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Summary

This report gives a detailed description of the latest version of the

PARDISEKO code, PARDISEKO 111, with particular emphasis on the numerical

and programming methods employed. The physical model and its relation to

nuclear safety as weIl as a description and the results of confirming

experiments are treated in detail in the Karlsruhe Nuclear Research

Centre report KFK-1989.

Zusammenfassung

Dieser Bericht gibt eine detaillierte Beschreibung der neuesten Version

des PARDISEKO-Programmcodes, PARDISEKO 111, mit besonderem Nachdruck

auf numerische und angewandte Programmiermethoden. Das physikalische

Modell und seine Beziehungen zu nuklearer Reaktorsicherheit wie auch

einzelnen in dem KFK (Bericht des Kernforschungszentrums Karlsruhe)

Bericht 1989 behandelt.
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I. Introduction

This report is intended as an exposition of the numerical methods of the

latest version of the PARDISEKO code, PARDISEKO 111. The numerical methods

of the code are of particular interest since most of the development of the

code since PARDISEKO 11 /-1 7 has occured in these in order to reduce

computation time and improve precision. Which numerical method is employed

is not without influence on the capabilities of the code so that it is

important also from this point of view to keep the method of solution in

mind. In particular, as will be discussed in detail in the following, the

present method is inherently unstable under certain conditions.

In addition to the reforrnulation of the numerical method, the model ass­

umptions of the underlying physics have been more clearly defined since

PARDISEKO 11. Two new model parameters have had to be added in order to

duplicate experimental results and the model has been broadened in its

applicability by the inclusion of coagulation due to g~avitational sett­

ling, a time dependent source function and a time dependendent carrier gas

temperature.Thus it is in principle now possible to treat e.g. enclosed

sodium fire aerosols as well as the enclosed, instantaneously released

nuclear fuel aerosols treated by the original PARDISEKO version.

A detailed discussion of the model assumptions and the mathematical treat­

ment of the physics as well as several calculational results that are

compared to experimental results are given in the final report on the AV

(Aerosolverhalten) program {-2_7. It suffices for our purpose, therefore,

to recall the complete model equation and refer the reader to the AV report

for details.

2. The Complete Model Equation

Under model conditions the rate of change of the particle size distribution,

n(r ,t), is given bye
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(I)

Cp(t) = particle number concentration at time t

CM(t) = particle mass concentration at time t

S(t ,t)= arbitrary source function
e

= deposition rate coefficient due to

diffusion

47T 3 AsaS(re ) = 3- r e p g B(re) V- = deposition r~te coefficient

due to sedimentation

1
( 1+3 Kn) (

T - TW 1
_._- r- B(r)

T \>"T e

ATv- = deposi don rate coefficient

due to thermophoresis
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aL(re ) = arbitraty leak rate eoeffieient

K(r ,r ') = 4TIkTf (B(r ) + B(r '» (r + r ') + € ( l)4TI f2e e e e e e re,re ~ pg

I 3 ( ) r,3 B(r')1r B r -e e e e

• (r + r ,)2 = eoagulation funetion
e e

B(r )
e

= partic1e mobility

r = 3~= mass equivalent radiuse 4np

t = time

Geometrie Parameters:

v = volume of the vessel

Au = area of diffusional deposition surfaee

Ag = area of gravitational deposition surfaee

~ = area of thermophoretie deposition surfaee

Measured InEut Parameters:

Cp(o) = partiele number eoneentration at t = 0

o = varianee of the initial (lognormal) size distribution

r = median radius of the initial (lognormal) sizeg
distribution

T = volume mean temperature of tae system

TW = area mean wall temperature of the vessel
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Model Parameters

f collision form factor

K ... dynamic form factor

On'" area mean diffusion boundary layer thickness

0T'" area mean thermal boundary layer thickness

~mpiric~~.Constants

==
Knudsen-Weber correction constants (the model employs

the Millikan oil drop values 1-3_7),

E(r r ') == collision efficiency for two particles of radius re e e
and r 'e

~Eysi~al Constants

k ... Boltzmann constant

P ... bulk density of particle material

Pg == density of the carrier gas

g ... acceleration due to gravity

n = viscosity of the carrier gas

k = thermal conductivity of the carrier gasg

k ... thermal conductivity of the particless

Kn ... Knudsen number

3. Method of Solution

There are a number of approaches to solving the integro-differential equation

(I) or similar aerosol equations. The most basic and most attractive from the

standpoint of physical insight begins with the resolution of equation (1) into



- 5 -

a system of coupled ordinary first order differential equations sufficient in

number to model the various particle size classes !~5_7. Such an approach

suffers from the limiting drawback that it requires inordinate computer time

for any but the simplest systems and shortest real times. Furthe rmo re , for long

time calculations, instabilities in the numerics are frequently encountered

(-5 7.

