A8fﬁ= (8130—8120)M(x) = A% + Fo(o )AEF7 (IITI-115)

with the following abbfeviations

y1(o) = y1B(o) + Y1C(°) + Y1D(°) +oot, o (IITI-116)

y1B(o) = i A;l;f:i(O)) t1ax° (ITI-117)

y1c(o) =_t1ax°m1CF1C(o) (III-118)

y1D(c) = t1ax°m1DF1D(°) (II1-119)
1 (o) Z:A (o) + 1C Ficlo) + ;—D Fqipfo) (III-120)

The eq. (III-115) is valid for all coolant channels. The specific
form of the functions y(o) and F (o) depends however on the
composition of different materials in a specific coolant

channel (see egs. A-18 to A-21).




IV) Numerical Calculations

Numerical calculations for test purposes have been performed
. for the SEFOR-reactor /5/ because the oscillatory behaviour

of this reactor has been previously analyzed in detail.

In addition transfer functions have been calculated also for

the test reactor KNK /6/.

The type of transfer function which is of most interest depends
very much on the special objective of the analysis. Normally

the overall closed loop transfer function Gp(w) is required
especially with regard to problems of reactor stability.

However for special problems and experiments, e.g. noise
measurements or oscillator measurements, other transfer function
of this model have to be considered separately. Here only a few
numerical results are given especially to demonstrate the

influence of the nonlinearities on the results.

Differences between this model including the spatial dependence
of the heat transfer process and the so called "lumped model"
have been pointed out in /1/ and /2/ and will not be discussed
here. All calculations referred to in this chapter take into

account the spatial dependence of the heat transfer process.

As an example, in Fig.7 piots of the fuel surface temperature

the average and the central fuel temperature (T and

1AM
respectively) in dependence of the reactoxr power are

Tias’

T1ac
given for SEFOR. This plot suggests that for 19 MW reactor

power the corrections for nonlinearities will become relatively

large.Therefore the correction coefficients K and K

1AMP 1ASP’
being equal 1 for a}completely linear system, become relatively
small (K1AMP'= 0.81, Kiagp = -0,076) . The extremely small

value of K1ASP is due to to the fact that the fuel surface
temperature T1AS

in this region (see FIg.7), because any temperature variation

is almost independent of the power level

caused by a nonstationary reactor power is almost completely
counterbalanced by a corresponding change of the fuel to

cladding heat transfer coefficient h If this change would

1A°



not be taken into account, T would increase with the

1AS
reactor power as indicated in Fig.7 by the dotted line instead
of slightly decreasing. Therefore it can be expected that non-

linearities will have a big effect on the transfer function F1As
between the fuel surface temperature and the reactor power as
demonstrated in Fig.8. Here two calculations for the transfer

function AT1AS

T1as0

- T

AP
Po

1BO

are compared one without taking into account the nonlinearities
due to A and h1A
linearities as described in the previous sections. The small

and another one which corrects for these non-

values at low frequencies for the latter one are in agreement

with the flat curve of T in Fig.7. At higher frequencies

the two additive componelig determining this transfer function,
namely the temperature change caused directly by a power-

variation and the additional temperature change caused hv a

power change throuagh the gap coefficient, don't compensate as much
as at lower frequencies, because of their different time constants
and signs. This fact is the reason for the broad peak of the correc-
ted transfer function at w=0.1 sec_1. The influence of the non-

linearities on the average fuel temperature T and the transfer

1AM
function
AT amAT1am0 = T1BO)

AP /P

is smaller because ) decreases and h increases with increasing

power so that both nonlinearity effelis partially compensate
each other. This fact is demonstrated in the Figures 7 and 9,

The overall feedback term in the power-reactivity transfer
function Gp(w) depends very much on the average fuel temperature.
Therefore the difference between two calculations of Gp (w) ,

one neglecting and one taking into account the nonlinearities

is also not very large as shown in Fig.10a and b.

