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ABSTRACT

A variational formulation of the static multigroup

diffusion equations for heterogeneous assemblies provides

a rigorous mathematical foundation for the solution of

the time eigenvalue and the time-dependent initial value

problems. Theorems on existence, uniqueness, regularity,

and positivity are stated, and a proof that the gener­

alized eigenfunctions are complete in L2 is indicated.

"Eigenschaften der Lösungen und der Eigenfunktionen der

Mehrgruppen-Diffusions-Probleme"

KURZ FASSUNG

Durch eine variationstheoretische Formulierung der

statischen Mehrgruppen-Diffusionsgleichungen für heterogene

Anordnungen wird die Lösung der Zeiteigenwert- und der zeit­

abhängigen Anfangswertaufgabe mathematisch begründet.

Sätze über Existenz, Eindeutigkeit, Regularität und Positivi­

tät werden mitgeteilt; es wird ein Beweis angedeutet, daß die

verallgemeinerten Eigenfunktionen vollständig in L2 sind.

September 1974



We also choose to omit discussion of the multi-
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INTRODUCTION

A basic paper in the theory of the differential

equations for multigroup neutron diffusion has for

some time been that of HabetIer and Martino (1); these

authors offered an approach to strict mathematical

analysis of the time-dependent diffusion equations as

weIl as of the effective multiplication rate eigenvalue

problem. For example, HabetIer and Martino showed the

completeness of eigenfunctions (of the time rate eigen­

value problem) for one-dimensional problems and for

homogeneous two- and three-dimensional problems. A main

result of the present work is the completeness of eigen­

functions for general heterogeneous problems in the higher

dimensions.

In addition to this extension of previous results, the

present author has noticed important mathematical points

in HabetIer and Martino's work which at least need further

clarification. For this reason, a somewhat different

approach in this paper - the weak or variational formulation

of the static problem - will be developed systematically

from the beginning. This approach employs functional

analysis and much ofthe recent theory of elliptic boundary

value problems. We shall summarize rather completely the

results Of our analysis; full proofs will appear else­

(_2)where
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plication rate eigenvalue problem, and concentrate on

the time-dependent equations and the related time rate

eigenvalue problem. Starting from the weak formulation,

we establish the existence and uniqueness of solutions

to the initial value problem, the completeness of gener­

alized eigenfunctions, and positivity properties of

solutions.

PROBLEM

The following assumptions suffice for all the results

of this paper. The multigroup diffusion equations determine

a neutron flux distribution .(x) = (.1(x) '.2(x) ""'.G(xt)

in G energy groups within aspace domain n. Here n

will be a bounded connected open set in Euclidean n-space,

n = 1,2,3, with boundary an made up of a finite number

of intersecting smooth (n-1)-dimensional surfaces. To

specify smoothness we introduce the following definitions.

A function f satisfies a Hölder condition with Hölder

exponent ~ > 0 if If(x) -f(y) I ~ Mlx-yl~. The class

Cj'~(F) consists of functions on a set F whose partial

derivatives up to order j. satisfy a Hölder condition

uniformly in F. An (n-1)-dimensional surface will be

called cj,~ if it is represented by local coordinate

functions which, together with their inverses, are in

Cj'~(B), where B is a unit ball in n-space, and the

surface is locally the image of a plane in B • Using these
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terms, the surfaces making up an must be c2,~ , and

an as a whole must be co ,1 • (The latter condition

prevents the surfaces from joining in sharp cusps.)

n mayaIso be subdivided by further c2,~ surfaces

into open subsets n , r = 1,2, ... R. These usuallyr

correspond to different material regions. A point where

two of the smooth surfaces intersect is called a corner.