An alternate approach that does not suffer from these drawbacks at the expense,

however, of a draatic simplifying assumption of limited applicability, is that

employed in the HAA-3 code ~6_7. Here one assumes the particle size distrib­

ution to remain lognormal in shape throughout the period of interest. It is

then possible to reduce equation (1) to a set of three coupled ordinary

differential equations in the three parameters of the dLstribution, or alterna­

tively, thuee of its moments. Such a device, of course, rests or falls on the

validity of the lognormal assumption. There is evidence that size distributions

for systems with long-time sources, far from being lognormal, in fact tend to

bimodal form.

The approach employed in PARDISEKO 111 can be said to fall between the above

two approaches. Basically equation (1) is divorced from its physical derivation

and treated as a mathematical equality with standard integration techniques.

This means, for instance, that no attempt is made to interpret size classes

physically. Rather, resolution into size classes is treated solely as a

numerical device.

With this approach, the solution of e~~ätion (1) follows an iterative procedure:

the initial, given, size distribution is fed into the right hand side of

equation (1), the indicated integration performed and the time derivative of

the size distribution thus found used to propagate the distribution to a later

time. The so determined new distribution function is in turn used as initial

condition and the whole process continually reiterated.

~~~hoice of Independent Variable of the Distribution

Because equation (1) conserves the mass or volume of colliding particles, it

appears advantageous at first glance to use the volume of an individual

particle as independent variable of the distribution. Thus, given any inversible
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function x = xCv), where v = ver ) is the volume of the particle under consid­e
eration, equation (I) can be written:

dn(x,t)
~t - = S(r (x),t) - (aD(r (x» + a (r (x» + aT(r (x»e e see

+ aL(re(x») n(x,t)

x-I (V)

+ J 2:
x-I (v)

with

co

- J
o

K(r (x),r '(x'» n(x,t) n(x',t) dx'
e e

(2)

x" = -I
x (v - v') and n(x,t) dx = n(r ,t) d r

e e

With x = v, equation (2) has its simplest structure. If one further picks the

subdivisions, ~v, of the v-axis such that the smallest size class has volurne

v = ~vI

th~n the combination of any two s~ze classes due to a collision results in an

existing size class, so that if the coagulation integrals of equation (2) are

written

M

L K(vK,vN) n(vK,t) n(vN,t) ~v
N=I

in numerical approximation, then

(3)



- 7 -

Here K tags the size class whose time derivative is being sought and M tags the

largest size class considered. Our choice of v aS independent variable, together

with VI = 6v, therefore precludes the necessity of interpolating the size

distribution in order to perform the coagulation integrals.

Choice of v as independent variable has one decisive drawback, however, which

can be seen as follows. Generally the initial size distribution is taken as

lognormal :

n(r )dr =e e

C (0)
-,,-P_- e
,~ a

2- In r /re g
- 2a2--

d ln r e
(4)

which in terms of the volume v is:

C (0) - In2 v/v
n(v)dv = ...R..~_ e ---g dlnv (5)

lJ2TI 3a 2(30)2

with 4'IT 3v = -- rg 3 g

These two distributions are plotted in Figs. land 2 over the same size range,

one that is typical for nuclear aerosol particles. It is apparent from Fig.· 2

that it is necessary to divide the v-axis into a very large number of subdiv­

isions in order to sufficiently resolve the peak. Since computation time is

approximately proportional to the square of the number of subdivisions of the

independent variable axis, it appears more profitable to work with the radius

r as independent variable. One is then required to interpolate under the

coagulation integrals, that is,

v - V f!' {V }
K N N

but saves considerable computation time through the fact that the r-axis need

not be as finely subdivided (Fig. 2).

If one for these reasons decides to work with the radius and thereby accepts

the necessity of interpolating the distribution, it is logical to go one step

further and symmetrize the originally lognormal distribution by picking the

logarithm of the radius as independent variable. This step guarantees the least
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number of subdivisions provided the skewness of the 10gnormal distribution is

approximately preserved in time.

PARDISEKO 111 therefore employs as independent variable x = lnr. With this

choice, equation (2) becomes:

dt S (r (x),t) - (an(r (x)) + aS(r (x)) + aT(r (x))e e e e

+ aL(re(x)))

x-lln 2

+f 3

Lro

with

(
-J K(r (x),r l (x') n(x,t) n(x' ,t) dx'e e (6)

x"

B. Choice of Size Range

= 1 1 (3x -3x')- n e - e3 .

The range of x = lnr is determined by the code itself from the value of the

parameter XLIM read into the program. XLIM is defined such that if the range

of x is

x . .t.. X f. x
m~n - max

then

n(x . ) = n(x ) = lO-XLIM max(n(x)).
m~n max

From these requirements the code calculates the values of xmin and xmax ' given

a 10gnormal initial size distribution.

Since the size distribution changes with time and in particular the maximum of