These conderations show that the importance for nonlinearity

corrections depends very much on the kind of transfer function




aT
1ALO 1+n
where K = (mm—) = — (ITI-52)
1ALT T 50  pecost L T+eap
K = (EEJ._ZE&Q) . Po =
1ALP %o "Typ=const T1ALO T1BO
T -T g
1 1AS0 ~1BO L
= o 280 B0 4 L (III-53)
1+eaL T1ALO T1BO L 6y _
GL(S)
G1AL(S) = (1+eaL) T¥ea. G, (5) (ITII-54)
_ L L
FL(S)
F1AL(S) = (1+eaL) TFeo. G, (3) (III~-55)
LL
Taking into account egs. (III-50) and (III-51), eqs.(III-36)
and (III-46) become '
" AP*
Tias = K1ASTG1A"(S)AT *K1asp T1aso™T180’ F1as () T5g (ITI-56)
" AP*
ATyam = Kyamr 1AM(S)AT *Kiamp (T1amo™T180’ F1am (8! 53 (II11-57)
where
9T As0
Kiast = 37, -~ ) p=const = '"*""¢Kqanm (I11-58)
1BO
oT P B
1ASO o € L
K = (—gpe) o — =1 (a0, +x2) (III-59)
1ASP %P0 "Typ=const T1as0"T1BO THea "L76y
T+n—-eX G (s) 1+ea
1ALT 1AL L
G (s) = G (s) — = (s) (ITII-60)
1AS s 1+4n €K1ALT s 1+eaLGL(s)




which one is interested in. Also it depends strongly on the
design of the fuel pins i.e. on the ratio of the thermal
resistance within the fuel to the thermal resistance between
the fuel and the coolant /4/.

For the analysis of correlation measurements at the KNK, a
variety of transfer functions have been calculated for this
reactor.

The Fig& 1la and b show two calculations for Gu(w) = %%%%

one with and one without nonlinearity corrections. The
difference between both calculations is about 30% at its
maximum,
A8 | -
1 Ae13/(o <] )

Also for KNK the transfer functions W 130 "210

1 = %812 V13T i/
with nonlinearity corrections are plotted in Fig.12,

The sinks of thlS transfer functions appear at the expected
frequencies wn,.—7— n. Sinks of this type are typical for

a model which accounts for heat transport in the axial direction
and have been also predicted by other authors /7/,

This phenomenon becomes quite obvious when no heat is exchanged
with the coolant. In this case the average coolant temperature
oscillation will be zero for certain frequencies of AG12.
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V) Appendices

Appendix 1

Notations

a) Scheme of Indices

For the temperatures, time constants, delays and all transfer

functions the following scheme of indices is used:

According to the list below, the first index is always a number

and indicates the zone. Two numbers indicate the boundary of

two zones. The subsequent capital letters refer to different

materials of the parts in each zone:

Zone

Zone

Zone 3

Zone

Zone

Zone

Zone

1:

Core

Lower axial blanket
Upper axial blanket

Radial blanket

Lower plenum

Upper plenum

Static sodium between core
and shroud

W > HOOQW»

(S0 &> Bv e e

17

87

Fuel

Cladding

1st structure material
znd " 11]
coolant

structure material

coolant

1st structure material
znd [ 1] ”
coolant

1st structure material
2nd " "
coolant

structure material
between lateral (8)
and lower plenum (5)

coolant

Material between

core (1) and static
sodium (7)

Material between zones
8 and 7

coolant




Zone 8:

Zone 9:

The subscript "O" at variable parameters

Lateral plenum

Radial reflector

steady state condition.

b) Notations

o))
]
ml ™
’.l.

delayed neutron fractions

8

_"ee _ Tio™%10

"ias  Tiaso™T1mo

A )

> ]

w w

(N

C C

1A' 71B

input parameters for the heat transfer

coefficient h1A

reactivity correction coefficients

thermal heat capacity (with index for the
material and zone)

constant input parameter for A

etc. reactivity coefficients

E coolant

A structure material

indicates the initial

units

Watt
cmZ OK

cm
OK

cm
Watt OK

cm

Watt2 OK

Watt
cmZ OKZ

Watt sec
cm OK

cm
Watt OK

¢/°x



D (o)