(See Figure.)

c c

c

ß- .. c
c

Figure: A possible plane region n shbwing corners

indicated by C.
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On n we have. group. diffusion coefficients dg(x),

g = 1,2, .•• ,G, and. group transfer cross sections

0gh(X), g,h = 1 ,2, ••• ,G. The latter include absorption

and scattering processes, and all fission processes as

weIl. The time-dependent differential equations for multi-

group diffusion would be

= (1)

where are inhomogeneous neutron sources; or,

D<j> + S<j> = s. (2)

The must be in for each subregion

real, positive, and everywhere greater than some positive

shallminimum value

be in

o. The neutron group velocities v g

for each r, and also positive with

positive minimum. The 0gh must be cO'~(nr)' real, and

non-positive for g ~ h. Note that we allow arbitrary up-

and down-scattering and an unrestricted form of the fission

matrix. The only additional restriction, for positivity

theorems only, will be transitivity of the 0gh.

With equation (1) come certain boundary conditions and

continuity conditions. At present, only the Dirichlet

boundary condition

<j> = 0 on an (3)
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will be considered. Continuity conditions arise at

surfaces an n an across which the coefficients haver s

jump discontinuities. At points where an
r

is smooth,

and hence has a well-defined normal vector, one requires

cfl
g

and the normal component of

d Vcf1 continuous across each interface.g g

(4)

Points where an r is not smooth are the corners.

The time-dependent equation (2) is closely related

to the time rate eigenvalue equation

-Dcf1 + Scf1 - -Lcf1 = Acf1. (5)

The same conditions (3) and (4) go with this equation as

welle Neutron velocities may be included by replacing L

with VL this remark applies throughout the sequel.

A study of (5) yields valuable information about (2).

WEAK SOLUTIONS

Let L2 (n) be the space of complex measurable vector

functions cf1 on n whose norms

11 cf1 11 = f I cf1 (x) 1
2

dx
n
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are finite; L2 (Q) is a Hilbert space with inner product

($,$) = J~ $$ dx. Weak solutions will be functions in the

Hilbert space H~(Q): from the set of functions having

bounded continuous first partial derivatives and satis-

fying the boundary condition (3), one takes the completion

in the norm

11 $ 11 1 = 11 $ 11 + J IV$ (x) 12 dx ,
~

that is, all possible limits of sequences converging in

11· 11 1 , to obtain H~(~). Functions in H~(~) have first

partial derivatives, belonging to L2 (n), in a generalized

sense; they need not be continuously differentiable in the

usual sense Such functions also satisfy the zero

Dirichlet boundary condition. in a generalized s~nse.

The variational formulationof the static problem (5)

amounts to replacing the differential equation (and

continuity conditions) for $ by a condition on $

expressed with abilinear form.For motivation, we recall

that the static diffusion equation (for one group) can be

derived from the condition

J
av j . \I dS = ~ (-0$ - s) dx

for all volumes V C~, together with the diffusion law

j = dV$. Now if Xv is a function which equals 1
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inside V and zero outside, then VXV is a Dirac

distribution for line integration along an outward

normal across av ,so the left side above can be re-

written

- J d V ~ • VX V dx
n

= J (- 0 ~ - s ) X V dx ,
n

a condition which we still require for all Xv with

V c n. The variational formulation we are about to intro-

duce is the same condition, but instead of all step functions

we use all ljJ E H1 (n) •
o

To be precise, ~ E H
1

(n)
o

the equations

will be a weak solution of

-V'd V~
9 9

if

+ = s
9

(6 )

B(~,ljJ) - J (L d V~ • V ljJg
n 9 9 9

(7)

= = (s , ljJ)

holds for all ljJ E H~ (n) •

This weak formulation has become weIl known in the

mathematical theory of ellipti6 partial differential
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equations, and a number of results can be borrowed

from the established theory (1) ,(i) ,(~). For a given

bilinear form B, consider all pairs {~,s} such that

B(~,IjJ) = (s,ljJ) for all ljJ E H~(n). Let the set of all

~ I S from such pairs be @, . which is a subset of

H~(n). It is not hard to show that any ~ E~ corresponds

to exactly one sE L2
(n), which makes possible the

Definition: The mapping ~ + S is denoted by g, so

that a weak solution ~ of (6) is a solution of the

operator equation g~ = s.