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the distribution changes its position, the code contains the following

algorithms to permit the number of subdivisions of the x-axis, chosen at the

beginning, to be as small as possible.

As the size distribution is developed in time, those size classes that are in

the lower half of the range of x and whose weight becomes less than the (input)

parameter YL are given the distribution value zero and ignored in further

calculations.

Those size classes that are in the upper range of x and whose weight becomes

less than the (input) parameter YU are also given the distribution value zero

and ignored in further calculations. Hhen the number of zeros of the distrib­

ution reaches the value of the input parameter L3, the range of x is redefined

and the clistribution recalculated by interpolation for the new range of x, re.,io,

divided into the original number of subdivisions.

While the above scheme permits adequate resolution of a possibly narrowing peak

of the distribution while decreasing the number of subdivisions of the x-axis,

a possible broadening of the peak is accounted for as follows. For each

iteration in the time development of the distribution, the mass distribution

is checked to see if its value for the size class at the uppermost end of the

x-range is less than 0.1 % of its maximum value. If not, the range of x is

extended at its upper end by a number of subdivisions equalto the value of the

input parameter L2. After this extension, the x-range is redivided into the

original number of subdiviaions and the distribution over the thus determined

size classes found by interpolation. At the upper end of the x-range, the re­

evaluated distribution is extrapolated from the old by Gaussian continuation.

Fig. 1 shows a typical initial (lognormal) size distribution plotted semi­

logarithmically. Since we choose to work with the logarithm of the particle

radius, the size distribution should real1y be envisioned on a log-log-plot where

it appears parabolic. On such a plot it is sensible to interpolate the distrib­

ution with a polynomial of second order only. On the other hand, it is in'suff­

icient to interpolate the linear ordinate to second or other low order. Rare

the rapid order-of-magnitude change in the size distribution over adjacent

size classes cannot be followed by low order polynomials. The code therefore
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interpolates tbe logari thm of the ordinate to second order using:

2
+ bx + CY == ax

Where

y == ln n(r)

x = ln r

and
-I -I + D -Ia = DI YI - D2 Y2 Y33

b (x2 + x3)
-I

(xI + x3) -1
(xI + x2)= - DI YI + D2 Y -2

-I• D Y33

-I -I -Ic = x2x3
DI YI - x lx3 D

2 Y2 + x lx2 D3 Y3

with

DI = (xI - x ) (xI - x )2- 3

D2 = (xI - x ) (x2 - x )2 3

D
3 = (xI - x ) (x2 - x3)3

and

= Y (x.)
1.

The x. are the size classes. In case the range of x needs to be extended, the
1.

parabola above is fitted to the last three size classes and its value beyond

the range used to extrapo]ate to the limit of the extension. This approx­

imation scheme presupposes that the time development of the distribution is

insensitive to smal1 variations in the distribution for the upper end of the

size range.

D. The Size-In~~$.ra~~n Scheme

Logica11y, the highest accuracy for the numerical integration over the size
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classes can be achieved by employing the parabolic interpolation of the log­

arithm of the distribution described above. Such a scheme is awkward and time­

consuming, however. We therefore choose instead a parabolic interpolation of

the distribution itself, or Simpson's rule. Tests have shown this method to

be sufficiently accurate. In particular, for a lognormal size distribution

the computed integral over the distribution is within 0.1 % of its analvtical

value.

To get a feel for the rate of convergence of a time integration scheme, it

is advantageous tointegrate the equation for the dynamics of the aerosol,

equation (1), over the radius r • This has been dane in refenence r-z 7.
e

Schematically, the result is:

S - aCp
"l-K C 22 p

(7)

where the bars indicate averages over the distribution and a incorporates the

leak and all deposition coefficients. For small time variations, we can assume

the averaged quantities to be approximately constant.

Any time integration scheme is equivalent to the development of C in a
p

Taylor series:

1 2
C (t + M) = C (t) + C ' M + -2- C 11 6t +.",

P P P P

so that the convergence of the scheme can be ßauged by the number of terms

required of the equivalent Taylor uxpansion. For convenience we make the

approximation of treating, in this light, each of the terms on the right hand

side of the equation separately. Then, for

dC
----.E. = S
dt

C (t + M)
p =

tbe sedes is

- 1 -i 2
Cp(t) + ~ 6t + 2 S 6t + ••• (8)
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for

dCp =
dt a C

P
the Taylor series is

and for

C (t + t.t) = C (t)(1 - a t.t + -2
1
, a 2 t.t2

- ••• )pp, (9)

dC
p =

dt the Taylor series is

Since the derivatives of the source rate S are generally not known, the code

uses as convergence criterion that

C (t») S- tlt
l'

and assumes that terms in higher orders of t.t are neg1igib1e.

For series (9), the criterion that the second term be sma11 compared to the

first:

1t.t « -­a

is also a sufficient condition that each successive term of the series be smal1

relative to its predecessor. Thus the series can be cut off after two terms

under this condition.

Series (10) is essentia11y apower series in K Cp(t) t.t. Again a cut-off after

the second term is possib1e provided

which is also the criterion that each successive term be small relative to its

predecessor.
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While the above arguments are not rigorous, we da intend them as a justif­

ication for utilizing a simple Euler time inte~ration, or equivalently, just

the first two terms of the Taylor expansion. In terms of equation (6) the

time development of the size distribution n(x,t) is then given by:

n(x,t + ~t) = n(~,t) ~ ~~(x,~ 6t

with

~t = min
x

dn(x,t)
(EPS'n(x,t) / 'i)"t--- )

where EPS is a measure of the accuracy of the time integration and is read
into the pro gram.

In addition to the number and mass concentrations Cp(t), CM(t) defined in

section 2, the program calculates for each time step the cummulative deposition

of aerosolic matter (in mg/m2) on the walls and floor of the vessel. Thus the

quantity of aerosolic matter deposited by diffusion to time t is given by

t ~

Diff. Dep.
J I

41T r 3 n(r ,t')dr dt'= vdiff "3 p
e e e

o 0

by sedimentation t <Q

II 41T 3 rt(r ,t') dr dt'Sed. Dep. r
.:: vsed ~ e e e

o 0

by thermophoresis t CJ:)

Therm.Dep. f f
41T r 3 n(r ,t') dr dt'= vT --- P3 e e e

o 0

where

v
diff

Vsed

=

=

D is the diffusion speed
CD

41T 3--3 P r g B(r ) i8 the sedimentation speed
e e



=

- 14 -

V
aT(re ) A; is the thermophoretic speed.

AdditÜLnally, the coagulation constant, the goemetric mean radius and the

standard deviation of the size distribution are calculated for each time step.

These are defined as follows:

-
K =

co

c:2(tl I n(re,t) K(re,re ') n(re:t) clre dr 'e

co

r {}-- f n(r t) ln dr }g = exp re' e e
Cp (t)o

standard deviation---
co

)
I

f
2a = { Clt) ln r Ir n(re,t) dr }7

e g ep
()

5. Reliabilit'y' and Limits .E.i..-th~ode

Since one of the main objectives in developing the code was to achieve short

computation times, no internal checks on the accuracy of the calculations for

each iteration step have been built into the code. These would invariably

significantly lengthen the computation time required. Thus one possible check

is the mass conservation property of the coagulation integrals - an additional

integration over the size range of the coagulation integrals - should yield

zero. Clearly such a calculation would significantly add to the computation

time. A less significant check is the mass balance between the at any time

suspended and cumulatively deposited material and that originally suspended.

This check at most gauges the accuracy of the mass integrals, since in the

code the amount of material deposited is derived directly from that suspended

at any instant so that a mass balance for each size class is automatie.
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Aside from such internal consistency checks, the reliability of the code must

be deduced from comparison with other codes. This has been done in particular

for an alternate development 1=6_7of the original PARDISEKO code. The two

codes were found to agree within a factor of two in calculations for typical

experimental conditions with running times of five days. Both calculated

results lie within the accuracy of the experimental results.

In attempting to apply the code to situations outside the scope of its ori~inal

development difficulties arose which will be discussed helow. These difficulties

appear in the form of numedcal instabilities in that one, the size distribution

becomes wavey at its large particle tail and two, the calculated time

differeneesbetween successive iterations of the time development become so

small that effecdvely no time development takes place.

These t,oJO effeets occur ,.,hen a long·-time partic1e source exists or the dis­

tribution contains particles large enough for significant gravitational

coagulation to occur. In the first instance a multi-modal distribution develops

thet does not fit the lognormally skew symmetry at the basis of our development

of the dynamic equation (6) in x = lnr. In the second instance the gravitation­

al coagulation mechanism fills up the large-particle classes faster than they

are depleted by the deposition mechanisms. The cut-off at the large particle

end of the distribution thus hecomes important and the performance of the

automatie range extension mechanism of the code (section 3. B) criti.cal.

This extension mechanism has unfortunately shown itself as unrelaible i'1

some situations.

Considerable work has been done on the resolution of this dilemma within the

framework of reasonably short computation times. The present lines of devel­

opment are I) retaining r as independent variable of the size distribution

for situations in which the distribution can be expected to d~verge markedly

from lognormal symmetry and 2), imposing an upper size limit such that larger

particles are no longer subjected to homogeneous mixing of the system. Bv

such a strategem large p~rticles ~~ould disappear from the system far more

quickly than is presently the case.
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