F (o)

Go (9) 4G (o)

G(o)

Gu (o)

G, (o)

>
]

coolant temperature reactivity feedback
function

Transfer function between temperature
and power

Transfer function between power and
reactivity

Transfer function between material
temperatures and coolant temperature

Transfer function between power and
coolant flow

Transfer function between power and
coolant inlet temperature

Struve Function

heat transfer coefficient for the gap
between the fuel surface and the cladding

coefficient for the heat transfer from
the fuel surface to the cladding

Bessel Function

1st order

units

4/°x

Watt
cmZ OK

Watt
cmZ oX




KiaLT

Kiamr

KiasT

KiaLp

K1amp

Kiasp

K (o)

3T1AL)
Fr

1B P=const

9T AM

)
8T1B P=const

9T as

S22)

8T1B P=const

. correction
3T1AL) ) P
9P T=const T1AL-T1B

aT1AM P

—_) . =
oP ‘T=const T1AM T

1B

9Ty a5 p

———2y R e
3P 'T=const T1AS T1B

J

zero power transfer function

core length

prompt neutron lifetime

L1/V _ t1ax

tia ta

reactivity coolant flow transfer function

ratio of material thermal capacity to
coolant thermal capacity

number of pins associated to a coolant channel

Nusselt number

coefficients for
nonlinearity effects

units

cm

sec

Au;u



Nu2
ul3

2

PDqa

Pe

0(a)

R{o)

ROQ
ROS

ROM

ROR

S (o)

coefficients for Nusselt number

total reactor power

fuel power density

Peclet Number

power feedback function at constant
coolant temperature

reactivity inlet temperature function
radius of cladding
radial coordinate within the fuel pin

change of reactivity caused by a power
variation at constant coolant temperature

change of reactivity caused by a power
variation through the coolant temperature

change of reactivity caused by
coolant flow variation

change of reactivity caused by
inlet temperature variation

reactivity power feedback through the
coolant temperature

cross section of a coolant channel

Laplace variable (for frequency analysis
s = jwt1A = ct1A

units

OK

OK

OK

OK

cm




A

1ax

Vo)

temperature of materials including
the fuel

input parameter for the calculation
of A

variable time

radial time scale for the fuel
axial time constant
cladding time constant

time delay between lower plenum and
lateral plenum

transfer function between coolant flow
and temperature

transfer function between power and
temperature

total fuel volume

transfer function between temperatures

dimensionless axial coordinate

transfer function

dimensionless radial coordinate

axial coordinate

units

secC

secC

secC

secC

cm3

cm



percentage of power

B total fraction of delayed neutrons
Bi delayed neutron fraction of group i
y = Aeff
2 hyaBRipr

6 percentage of coolant flow in a channel
*L

M correction coefficients for nonlinearity
BL effects

BM

€ coefficient to calculate h1AB

" " L]

n BiaB

9 coolant temperature

A'Aeff thermal heat conductivity

Ai decay constant of delayed neutrons
o mass density

o = ju = S/t1A

T = t/t1A = dimensionless variable for the time
{:}g = time constants for bowing

2
R1p1°TA

units

Watt
cm OK

secC

0 Q
2. 3
al

Watt




specific heat capacity

radiant frequency

units

Watt sec
g OK

secC



Appendix 2

Calculation of the Constants

— o Ny e G D ST R e G e S G0 M e e S K M R AR i S e 7

This section contains a summary of all equations used in the

program to calculate different types of parameters which

appear in the output. In cases they are not evident or have

not been derived in sect.III, a short explanation is given,
26

1) Total perc¢entage of delayed neutrons 8 = Z Bi
£=4

2) Total percentages of power

Core : a1 = a1A+a1C+a1D

LLower axial blanket a, = a

2A

Upper axial blanket'a3 = dap

Radial blanket a, = a4A+a4B

Radial reflector Gg = Ogn

Total percentage a = a1+a2+a3+a4+a9

Po
3) Coolant flow uqg = CPRCEI (o g+a ta ta,) (Eﬂa)
XePr'¥ 607" 80 se
4) Coolant temperatures
@ o)
Core: outlet temperature 813O=821o+(8360_88O)ET¥§§:3;(
1 o)
average temperature 810 =3 (621O+813O) (7K)