In fact, g is a closed linear operator in L2 (n),

and one establishes the following apriori estimate:

(8 )

for some Ao > 0 and all ~ E~. One also discovers,

using the Lax-Milgram theorem (1) that every sE L2 (n)

has a solution of (g + Ao)~ = s; by (8) this solution ~

is unique, so ~ + Ao has an inverse, which maps L2 (n)

back onto @ C H1 (n). Rellich I s theorem (1) states that
o

H~(n) is a compact subspace of L2 (n), so (g + Ao )-1 is

a compact operator. Applying the Riesz-Schauder spectral

theory of compact operators (~) one can reach

'l'heorem 1: The spectrum of L consists ofa countable=

sequence of isolated eigenvalues of finite mUltiplicity

which tend to infinity.

Presently we will locate the eigenvalues more precisely.
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REGULARITY

The operator L has been defined from the weak=

formulation (7), but it is perhaps still unclear why

we say that a solution of ~~ = s is called a weak

solution of the differential equations (6). Weak solutions

need only have partial derivatives of first order, and

these in a generalized sense. We would like to know that

weak solutions are more regular: that they actually have

continuous partial derivatives of second order inside

n which satisfy (6).r

Theorem 2 Let !1,~ = s, where s € co, lJ in each nr
Then for some lJl > 0, ~ f CO,lJl (n) and takes the value

zero continuously at an. Any point inside nr has a

neighborhood in which ~ t C2
,lJl and satisfies the

differential equations (6). At any point in an r where

the interface is c 2 ,lJ, ~ € c 2
,lJ 1 up to the interface frorn

inside n
r

and from inside the neighboring

satisfies the continuity conditions (4).

n ,
s and

Remarks: The proof draws on results well known in the

theory of elliptic boundary value problems. The hard part

is proving the regularity (i.e. differentiability) of ~;

once that is known, the differential equations and the

continuity conditions can be derived by integrating the

bilinear form'by parts and using the arbitrary nature of ~.
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We emphasize that Theorem 2 does not claim the

second derivatives of ~ are bounded up to a corner

point. In fact, recent work (2) ,(~) has shown examples

where this is false. This raises substantial objection

to the analysis of HabetIer and Martino, who seem to claim

that second derivatives are bounded at corners. For example,

one may only integrate by parts over a region away from

corner singularities. The weak formulation has the advan-

tage of defining a uniquely solvable problem and avoids

many difficulties related to corner singularities. Also,

as we tried to show inmotivating (7), the weak formulation

has some physical sense.

TIME-DEPENDENT EQUATION

A basic tool for mathematical analysis of the time-

dependent diffusion equations (1) is an estimate for the

-1 .
resolvent of -L, R(z.i-g) = (-~-z) • In Hilbert space

this estimate follows without great difficulty if the

spectrum of -g be shown to lie near the negative real

axis in the complex plane. Our multigroup diffusion

operator -L= consists of a self-adjoint operator -D=

with spectrum on the negative real axis, perturbed by a

bounded operator g. One finds that the spectrum of

-~ (which by Theorem 1 consists only of eigenvalues) thus

falls .within a semi-infinite band of fixed width about

the negative real axis.
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Theorem 3: For any E > 0 there are constants X, C > °
such that

11 (}4 + z)-1 11 < c/izi

for all complex z with Izi > X and larg zl~ TI - E.

(9)

This estimate represents the main condition under

which -}4 generates an analytic semigroup (2) of

operators U(t) for t > O. Recall that this semigroup,

also written exp(-t}4), has the properties exp(-(t+s)g) =

exp(-t}4)· exp(-sg) and (d/dt) exp(-tg) = -}4 exp(-t}4).

According to the Hille-Yosida semigroup theory, Theorem 3

further implies U(t) is analytic in t for complex t

with Re t > 0, and tends strongly in L2
(Q) to the

identity operator as t + O. One can construct U(t) from

g by a modified inverse Laplace transform of

transformation integral converges due to (9).

L·=' the

The semigroup U(t) gives solutions to an abstract

initial yalue problem. Let and define

cl> (t) =

Then cl>(t) is a function of t with values in L2 (Q).

By the properties above, cl>(t) is a solution of the

abstract Cauchy problem
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dcjl/dt + gcjl

cjl (t) + .cjlo in

= °
L2 (n) as t + 0.