upper axial blanket:

outlet temperature

average temperature

lower axial blanket:

outlet temperature

average temperature

radial blanket:

outlet coolant temperature

41

8

0

8

8

360=080" (840~

average coolant temperature

5) Parameters for the heat

1

8

sot (83607830

30 “%130"
2108
1
20 2 (8
160~ 080" ¢
a0 “980 *
_ 9,0
87 = 8,5

210"

860"

930)

850

7 %3(03657850)

o

4

1-6

1

Total fuel volume

Fuel power density

T180"%10

A:______
T1as0" 180

Peclet number

Nusselt number

VoL =

PD10

Pe

Nu

2 3
N1L1R1BII (cm™)
Po (Watt)
vor *1a om3
Mol ) X1z 1eR1BE
541, A
1E
Nu, + Nu PeNu3



The gap coefficient h for the heat transfer from the fuel

1A
to the cladding depends primarily on the temperature of the

gap filling gas /4/ which is determined by the temperatures
of the fuel and the cladding. Therefore the heat transfer
coefficient is calculated by means of the following relation

2 3 Watt
A B1T1m0 (“'TZS‘)

+ A, (PD
3 L cm- K

h = A_ + A,PD
o

1PD1o *+ A, (PD,

12 o 0

The coefficients Ag, A1, A2' A3 and B1 are input data and
have to be determined either on a theoretical basis /4/
or experimentally for instance by comparison of measured

and calculated fuel temperatures.

h = (4 2aBE BT MBI -1 ( Hatt |
1AB hia  RipetRier M1 em2%k
_ X3 X3 Tiaco™T1aso - 1 . 1 T1acotT1aso
Xp=X 13+ XoTamotF D T T A ol B S 7
T P10 T1aco T1aso A 1ACO" T1A80

o

Z—Watt sec 7

g °x "
6) Fuel and structure material temperatures
Core:
Fuel temperatures
Fuel surface temperature T = T + G1APO !
1AS0 1BO N1L1 h1AB2nR1BI
T T o (PD )
_ A 1ASO 10
Average fuel temperature T1AMO = FPD 1n 1+—6———(e 1)
10 A
(°K)
Average cladding temperature a. P R -R
T -9 + 1A'o( 1BE 1BI + 1 )
1BO 10 =N, L, 2A1B(R1BE+R1BI) Ay pNU




18t structure material, p
average temperature:

2nd structure material, D
average temperature:

average temperatures for D

- 43 —

1CO

1D0

lower axial blanket: 240
upper axial blanket: T

340
radial blanket: T

4 A0
structure material of T
the radial blanket: 4Bo
reflector: T9AO

10

= 8¢

= 859

= 930

= 640

= 8,

= @90

P |

(0]
. (7400910 nax

PO
P~ (11007010 nax

( ) %o

P, 0 9o
2A0 T20 mameax
(TBAO'GBO)maX?EQ_
max

P

5" (T4 207940 max

P (T4BO-94O)max

P (T9AO'69O)max

7) Correction Coefficients for Nonlinearities in the Heat

Transfer Process from the Fuel to the Coolant

The following coefficients for non linear effects are calculated

from the derivatives of the steady state temperature relations.

For the fuel surface temperature:

« _ (8T1ASO) I TP . Gl 1 )
1AST 3T1BO P=const 8T1B 1BO N1L1 h1AB2uR1BI
o PD, . B,
2 1BI h2
1a
9T As) p 1AB 2
S LR TrneoTimg P10 (PF 2Ry (PDy o) #3R5 (PR o) )
Tgconst 1A
For the average temperature:
0,
K1AMT = (z:1AMO)P=const= ag ¥ PD lnéT+T1$SO(er (PD1O)—1LZ}
1BO 1B 10 A
y.(PD1O)
= K e -1 1
tasT ~ S (PD, ) 1 Tiaso, 7 (PDyp)
+5 (e -1)



K = (EfléﬁQ) . P =
1AMP oP T1B=const T1AMO_T1BO
i - (PD, ) .
< T1as0"T1B0 e 191, __T1aso e‘f (PDy4)
_ ™8P Tyamo im0 7' PPqo T1am0~" 180
T d-pD
. 1$SO(e 10_,)
A
_ T1aMo0
T1amo~T1B0
K = (EJAM.Q) = K
1AMT 3810 P=const 1AMT
_ °Tiamo p Kiamr 1807910 *¥1amp (T1amM0~T180)
Kyamp = (—3p ) (T1AMO-81O) - o
T comst 1AMO0 10
. = Kqamr
M Kiast
L T *m
L= leff _ 1 (T4as0 = T1mo
2hiagRipr 8 Kiamp (T1amo~T1ro’ “*m¥1asp (T1as0~T 180’
¢ = 6y ""Kqasp
1+67aLK1ASP
n = K1AST(1+aLa)—1




8) Ratios of material thermal capacities to coolant thermal

capacities

(These parameters are used for the derivation of equ.A18-21)

Core:
X, M
1A71A
Fuel m =
1A NyLySqyopXE
X 4 AM
1st structure material e R ;CS1C
171°1%%E
X 4 M
2nd structure material Map 5 F 1D51D
171°19%e%E
Xa M
lower axial blanket Moa = §F iAszA
1M1°18%E
X oM
upper axial blanket Man = F EA33§ %
1717 17E%E
X 4 M
radial blanket Maa &R EAS4A
4y Dy Sy X
o X4pM4p
4B NQquygE&E

9) Time constants and delays

Core:
The fuel radial time sa@ale t1A is defined by
t1A = 8 (thermal resistance of the fuel) (thermal capacity of
the fuel)
2
_ P1a¥1aRiBr _ aM X1amp (T1am0~T180) *1asp (T1a50"T180
R 12%X1a Y b
eff 1A" o

[sec/



Cladding time constant = t,_ = W - €,

1B 1BE B
T -8
1BO 10 2
t = ee———N, L. % (R -R
1B a1APo 171 1BE
Axial_ time_delays_of the_coolant
Ly
In the core: t1ax = 61u S1N1 (sec)
o)
In the lower axial L2
blanket: t = S.N (sec)
2ax 61u 171
: o
In the upper axial L3
blanket: t = S.N (sec)
3ax 61u 11
o}
In the radial L4
blanket: tyax = (T=5777, S4N, (sec)

time delay between lower plenum and lateral plenum

Uo

85 (t85)max U
max

t

10) Reactivity correction coefficients

2

181’ X1B

(sec)

The reactivity correction coefficients account for non uniform

temperature changes along the coolant channel. In this case

the coolant channel is subdivided into smaller axial regions

for which an uniform temperature change can still be assumed.

This is demonstrated in Fig.13 with n axial regions, each of

them being represented by an average temperature change KT}

and by its own reactivity coefficient @y (with Lo,
i

= Cn) °

The total reactivity change becomes then a sum of n terms

AK = o, AT, + vevv..o + 0 AT = C_ B AT
1 1 n n n




- 47 =
In the program, this sum is presented by the term CnBZE-

A

aT,  Lm

>
=
Il

Td2

——
t*I
— —

o>
H
Il
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—H
It

ATdz
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AT, L

|
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I

i L[
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v

Fig.13 Subdivision of the axial coolant channel for
non uniform temperature changes along the channel.

which is the product of the overall average temperature change
AT and the reactivity coefficient for an uniform temperature
change Cn and the correction factor

o a1AT1+a2AT2+a3AT3

o

C
n

>

This factor is an input parameter and has to be calculated
separately for each special case.