Here the derivative is taken abstractly, in the sense

of functions with values in a Banach space; it does

not mean a partial derivative of cjl(x,t) with respect

to t. However, using a more refined analysis of our

particular ~, and estimates in the supremum norm on

n, the existence of the partial derivative in t can

be established.

Theorem 4: Let cjlo(x) f L2 (n). There exists a unique

function cjl(x,t) continuous in x and analytic in t

on n x (O,T] and zero on an x (O,T] , twice continuously

differentiable in x in each n x (O,T] and satisfying
r

the time-dependent diffusion equation

= ° (10)

there, and satisfying the continuity condition (4) on

smooth parts of an n an for t > 0, and cjl(x,t) + cjlo(x)
r s

in L2 (n) as t + 0.

Duhamel's principle yields solutions of the inhomo­

geneous equations (1) as weIl (~) .

The resolvent estimate of Theorem 3 above can also

be used in proving that the generalized eigenfunctions of

gare complete in L2 (n). We say a non-zero function cjl



-13-

is a generalized eigenfunction of ~ corresponding

to the eigenvalue A. if for some positive integer k,
J

(~ - Aj)k~ = o. Using (9) and arguments adapted from Agmon

(lQ) and Dunford and Schwartz (ll), we get:

Theorem ~: The generalized eigenfunctions of ~ are

complete in L2 (Q). Every ~o E L
2 {Q) has abiorthogonal

expansion in these generalized eigenfunctions converging

in L
2 {Q), and the corresponding expansion for ~(x,t)

converges in L2
{Q) uniformlyon [O,T].

Remarks: By abiorthogonal expansion we mean an expansion

in eigenfunctions of ~,the coefficients of the expansion

being found by inner products with corresponding eigen-

functions of the adjoint of ~ (which is an adjoint in

the strict mathematical as well as the formal sense) .

Formulas may be found for example in Habetler and

Martino The convergence of the expansion for ~ (x, t)

depends on the fact that -~ generates a semigroup of

bounded operators in L2 (Q). Other partial results about

completeness and convergence in supremum norm and in

11· 11 1 are possible.

We repeat that neutron group velocities may always

be included (occasionally with extra effort) by replacing

L with V L.= == =
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POSITIVITY

For physical reasons one expects that a positive

initial neutron distribution will result in a flux which

is positive for all later time. This expectation is

confirmed mathematically for the time-dependent diffusion

equations (10). For the next two theorems we need to assume

the transitivity of the 0gh ' i.e. for any two groups g1

and gm there is a transitive chain of groups g1 ,g2'" .gm

such that ° is not everywhere zero.
gi,gi+1

Theorem 6: If ~o is non-negative and not identically

zero, then ~(x,t) of Theorem 4 is non-negative, and

strictly positive except on aQ and possibly at corners.

The proof that ~(x,t) is non-negative seems

surprisingly difficult; but 'once ~ is known to be non-

negative, the strict positivity follows using classical

maximum principles applied in each subregion Qr'

Aside from its intrinsic interest, the positivity of

solutions of (10) also helps prove the existence of a

dominant mode.

Theorem 7: There is a dominant mode for the time-dependent

equations (10) which is positive and unique up to a constant

factor, corresponding to a simple real eigenvalue of

larger than the real part of any other eigenvalue.

L=

One proves this theorem by applying results of Krein

and Rutman(ll)to the operator 'U(t), which is a positive

compact operator in L2 (Q) for any particular t > O.
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CONCLUSIONS

The weak or variational formulation offers a useful

starting point for rigorous mathematical analysis,

especially as it allows one to bypass difficulties caused

by singular solutions at corner points. From this basis,

the existence anduniqueness of generalized solutions to

the time-dependent initial value problem for multigroup

diffusion can be established under very few restrictions.

These generalized solutions are almost solutions in a

classical sense; it remains only to show that initial

values are taken on continuously. (We showed they are

taken on in thesquare integral sense.) Solutions of the

time-dependent problem are positive for positive time if

the initial values are non-negative, and there is a positive

dominant mode. The generalized eigenfunctions are complete

in L2 , permitting biorthogonal expansions of arbitrary

initial values and of .the corresponding solutions for

later time.
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