Of course for a uniform temperature change this correction
is not necessary because in this case we have

— _ = 1 n

AT, = ....AT_ = AT and B = ——m—— = 1



Appendix 3

In this paragraph, the independent variable

domain is replaced by s = jwt1A = ct1A, with "o¢" becoming the

independent variable.

a) Summary of Equations

Heat conduction equations for radial heat transfer from the

fuel to the coolant:

2

AT, (0) = G_E_RlI;_I.__ ZT_ZQ;Z___ ‘:o;_7APD1A(c)+ Oiyr:f) AT g
10 eff 2/0 =7 2 I~ :
R 4
1
AT1AM<°) = — AT1A(0)2rxdr = 2 AT1A(c)ydy
Ripr®
0 3:(7
R A
_ 1 _
AT, o (0) = ﬁl/fAT1A(c)dr = AT, (0)dy
J 3:4
Ah1AB(°) AT1AL(0) . AT1B(°)
T =T T, _—T
hiap 1ASO " 1BO 1AS0  “1BO
B
= - M AP (o)
AT am (O =oyF g () AT 5 (o) +(Ty 5 50"Typo) (Aytgy) Fiy () 5

= *n{T1a50" 10! Fs (9) —R———

s™ in the Laplace

(A=1)

(A=2)

(A-3)

(A-4)

(A-5)




_ _ AP(O)
AT1AL(0)—-otLGL(o)AT1B(<7)+(T1ASO T1B )(a + )F ( ) —— o
Ah
1ap(”
- a (T )G (0) ——— (A-6)
L' T1as0"T180 R1an
_ AP(o)
ATy g (9) =G (0) AT, g (0) + (T n 55~ T1po) Fg () 35—
Ah (o)
1AB
(T )G, (o) (A-7)
1A80" T1BO Ry ap
= - AP (o) -
T4 am 9 =K amrC1am (9) AT 15 K9 amp (T1amo T 180 Framo (9) 5, (A-8)
_ _ AP (o) _
ATy AL (9 =Ky a1 181 A (O AT 5+ R a1 p (T1ar0™T1R0) Fran (0) B, (A-9)
- _ AP (o) _
ATy ag (9) =K1agnCag () AT 5 +R asp (T1as0 TR0 Fras (9) P (A=10)
. AP
A-8"
BTy 201 (00 = Ky nrG e (9) 801+ np (T4 07010 Frane (9) 55 ( )
AT, {6) =G, (0)A8. +(T._ -8, )F._ (o) 2B (A=11)
1B 1B 1 1BO "10°7 1B P,
AT, (o) =G, .(c)A8,+(T, . -8, )F, (o) 2B (A-12)
1C 1C 17" Tco0™®10’ Fic B,
AT, (o) =G. (c)A®.+(T. -8, )F., (o) 2B (A=13)
1D 1D 1" %0710’ F 1D P,

AP

T A(o) =G2A(o)A62+(T2AO—828(F2A(0) 5, (A-14)



o
o

ATBA(G) = G3A(6)492+(T3A0-030)FBA(GU 5, (A-15)
ATy (6) = Gy (6)004+(Ty40-040)F s () 4_;0 (4-16)
AT,p(6) = &yp(6)88,+(Typ4-0,0)F,5(%) A—go (A-16")
AT, (6) = Gy, ()00,

47,(6) = (24-090)Fq, (6) 7 (A-17)

Heat balance equations for the coolant channel

809) 4y, (o148 = (81360120)M(x)1"-§§ + F1(c)A%r7 (A-18)

aae o, D -

d;o) + y,(0)a8 = (6210—880) / _Fi + FZ(O)_Ef/ (A-19)
dag;o) + ¥3(0)88 = (85,,-8,50) z"-é% + F3(O)A%f7 (A-20)
800) 4y, ()88 = (8, -85, ['-é% + F4(O)A%r7 (3-21)

The following equations for the coolant temperatures are
solutions of the equat. A-18 to A-21 as demonstrated in /2/.
Applying the notations of this paper they can be written

in the form:

28, = W, (0)a8 )U1(o)é% + (8 )v1<o>é§ (A-22)

-8
10 "210 o

1271078210




= - - : Au - AP -
08,5 = Wy3(0)88,1=(8y3570,10)Uq3(0) =0 +(845578540) V3 (0) B (A-23)
= - - Au AP -
8851 = W (01885 =(8y1578g0) Upq ()= *+(B2107080) V()5 (A-24)
28, = W,(0)A8 = (8,,-8,0)U, (o) 2K +(8,,-85)V, (o) 2R 5 (A-25)
AB. = W. (0)8,.-(8.. —=8.. )U. (0)2® +(8..  -0. )v. (0)2E (A-26)
36 36 137 93607%130’ Y36 3607930’ V36 P,
A8, = Wo(0)AB, =~ (8. —6.. )U.()2E (0. -8.. )V, (c)2E (A-27)
3 3 13793079130’ Y3 3079130’ V3 2
AB, =W, (c)AB.~(8,, -8. )U.. (c)2X +(8, -8, )V, (0)2E (A-28)
46 46 57 %4607%80' V46 m 460" %80’ Va6 A
A8, = W,(0)AB.~(8, -8. YU, (0)2E +(8, -8, )V, (0)2E (A-29)
4 4 57 94079807 Yy v 40" %80’ V4 P,
£B, = a17G17(o)A81+a87G87(o)A88 (A-30)
26 = W (0)ABy | (A-31)
Equations for the Feedback
Power Feedback will constant coolant temperatures
A = Cp(T1po %10 F1p (9 +Cy AR  amp (T1aM0™® )F1AM( o) (¢)

e = €1¢Tyco™®10) Frc o) (¢)
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2p = C1pT1po~010' F1p (@) (¢)
Q= Ua T et Op (¢)
Q= ConlTrno 820! F2a (o) (¢)

Q3 = C3a(T307030) F3a (o) ()

a = 4aT4a07%40  Fan (o) (¢)

Q45 = C4p(T4po~040) Fap (9 ()

Qq = Qup(0) + Q4p(0) (¢)

Qg = Coa(Toan 890 Foa () (¢)
Q(o)= Q4 (0)+Q, (o) +Q4 (o) +Q, (0) +Qq (o) (&)
Coolant temperature reactivity feedback functions

By = Cyg*CipCip () +C1a0 A (9) Keamp*CicCic (@) *CqpCople) ¢/°K)
D1=B1£C1E*B15C18%15 (%) *B1aC1 2% 1 am () K aur*B1¢Crc81c (20 +B4pC1pC1ep (9)

( & /%)




®lBor ~ ”21}:1: (%’ Digog = Tl%%’g (4/%)
Dy = Cag ¥ C2aC2p () | ( ¢/°K)
Dy = C3p + C3pG3(0) ( ¢/°K)
Dy = Cyp + CypGyal9) + Cyplyplo) ( ¢/°k)
Dg = CgpG5p(9) ( ¢/°K)
D17 = Cqg®q7Gq7(0) (¢/°K)
D1g = C7g%g7%g7 (9 ( ¢/°K)

Reactivity Power Feedback through the coolant temperature

1 = D1(0) (844 =85,V (0)+(Byy =8 ) Vyy ()T (0)D, (o)
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Steady State Equations for the Feedback

(840-880)V4(0)D4

(o) (¢)

= S1(o)+32(c)+S3(o)+S4(c)+S7(o)

D17‘°’{‘81o'9210)v1(°’+(821o'eeo)vz1(°’W1(°’}

(¢)

(¢)

For steady state condition (o->0) the equations for the feedback

can be simplified because in this case all transfer functions

are equal to 1. They assume the following form:

Power

Feedback with constant coolant temperatures

(60—
Qa

(6=0)_
Qic =

(6%0)
b

Q 1 (62 0)=

Qz(o':o)=

o)
Qan

(€=O)=
Q4B

Qﬁﬁ"‘()) =

= C3p

C1B(T1BO-81O)+C
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Q1atQ1ctp

ConlTan07820]

(T 0

3A0° 30)

8

C4aTan0"%40)

(T 8,

CapTapo~%40

Qa ¥ Up

1AK1AMP(T1AM0'

8

10

)

(¢)

(¢)

(¢)
(¢)
(¢)
(¢)
(¢)
(¢)

(¢)




Coolant Temperature-Reactivity Feedback

— = (o]
D1(o=0) = Cyg* Cyp*CiaKeamr*C1c*Cip ( ¢/°%)
—— e o
Dy (9=0) = BygCqg*B1pC15*E1aC1AK1aMr* B1cC1c™ 10 1D (f /%)

(0=0) _ (0=0) o
Digor = CiF Dipoc €16 (¢ /°k
D,(0=0) = C,p + C,,

D3(c=0) = Cyp * C3p
D,(0=0) = C,p + C,p + Cyp
D5(o=0) = Cgp

Dyq(0=0) = Copoyq

Dgy (0=0) = C,pdg,

Reactivity-Power Feedback through the Coolant Temperature

e

81(0=0) = Dy (8y4=6,10)+D1 (Dyy57054) *D1p0p (85157850)
*P1pog (813070210  (¢)
S,(0=0) = D,(8,,-84.) (¢)
83(0=0) = D3(83457840) (¢)
§,(0=0) = D, (8,,-85,) (¢)
S7(0=0) = Dy7(8,4570g0) (#)

S(0=0) = S, (0=0)+S, (0=0)+S; (0=0)+S, (d=0) +S, (6=0) (¢)



Reactivity-Coolant Flow Functions

My (0=0) = =Dq(0=0) (845=6840)*D1 (0=0) (8,15=050) *P1por (2107050
* Digog(813070510)  F/au/n

M, (0=0) = -D,(0=0) (8,.-6,.) ( ¢ )

2 2 207780 iu/n
Mj(6=0) = =D, (0=0) (83,-84.) "
My (0=0) = =D, (0=0) (8,,=84 ) "
M, (0=0) = =D, (0=0) (8,,-85.) "

= = = = = = = ¢

M (0=0) M, (0=0) +M, (0=0) +M; (6=0) +M, (0=0) +M, (0=0) (Au u)

Reactivity-Inlet Temperature Functions

R, (0=0) D, (0=0) + D1BOG(0=O) (31)
R, (0=0) = D, (0=0) "
R, (0=0) = D, (0=0) "
Ry (0=0) = D, (0=0) "
Rg (0=0) = Dg (0=0) "
R, (0=0) = Dg,(0=0) + D, (0=0) "
R8(o=O) = C8E

R = R1 +R2+R3+R4+R5+R7+R8




Equations for Steady State Reactivity Changes

The steady state reactivity changes caused by changes either
of the power, the coolant temperature, the coolant flow or
the coolant inlet temperature with reference to a steady
state level denoted by N=1 are calculated according to the
following relations.*)
Power induced reactivity changes with constant coolant

temperature

ROQ1py = Qqp(0=0) _7y - Q5 (0=0)7, (&)
ROQICy = Qqq(0=0) _7y = Q4o (0=0)7, (¢)
ROQqpy = Qqp(9=0) 7y - Qqp(9=0)7, (¢)
ROQ2y, = Q, (0=0)_/y - Q, (o=0)7/, (¢)
ROQ3y = Q4 (0=0)_7, - 05 (0=0)7, (¢)
ROQ4ny = Q4p (0=0) _/y - Q,,(0=0)7, (¢)
ROQqpy = Q4p(0=0) _/ - Quplo=0)7, (¢)
ROQ4y = ROQ4p +ROQ4Ry (&)
ROQgy = Qg (0=0)_7 - Qg (0=0)7, (¢)
ROQy = Qy (0=0) 7 - Q(e=0)7, (¢)

1,
#)

These equations do however not account for changes of
the reacti